1
|
Inabe K, Hidese R, Kato Y, Matsuda M, Yoshida T, Matsumoto K, Kondo A, Sato S, Hasunuma T. Introduction of acetyl-phosphate bypass and increased culture temperatures enhanced growth-coupled poly-hydroxybutyrate production in the marine cyanobacterium Synechococcus sp. PCC7002. Metab Eng 2025; 88:228-239. [PMID: 39848486 DOI: 10.1016/j.ymben.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/29/2024] [Accepted: 01/12/2025] [Indexed: 01/25/2025]
Abstract
Polyhydroxyalkanoate (PHA) is an attractive bio-degradable plastic alternative to petrochemical plastics. Photosynthetic cyanobacteria accumulate biomass by fixing atmospheric CO2, making them promising hosts for sustainable PHA production. Conventional PHA production in cyanobacteria requires prolonged cultivation under nutrient limitation to accumulate cellular PHA. In this study, we developed a system for growth-coupled production of the PHA poly-hydroxybutyrate (PHB), using the marine cyanobacterium Synechococcus sp. PCC 7002. A recombinant strain termed KB1 expressing a set of heterologous PHB biosynthesis genes (phaA/phaB from Cupriavidus necator H16 and phaE/phaC from Synechocystis sp. PCC 6803) accumulated substantial PHB during growth (11.4% of dry cell weight). To improve PHB accumulation, we introduced the Pseudomonas aeruginosa phosphoketolase gene (pk) into strain KB1, rewiring intermediates of the Calvin-Benson-Bassham (CBB) cycle (xyluose-5-phosphate, sedoheptulose 7-phosphate, and fructose-6-phosphate) to acetyl-CoA. The pk-expressing strain, KB15, accumulated 2.1-fold enhanced levels of PHB (23.8% of dried cell weight), relative to the parent strain, KB1. The highest PHB titer of KB15 strain supplemented with acetate was about 1.1 g L-1 and the yield was further enhanced by 2.6-fold following growth at 38 °C (0.21 g L-1 d-1), relative to growth at 30 °C. Metabolome analysis revealed that pool sizes of CBB intermediates decreased, while levels of acetyl-CoA increased in strain KB15 compared with strain KB1, and this increase was further enhanced following growth at 38 °C. Our data demonstrate that acetyl-phosphate generated by Pk was converted into acetyl-CoA via acetate by hitherto unidentified enzymes. In conclusion, expression of heterologous PHB biosynthesis genes enabled growth-coupled PHB production in strain PCC 7002, which was increased through acetyl-CoA supplementation by bypassing acetyl-phosphate and elevating culture temperature.
Collapse
Affiliation(s)
- Kosuke Inabe
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Ryota Hidese
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Yuichi Kato
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Mami Matsuda
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Takanobu Yoshida
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Keiji Matsumoto
- Green Planet Research Group, Agri-Bio & Supplement Research Laboratories, KANEKA CORPORATION, 1-8 Miyamae-Cho, Takasago-Cho, Takasago-city, Hyogo, 676-8688, Japan
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan; Research Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Shunsuke Sato
- Green Planet Research Group, Agri-Bio & Supplement Research Laboratories, KANEKA CORPORATION, 1-8 Miyamae-Cho, Takasago-Cho, Takasago-city, Hyogo, 676-8688, Japan
| | - Tomohisa Hasunuma
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan; Research Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
2
|
Joseph FM, Kaldenhoff R. Tobacco aquaporin NtAQP1 and human aquaporin hAQP1 contribute to single cell photosynthesis in Synechococcus. Biol Cell 2024; 116:e2470003. [PMID: 38653736 DOI: 10.1111/boc.202470003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND INFORMATION Aquaporins are H2O-permeable membrane protein pores. However, some aquaporins are also permeable to other substances such as CO2. In higher plants, overexpression of such aquaporins has already led to an enhanced photosynthetic performance due to improved CO2 mesophyll conductance. In this work, we investigated the effects of such aquaporins on unicellular photosynthetically active organisms, specifically cyanobacteria. RESULTS Overexpression of aquaporins NtAQP1 or hAQP1 that might have a function to improve CO2 membrane permeability lead to increased photosynthesis rates in the cyanobacterium Synechococcus sp. PCC7002 as concluded by the rate of evolved O2. A shift in the Plastoquinone pool state of the cells supports our findings. Water permeable aquaporins without CO2 permeability, such as NtPIP2;1, do not have this effect. CONCLUSIONS AND SIGNIFICANCE We conclude that also in single cell organisms like cyanobacteria, membrane CO2 conductivity could be rate limiting and CO2-porins reduce the respective membrane resistance. We could show that besides the tobacco aquaporin NtAQP1 also the human hAQP1 most likely functions as CO2 diffusion facilitator in the photosynthesis assay.
Collapse
Affiliation(s)
- Franziska M Joseph
- Department of Biology, Applied Plant Sciences, Technical University of Darmstadt, Darmstadt, Germany
| | - Ralf Kaldenhoff
- Department of Biology, Applied Plant Sciences, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
3
|
Satta A, Esquirol L, Ebert BE. Current Metabolic Engineering Strategies for Photosynthetic Bioproduction in Cyanobacteria. Microorganisms 2023; 11:455. [PMID: 36838420 PMCID: PMC9964548 DOI: 10.3390/microorganisms11020455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Cyanobacteria are photosynthetic microorganisms capable of using solar energy to convert CO2 and H2O into O2 and energy-rich organic compounds, thus enabling sustainable production of a wide range of bio-products. More and more strains of cyanobacteria are identified that show great promise as cell platforms for the generation of bioproducts. However, strain development is still required to optimize their biosynthesis and increase titers for industrial applications. This review describes the most well-known, newest and most promising strains available to the community and gives an overview of current cyanobacterial biotechnology and the latest innovative strategies used for engineering cyanobacteria. We summarize advanced synthetic biology tools for modulating gene expression and their use in metabolic pathway engineering to increase the production of value-added compounds, such as terpenoids, fatty acids and sugars, to provide a go-to source for scientists starting research in cyanobacterial metabolic engineering.
Collapse
Affiliation(s)
- Alessandro Satta
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- Department of Biology, University of Padua, 35100 Padua, Italy
| | - Lygie Esquirol
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Natha, QLD 4111, Australia
| | - Birgitta E. Ebert
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
4
|
The Transcriptional Repressor PerR Senses Sulfane Sulfur by Cysteine Persulfidation at the Structural Zn 2+ Site in Synechococcus sp. PCC7002. Antioxidants (Basel) 2023; 12:antiox12020423. [PMID: 36829981 PMCID: PMC9952342 DOI: 10.3390/antiox12020423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Cyanobacteria can perform both anoxygenic and oxygenic photosynthesis, a characteristic which ensured that these organisms were crucial in the evolution of the early Earth and the biosphere. Reactive oxygen species (ROS) produced in oxygenic photosynthesis and reactive sulfur species (RSS) produced in anoxygenic photosynthesis are closely related to intracellular redox equilibrium. ROS comprise superoxide anion (O2●-), hydrogen peroxide (H2O2), and hydroxyl radicals (●OH). RSS comprise H2S and sulfane sulfur (persulfide, polysulfide, and S8). Although the sensing mechanism for ROS in cyanobacteria has been explored, that of RSS has not been elucidated. Here, we studied the function of the transcriptional repressor PerR in RSS sensing in Synechococcus sp. PCC7002 (PCC7002). PerR was previously reported to sense ROS; however, our results revealed that it also participated in RSS sensing. PerR repressed the expression of prxI and downregulated the tolerance of PCC7002 to polysulfide (H2Sn). The reporter system indicated that PerR sensed H2Sn. Cys121 of the Cys4:Zn2+ site, which contains four cysteines (Cys121, Cys124, Cys160, and Cys163) bound to one zinc atom, could be modified by H2Sn to Cys121-SSH, as a result of which the zinc atom was released from the site. Moreover, Cys19 could also be modified by polysulfide to Cys19-SSH. Thus, our results reveal that PerR, a representative of the Cys4 zinc finger proteins, senses H2Sn. Our findings provide a new perspective to explore the adaptation strategy of cyanobacteria in Proterozoic and contemporary sulfurization oceans.
