1
|
Silvent J, Robin M, Bussola Tovani C, Wang Y, Soncin F, Delgado S, Azaïs T, Sassoye C, Giraud-Guille MM, Sire JY, Nassif N. Collagen Suprafibrillar Confinement Drives the Activity of Acidic Calcium-Binding Polymers on Apatite Mineralization. Biomacromolecules 2021; 22:2802-2814. [PMID: 34101426 DOI: 10.1021/acs.biomac.1c00206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bone collagenous extracellular matrix provides a confined environment into which apatite crystals form. This biomineralization process is related to a cascade of events partly controlled by noncollagenous proteins. Although overlooked in bone models, concentration and physical environment influence their activities. Here, we show that collagen suprafibrillar confinement in bone comprising intra- and interfibrillar spaces drives the activity of biomimetic acidic calcium-binding polymers on apatite mineralization. The difference in mineralization between an entrapping dentin matrix protein-1 (DMP1) recombinant peptide (rpDMP1) and the synthetic polyaspartate validates the specificity of the 57-KD fragment of DMP1 in the regulation of mineralization, but strikingly without phosphorylation. We show that all the identified functions of rpDMP1 are dedicated to preclude pathological mineralization. Interestingly, transient apatite phases are only found using a high nonphysiological concentration of additives. The possibility to combine biomimetic concentration of both collagen and additives ensures specific chemical interactions and offers perspectives for understanding the role of bone components in mineralization.
Collapse
Affiliation(s)
- Jérémie Silvent
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France.,MNHN, CNRS, EPHE, Institut Systématique Évolution Biodiversité, ISYEB, Equipe Homologies, Sorbonne Université, 75005 Paris, France
| | - Marc Robin
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| | - Camila Bussola Tovani
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| | - Yan Wang
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| | - Fabrice Soncin
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France
| | - Sidney Delgado
- MNHN, CNRS, EPHE, Institut Systématique Évolution Biodiversité, ISYEB, Equipe Homologies, Sorbonne Université, 75005 Paris, France
| | - Thierry Azaïs
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| | - Capucine Sassoye
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| | - Marie-Madeleine Giraud-Guille
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| | - Jean-Yves Sire
- MNHN, CNRS, EPHE, Institut Systématique Évolution Biodiversité, ISYEB, Equipe Homologies, Sorbonne Université, 75005 Paris, France
| | - Nadine Nassif
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| |
Collapse
|
2
|
Ustriyana P, Schulte F, Gombedza F, Gil-Bona A, Paruchuri S, Bidlack FB, Hardt M, Landis WJ, Sahai N. Spatial survey of non-collagenous proteins in mineralizing and non-mineralizing vertebrate tissues ex vivo. Bone Rep 2021; 14:100754. [PMID: 33665237 PMCID: PMC7900015 DOI: 10.1016/j.bonr.2021.100754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 11/24/2022] Open
Abstract
Bone biomineralization is a complex process in which type I collagen and associated non-collagenous proteins (NCPs), including glycoproteins and proteoglycans, interact closely with inorganic calcium and phosphate ions to control the precipitation of nanosized, non-stoichiometric hydroxyapatite (HAP, idealized stoichiometry Ca10(PO4)6(OH)2) within the organic matrix of a tissue. The ability of certain vertebrate tissues to mineralize is critically related to several aspects of their function. The goal of this study was to identify specific NCPs in mineralizing and non-mineralizing tissues of two animal models, rat and turkey, and to determine whether some NCPs are unique to each type of tissue. The tissues investigated were rat femur (mineralizing) and tail tendon (non-mineralizing) and turkey leg tendon (having both mineralizing and non-mineralizing regions in the same individual specimen). An experimental approach ex vivo was designed for this investigation by combining sequential protein extraction with comprehensive protein mapping using proteomics and Western blotting. The extraction method enabled separation of various NCPs based on their association with either the extracellular organic collagenous matrix phases or the inorganic mineral phases of the tissues. The proteomics work generated a complete picture of NCPs in different tissues and animal species. Subsequently, Western blotting provided validation for some of the proteomics findings. The survey then yielded generalized results relevant to various protein families, rather than only individual NCPs. This study focused primarily on the NCPs belonging to the small leucine-rich proteoglycan (SLRP) family and the small integrin-binding ligand N-linked glycoproteins (SIBLINGs). SLRPs were found to be associated only with the collagenous matrix, a result suggesting that they are mainly involved in structural matrix organization and not in mineralization. SIBLINGs as well as matrix Gla (γ-carboxyglutamate) protein were strictly localized within the inorganic mineral phase of mineralizing tissues, a finding suggesting that their roles are limited to mineralization. The results from this study indicated that osteocalcin was closely involved in mineralization but did not preclude possible additional roles as a hormone. This report provides for the first time a spatial survey and comparison of NCPs from mineralizing and non-mineralizing tissues ex vivo and defines the proteome of turkey leg tendons as a model for vertebrate mineralization.
Collapse
Key Words
- B, rat bone
- BSP, bone sialoprotein
- DCN, decorin
- E, EDTA extract
- ECM, extracellular matrix
- G, guanidine-HCl-only extract (for non-mineralizing tissues)
- G1, first guanidine-HCl extract
- G2, second guanidine-HCl extract
- Gla, gamma-carboxylated glutamic acid
- MGP, matrix Gla protein
- MT, turkey mineralizing tendon
- Mineralization
- NCP, non-collagenous protein
- NMT, turkey never-mineralizing tendon
- NT, turkey not-yet-mineralized tendon
- Non-collagenous protein
- OCN, osteocalcin
- OPN, osteopontin
- Proteomics
- SIBLING, small integrin-binding ligand N-linked glycoprotein
- SLRP, small leucine-rich proteoglycan
- T, rat tail tendon
- TLT, turkey leg tendon (gastrocnemius)
- TNAP, tissue-nonspecific alkaline phosphatase
- Type I collagen
- Vertebrate
Collapse
Affiliation(s)
- Putu Ustriyana
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA
| | - Fabian Schulte
- The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Farai Gombedza
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
| | - Ana Gil-Bona
- The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sailaja Paruchuri
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
| | - Felicitas B. Bidlack
- The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Markus Hardt
- The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - William J. Landis
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA
| | - Nita Sahai
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA
- Department of Geosciences, The University of Akron, Akron, OH 44325, USA
- Integrated Bioscience Program, The University of Akron, Akron, OH 44325, USA
| |
Collapse
|
3
|
Arnold A, Dennison E, Kovacs CS, Mannstadt M, Rizzoli R, Brandi ML, Clarke B, Thakker RV. Hormonal regulation of biomineralization. Nat Rev Endocrinol 2021; 17:261-275. [PMID: 33727709 DOI: 10.1038/s41574-021-00477-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2021] [Indexed: 01/31/2023]
Abstract
Biomineralization is the process by which organisms produce mineralized tissues. This crucial process makes possible the rigidity and flexibility that the skeleton needs for ambulation and protection of vital organs, and the hardness that teeth require to tear and grind food. The skeleton also serves as a source of mineral in times of short supply, and the intestines absorb and the kidneys reclaim or excrete minerals as needed. This Review focuses on physiological and pathological aspects of the hormonal regulation of biomineralization. We discuss the roles of calcium and inorganic phosphate, dietary intake of minerals and the delicate balance between activators and inhibitors of mineralization. We also highlight the importance of tight regulation of serum concentrations of calcium and phosphate, and the major regulators of biomineralization: parathyroid hormone (PTH), the vitamin D system, vitamin K, fibroblast growth factor 23 (FGF23) and phosphatase enzymes. Finally, we summarize how developmental stresses in the fetus and neonate, and in the mother during pregnancy and lactation, invoke alternative hormonal regulatory pathways to control mineral delivery, skeletal metabolism and biomineralization.