Collapse
|
5
|
Development of shuttle vectors for rapid prototyping of engineered Synechococcus sp. PCC7002. Appl Microbiol Biotechnol 2022; 106:8169-8181. [PMID: 36401644 DOI: 10.1007/s00253-022-12289-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/18/2022] [Accepted: 11/11/2022] [Indexed: 11/20/2022]
Abstract
Cyanobacteria are of particular interest for chemical production as they can assimilate CO2 and use solar energy to power chemical synthesis. However, unlike the model microorganism of Escherichia coli, the availability of genetic toolboxes for rapid proof-of-concept studies in cyanobacteria is generally lacking. In this study, we first characterized a set of promoters to efficiently drive gene expressions in the marine cyanobacterium Synechococcus sp. PCC7002. We identified that the endogenous cpcBA promoter represented one of the strongest promoters in PCC7002. Next, a set of shuttle vectors was constructed based on the endogenous pAQ1 plasmid to facilitate the rapid pathway assembly. Moreover, we used the shuttle vectors to modularly optimize the amorpha-4,11-diene synthesis in PCC7002. By modularly optimizing the metabolic pathway, we managed to redistribute the central metabolism toward the amorpha-4,11-diene production in PCC7002 with enhanced product titer. Taken together, the plasmid toolbox developed in this study will greatly accelerate the generation of genetically engineered PCC7002. KEY POINTS: • Promoter characterization revealed that the endogenous cpcBA promoter represented one of the strongest promoters in PCC7002 • A set of shuttle vectors with different antibiotic selection markers was constructed based on endogenous pAQ1 plasmid • By modularly optimizing the metabolic pathway, amorpha-4,11-diene production in PCC7002 was improved.
Collapse
|
6
|
Light-Driven Synthetic Biology: Progress in Research and Industrialization of Cyanobacterial Cell Factory. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101537. [PMID: 36294972 PMCID: PMC9605453 DOI: 10.3390/life12101537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
Light-driven synthetic biology refers to an autotrophic microorganisms-based research platform that remodels microbial metabolism through synthetic biology and directly converts light energy into bio-based chemicals. This technology can help achieve the goal of carbon neutrality while promoting green production. Cyanobacteria are photosynthetic microorganisms that use light and CO2 for growth and production. They thus possess unique advantages as "autotrophic cell factories". Various fuels and chemicals have been synthesized by cyanobacteria, indicating their important roles in research and industrial application. This review summarized the progresses and remaining challenges in light-driven cyanobacterial cell factory. The choice of chassis cells, strategies used in metabolic engineering, and the methods for high-value CO2 utilization will be discussed.
Collapse
|
7
|
Synechococcus sp. PCC7002 Uses Peroxiredoxin to Cope with Reactive Sulfur Species Stress. mBio 2022; 13:e0103922. [PMID: 35861504 PMCID: PMC9426444 DOI: 10.1128/mbio.01039-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanobacteria are a widely distributed group of microorganisms in the ocean, and they often need to cope with the stress of reactive sulfur species, such as sulfide and sulfane sulfur. Sulfane sulfur refers to the various forms of zero-valent sulfur, including persulfide, polysulfide, and element sulfur (S8). Although sulfane sulfur participates in signaling transduction and resistance to reactive oxygen species in cyanobacteria, it is toxic at high concentrations and induces sulfur stress, which has similar effects to oxidative stress. In this study, we report that Synechococcus sp. PCC7002 uses peroxiredoxin to cope with the stress of cellular sulfane sulfur. Synechococcus sp. PCC7002 contains six peroxiredoxins, and all were induced by S8. Peroxiredoxin I (PrxI) reduced S8 to H2S by forming a disulfide bond between residues Cys53 and Cys153 of the enzyme. A partial deletion strain of Synechococcus sp. PCC7002 with decreased copy numbers of the prxI gene was more sensitive to S8 than was the wild type. Thus, peroxiredoxin is involved in maintaining the homeostasis of cellular sulfane sulfur in cyanobacteria. Given that peroxiredoxin evolved before the occurrence of O2 on Earth, its original function could have been to cope with reactive sulfur species stress, and that function has been preserved. IMPORTANCE Cyanobacteria are the earliest microorganisms that perform oxygenic photosynthesis, which has played a key role in the evolution of life on Earth, and they are the most important primary producers in the modern oceans. The cyanobacterium Synechococcus sp. PCC7002 uses peroxiredoxin to reduce high levels of sulfane sulfur. That function is possibly the original role of peroxiredoxin, as the enzyme evolved before the appearance of O2 on Earth. The preservation of the reduction of sulfane sulfur by peroxiredoxin5-type peroxiredoxins may offer cyanobacteria an advantage in the complex environment of the modern oceans.
Collapse
|
8
|
Natural Competence in the Filamentous, Heterocystous Cyanobacterium
Chlorogloeopsis fritschii
PCC 6912. mSphere 2022; 7:e0099721. [PMID: 35862819 PMCID: PMC9429965 DOI: 10.1128/msphere.00997-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Lateral gene transfer plays an important role in the evolution of genetic diversity in prokaryotes. DNA transfer via natural transformation depends on the ability of recipient cells to actively transport DNA from the environment into the cytoplasm, termed natural competence, which relies on the presence of type IV pili and other competence proteins. Natural competence has been described in cyanobacteria for several organisms, including unicellular and filamentous species. However, natural competence in cyanobacteria that differentiate specialized cells for N2-fixation (heterocysts) and form branching or multiseriate cell filaments (termed subsection V) remains unknown. Here, we show that genes essential for natural competence are conserved in subsection V cyanobacteria. Furthermore, using the replicating plasmid pRL25C, we experimentally demonstrate natural competence in a subsection V organism: Chlorogloeopsis fritschii PCC 6912. Our results suggest that natural competence is a common trait in cyanobacteria forming complex cell filament morphologies. IMPORTANCE Cyanobacteria are crucial players in the global biogeochemical cycles, where they contribute to CO2- and N2-fixation. Their main ecological significance is the primary biomass production owing to oxygenic photosynthesis. Cyanobacteria are a diverse phylum, in which the most complex species differentiate specialized cell types and form true-branching or multiseriate cell filament structures (termed subsection V cyanobacteria). These bacteria are considered a peak in the evolution of prokaryotic multicellularity. Among others, species in that group inhabit fresh and marine water habitats, soil, and extreme habitats such as thermal springs. Here, we show that the core genes required for natural competence are frequent in subsection V cyanobacteria and demonstrate for the first time natural transformation in a member of subsection V. The prevalence of natural competence has implications for the role of DNA acquisition in the genome evolution of cyanobacteria. Furthermore, the presence of mechanisms for natural transformation opens up new possibilities for the genetic modification of subsection V cyanobacteria.
Collapse
|
9
|
Selão TT. Exploring cyanobacterial diversity for sustainable biotechnology. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3057-3071. [PMID: 35467729 DOI: 10.1093/jxb/erac053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Cyanobacteria are an evolutionarily ancient and diverse group of microorganisms. Their genetic diversity has
allowed them to occupy and play vital roles in a wide range of ecological niches, from desert soil crusts to tropical oceans. Owing to bioprospecting efforts and the development of new platform technologies enabling their study and manipulation, our knowledge of cyanobacterial metabolism is rapidly expanding. This review explores our current understanding of the genetic and metabolic features of cyanobacteria, from the more established cyanobacterial model strains to the newly isolated/described species, particularly the fast-growing, highly productive, and genetically amenable strains, as promising chassis for renewable biotechnology. It also discusses emerging technologies for their study and manipulation, enabling researchers to harness the astounding diversity of the cyanobacterial genomic and metabolic treasure trove towards the establishment of a sustainable bioeconomy.