Collapse
Affiliation(s)
- Andrew Arnold
- Division of Endocrinology & Metabolism and Center for Molecular Oncology, University of Connecticut School of Medicine, Farmington, CT, USA.
| | - Elaine Dennison
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Christopher S Kovacs
- Faculty of Medicine - Endocrinology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Michael Mannstadt
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - René Rizzoli
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Maria Luisa Brandi
- Department of Biochemical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Bart Clarke
- Mayo Clinic Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Rochester, MN, USA
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Collagen Structure-Function Mapping Informs Applications for Regenerative Medicine. Bioengineering (Basel) 2020; 8:bioengineering8010003. [PMID: 33383610 PMCID: PMC7824244 DOI: 10.3390/bioengineering8010003] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/21/2022] Open
Abstract
Type I collagen, the predominant protein of vertebrates, assembles into fibrils that orchestrate the form and function of bone, tendon, skin, and other tissues. Collagen plays roles in hemostasis, wound healing, angiogenesis, and biomineralization, and its dysfunction contributes to fibrosis, atherosclerosis, cancer metastasis, and brittle bone disease. To elucidate the type I collagen structure-function relationship, we constructed a type I collagen fibril interactome, including its functional sites and disease-associated mutations. When projected onto an X-ray diffraction model of the native collagen microfibril, data revealed a matrix interaction domain that assumes structural roles including collagen assembly, crosslinking, proteoglycan (PG) binding, and mineralization, and the cell interaction domain supporting dynamic aspects of collagen biology such as hemostasis, tissue remodeling, and cell adhesion. Our type III collagen interactome corroborates this model. We propose that in quiescent tissues, the fibril projects a structural face; however, tissue injury releases blood into the collagenous stroma, triggering exposure of the fibrils' cell and ligand binding sites crucial for tissue remodeling and regeneration. Applications of our research include discovery of anti-fibrotic antibodies and elucidating their interactions with collagen, and using insights from our angiogenesis studies and collagen structure-function model to inform the design of super-angiogenic collagens and collagen mimetics.
Collapse
|
5
|
Wang Z, Ustriyana P, Chen K, Zhao W, Xu Z, Sahai N. Toward the Understanding of Small Protein-Mediated Collagen Intrafibrillar Mineralization. ACS Biomater Sci Eng 2020; 6:4247-4255. [PMID: 33463336 DOI: 10.1021/acsbiomaterials.0c00386] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The design of improved materials for orthopedic implants and bone tissue engineering scaffolds relies on materials mimicking the properties of bone. Calcium phosphate (Ca-PO4)-mineralized collagen fibrils arranged in a characteristic hierarchical structure constitute the building blocks of mineralized vertebrate tissues and control their biomechanical and biochemical properties. Large, flexible, acidic noncollagenous proteins (ANCPs) have been shown to influence collagen mineralization but little is known about mineralization mechanisms with the aid of small proteins. Osteocalcin (OCN) is a small, highly structured biomolecule known as a multifunctional hormone in its undercarboxylated form. Here, we examined the potential mechanism of collagen intrafibrillar mineralization in vitro mediated by OCN as a model protein. Rapid and random extrafibrillar mineralization of flakey Ca-PO4 particles was observed by transmission electron microscopy mainly on the outer surfaces of collagen fibrils of a preformed collagen scaffold in the absence of the protein. In contrast, the protein stabilized hydrated, spherical nanoclusters of Ca-PO4 on the outer surface of the fibrils, thereby retarding extrafibrillar mineralization. The nanoclusters then infiltrated the fibrils resulting in intrafibrillar mineralization with HAP crystals aligned with the fibrils. This mechanism is similar to that observed for unstructured ANCPs. Results of fibrillogenesis and immunogold labeling studies showed that OCN was associated primarily with the fibrils, consistent with ex vivo studies on mineralizing turkey tendon. The present findings contribute to expanding our understanding of collagen intrafibrillar mineralization and provide insight into design synthetic macromolecular matrices for orthopedic implants and bone regeneration.
Collapse
|
6
|
Biomineralization Forming Process and Bio-inspired Nanomaterials for Biomedical Application: A Review. MINERALS 2019. [DOI: 10.3390/min9020068] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biomineralization is a process in which organic matter and inorganic matter combine with each other under the regulation of living organisms. Because of the biomineralization-induced super survivability and retentivity, biomineralization has attracted special attention from biologists, archaeologists, chemists, and materials scientists for its tracer and transformation effect in rock evolution study and nanomaterials synthesis. However, controlling the biomineralization process in vitro as precisely as intricate biology systems still remains a challenge. In this review, the regulating roles of temperature, pH, and organics in biominerals forming process were reviewed. The artificially introducing and utilization of biomineralization, the bio-inspired synthesis of nanomaterials, in biomedical fields was further discussed, mainly in five potential fields: drug and cell-therapy engineering, cancer/tumor target engineering, bone tissue engineering, and other advanced biomedical engineering. This review might help other interdisciplinary researchers to bionic-manufacture biominerals in molecular-level for developing more applications of biomineralization.
Collapse
|
7
|
Abstract
The mechanism (s) that drive the organization of bone mineral throughout the bone extracellular matrix remain unclear. The long-standing theory implicates the organic matrix, namely specific non-collagenous proteins and/or collagen fibrils, while a recent theory proposes a self-assembly mechanism. Applying a combination of spectroscopic and microscopic techniques in wet and dry conditions to bone-like hydroxyapatite nanoparticles that were used as a proxy for bone mineral, we confirm that mature bone mineral particles have the capacity to self-assemble into organized structures. A large quantity of water is present at the surface of bone mineral due to the presence of a hydrophilic, amorphous surface layer that coats bone mineral nanoparticles. These water molecules must not only be strongly bound to the surface of bone mineral in the form of a rigid hydration shell, but they must also be trapped within the amorphous surface layer. Cohesive forces between these water molecules present at the mineral–mineral interface not only hold the mature bone mineral particles together, but also promote their oriented stacking. This intrinsic ability of mature bone mineral particles to organize themselves without recourse to the organic matrix forms the foundation for the development of the next generation of orthopedic biomaterials.
Collapse
|
8
|
Amenta E, King HE, Petermann H, Uskoković V, Tommasini SM, Macica CM. Vibrational spectroscopic analysis of hydroxyapatite in HYP mice and individuals with X-linked hypophosphatemia. Ther Adv Chronic Dis 2018; 9:268-281. [PMID: 30719271 PMCID: PMC6348532 DOI: 10.1177/2040622318804753] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/20/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND X-linked hypophosphatemia (XLH) is the most common form of familial phosphate-wasting disorders, due to an inactivating mutation in the phosphate-regulating neutral endopeptidase, X-linked gene. Persistent osteomalacia, enthesophytes, osteophytes, degenerative arthritis and dental abscesses/periodontal disease dominate the adult disorder. However, the impact of insufficient phosphate on hydroxyapatite composition, the major inorganic component of bone and teeth, is unknown in individuals with XLH. METHODS Using Raman spectroscopy, the carbonate (CO3 2-) to phosphate (PO4 3-) ion ratio was measured in HYP and wild-type mice and in primary and permanent teeth from XLH individuals and unaffected controls. RESULTS There was a significant difference in carbonate ion substitution between the HYP and wild-type femoral cortical bone (0.36 ± 0.08 versus 0.24 ± 0.04; p < 0.001). Carbonate ion substitution levels were also higher in permanent XLH teeth compared with unaffected individuals (0.39 ± 0.12 versus 0.23 ± 0.04; p < 0.001), but not in primary teeth (0.29 ± 0.11 versus 0.26 ± 0.02; p = 0.29). Complementary Fourier transform infrared analyses demonstrated higher relative intensities of the four major vibrational bands originating from the carbonate anion in XLH teeth compared with unaffected controls. CONCLUSION Ionic substitution within the crystal lattice is a common feature of hydroxyapatite and one that confers the physiological properties of bone that impact mechanical strength and the process of bone remodeling. Our data demonstrating anionic substitution in human dentin from individuals with XLH validate the use of dentin as a proxy for bone and to better understand the molecular adaptations that occur in the biochemical milieu of XLH.