Collapse
Affiliation(s)
- Tiago Toscano Selão
- Department of Chemical and Environmental Engineering, University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK
| |
Collapse
|
10
|
Zhang J, Liu J, Liu D, Chen X, Shi Q, He C, Li G. Temperature Rise Increases the Bioavailability of Marine Synechococcus-Derived Dissolved Organic Matter. Front Microbiol 2022; 13:838707. [PMID: 35572654 PMCID: PMC9097602 DOI: 10.3389/fmicb.2022.838707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
Synechococcus is one group of main primary producers and plays a key role in oceanic carbon fixation and transformation. To explore how the temperature rise affects the bioavailability of Synechococcus-derived dissolved organic matter (SOM) and whether this effect would be altered by the involvement of heterotrophic bacteria, we compared the optical and molecular properties of the SOM of axenic Synechococcus sp. PCC7002 culture (Syn) to that with associated heterotrophic bacteria (SynB) under 15, 18, and 21°C growth temperatures at exponential and decay growth phases. Our results showed that the temperature rise increased the bioavailability of the SOM of both Syn and SynB cultures by lowering the proportion of the hydrogen-poor and double-bond structure-rich humus-like components and highly unsaturated substances, as indicated by the increase of spectral slope ratio (S R ) and biological index (BIX) and decrease of humification index (HIX). Moreover, the involvement of heterotrophic bacteria modified the Synechococcus-derived SOM, together with its intracellular dissolved organic matter (DOM) excludes, lowering the SOM bioavailability. Our results indicated that the warming in climate change scenario may enhance the bioavailability of the Synechococcus-derived SOM although it may be tempered by the involvement of heterotrophic bacteria, providing an insight for preservation of the organic carbon pool in global oceans.
Collapse
Affiliation(s)
- Jiajie Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Joint Lab for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Qingdao, China
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Joint Lab for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Daixi Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Joint Lab for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Qingdao, China
| | - Xiao Chen
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Joint Lab for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Qingdao, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, China
| | - Gang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
11
|
Yang R, Zhu L, Li T, Zhu LY, Ye Z, Zhang D. Photosynthetic Conversion of CO 2 Into Pinene Using Engineered Synechococcus sp. PCC 7002. Front Bioeng Biotechnol 2022; 9:779437. [PMID: 34976975 PMCID: PMC8718756 DOI: 10.3389/fbioe.2021.779437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Metabolic engineering of cyanobacteria has received much attention as a sustainable strategy to convert CO2 to various longer carbon chain fuels. Pinene has become increasingly attractive since pinene dimers contain high volumetric energy and have been proposed to act as potential aircraft fuels. However, cyanobacteria cannot directly convert geranyl pyrophosphate into pinene due to the lack of endogenous pinene synthase. Herein, we integrated the gene encoding Abies grandis pinene synthase into the model cyanobacterium Synechococcus sp. PCC 7002 through homologous recombination. The genetically modified cyanobacteria achieved a pinene titer of 1.525 ± 0.l45 mg L-1 in the lab-scale tube photobioreactor with CO2 aeration. Specifically, the results showed a mixture of α- and β-pinene (∼33:67 ratio). The ratio of β-pinene in the product was significantly increased compared with that previously reported in the engineered Escherichia coli. Furthermore, we investigated the photoautotrophic growth performances of Synechococcus overlaid with different concentrations of dodecane. The work demonstrates that the engineered Synechococcus is a suitable potential platform for β-pinene production.
Collapse
Affiliation(s)
- Ruigang Yang
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Tao Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Lv-Yun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Zi Ye
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Dongyi Zhang
- Hunan Key Laboratory of Economic Crops, Genetic Improvement, and Integrated Utilization, School of Life Sciences, Hunan University of Science and Technology, Xiangtan, China
| |
Collapse
|
12
|
The Molecular Toolset and Techniques Required to Build Cyanobacterial Cell Factories. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022. [DOI: 10.1007/10_2022_210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Genetic, Genomics, and Responses to Stresses in Cyanobacteria: Biotechnological Implications. Genes (Basel) 2021; 12:genes12040500. [PMID: 33805386 PMCID: PMC8066212 DOI: 10.3390/genes12040500] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cyanobacteria are widely-diverse, environmentally crucial photosynthetic prokaryotes of great interests for basic and applied science. Work to date has focused mostly on the three non-nitrogen fixing unicellular species Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002, which have been selected for their genetic and physiological interests summarized in this review. Extensive "omics" data sets have been generated, and genome-scale models (GSM) have been developed for the rational engineering of these cyanobacteria for biotechnological purposes. We presently discuss what should be done to improve our understanding of the genotype-phenotype relationships of these models and generate robust and predictive models of their metabolism. Furthermore, we also emphasize that because Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002 represent only a limited part of the wide biodiversity of cyanobacteria, other species distantly related to these three models, should be studied. Finally, we highlight the need to strengthen the communication between academic researchers, who know well cyanobacteria and can engineer them for biotechnological purposes, but have a limited access to large photobioreactors, and industrial partners who attempt to use natural or engineered cyanobacteria to produce interesting chemicals at reasonable costs, but may lack knowledge on cyanobacterial physiology and metabolism.
Collapse
|
14
|
Dahlgren KK, Gates C, Lee T, Cameron JC. Proximity-based proteomics reveals the thylakoid lumen proteome in the cyanobacterium Synechococcus sp. PCC 7002. PHOTOSYNTHESIS RESEARCH 2021; 147:177-195. [PMID: 33280076 PMCID: PMC7880944 DOI: 10.1007/s11120-020-00806-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Cyanobacteria possess unique intracellular organization. Many proteomic studies have examined different features of cyanobacteria to learn about the intracellular structures and their respective functions. While these studies have made great progress in understanding cyanobacterial physiology, the conventional fractionation methods used to purify cellular structures have limitations; specifically, certain regions of cells cannot be purified with existing fractionation methods. Proximity-based proteomics techniques were developed to overcome the limitations of biochemical fractionation for proteomics. Proximity-based proteomics relies on spatiotemporal protein labeling followed by mass spectrometry of the labeled proteins to determine the proteome of the region of interest. We performed proximity-based proteomics in the cyanobacterium Synechococcus sp. PCC 7002 with the APEX2 enzyme, an engineered ascorbate peroxidase. We determined the proteome of the thylakoid lumen, a region of the cell that has remained challenging to study with existing methods, using a translational fusion between APEX2 and PsbU, a lumenal subunit of photosystem II. Our results demonstrate the power of APEX2 as a tool to study the cell biology of intracellular features and processes, including photosystem II assembly in cyanobacteria, with enhanced spatiotemporal resolution.
Collapse
Affiliation(s)
- Kelsey K Dahlgren
- Department of Biochemistry, University of Colorado, Boulder, CO, 80309, USA
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80309, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, 80309, USA
- Interdisciplinary Quantitative Biology Program (IQ Biology), BioFrontiers Institute, University of Colorado, Boulder, CO, 80309, USA
| | - Colin Gates
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80309, USA
| | - Thomas Lee
- Department of Biochemistry, University of Colorado, Boulder, CO, 80309, USA
| | - Jeffrey C Cameron
- Department of Biochemistry, University of Colorado, Boulder, CO, 80309, USA.
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80309, USA.