Collapse
Affiliation(s)
- Eva Amenta
- Department of Medical Sciences, Frank H. Netter, M.D., School of Medicine at Quinnipiac University, North Haven, CT, USA
| | - Helen E. King
- Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands
| | - Holger Petermann
- Department of Geology and Geophysics, Yale University, New Haven, CT, USA
| | - Vuk Uskoković
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, USA
| | - Steven M. Tommasini
- Department of Orthopaedics and Rehabilitation, Yale University, New Haven, CT, USA
| | - Carolyn M. Macica
- Frank H. Netter MD School of Medicine, Quinnipiac University, 275 Mt. Carmel Avenue, NH-MED MNH-311H, Hamden, CT 06518, USA
| |
Collapse
|
9
|
Xu Z, Zhao W, Wang Z, Yang Y, Sahai N. Structure analysis of collagen fibril at atomic-level resolution and its implications for intra-fibrillar transport in bone biomineralization. Phys Chem Chem Phys 2018; 20:1513-1523. [PMID: 29260165 DOI: 10.1039/c7cp05261h] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bone is a hierarchical biocomposite material in which a collagen fibril matrix self-assembled in a three-dimensional (3-D) pseudohexagonal array controls many important processes in mineralization such as providing the pathways by which calcium and phosphate species are delivered and a template for the earliest nucleation sites, determining the spatial distribution of the mineral and the topology for binding of associated non-collagenous proteins. However, the structural characteristics of collagen molecules in the fibril remain unclear at the atomic level. Here we performed the first large-scale molecular dynamics simulations to provide a comprehensive all-atom structural analysis of the entire fibril of Type I collagen including intra-fibrillar water distribution. We found that the ideal fibril structure is preserved in specific sites where the earliest nucleation occurs, but is severely distorted in areas that mineralize later. In detail, the ideal pseudohexagonal structure is well-preserved in the overlap zone (c1, c2 and b bands), in the a bands of the hole zone but is severely distorted at the hole/overlap transition (d and c3 bands). As a result, the expected uniform "channel," formed by connecting holes in adjacent unit cells along the b-axis, and having dimensions of 1.5 nm height along the a-axis and width of 40 nm along the c-axis is not formed. The expected uniform channel of 1.5 nm height is preserved only in the a bands in a narrow sub-channel region only 5.8 nm wide. At the hole/overlap transition, an irregular, tortuous sub-channel of widely varying dimensions (∼1.8-4.0 nm height × ∼3.0 nm width) is formed. The well-defined sub-channel in the a bands along with their preferred orientation of charged amino acid residues could facilitate faster molecular diffusion than the tortuous sub-channels and ionic interactions, thus providing the first nucleation sites. Intra-fibrillar water occupies nano-spaces and shows low density (∼0.7 g cm-3), which should promote dehydration of ion species. These results provide the first atomic-level understanding of the structure of the collagen fibril and the properties of the aqueous compartments within the fibril, which offer a physical, chemical and steric explanation for calcium phosphate infiltration paths and for the initiation of mineralization at the a band collagen fibril. The mechanism revealed here for the observed specificity of collagen biomineralization in bone formation ultimately contributes to the biochemical and biomechanical functions of the skeleton.
Collapse
Affiliation(s)
- Zhijun Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China.
| | | | | | | | | |
Collapse
|
10
|
Heterogeneous crystallization of calcium hydrogen phosphate anhydrous (monetite). Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.11.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Ennever J. Microbiologic Mineralization: A Calci fiable Cell-free Extract from a Calcifiable Micro-organism. J Dent Res 2016. [DOI: 10.1177/00220345620410061601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- J. Ennever
- Ivorydale Technical Center, Procter & Gamble Company, Cincinnati, Ohio
| |
Collapse
|
12
|
|
13
|
Induction and quantification of collagen fiber alignment in a three-dimensional hydroxyapatite-collagen composite scaffold. Acta Biomater 2015; 17:26-35. [PMID: 25653215 DOI: 10.1016/j.actbio.2015.01.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/19/2014] [Accepted: 01/22/2015] [Indexed: 11/21/2022]
Abstract
Hydroxyapatite-collagen composite scaffolds are designed to serve as a regenerative load bearing replacement that mimics bone. However, the material properties of these scaffolds are at least an order of magnitude less than that of bone and subject to fail under physiological loading conditions. These scaffolds compositionally resemble bone but they do not possess important structural attributes such as an ordered arrangement of collagen fibers, which is a correlate to the mechanical properties in bone. Furthermore, it is unclear how much ordering of structure is satisfactory to mimic bone. Therefore, quantitative methods are needed to characterize collagen fiber alignment in these scaffolds for better correlation between the scaffold structure and the mechanical properties. A combination of extrusion and compaction was used to induce collagen fiber alignment in composite scaffolds. Collagen fiber alignment, due to extrusion and compaction, was quantified from polarized light microscopy images with a Fourier transform image processing algorithm. The Fourier transform method was capable of resolving the degree of collagen alignment from polarized light images. Anisotropy indices of the image planes ranged from 0.08 to 0.45. Increases in the degree of fiber alignment induced solely by extrusion (0.08-0.25) or compaction (0.25-0.44) were not as great as those by the combination of extrusion and compaction (0.35-0.45). Additional measures of randomness and fiber direction corroborate these anisotropy findings. This increased degree of collagen fiber alignment was induced in a preferred direction that is consistent with the extrusion direction and parallel with the compacted plane.
Collapse
|
14
|
Xu Z, Yang Y, Zhao W, Wang Z, Landis WJ, Cui Q, Sahai N. Molecular mechanisms for intrafibrillar collagen mineralization in skeletal tissues. Biomaterials 2014; 39:59-66. [PMID: 25477172 DOI: 10.1016/j.biomaterials.2014.10.048] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/16/2014] [Indexed: 10/24/2022]
Abstract
The critical role of the self-assembled structure of collagen in skeletal mineralization is long recognized, yet the angstrom to tens of nanometers length-scale nucleation mechanism of calcium phosphate mineral (Ca-Pi) remains unclear. Here, by constructing three-dimensional structure of collagen fibril, we report direct computational evidence of intrafibrillar Ca-Pi nucleation in the collagen matrix and illustrate the crucial role of charged amino acid sidechains of collagen molecules in nucleation. The all-atom Hamiltonian replica exchange molecular dynamics simulation shows that these charged sidechains are oriented toward the fibril "hole zones" and significantly template nucleation with amorphous Ca-Pi phase, ∼1.3-1.6 nm in size, thus explaining the empirical observations that Ca-Pi nucleates principally in these regions. We also show that the low water density of about 0.70 g cm(-3) in these zones may further benefit nucleation by lowering the enthalpic penalty for ion desolvation. This work provides insight, at the atomistic level, into the nucleation mechanism of bone crystals within a collagen matrix for understanding mineral deposition, interpreting mineralization experiments and guiding the design of new implantable materials.
Collapse
Affiliation(s)
- Zhijun Xu
- Department of Polymer Science, University of Akron, 170 University Ave, Akron, OH 44325, USA.
| | - Yang Yang
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Weilong Zhao
- Department of Polymer Science, University of Akron, 170 University Ave, Akron, OH 44325, USA
| | - Ziqiu Wang
- Department of Polymer Science, University of Akron, 170 University Ave, Akron, OH 44325, USA
| | - William J Landis
- Department of Polymer Science, University of Akron, 170 University Ave, Akron, OH 44325, USA
| | - Qiang Cui
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA
| | - Nita Sahai
- Department of Polymer Science, University of Akron, 170 University Ave, Akron, OH 44325, USA; Integrated Bioscience Program, University of Akron, 170 University Ave, Akron, OH 44325, USA.
| |
Collapse
|
15
|
Omelon S, Ariganello M, Bonucci E, Grynpas M, Nanci A. A review of phosphate mineral nucleation in biology and geobiology. Calcif Tissue Int 2013; 93:382-96. [PMID: 24077874 PMCID: PMC3824353 DOI: 10.1007/s00223-013-9784-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 08/06/2013] [Indexed: 11/26/2022]
Abstract
Relationships between geological phosphorite deposition and biological apatite nucleation have often been overlooked. However, similarities in biological apatite and phosphorite mineralogy suggest that their chemical formation mechanisms may be similar. This review serves to draw parallels between two newly described phosphorite mineralization processes, and proposes a similar novel mechanism for biologically controlled apatite mineral nucleation. This mechanism integrates polyphosphate biochemistry with crystal nucleation theory. Recently, the roles of polyphosphates in the nucleation of marine phosphorites were discovered. Marine bacteria and diatoms have been shown to store and concentrate inorganic phosphate (Pi) as amorphous, polyphosphate granules. Subsequent release of these P reserves into the local marine environment as Pi results in biologically induced phosphorite nucleation. Pi storage and release through an intracellular polyphosphate intermediate may also occur in mineralizing oral bacteria. Polyphosphates may be associated with biologically controlled apatite nucleation within vertebrates and invertebrates. Historically, biological apatite nucleation has been attributed to either a biochemical increase in local Pi concentration or matrix-mediated apatite nucleation control. This review proposes a mechanism that integrates both theories. Intracellular and extracellular amorphous granules, rich in both calcium and phosphorus, have been observed in apatite-biomineralizing vertebrates, protists, and atremate brachiopods. These granules may represent stores of calcium-polyphosphate. Not unlike phosphorite nucleation by bacteria and diatoms, polyphosphate depolymerization to Pi would be controlled by phosphatase activity. Enzymatic polyphosphate depolymerization would increase apatite saturation to the level required for mineral nucleation, while matrix proteins would simultaneously control the progression of new biological apatite formation.
Collapse
Affiliation(s)
- Sidney Omelon
- Chemical and Biological Engineering, University of Ottawa, Ottawa, Canada
| | | | - Ermanno Bonucci
- Department of Experimental Medicine, La Sapienza University of Rome, Rome, Italy
| | - Marc Grynpas
- Laboratory Medicine and Pathobiology, Samuel Lunenfeld Research Institute of Mt. Sinai Hospital, Toronto, Canada
| | - Antonio Nanci
- Faculty of Dentistry, Université de Montréal, Montreal, Canada
| |
Collapse
|
16
|
Aldea D, Hanna P, Munoz D, Espinoza J, Torrejon M, Sachs L, Buisine N, Oulion S, Escriva H, Marcellini S. Evolution of the vertebrate bone matrix: an expression analysis of the network forming collagen paralogues in amphibian osteoblasts. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:375-84. [PMID: 23677533 DOI: 10.1002/jez.b.22511] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 04/03/2013] [Accepted: 04/06/2013] [Indexed: 11/08/2022]
Abstract
The emergence of vertebrates is closely associated to the evolution of mineralized bone tissue. However, the molecular basis underlying the origin and subsequent diversification of the skeletal mineralized matrix is still poorly understood. One efficient way to tackle this issue is to compare the expression, between vertebrate species, of osteoblastic genes coding for bone matrix proteins. In this work, we have focused on the evolution of the network forming collagen family which contains the Col8a1, Col8a2, and Col10a1 genes. Both phylogeny and synteny reveal that these three paralogues are vertebrate-specific and derive from two independent duplications in the vertebrate lineage. To shed light on the evolution of this family, we have analyzed the osteoblastic expression of the network forming collagens in endochondral and intramembraneous skeletal elements of the amphibian Xenopus tropicalis. Remarkably, we find that amphibian osteoblasts express Col10a1, a gene strongly expressed in osteoblasts in actinopterygians but not in amniotes. In addition, while Col8a1 is known to be robustly expressed in mammalian osteoblasts, the expression levels of its amphibian orthologue are dramatically reduced. Our work reveals that while a skeletal expression of network forming collagen members is widespread throughout vertebrates, osteoblasts from divergent vertebrate lineages express different combinations of network forming collagen paralogues.
Collapse
Affiliation(s)
- Daniel Aldea
- Laboratorio de Desarrollo y Evolución, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, Concepción, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bertrand S, Fuentealba J, Aze A, Hudson C, Yasuo H, Torrejon M, Escriva H, Marcellini S. A dynamic history of gene duplications and losses characterizes the evolution of the SPARC family in eumetazoans. Proc Biol Sci 2013; 280:20122963. [PMID: 23446527 DOI: 10.1098/rspb.2012.2963] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The vertebrates share the ability to produce a skeleton made of mineralized extracellular matrix. However, our understanding of the molecular changes that accompanied their emergence remains scarce. Here, we describe the evolutionary history of the SPARC (secreted protein acidic and rich in cysteine) family, because its vertebrate orthologues are expressed in cartilage, bones and teeth where they have been proposed to bind calcium and act as extracellular collagen chaperones, and because further duplications of specific SPARC members produced the small calcium-binding phosphoproteins (SCPP) family that is crucial for skeletal mineralization to occur. Both phylogeny and synteny conservation analyses reveal that, in the eumetazoan ancestor, a unique ancestral gene duplicated to give rise to SPARC and SPARCB described here for the first time. Independent losses have eliminated one of the two paralogues in cnidarians, protostomes and tetrapods. Hence, only non-tetrapod deuterostomes have conserved both genes. Remarkably, SPARC and SPARCB paralogues are still linked in the amphioxus genome. To shed light on the evolution of the SPARC family members in chordates, we performed a comprehensive analysis of their embryonic expression patterns in amphioxus, tunicates, teleosts, amphibians and mammals. Our results show that in the chordate lineage SPARC and SPARCB family members were recurrently recruited in a variety of unrelated tissues expressing collagen genes. We propose that one of the earliest steps of skeletal evolution involved the co-expression of SPARC paralogues with collagenous proteins.