- National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| |
Collapse
|
15
|
Madsen MA, Hamilton G, Herzyk P, Amtmann A. Environmental Regulation of PndbA600, an Auto-Inducible Promoter for Two-Stage Industrial Biotechnology in Cyanobacteria. Front Bioeng Biotechnol 2021; 8:619055. [PMID: 33542914 PMCID: PMC7853294 DOI: 10.3389/fbioe.2020.619055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/09/2020] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria are photosynthetic prokaryotes being developed as sustainable platforms that use renewable resources (light, water, and air) for diverse applications in energy, food, environment, and medicine. Despite the attractive promise that cyanobacteria offer to industrial biotechnology, slow growth rates pose a major challenge in processes which typically require large amounts of biomass and are often toxic to the cells. Two-stage cultivation strategies are an attractive solution to prevent any undesired growth inhibition by de-coupling biomass accumulation (stage I) and the industrial process (stage II). In cyanobacteria, two-stage strategies involve costly transfer methods between stages I and II, and little work has been focussed on using the distinct growth and stationary phases of batch cultures to autoregulate stage transition. In the present study, we identified and characterised a growth phase-specific promoter, which can serve as an auto-inducible switch to regulate two-stage bioprocesses in cyanobacteria. First, growth phase-specific genes were identified from a new RNAseq dataset comparing two growth phases and six nutrient conditions in Synechocystis sp. PCC 6803, including two new transcriptomes for low Mg and low K. A type II NADH dehydrogenase (ndbA) showed robust induction when the cultures transitioned from exponential to stationary phase growth. Behaviour of a 600-bp promoter sequence (PndbA600) was then characterised in detail following the expression of PndbA600:GFP in Synechococcus sp. PCC 7002. Culture density and growth media analyses showed that PndbA600 activation was not dependent on increases in culture density per se but on N availability and on another activating factor present in the spent media of stationary phase cultures (Factor X). PndbA600 deactivation was dependent on the changes in culture density and in either N availability or Factor X. Electron transport inhibition studies revealed a photosynthesis-specific enhancement of active PndbA600 levels. Our findings are summarised in a model describing the environmental regulation of PndbA600, which can now inform the rational design of two-stage industrial processes in cyanobacteria.
Collapse
Affiliation(s)
- Mary Ann Madsen
- College of Medical, Veterinary and Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Graham Hamilton
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Pawel Herzyk
- College of Medical, Veterinary and Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom.,Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Anna Amtmann
- College of Medical, Veterinary and Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
16
|
Schirmacher AM, Hanamghar SS, Zedler JAZ. Function and Benefits of Natural Competence in Cyanobacteria: From Ecology to Targeted Manipulation. Life (Basel) 2020; 10:E249. [PMID: 33105681 PMCID: PMC7690421 DOI: 10.3390/life10110249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/03/2023] Open
Abstract
Natural competence is the ability of a cell to actively take up and incorporate foreign DNA in its own genome. This trait is widespread and ecologically significant within the prokaryotic kingdom. Here we look at natural competence in cyanobacteria, a group of globally distributed oxygenic photosynthetic bacteria. Many cyanobacterial species appear to have the genetic potential to be naturally competent, however, this ability has only been demonstrated in a few species. Reasons for this might be due to a high variety of largely uncharacterised competence inducers and a lack of understanding the ecological context of natural competence in cyanobacteria. To shed light on these questions, we describe what is known about the molecular mechanisms of natural competence in cyanobacteria and analyse how widespread this trait might be based on available genomic datasets. Potential regulators of natural competence and what benefits or drawbacks may derive from taking up foreign DNA are discussed. Overall, many unknowns about natural competence in cyanobacteria remain to be unravelled. A better understanding of underlying mechanisms and how to manipulate these, can aid the implementation of cyanobacteria as sustainable production chassis.
Collapse
Affiliation(s)
| | | | - Julie A. Z. Zedler
- Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (A.M.S.); (S.S.H.)
| |
Collapse
|
17
|
Nies F, Mielke M, Pochert J, Lamparter T. Natural transformation of the filamentous cyanobacterium Phormidium lacuna. PLoS One 2020; 15:e0234440. [PMID: 32530971 PMCID: PMC7292380 DOI: 10.1371/journal.pone.0234440] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
Research for biotechnological applications of cyanobacteria focuses on synthetic pathways and bioreactor design, while little effort is devoted to introduce new, promising organisms in the field. Applications are most often based on recombinant work, and the establishment of transformation can be a risky, time-consuming procedure. In this work we demonstrate the natural transformation of the filamentous cyanobacterium Phormidium lacuna and insertion of a selection marker into the genome by homologous recombination. This is the first example for natural transformation filamentous non-heterocystous cyanobacterium. We found that Phormidium lacuna is polyploid, each cell has about 20-90 chromosomes. Transformed filaments were resistant against up to 14 mg/ml of kanamycin. Formerly, natural transformation in cyanobacteria has been considered a rare and exclusive feature of a few unicellular species. Our finding suggests that natural competence is more distributed among cyanobacteria than previously thought. This is supported by bioinformatic analyses which show that all protein factors for natural transformation are present in the majority of the analyzed cyanobacteria.
Collapse
Affiliation(s)
- Fabian Nies
- Botanical Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Marion Mielke
- Botanical Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Janko Pochert
- Botanical Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Tilman Lamparter
- Botanical Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
18
|
Comer AD, Abraham JP, Steiner AJ, Korosh TC, Markley AL, Pfleger BF. Enhancing photosynthetic production of glycogen-rich biomass for use as a fermentation feedstock. FRONTIERS IN ENERGY RESEARCH 2020; 8:93. [PMID: 34164390 PMCID: PMC8218994 DOI: 10.3389/fenrg.2020.00093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Current sources of fermentation feedstocks, i.e. corn, sugar cane, or plant biomass, fall short of demand for liquid transportation fuels and commodity chemicals in the United States. Aquatic phototrophs including cyanobacteria have the potential to supplement the supply of current fermentable feedstocks. In this strategy, cells are engineered to accumulate storage molecules including glycogen, cellulose, and/or lipid oils that can be extracted from harvested biomass and fed to heterotrophic organisms engineered to produce desired chemical products. In this manuscript, we examine the production of glycogen in the model cyanobacteria, Synechococcus sp. strain PCC 7002, and subsequent conversion of cyanobacterial biomass by an engineered Escherichia coli to octanoic acid as a model product. In effort to maximize glycogen production, we explored the deletion of catabolic enzymes and overexpression of GlgC, an enzyme that catalyzes the first committed step towards glycogen synthesis. We found that deletion of glgP increased final glycogen titers when cells were grown in diurnal light. Overexpression of GlgC led to a temporal increase in glycogen content but not in an overall increase in final titer or content. The best strains were grown, harvested, and used to formulate media for growth of E. coli. The cyanobacterial media was able to support the growth of an engineered E. coli and produce octanoic acid at the same titer as common laboratory media.
Collapse
Affiliation(s)
- Austin D. Comer
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Joshua P. Abraham
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Alexander J. Steiner
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Travis C. Korosh
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Andrew L. Markley
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Brian F. Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, United States
- Corresponding author. 3629 Engineering Hall, 1415 Engineering Drive, Madison, WI 53706, United States. Phone: +1 608 890 1940. Fax: +1 608 262-5434.