Collapse
Affiliation(s)
- Stephanie Bertrand
- CNRS, UMR7232, Université Pierre et Marie Curie Paris 06, Observatoire Océanologique, Banyuls-sur-Mer, France.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Faillace ME, Phipps RJ, Miller LM. Fourier transform infrared imaging as a tool to chemically and spatially characterize matrix-mineral deposition in osteoblasts. Calcif Tissue Int 2013; 92:50-8. [PMID: 23143076 DOI: 10.1007/s00223-012-9667-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 10/17/2012] [Indexed: 10/27/2022]
Abstract
Mineralizing osteoblasts are regularly used to study osteogenesis and model in vivo bone formation. Thus, it is important to verify that the mineral and matrix being formed in situ are comparable to those found in vivo. However, it has been shown that histochemical techniques alone are not sufficient for identifying calcium phosphate-containing mineral. The goal of the present study was to demonstrate the use of Fourier transform infrared imaging (FTIRI) as a tool for characterizing the spatial distribution and colocalization of the collagen matrix and the mineral phase during the mineralization process of osteoblasts in situ. MC3T3-E1 mouse osteoblasts were mineralized in culture for 28 days and FTIRI was used to evaluate the collagen content, collagen cross-linking, mineralization level and speciation, and mineral crystallinity in a spatially resolved fashion as a function of time. To test whether FTIRI could detect subtle changes in the mineralization process, cells were treated with risedronate (RIS). Results showed that collagen deposition and mineralization progressed over time and that the apatite mineral was associated with a collagenous matrix rather than ectopic mineral. The process was temporarily slowed by RIS, where the inhibition of osteoblast function caused slowed collagen production and cross-linking, leading to decreased mineralization. This study demonstrates that FTIRI is a complementary tool to histochemistry for spatially correlating the collagen matrix distribution and the nature of the resultant mineral during the process of osteoblast mineralization. It can further be used to detect small perturbations in the osteoid and mineral deposition process.
Collapse
Affiliation(s)
- Meghan E Faillace
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11790, USA
| | | | | |
Collapse
|
19
|
Marcellini S, Henriquez JP, Bertin A. Control of osteogenesis by the canonical Wnt and BMP pathways in vivo: cooperation and antagonism between the canonical Wnt and BMP pathways as cells differentiate from osteochondroprogenitors to osteoblasts and osteocytes. Bioessays 2012; 34:953-62. [PMID: 22930599 DOI: 10.1002/bies.201200061] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although many regulators of skeletogenesis have been functionally characterized, one current challenge is to integrate this information into regulatory networks. Here, we discuss how the canonical Wnt and Smad-dependent BMP pathways interact together and play antagonistic or cooperative roles at different steps of osteogenesis, in the context of the developing vertebrate embryo. Early on, BMP signaling specifies multipotent mesenchymal cells into osteochondroprogenitors. In turn, the function of Wnt signaling is to drive these osteochondroprogenitors towards an osteoblastic fate. Subsequently, both pathways promote osteoblast differentiation, albeit with notable mechanistic differences. In osteocytes, the ultimate stage of osteogenic differentiation, the Wnt and BMP pathways exert opposite effects on the control of bone resorption by osteoclasts. We describe how the dynamic molecular wiring of the canonical Wnt and Smad-dependent BMP signaling into the skeletal cell genetic programme is critical for the generation of bone-specific cell types during development.
Collapse
Affiliation(s)
- Sylvain Marcellini
- Faculty of Biological Science, Department of Cell Biology, University of Concepcion, Concepcion, Chile.
| | | | | |
Collapse
|
20
|
Calcium metal to synthesize amorphous or cryptocrystalline calcium phosphates. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012. [DOI: 10.1016/j.msec.2012.01.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Zeiger DN, Miles WC, Eidelman N, Lin-Gibson S. Cooperative calcium phosphate nucleation within collagen fibrils. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:8263-8268. [PMID: 21657218 DOI: 10.1021/la201361e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Although "chaperone molecules" rich in negatively charged residues (i.e., glutamic and aspartic acid) are known to play important roles in the biomineralization process, the precise mechanism by which type I collagen acquires intrafibrillar mineral via these chaperone molecules remains unknown. This study demonstrates a mechanism of cooperative nucleation in which three key components (collagen, chaperone molecules, and Ca(2+) and PO(4)(3-)) interact simultaneously. The mineralization of collagen under conditions in which collagen was exposed to pAsp, Ca(2+), and PO(4)(3-) simultaneously or pretreated with the chaperone molecule (in this case, poly(aspartic acid)) before any exposure to the mineralizing solution was compared to deduce the mineralization mechanism. Depending on the exact conditions, intrafibrillar mineral formation could be reduced or even eliminated through pretreatment with the chaperone molecule. Through the use of a fluorescently tagged polymer, it was determined that the adsorption of the chaperone molecule to the collagen surface retarded further adsorption of subsequent molecules, explaining the reduced mineralization rate in pretreated samples. This finding is significant because it indicates that chaperone molecules must interact simultaneously with the ions in solution and collagen for biomimetic mineralization to occur and that the rate of mineralization is highly dependent upon the interaction of collagen with its environment.
Collapse
Affiliation(s)
- Diana N Zeiger
- Polymers Division, American Dental Association Foundation, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8543, USA
| | | | | | | |
Collapse
|
22
|
Veis A. Organic matrix-related mineralization of sea urchin spicules, spines, test and teeth. FRONT BIOSCI-LANDMRK 2011; 16:2540-60. [PMID: 21622194 PMCID: PMC3516302 DOI: 10.2741/3871] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The camarodont echinoderms have five distinct mineralized skeletal elements: embryonic spicules, mature test, spines, lantern stereom and teeth. The spicules are transient structural elements whereas the spines, and test plates are permanent. The teeth grow continuously. The mineral is a high magnesium calcite, but the magnesium content is different in each type of skeletal element, varying from 5 to 40 mole% Mg. The organic matrix creates the spaces and environments for crystal initiation and growth. The detailed mechanisms of crystal regulation are not known, but acidic and phosphorylated matrix proteins may be of special importance. Biochemical studies, sequencing of the complete genome, and high-throughput proteomic analysis have not yet provided insight into the mechanisms of crystallization, calcite composition, and orientation applicable to all skeletal elements. The embryonic spicules are not representative of the mature skeletal elements. The next phase of research will have to focus on the specific localization of the proteins and individual biochemistries of each system with regard to mineral content and placement.
Collapse
Affiliation(s)
- Arthur Veis
- Feinberg School of Medicine, Northwestern University, Department of Cell and Molecular Biology, 303 E. Chicago Avenue, Chicago, Illinois 60611, USA.
| |
Collapse
|
23
|
LAGERGREN CURT, LINDBOM AKE, SÖDERBERG GUNNAR. STUDIES OF CALCIFICATION AND BONE FORMATION IN CHONDROSARCOMA. ACTA ACUST UNITED AC 2009. [DOI: 10.1111/j.1699-0463.1962.tb01754.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
|
25
|
|
26
|
Affiliation(s)
- C Rey
- University of Toulouse, CIRIMAT, ENSIACET, 118 Route de Narbonne 31077, Toulouse Cedex 04, France
| | | | | | | |
Collapse
|
27
|
Bertelsen S, Marcker K. Isolation of Hyaluronic Acid and Chondroitin-sulphuric Acid from Human Aortae. ACTA ACUST UNITED AC 2009. [DOI: 10.1111/j.1600-0773.1961.tb00308.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
TRAVIS DF. STRUCTURAL FEATURES OF MINERALIZATION FROM TISSUE TO MACROMOLECULAR LEVELS OF ORGANIZATION IN THE DECAPOD CRUSTACEA*. Ann N Y Acad Sci 2006; 109:177-245. [PMID: 13994029 DOI: 10.1111/j.1749-6632.1963.tb13467.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
|
30
|
Chen J, Burger C, Krishnan CV, Chu B, Hsiao BS, Glimcher MJ. In Vitro Mineralization of Collagen in Demineralized Fish Bone. MACROMOL CHEM PHYS 2005. [DOI: 10.1002/macp.200400066] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Landis WJ, Silver FH. The structure and function of normally mineralizing avian tendons. Comp Biochem Physiol A Mol Integr Physiol 2002; 133:1135-57. [PMID: 12485697 DOI: 10.1016/s1095-6433(02)00248-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The leg tendons of certain avian species normally calcify. The gastrocnemius, or Achilles, tendon of the domestic turkey, Meleagris gallopavo, is one such example. Its structure and biomechanical properties have been studied to model the adaptive nature of this tendon to external forces, including the means by which mineral deposition occurs and the functional role mineralization may play in this tissue. Structurally, the distal rounded, thick gastrocnemius bifurcates into two smaller proximal segments that mineralize with time. Mineral deposition occurs at or near the bifurcation, proceeding in a distal-to-proximal direction along the segments toward caudal and medial muscle insertions of the bird hip. Mineral formation appears mediated first by extracellular matrix vesicles and later by type I collagen fibrils. Biomechanical analyses indicate lower tensile strength and moduli for the thick distal gastrocnemius compared to narrow, fan-shaped proximal segments. Tendon mineralization here appears to be strain-induced, the muscle forces causing matrix deformation leading conceptually to calcium binding through the exposure of charged groups on collagen, release of sequestered calcium by proteoglycans, and increased diffusion. Functionally, the mineralized tendons limit further tendon deformation, reduce tendon strain at a given stress, and provide greater load-bearing capacity to the tissue. They also serve as important and efficient elastic energy storage reservoirs, increasing the amount of stored elastic energy by preventing flexible type I collagen regions from stretching and preserving muscle energy during locomotion of the animals.