| |
Collapse
|
19
|
Ng I, Keskin BB, Tan S. A Critical Review of Genome Editing and Synthetic Biology Applications in Metabolic Engineering of Microalgae and Cyanobacteria. Biotechnol J 2020; 15:e1900228. [DOI: 10.1002/biot.201900228] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/07/2020] [Indexed: 12/13/2022]
Affiliation(s)
- I‐Son Ng
- Department of Chemical EngineeringNational Cheng Kung University Tainan 701 Taiwan
| | - Batuhan Birol Keskin
- Department of Chemical EngineeringNational Cheng Kung University Tainan 701 Taiwan
| | - Shih‐I Tan
- Department of Chemical EngineeringNational Cheng Kung University Tainan 701 Taiwan
| |
Collapse
|
20
|
Liu D, Zhang J, Lü C, Xia Y, Liu H, Jiao N, Xun L, Liu J. Synechococcus sp. Strain PCC7002 Uses Sulfide:Quinone Oxidoreductase To Detoxify Exogenous Sulfide and To Convert Endogenous Sulfide to Cellular Sulfane Sulfur. mBio 2020; 11:e03420-19. [PMID: 32098824 PMCID: PMC7042703 DOI: 10.1128/mbio.03420-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 01/17/2020] [Indexed: 12/19/2022] Open
Abstract
Eutrophication and deoxygenation possibly occur in coastal waters due to excessive nutrients from agricultural and aquacultural activities, leading to sulfide accumulation. Cyanobacteria, as photosynthetic prokaryotes, play significant roles in carbon fixation in the ocean. Although some cyanobacteria can use sulfide as the electron donor for photosynthesis under anaerobic conditions, little is known on how they interact with sulfide under aerobic conditions. In this study, we report that Synechococcus sp. strain PCC7002 (PCC7002), harboring an sqr gene encoding sulfide:quinone oxidoreductase (SQR), oxidized self-produced sulfide to S0, present as persulfide and polysulfide in the cell. The Δsqr mutant contained less cellular S0 and had increased expression of key genes involved in photosynthesis, but it was less competitive than the wild type in cocultures. Further, PCC7002 with SQR and persulfide dioxygenase (PDO) oxidized exogenous sulfide to tolerate high sulfide levels. Thus, SQR offers some benefits to cyanobacteria even under aerobic conditions, explaining the common presence of SQR in cyanobacteria.IMPORTANCE Cyanobacteria are a major force for primary production via oxygenic photosynthesis in the ocean. A marine cyanobacterium, PCC7002, is actively involved in sulfide metabolism. It uses SQR to detoxify exogenous sulfide, enabling it to survive better than its Δsqr mutant in sulfide-rich environments. PCC7002 also uses SQR to oxidize endogenously generated sulfide to S0, which is required for the proper expression of key genes involved in photosynthesis. Thus, SQR has at least two physiological functions in PCC7002. The observation provides a new perspective for the interplays of C and S cycles.
Collapse
Affiliation(s)
- Daixi Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Joint Lab for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Qingdao, China
| | - Jiajie Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Joint Lab for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Qingdao, China
| | - Chuanjuan Lü
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Nianzhi Jiao
- Joint Lab for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Qingdao, China
- Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Joint Lab for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Qingdao, China
- Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| |
Collapse
|
21
|
Gale GAR, Schiavon Osorio AA, Mills LA, Wang B, Lea-Smith DJ, McCormick AJ. Emerging Species and Genome Editing Tools: Future Prospects in Cyanobacterial Synthetic Biology. Microorganisms 2019; 7:E409. [PMID: 31569579 PMCID: PMC6843473 DOI: 10.3390/microorganisms7100409] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/22/2019] [Accepted: 09/24/2019] [Indexed: 12/19/2022] Open
Abstract
Recent advances in synthetic biology and an emerging algal biotechnology market have spurred a prolific increase in the availability of molecular tools for cyanobacterial research. Nevertheless, work to date has focused primarily on only a small subset of model species, which arguably limits fundamental discovery and applied research towards wider commercialisation. Here, we review the requirements for uptake of new strains, including several recently characterised fast-growing species and promising non-model species. Furthermore, we discuss the potential applications of new techniques available for transformation, genetic engineering and regulation, including an up-to-date appraisal of current Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein (CRISPR/Cas) and CRISPR interference (CRISPRi) research in cyanobacteria. We also provide an overview of several exciting molecular tools that could be ported to cyanobacteria for more advanced metabolic engineering approaches (e.g., genetic circuit design). Lastly, we introduce a forthcoming mutant library for the model species Synechocystis sp. PCC 6803 that promises to provide a further powerful resource for the cyanobacterial research community.
Collapse
Affiliation(s)
- Grant A R Gale
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK.
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh EH9 3BF, UK.
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK.
| | - Alejandra A Schiavon Osorio
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK.
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh EH9 3BF, UK.
| | - Lauren A Mills
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Baojun Wang
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh EH9 3BF, UK.
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK.
| | - David J Lea-Smith
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Alistair J McCormick
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK.
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh EH9 3BF, UK.
| |
Collapse
|
22
|
|
23
|
Wendt KE, Pakrasi HB. Genomics Approaches to Deciphering Natural Transformation in Cyanobacteria. Front Microbiol 2019; 10:1259. [PMID: 31231343 PMCID: PMC6567925 DOI: 10.3389/fmicb.2019.01259] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/21/2019] [Indexed: 12/24/2022] Open
Abstract
Natural transformation is the process by which bacteria actively take up and maintain extracellular DNA. This naturally occurring process is widely used as a genetic modification method in bacterial species, and is crucial for the efficient genetic modification of organisms in an industrial setting. Cyanobacteria are oxygenic photosynthetic microbes that are promising platforms for bioproduction of fuels, chemicals, and feedstocks. Using CO2 and sunlight alone, cyanobacteria can make these valuable bioproducts in a carbon-neutral manner. While genetic modifications have been performed in a number of cyanobacterial strains, natural transformation has been successfully demonstrated in only a handful of species. Even though thousands of cyanobacterial strains have been deposited in culture collections and hundreds of these species have had their genomes sequenced, only a few of these organisms have been experimentally transformed. Although there are many aspects of cyanobacterial biology that provide exciting opportunities for biological investigation, the absence of a rapid and straightforward genetic modification method such as natural transformation hinders research efforts to understand some of the fascinating nuances of cyanobacterial physiology. The ability to use natural transformation in more strains of cyanobacteria would facilitate the rapid employment of these organisms in bioproduction settings. This article discusses recent advances in the understanding of natural transformation in cyanobacteria. Additionally, it identifies gaps in the current knowledge about cyanobacterial natural transformation and provides an overview of how new genomic technologies may be implemented to understand this important process.
Collapse
Affiliation(s)
- Kristen E Wendt
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Himadri B Pakrasi
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
24
|
Santos-Merino M, Singh AK, Ducat DC. New Applications of Synthetic Biology Tools for Cyanobacterial Metabolic Engineering. Front Bioeng Biotechnol 2019; 7:33. [PMID: 30873404 PMCID: PMC6400836 DOI: 10.3389/fbioe.2019.00033] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/05/2019] [Indexed: 01/25/2023] Open
Abstract
Cyanobacteria are promising microorganisms for sustainable biotechnologies, yet unlocking their potential requires radical re-engineering and application of cutting-edge synthetic biology techniques. In recent years, the available devices and strategies for modifying cyanobacteria have been increasing, including advances in the design of genetic promoters, ribosome binding sites, riboswitches, reporter proteins, modular vector systems, and markerless selection systems. Because of these new toolkits, cyanobacteria have been successfully engineered to express heterologous pathways for the production of a wide variety of valuable compounds. Cyanobacterial strains with the potential to be used in real-world applications will require the refinement of genetic circuits used to express the heterologous pathways and development of accurate models that predict how these pathways can be best integrated into the larger cellular metabolic network. Herein, we review advances that have been made to translate synthetic biology tools into cyanobacterial model organisms and summarize experimental and in silico strategies that have been employed to increase their bioproduction potential. Despite the advances in synthetic biology and metabolic engineering during the last years, it is clear that still further improvements are required if cyanobacteria are to be competitive with heterotrophic microorganisms for the bioproduction of added-value compounds.
Collapse
Affiliation(s)
- María Santos-Merino
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - Amit K. Singh
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - Daniel C. Ducat
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
25
|
Gordon GC, Pfleger BF. Regulatory Tools for Controlling Gene Expression in Cyanobacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1080:281-315. [PMID: 30091100 PMCID: PMC6662922 DOI: 10.1007/978-981-13-0854-3_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cyanobacteria are attractive hosts for converting carbon dioxide and sunlight into desirable chemical products. To engineer these organisms and manipulate their metabolic pathways, the biotechnology community has developed genetic tools to control gene expression. Many native cyanobacterial promoters and related sequence elements have been used to regulate genes of interest, and heterologous tools that use non-native small molecules to induce gene expression have been demonstrated. Overall, IPTG-based induction systems seem to be leaky and initially demonstrate small dynamic ranges in cyanobacteria. Consequently, a variety of other induction systems have been optimized to enable tighter control of gene expression. Tools require significant optimization because they function quite differently in cyanobacteria when compared to analogous use in model heterotrophs. We hypothesize that these differences are due to fundamental differences in physiology between organisms. This review is not intended to summarize all known products made in cyanobacteria nor the performance (titer, rate, yield) of individual strains, but instead will focus on the genetic tools and the inherent aspects of cellular physiology that influence gene expression in cyanobacteria.