Collapse
Affiliation(s)
- William J Landis
- Department of Biochemistry and Molecular Pathology, Northeastern Ohio Universities College of Medicine, Rootstown, OH 44272, USA.
| | | |
Collapse
|
32
|
Wu Y, Ackerman JL, Kim HM, Rey C, Barroug A, Glimcher MJ. Nuclear magnetic resonance spin-spin relaxation of the crystals of bone, dental enamel, and synthetic hydroxyapatites. J Bone Miner Res 2002; 17:472-80. [PMID: 11874238 DOI: 10.1359/jbmr.2002.17.3.472] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Studies of the apatitic crystals of bone and enamel by a variety of spectroscopic techniques have established clearly that their chemical composition, short-range order, and physical chemical reactivity are distinctly different from those of pure hydroxyapatite. Moreover, these characteristics change with aging and maturation of the bone and enamel crystals. Phosphorus-31 solid state nuclear magnetic resonance (NMR) spin-spin relaxation studies were carried out on bovine bone and dental enamel crystals of different ages and the data were compared with those obtained from pure and carbonated hydroxyapatites. By measuring the 31P Hahn spin echo amplitude as a function of echo time, Van Vleck second moments (expansion coefficients describing the homonuclear dipolar line shape) were obtained and analyzed in terms of the number density of phosphorus nuclei. 31P magnetization prepared by a 90 degree pulse or by proton-phosphorus cross-polarization (CP) yielded different second moments and experienced different degrees of proton spin-spin coupling, suggesting that these two preparation methods sample different regions, possibly the interior and the surface, respectively, of bone mineral crystals. Distinct differences were found between the biological apatites and the synthetic hydroxyapatites and as a function of the age and maturity of the biological apatites. The data provide evidence that a significant fraction of the protonated phosphates (HPO4(-2)) are located on the surfaces of the biological crystals, and the concentration of unprotonated phosphates (PO4(-3)) within the apatitic lattice is elevated with respect to the surface. The total concentration of the surface HPO4(-2) groups is higher in the younger, less mature biological crystals.
Collapse
Affiliation(s)
- Yaotang Wu
- Department of Orthopaedic Surgery, Harvard Medical School, Children's Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
33
|
Spanos N, Deimede V, Koutsoukos PG. Functionalization of synthetic polymers for potential use as biomaterials: selective growth of hydroxyapatite on sulphonated polysulphone. Biomaterials 2002; 23:947-53. [PMID: 11771714 DOI: 10.1016/s0142-9612(01)00207-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A novel composite made of biocompatible synthetic polymer (Sulphonated Polysulphone, SPSPH) which may be easily fabricated in various shapes and synthetic hydroxyapatite (HAP) was prepared. The preparation was done by the spontaneous precipitation of HAP in aqueous suspensions of the polymer particles. The time the precipitation process was allowed to proceed was used to regulate the inorganic content of the composite. The preparation thus obtained, in addition to its effectiveness in inducing HAP formation, could be easily fabricated in various shapes, including films. The SPSPH-HAP composite films, surface area totaling ca. 30 cm2 induced the exclusive formation of HAP with rates proportional to the solution supersaturation. No induction times preceded the formation of HAP. Kinetics analysis with respect to HAP yielded an apparent order of precipitation of 6.0+/-0.4, suggesting polynuclear growth with the formation of nuclei above nuclei. The surface energy calculated from the rates of crystal growth on the polymeric substrate gave for HAP the value of 185 mJ m(-2) of order of magnitude typical for crystalline solids.
Collapse
Affiliation(s)
- N Spanos
- Institute of Chemical Engineering and High Temperature Chemical Processes, Patras, Greece
| | | | | |
Collapse
|
34
|
Silver FH, Freeman JW, Horvath I, Landis WJ. Molecular basis for elastic energy storage in mineralized tendon. Biomacromolecules 2002; 2:750-6. [PMID: 11710028 DOI: 10.1021/bm0100615] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Animals store elastic energy in leg and foot tendons during locomotion. In the turkey, much of the locomotive force generated by the gastrocnemius muscle is stored as elastic energy during tendon deformation. Little energy storage occurs within the muscle. During growth of some avians, including the turkey, leg tendons mineralize in the portions distal to the attached muscle and show increased tensile strength and modulus as a result. The purpose of this study is to test the hypothesis that the degree of elastic energy storage in mineralizing turkey tendon is directly related to the tendon mineral content. To test this hypothesis, the stress-strain behavior of tendons was separated into elastic and viscous components. Both the elastic spring constant and the elastic energy stored, calculated up to a strain of 20%, were found to be proportional to tendon mineral content. It is concluded that mineralization is an efficient means for increasing the amount of elastic energy storage that is required for increased load-bearing ability needed for locomotion of adult birds. Examination of molecular models of the hole region, where mineralization is initiated within the collagen fibril, leads to the hypothesis that elastic energy is stored in the tendon by direct stretching of the flexible regions. Flexible regions within the collagen molecule fall within the positively stained bands of the collagen D period. It is proposed that mineralization increases the stored elastic energy by preventing flexible regions within the positively stained bands from stretching. These observations suggest that mineralization begins in the hole region due to the large number of charged amino acid residues found in the d and e bands.
Collapse
Affiliation(s)
- F H Silver
- Division of Biomaterials, Department of Pathology and Laboratory Medicine, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| | | | | | | |
Collapse
|
35
|
Schinke T, McKee MD, Karsenty G. Extracellular matrix calcification: where is the action? Nat Genet 1999; 21:150-1. [PMID: 9988260 DOI: 10.1038/5928] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Abstract
The importance of glutaraldehyde pretreated bioprosthetic heart valves fabricated from bovine pericardium or porcine aortic valves is well realized in the management of valvular heart diseases. But, calcification limits the durability and is the most frequent cause of failure of these bioprosthetic heart valves. Various research groups in the world are actively involved in describing, understanding, and preventing calcification of bioprosthetic heart valves. Since there is no satisfactory clinical means for preventing or treating this disorder, attempts are made to improve the anticalcification properties of the replacement valves in the preparation stage itself. Research in this area is very active, and many newer approaches are made to mitigate the problem. An attempt has been made in the present article to review various theories put forward to explain the causative factors involved and mechanistic aspects of biocalcification and to present various strategies attempted for the prevention of calcification with the special feature on the work done in the area in our laboratory.