Collapse
Affiliation(s)
- Gina C Gordon
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
26
|
Engineering and characterization of copper and gold sensors in Escherichia coli and Synechococcus sp. PCC 7002. Appl Microbiol Biotechnol 2019; 103:2797-2808. [PMID: 30645690 DOI: 10.1007/s00253-018-9490-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 10/27/2018] [Indexed: 12/17/2022]
Abstract
The anthropogenic release of toxic metals into the environment poses danger to the health of both humans and the local ecosystem. Biosensors for the detection of metals have been developed to improve our ability to monitor these environmental contaminants, yet most of these sensors use heterotrophic bacterial hosts, which require a fixed carbon source and do not typically grow in natural waterways. In this study, we constructed and characterized metal sensors for development of a photoautotrophic biosensor using Synechococcus sp. PCC 7002. We characterized gold and copper sensors based on modified MerR transcriptional activators: GolSA113T, with improved gold binding, and GolSCL, containing the metal-binding loop from CueR which binds both gold and copper. The metal-sensing constructs were first optimized and characterized in Escherichia coli MG1655. The addition of a strong ribosome binding site to the optical reporter protein increased translation of the fluorescent reporter, and expression of golSA113T from the rbc promoter of Synechococcus sp. PCC 7002 improved the response to gold in MG1655. In rich medium, the GolSA113T-based E. coli sensor detected gold at concentrations as low as 100 nM, while the GolSCL-based E. coli sensor detected gold and copper at sensitivities of 100 nM and 10 μM, respectively. Both E. coli sensors responded to gold and copper yet showed no detectable response to other metals. Abiotic factors, such as medium complexity, were found to influence the response of the E. coli sensors, with minimal medium resulting in higher sensitivities of detection. Expression of the GolSA113T- and GolSCL-based sensor constructs in the cyanobacterium Synechococcus sp. PCC 7002 resulted in photoautotrophic gold sensors, but these biosensors failed to produce a significant response to copper. Moreover, the fluorescence response of the cyanobacterial sensors to gold was significantly reduced compared to that of analogous E. coli sensors. While this effort demonstrates feasibility for the development of photoautotrophic biosensors, additional efforts to optimize sensor performance will be required.
Collapse
|
27
|
Stebegg R, Schmetterer G, Rompel A. Transport of organic substances through the cytoplasmic membrane of cyanobacteria. PHYTOCHEMISTRY 2019; 157:206-218. [PMID: 30447471 DOI: 10.1016/j.phytochem.2018.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 07/25/2018] [Accepted: 08/17/2018] [Indexed: 06/09/2023]
Abstract
Cyanobacteria are mainly known to incorporate inorganic molecules like carbon dioxide and ammonia from the environment into organic material within the cell. Nevertheless cyanobacteria do import and export organic substances through the cytoplasmic membrane and these processes are essential for all cyanobacteria. In addition understanding the mechanisms of transport of organic molecules through the cytoplasmic membrane might become very important. Genetically modified strains of cyanobacteria could serve as producers and exporters of commercially important substances. In this review we attempt to present all data of transport of organic molecules through the cytoplasmic membrane of cyanobacteria that are currently available with the transported molecules ordered according to their chemical classes.
Collapse
Affiliation(s)
- Ronald Stebegg
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria(1).
| | - Georg Schmetterer
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria(1).
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria(1).
| |
Collapse
|
28
|
Madsen MA, Semerdzhiev S, Amtmann A, Tonon T. Engineering Mannitol Biosynthesis in Escherichia coli and Synechococcus sp. PCC 7002 Using a Green Algal Fusion Protein. ACS Synth Biol 2018; 7:2833-2840. [PMID: 30408953 DOI: 10.1021/acssynbio.8b00238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The genetic engineering of microbial cell factories is a sustainable alternative to the chemical synthesis of organic compounds. Successful metabolic engineering often depends on manipulating several enzymes, requiring multiple transformation steps and selection markers, as well as protein assembly and efficient substrate channeling. Naturally occurring fusion genes encoding two or more enzymatic functions may offer an opportunity to simplify the engineering process and to generate ready-made protein modules, but their functionality in heterologous systems remains to be tested. Here we show that heterologous expression of a fusion enzyme from the marine alga Micromonas pusilla, comprising a mannitol-1-phosphate dehydrogenase and a mannitol-1-phosphatase, leads to synthesis of mannitol by Escherichia coli and by the cyanobacterium Synechococcus sp. PCC 7002. Neither of the heterologous systems naturally produce this sugar alcohol, which is widely used in food, pharmaceutical, medical, and chemical industries. While the mannitol production rates obtained by single-gene manipulation were lower than those previously achieved after pathway optimization with multiple genes, our findings show that naturally occurring fusion proteins can offer simple building blocks for the assembly and optimization of recombinant metabolic pathways.
Collapse
Affiliation(s)
- Mary Ann Madsen
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Stefan Semerdzhiev
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Anna Amtmann
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Thierry Tonon
- Centre for Novel Agricultural Products, Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
29
|
Mloszewska AM, Cole DB, Planavsky NJ, Kappler A, Whitford DS, Owttrim GW, Konhauser KO. UV radiation limited the expansion of cyanobacteria in early marine photic environments. Nat Commun 2018; 9:3088. [PMID: 30082788 PMCID: PMC6079077 DOI: 10.1038/s41467-018-05520-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/09/2018] [Indexed: 01/09/2023] Open
Abstract
Prior to atmospheric oxygenation, ecosystems were exposed to higher UV radiation fluxes relative to modern surface environments. Iron–silica mineral coatings have been evoked as effective UV radiation shields in early terrestrial settings. Here we test whether similar protection applied to planktonic cyanobacteria within the Archean water column. Based on experiments done under Archean seawater conditions, we report that Fe(III)–Si-rich precipitates absorb up to 70% of incoming UV-C radiation, with a reduction of <20% in photosynthetically active radiation flux. However, we demonstrate that even short periods of UV-C irradiation in the presence of Fe(III)–Si precipitates resulted in high mortality rates, and suggest that these effects would have persisted throughout much of the photic zone. Our findings imply that despite the shielding properties of Fe(III)–Si-rich precipitates in the early water column, UV radiation would continue to limit cyanobacterial expansion and likely had a greater effect on Archean ecosystem structure before the formation of an ozone layer. The means by which planktonic cyanobacteria were able to persist through the Archean despite high fluxes of UV radiation are unclear. Here, the authors show that Fe(III)-Si rich precipitates in the Archean photic zone could have provided early planktonic cyanobacteria an effective shield against UV-C radiation.