Collapse
Affiliation(s)
- K P Rao
- Biomaterials Laboratory, Central Leather Research Institute, Adyar, India
| | | |
Collapse
|
37
|
Abstract
There is a widespread clinical need for bone augmentation and replacement. The major solid phases of bone are collagen and calcium phosphate and a bone analogue based on these two constituents should have some useful properties. In this review this theme is developed and the properties of natural and naturally based composites are compared. Composites have been produced by the precipitation of calcium phosphates on to collagen and a summary of the methods and results from mechanical testing and scanning electron microscopy are presented. Composites with mechanical properties intermediate between cancellous and cortical bone have been produced. The review concludes by explaining some of the mechanical properties of the composites, using knowledge of the hierarchical architecture of bone and results from microscopical examination of the fractured composites.
Collapse
Affiliation(s)
- A C Lawson
- Department of Materials, University of Oxford
| | | |
Collapse
|
38
|
Iijima M, Moriwaki Y, Kuboki Y. Oriented and lengthwise growth of octacalcium phosphate on collagenous matrix in vitro. Connect Tissue Res 1997; 36:51-61. [PMID: 9298623 DOI: 10.3109/03008209709160213] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A correlation among the oriented growth of octacalcium phosphate (OCP), the arrangement of the collagen fibrils in a collagenous matrix and direction of ionic flow was studied in vitro at pH7.0 and at 37 degrees, using two types of collagen disks made from sliced bovine Achilles tendon. Disk A and disk B were made from slices cut perpendicular and parallel to the collagen fibrils, respectively. The products on the collagen fibrils were a mixture of OCP and apatite in the both disks, but the relative amounts of apatite and OCP could not be determined. Short plate-like or flake-like OCP crystals grew parallel to the collagen fibrils and ionic flow on the Ca-side of the disk A. On the contrary, ribbon-like or rectangular OCP crystals grew along the collagen fibrils lying on the disk B. Apatite also grew with the same orientation as OCP in the both cases. The oriented and length-wise growth of OCP crystals on the disk B was ascribed to the arrangement of the collagen fibrils in the disk.
Collapse
Affiliation(s)
- M Iijima
- Asahi University School of Dentistry, Dental Materials and Technology, Gifu, Japan
| | | | | |
Collapse
|
39
|
Abstract
Experimental metastatic calcification in the proximal convoluted tubules of rat kidney, produced by large doses of vitamin D, has been studied with a variety of techniques. These techniques include the examination of thin sections of Araldite-embedded material under the electron microscope, selected area electron diffraction, and several histochemical methods. Two types of mineral are found in relation to the proximal convoluted tubule. The first form consists of aggregates of elongated crystals within cytoplasmic vacuoles of the proximal tubular cells. The dimensions of these crystals are consistent with those of hydroxyapatite. The other type of mineral deposit is found in and adjacent to the extracellular phase of the basal infoldings of these tubules. The latter deposits are made up of smaller crystals arranged in layers. These crystals could not be definitely identified by means of selected area electron diffraction. The observations are discussed in relation to calcium transport by the proximal convoluted tubule and also in terms of mechanisms of pathological calcification.
Collapse
|
40
|
TRAVIS DF, GLIMCHER MJ. THE STRUCTURE AND ORGANIZATION OF, AND THE RELATIONSHIP BETWEEN THE ORGANIC MATRIX AND THE INORGANIC CRYSTALS OF EMBRYONIC BOVINE ENAMEL. ACTA ACUST UNITED AC 1996; 23:447-97. [PMID: 14245432 PMCID: PMC2106542 DOI: 10.1083/jcb.23.3.447] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Electron microscope and electron diffraction studies of developing embryonic bovine enamel have revealed the organization of the organic matrix and the inorganic crystals. The most recently deposited inorganic crystals located at the ameloblast-enamel junction are thin plates, approximately 1300 A long, 400 A wide, and 19 A thick. During maturation of the enamel, crystal growth occurs primarily by an increase in crystal thickness. Statistical analyses failed to show a significant change in either the width or the length of the crystals during the period of maturation studied. Even in the earliest stages of calcification, the crystals are organized within the prisms so that their long axes (c-axes) are oriented parallel to the long axes of the prisms but randomly distributed about their long axes. With maturation of the enamel, the crystals become more densely packed and more highly oriented within the prisms. The organic matrix in decalcified sections of enamel is strikingly similar in its over-all organization to that of the fully mineralized tissue. When viewed in longitudinal prism profiles, the intraprismatic organic matrix is composed of relatively thin dense lines, approximately 48 A wide, which are relatively parallel to each other and have their fiber axes parallel to the long axes of the prisms within which they are located. Many of these dense lines, which have the appearance of thin filaments, are organized into doublets, the individual 48 A wide filaments of the doublets being separated by approximately 120 A. When observed in oblique prism profiles, the intraprismatic organic matrix is likewise remarkably similar in general orientation and organization to that of the fully mineralized tissue. Moreover, the spaces between adjacent doublets or between single filaments have the appearance of compartments. These compartments, more clearly visualized in cross- or near cross-sectional prism profiles, are oval or near oval in shape. Therefore, the appearance of the intraprismatic organic matrix (in longitudinal, oblique, and cross-sectional prism profiles) indicates that it is organized into tubular sheaths which are oriented with their long axes parallel to the long axes of the prisms in which they are located, but randomly oriented about their own long axes, an orientation again remarkably "blue printing" that of the inorganic crystals. The predominant feature of the walls of the tubular sheaths, when viewed in cross- or near cross-section, is that of continuous sheets, although in many cases closely packed dot-like structures of approximately 48 A were also observed, suggesting that the wall of the sheaths consists of a series of closely packed filaments. The 48 A wide dense lines (filaments) representing the width of the sheath wall were resolved into two dense strands when viewed in longitudinal prism profiles. Each strand was 12 A wide and was separated by a less electron-dense space 17 A wide. The intraprismatic organic matrix is surrounded by a prism sheath which corresponds in mineralized sections to the electron-lucent uncalcified regions separating adjacent prisms. Structurally, the prism sheaths appear to consist of filaments arranged in basket-weave fashion.
Collapse
|
41
|
Bruder SP, Caplan AI, Gotoh Y, Gerstenfeld LC, Glimcher MJ. Immunohistochemical localization of a approximately 66 kD glycosylated phosphoprotein during development of the embryonic chick tibia. Calcif Tissue Int 1991; 48:429-37. [PMID: 2070278 DOI: 10.1007/bf02556457] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Localization of a approximately 66 kD glycosylated phosphoprotein during morphogenesis of the embryonic chick tibia has been accomplished using immunohistochemistry. Although initial expression of the tibial osteoblast phenotype is detected as early as stage 28.5, with the deposition of osteoid matrix beginning at stage 30, little or no immunoreactivity against the approximately 66 kD glycosylated phosphoprotein is observed in pre-osteoblasts, osteoblasts, osteocytes, or in the uncalcified osteoid matrix during the early events of tibia development. Immunoreactivity was first observed at stage 32 when mineralization of the osteoid matrix is initiated. At this and all later stages, the phosphoprotein is located almost exclusively in the extracellular matrix at the mineralization front with essentially no detectable staining in the adjacent unmineralized osteoid matrix. Similarly, no cellular staining is observed when even the lightly mineralized extracellular matrix is strongly immunoreactive. Only scant immunostaining is present over the heavily mineralized regions, although demineralization of these areas with EDTA exposes a low intensity, punctate staining pattern. Additionally, cryosections of developing calvaria stained with this antiserum only display reactivity in regions of bone matrix undergoing mineralization. These localization studies support the hypothesis that this phosphoprotein is intimately associated with the process of bone matrix mineralization in the developing chick long bone.
Collapse
Affiliation(s)
- S P Bruder
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106
| | | | | | | | | |
Collapse
|
42
|
Glimcher MJ. Mechanism of calcification: role of collagen fibrils and collagen-phosphoprotein complexes in vitro and in vivo. Anat Rec (Hoboken) 1989; 224:139-53. [PMID: 2672881 DOI: 10.1002/ar.1092240205] [Citation(s) in RCA: 203] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Samples of decalcified chicken bone together with varying concentrations of phosphoproteins from bone or egg yolk (phosvitin) were used in vitro as heterogenous nucleators for the induction of Ca-P apatite crystals. The lag time between exposure of the collagen-phosphoprotein complexes and the time nucleation of crystals occurred decreased as the concentration of Ser(P) and Thr(P) increased. Enzymatic cleavage of the phosphate groups by wheat germ and phosphatase reversed this effort, indicating that the phosphate group per se principally facilitated the nucleation of Ca-P crystals by the phosphoprotein complex and collagen.
Collapse
Affiliation(s)
- M J Glimcher
- Department of Orthopedic Surgery, Harvard Medical School, Children's Hospital, Boston, Massachusetts 02115
| |
Collapse
|
43
|
Nancollas GH, LoRe M, Perez L, Richardson C, Zawacki SJ. Mineral phases of calcium phosphate. Anat Rec (Hoboken) 1989; 224:234-41. [PMID: 2672888 DOI: 10.1002/ar.1092240213] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Many studies of calcium phosphate precipitation have been made using relaxation techniques in which the concentrations of the lattice ions are allowed to decrease as equilibrium is approached. Since the nature of the phases that form depend markedly on the solution composition, this decrease can lead to concomitant phase transformations during the crystallization experiments. The results of the present constant composition (CC) studies show that defect apatites may be formed under conditions of sustained supersaturation with a non-stoichiometric coefficient dependent on the pH of the growth medium. An important factor in analyzing these experiments is the initial surface modification and ion-exchange processes involving H+ and Ca2+ ions after inoculation of the supersaturated solutions. Thereafter, active growth sites may be eliminated as the crystals undergo lattice perfection. Transformation of dicalcium phosphate dihydrate to octacalcium phosphate, involving dissolution and subsequent nucleation and growth of the new phase, is also influenced by surface roughening of the initial phase. Typical inhibitors that reduce the rate of growth of seed crystals in supersaturated solutions may actually induce the nucleation of calcium phosphate phases when immobilized on inert surfaces. This may be a factor in the modulation of crystal growth in many biological systems.
Collapse
Affiliation(s)
- G H Nancollas
- Department of Chemistry, State University of New York, Buffalo 14214
| | | | | | | | | |
Collapse
|
44
|
Doi Y, Okuda R, Takezawa Y, Shibata S, Moriwaki Y, Wakamatsu N, Shimizu N, Moriyama K, Shimokawa H. Osteonectin inhibiting de novo formation of apatite in the presence of collagen. Calcif Tissue Int 1989; 44:200-8. [PMID: 2493327 DOI: 10.1007/bf02556565] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The effect of bone matrix protein of osteonectin on de novo formation of apatite was studied in a wide range of calcium phosphate solutions in the presence of collagen. In every solution, from which amorphous calcium phosphate, octacalcium phosphate, or apatite precipitated as a possible initial phase, osteonectin at concentrations less than 1 microM retarded the precipitation, subsequent transformation to apatite, and ripening crystal growth of apatite. Collagen present as either reconstituted or denatured form had no effect on the osteonectin-associated reactions as well as osteonectin-free reactions, and no structural correlation was observed between collagen fibrils and any of the calcium phosphates that appeared in our system. Direct measurement of free calcium levels in the solutions suggested that the reduction in calcium activity due to complexing with osteonectin hardly explained the inhibitory activity of osteonectin in retarding the formation of apatite. Instead, our transmission electron microscopic (TEM) observation strongly suggested that the primary mechanism for osteonectin to inhibit the formation of apatite is to block growth sites of calcium phosphates nucleated. The apatite thus formed in the presence of osteonectin showed less resolved X-ray diffraction patterns, partly because of smaller crystallites as suggested by TEM.
Collapse
Affiliation(s)
- Y Doi
- Department of Dental Materials and Technology, School of Dentistry, Asahi University, Gifu, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hodge AJ. Molecular models illustrating the possible distributions of 'holes' in simple systematically staggered arrays of type I collagen molecules in native-type fibrils. Connect Tissue Res 1989; 21:137-47. [PMID: 2605937 DOI: 10.3109/03008208909050004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Clear 3/8'' Lucite rod models at a scale of 1'' = D (the native-type period), and using four different colored ribbon markers to indicate one set of 'equivalent bands' in the SLS band pattern, clearly show the possible distribution of 'holes' and staining loci in native-type fibrils. Close-packed ordered arrays of the 4.4'' long rods (based on the Hodge-Petruska model) in which nearest neighbors are systematically staggered by D must have ordered distributions of the 0.6D long 'holes'. In one of the two simplest cases, holes occur singly, and are separated laterally by two molecular diameters. In the other case, contiguous holes form transversely continuous channels or slots within the fibril. Electron micrographs of both fish bone and embryonic chick bone clearly show that at least the initial mineralization is intrafibrillar in these systems.
Collapse
Affiliation(s)
- A J Hodge
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| |
Collapse
|
46
|
Krampitz G, Graser G. Molecular Mechanisms of Biomineralization in the Formation of Calcified Shells. ACTA ACUST UNITED AC 1988. [DOI: 10.1002/anie.198811451] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
Krampitz G, Graser G. Molekulare Mechanismen der Biomineralisation bei der Bildung von Kalkschalen. Angew Chem Int Ed Engl 1988. [DOI: 10.1002/ange.19881000906] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
|
49
|
|
50
|
Chole RA, Tinling SP. Fine morphology of bony dysplasia of the murine ear: comparisons with otosclerosis. Am J Otolaryngol 1987; 8:325-31. [PMID: 3434669 DOI: 10.1016/s0196-0709(87)80051-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Dysplastic bony lesions that bear certain similarities to otosclerosis occur spontaneously in LP/J inbred mice. These lesions develop after the fifth week of life and progressively enlarge; they are present in 90% of animals by 90 weeks of age. In the present study, the fine morphology of these lesions was investigated. Dysplastic lesions in the middle ear of LP/J mice appeared to begin as subperiosteal accumulations of amorphous material. These accumulations occurred adjacent to the bone surface below the epithelium of the middle ear. This amorphous material was often associated with macrophages on the adjacent epithelial surface. The material appeared to be replaced with collagen fibers in a disorganized manner, forming a homogeneous base (osteoid) on which calcification occurred. The fine morphology and periodicity of the collagen appeared normal. The lesions then calcified by forming calcospherites that became confluent. During this period, transformed fibroblasts (osteoblasts) appeared in the calcifying matrix, resulting in a lesion made of bone. These lesions could sometimes be seen replacing normal bony contours but most often were exophytic. The lesions at all stages of development may be associated with macrophages and effusions in the middle ear. The lesions in the middle ear of LP/J mice appeared to develop by an active process of bone formation; in contrast, otosclerosis is an active process of bone resorption and formation.
Collapse
Affiliation(s)
- R A Chole
- Department of Otolaryngology-Head and Neck Surgery, University of California, Davis 95616
| | | |
Collapse
|