Collapse
Affiliation(s)
- Aleksandra M Mloszewska
- Earth Sciences Department, University of Toronto, Toronto, M5S 3B1, ON, Canada. .,Applied Geosciences, University of Tübingen, Tübingen, 72074, Germany. .,Earth and Atmospheric Sciences, University of Alberta, Edmonton, T6G 2E3, AB, Canada.
| | - Devon B Cole
- Department of Geology and Geophysics, Yale University, New Haven, 06511, CT, USA
| | - Noah J Planavsky
- Department of Geology and Geophysics, Yale University, New Haven, 06511, CT, USA
| | - Andreas Kappler
- Applied Geosciences, University of Tübingen, Tübingen, 72074, Germany
| | - Denise S Whitford
- Biological Sciences, University of Alberta, Edmonton, T6G 2E9, AB, Canada
| | - George W Owttrim
- Biological Sciences, University of Alberta, Edmonton, T6G 2E9, AB, Canada
| | - Kurt O Konhauser
- Earth and Atmospheric Sciences, University of Alberta, Edmonton, T6G 2E3, AB, Canada.
| |
Collapse
|
30
|
Playter T, Konhauser K, Owttrim GW, Whitford DS, Warchola T, Hodgson C, Mloszewska AM, Sutherland B, Zonneveld JP, Pemberton SG, Gingras MK. Determination of the Settling Rate of Clay/Cyanobacterial Floccules. J Vis Exp 2018. [PMID: 29939174 DOI: 10.3791/57176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The mechanisms underpinning the deposition of fine-grained, organic-rich sediments are still largely debated. Specifically, the impact of the interaction of clay particles with reactive, planktonic cyanobacterial cells to the sedimentary record is under studied. This interaction is a potentially major contributor to shale depositional models. Within a lab setting, the flocculation and sedimentation rates of these materials can be examined and measured in a controlled environment. Here, we detail a protocol for measuring the sedimentation rate of cyanobacterial/clay mixtures. This methodology is demonstrated through the description of two sample experiments: the first uses kaolin (a dehydrated form of kaolinite) and Synechococcus sp. PCC 7002 (a marine coccoid cyanobacteria), and the second uses kaolin and Synechocystis sp. PCC 6803 (a freshwater coccoid cyanobacteria). Cyanobacterial cultures are mixed with varying amounts of clay within a specially designed tank apparatus optimized to allow continuous, real-time video and photographic recording. The sampling procedures are detailed as well as a post-collection protocol for precise measurement of chlorophyll a from which the concentration of cyanobacterial cells remaining in suspension can be determined. Through experimental replication, a profile is constructed that displays sedimentation rate.
Collapse
Affiliation(s)
- Tiffany Playter
- Department of Earth and Atmospheric Sciences, University of Alberta;
| | - Kurt Konhauser
- Department of Earth and Atmospheric Sciences, University of Alberta
| | | | | | - Tyler Warchola
- Department of Earth and Atmospheric Sciences, University of Alberta
| | - Cheryl Hodgson
- Department of Earth and Atmospheric Sciences, University of Alberta; Department of Earth Sciences, Simon Fraser University
| | | | - Bruce Sutherland
- Department of Earth and Atmospheric Sciences, University of Alberta
| | - J-P Zonneveld
- Department of Earth and Atmospheric Sciences, University of Alberta
| | | | - Murray K Gingras
- Department of Earth and Atmospheric Sciences, University of Alberta
| |
Collapse
|
31
|
Pérez AA, Ferlez BH, Applegate AM, Walters K, He Z, Shen G, Golbeck JH, Bryant DA. Presence of a [3Fe-4S] cluster in a PsaC variant as a functional component of the photosystem I electron transfer chain in Synechococcus sp. PCC 7002. PHOTOSYNTHESIS RESEARCH 2018; 136:31-48. [PMID: 28916964 DOI: 10.1007/s11120-017-0437-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/23/2017] [Indexed: 06/07/2023]
Abstract
A site-directed C14G mutation was introduced into the stromal PsaC subunit of Synechococcus sp. strain PCC 7002 in vivo in order to introduce an exchangeable coordination site into the terminal FB [4Fe-4S] cluster of Photosystem I (PSI). Using an engineered PSI-less strain (psaAB deletion), psaC was deleted and replaced with recombinant versions controlled by a strong promoter, and the psaAB deletion was complemented. Modified PSI accumulated at lower levels in this strain and supported slower photoautotrophic growth than wild type. As-isolated PSI complexes containing PsaCC14G showed resonances with g values of 2.038 and 2.007 characteristic of a [3Fe-4S]1+ cluster. When the PSI complexes were illuminated at 15 K, these resonances partially disappeared and two new sets of resonances appeared. The majority set had g values of 2.05, 1.95, and 1.85, characteristic of FA-, and the minority set had g values of 2.11, 1.90, and 1.88 from FB' in the modified site. The S = 1/2 spin state of the latter implied the presence of a thiolate as the terminal ligand. The [3Fe-4S] clusters could be partially reconstituted with iron, producing a larger population of [4Fe-4S] clusters. Rates of flavodoxin reduction were identical in PSI complexes isolated from wild type and the PsaCC14G variant strain; this implied equivalent capacity for forward electron transfer in PSI complexes that contained [3Fe-4S] and [4Fe-4S] clusters. The development of this cyanobacterial strain is a first step toward translation of in vitro PSI-based biosolar molecular wire systems in vivo and provides new insights into the formation of Fe/S clusters.
Collapse
Affiliation(s)
- Adam A Pérez
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Bryan H Ferlez
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 28824, USA
| | - Amanda M Applegate
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
- Musculoskeletal Transplant Foundation, Jessup, PA, 18434, USA
| | - Karim Walters
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Zhihui He
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA.
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
32
|
Shimakawa G, Watanabe S, Miyake C. A Carbon Dioxide Limitation-Inducible Protein, ColA, Supports the Growth of Synechococcus sp. PCC 7002. Mar Drugs 2017; 15:md15120390. [PMID: 29244744 PMCID: PMC5742850 DOI: 10.3390/md15120390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/30/2017] [Accepted: 12/09/2017] [Indexed: 11/16/2022] Open
Abstract
A limitation in carbon dioxide (CO₂), which occurs as a result of natural environmental variation, suppresses photosynthesis and has the potential to cause photo-oxidative damage to photosynthetic cells. Oxygenic phototrophs have strategies to alleviate photo-oxidative damage to allow life in present atmospheric CO₂ conditions. However, the mechanisms for CO₂ limitation acclimation are diverse among the various oxygenic phototrophs, and many mechanisms remain to be discovered. In this study, we found that the gene encoding a CO₂ limitation-inducible protein, ColA, is required for the cyanobacterium Synechococcus sp. PCC 7002 (S. 7002) to acclimate to limited CO₂ conditions. An S. 7002 mutant deficient in ColA (ΔcolA) showed lower chlorophyll content, based on the amount of nitrogen, than that in S. 7002 wild-type (WT) under ambient air but not high CO₂ conditions. Both thermoluminescence and protein carbonylation detected in the ambient air grown cells indicated that the lack of ColA promotes oxidative stress in S. 7002. Alterations in the photosynthetic O₂ evolution rate and relative electron transport rate in the short-term response, within an hour, to CO₂ limitation were the same between the WT and ΔcolA. Conversely, these photosynthetic parameters were mostly lower in the long-term response of a few days in ΔcolA than in the WT. These data suggest that ColA is required to sustain photosynthetic activity for living under ambient air in S. 7002. The unique phylogeny of ColA revealed diverse strategies to acclimate to CO₂ limitation among cyanobacteria.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
| | - Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan.
| | - Chikahiro Miyake
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
| |
Collapse
|
33
|
Nozzi NE, Case AE, Carroll AL, Atsumi S. Systematic Approaches to Efficiently Produce 2,3-Butanediol in a Marine Cyanobacterium. ACS Synth Biol 2017; 6:2136-2144. [PMID: 28718632 DOI: 10.1021/acssynbio.7b00157] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cyanobacteria have attracted significant interest as a platform for renewable production of fuel and feedstock chemicals from abundant atmospheric carbon dioxide by way of photosynthesis. While great strides have been made in developing this technology in freshwater cyanobacteria, logistical issues remain in scale-up. Use of the cyanobacterium Synechococcus sp. PCC 7002 (7002) as a chemical production chassis could address a number of these issues given the higher tolerance to salt, light, and heat as well as the fast growth rate of 7002 in comparison to traditional model cyanobacteria such as Synechococcus elongatus PCC 7942 and Synechocystis sp. PCC 6803. However, despite growing interest, the development of genetic engineering tools for 7002 continues to lag behind those available for model cyanobacterial strains. In this work we demonstrate the systematic development of a 7002 production strain for the feedstock chemical 2,3-butanediol (23BD). We expand the range of tools available for use in 7002 by identifying and utilizing new integration sites for homologous recombination, demonstrating the inducibility of theophylline riboswitches, and screening a set of isopropyl β-d-1-thiogalactopyranoside (IPTG) inducible promoters. We then demonstrate improvements of 23BD production with the systematic screening of different conditions including: operon arrangement and copy number, light strength, inducer concentration, cell density at the time of induction, and nutrient concentration. Final production tests yielded titers of 1.6 g/L 23BD after 16 days at a rate of 100 mg/L/day. This work represents great strides in the development of 7002 as an industrially relevant production host.
Collapse
Affiliation(s)
- Nicole E. Nozzi
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Anna E. Case
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Austin L. Carroll
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Shota Atsumi
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
34
|
Schuth N, Liang Z, Schönborn M, Kussicke A, Assunção R, Zaharieva I, Zilliges Y, Dau H. Inhibitory and Non-Inhibitory NH 3 Binding at the Water-Oxidizing Manganese Complex of Photosystem II Suggests Possible Sites and a Rearrangement Mode of Substrate Water Molecules. Biochemistry 2017; 56:6240-6256. [PMID: 29086556 DOI: 10.1021/acs.biochem.7b00743] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The identity and rearrangements of substrate water molecules in photosystem II (PSII) water oxidation are of great mechanistic interest and addressed herein by comprehensive analysis of NH4+/NH3 binding. Time-resolved detection of O2 formation and recombination fluorescence as well as Fourier transform infrared (FTIR) difference spectroscopy on plant PSII membrane particles reveals the following. (1) Partial inhibition in NH4Cl buffer occurs with a pH-independent binding constant of ∼25 mM, which does not result from decelerated O2 formation, but from complete blockage of a major PSII fraction (∼60%) after reaching the Mn(IV)4 (S3) state. (2) The non-inhibited PSII fraction advances through the reaction cycle, but modified nuclear rearrangements are suggested by FTIR difference spectroscopy. (3) Partial inhibition can be explained by anticooperative (mutually exclusive) NH3 binding to one inhibitory and one non-inhibitory site; these two sites may correspond to two water molecules terminally bound to the "dangling" Mn ion. (4) Unexpectedly strong modifications of the FTIR difference spectra suggest that in the non-inhibited PSII, ammonia binding obliterates the need for some of the nuclear rearrangements occurring in the S2-S3 transition as well as their reversal in the O2 formation transition, in line with the carousel mechanism [Askerka, M., et al. (2015) Biochemistry 54, 5783]. (5) We observe the same partial inhibition of PSII by NH4Cl also for thylakoid membranes prepared from mesophilic and thermophilic cyanobacteria, suggesting that the results described above are valid for plant and cyanobacterial PSII.
Collapse
Affiliation(s)
- Nils Schuth
- Freie Universität Berlin , Department of Physics, 14195 Berlin, Germany
| | - Zhiyong Liang
- Freie Universität Berlin , Department of Physics, 14195 Berlin, Germany
| | | | - André Kussicke
- Freie Universität Berlin , Department of Physics, 14195 Berlin, Germany
| | - Ricardo Assunção
- Freie Universität Berlin , Department of Physics, 14195 Berlin, Germany
| | - Ivelina Zaharieva
- Freie Universität Berlin , Department of Physics, 14195 Berlin, Germany
| | - Yvonne Zilliges
- Freie Universität Berlin , Department of Physics, 14195 Berlin, Germany
| | - Holger Dau
- Freie Universität Berlin , Department of Physics, 14195 Berlin, Germany
| |
Collapse
|
35
|
Ren M, Zhang G, Ye Z, Qiao Z, Xie M, Lin Y, Li T, Zhao J. Metagenomic analysis reveals potential interactions in an artificial coculture. AMB Express 2017; 7:193. [PMID: 29098480 PMCID: PMC5668215 DOI: 10.1186/s13568-017-0490-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 10/14/2017] [Indexed: 01/23/2023] Open
Abstract
Disentangling the interactions between cyanobacteria and associated bacterial community is important for understanding the mechanisms that mediate the formation of cyanobacterial blooms in freshwater ecosystems. Despite the fact that a metagenomic approach enables researchers to profile the structure of microbial communities associated with cyanobacteria, reconstructing genome sequences for all members remains inefficient, due to the inherent enormous microbial diversity. Here, we have established a stable coculture system under high salinity, originally from a mixture of an axenic cyanobacterium Synechococcus sp. PCC 7002 and a non-axenic bloom-forming cyanobacterium Microcystis colony. Metagenomic analysis showed that the coculture consists of S. sp. PCC 7002 and two heterotrophic bacteria, designated as Pseudomonas stutzeri TAIHU and Mesorhizobium sp. TAIHU, respectively. And near-complete genome sequences of both bacteria were reconstructed from the metagenomic dataset with an average completeness of 99.8%. Genome-wide pathway analysis revealed that M. sp. TAIHU carried all the genes involved in the de novo biosynthesis of cobalamin, which is required by S. sp. PCC 7002 for growth. To cope with the high salinity in the coculture, experimental evidence demonstrated that S. sp. PCC 7002 would synthesize the compatible solutes including sucrose and glucosylglycerol, which are supposed to be exploited by both heterotrophic bacteria as potential carbon and/or nitrogen sources. Furthermore, the genes encoding for the biosynthesis of the ectoine, another common osmolyte are found exclusively in P. stutzeri TAIHU, while the genes responsible for the catabolism of ectoine and its derives are present only in M. sp. TAIHU. These genomic evidence indicates beneficial interaction between three members in the coculture. Establishment of the coculture system with relative simplicity provides a useful model system for investigating the interspecies interactions, and genome sequences of both bacteria associated with Microcystis bloom described here will facilitate the researcher to elucidate the role of these heterotrophic bacteria in the formation and maintenance of cyanobacterial bloom in freshwater ecosystem.
Collapse
|
36
|
Vogel AIM, Lale R, Hohmann-Marriott MF. Streamlining recombination-mediated genetic engineering by validating three neutral integration sites in Synechococcus sp. PCC 7002. J Biol Eng 2017; 11:19. [PMID: 28592992 PMCID: PMC5458483 DOI: 10.1186/s13036-017-0061-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/08/2017] [Indexed: 11/17/2022] Open
Abstract
Background Synechococcus sp. PCC 7002 (henceforth Synechococcus) is developing into a powerful synthetic biology chassis. In order to streamline the integration of genes into the Synechococcus chromosome, validation of neutral integration sites with optimization of the DNA transformation protocol parameters is necessary. Availability of BioBrick-compatible integration modules is desirable to further simplifying chromosomal integrations. Results We designed three BioBrick-compatible genetic modules, each targeting a separate neutral integration site, A2842, A0935, and A0159, with varying length of homologous region, spanning from 100 to 800 nt. The performance of the different modules for achieving DNA integration were tested. Our results demonstrate that 100 nt homologous regions are sufficient for inserting a 1 kb DNA fragment into the Synechococcus chromosome. By adapting a transformation protocol from a related cyanobacterium, we shortened the transformation procedure for Synechococcus significantly. Conclusions The optimized transformation protocol reported in this study provides an efficient way to perform genetic engineering in Synechococcus. We demonstrated that homologous regions of 100 nt are sufficient for inserting a 1 kb DNA fragment into the three tested neutral integration sites. Integration at A2842, A0935 and A0159 results in only a minimal fitness cost for the chassis. This study contributes to developing Synechococcus as the prominent chassis for future synthetic biology applications. Electronic supplementary material The online version of this article (doi:10.1186/s13036-017-0061-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne Ilse Maria Vogel
- Department of Biotechnology, PhotoSynLab, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Rahmi Lale
- Department of Biotechnology, PhotoSynLab, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | | |
Collapse
|
37
|
Zhu T, Hou S, Lu X, Hess WR. Draft Genome Sequences of Nine Cyanobacterial Strains from Diverse Habitats. GENOME ANNOUNCEMENTS 2017; 5:e01676-16. [PMID: 28254973 PMCID: PMC5334580 DOI: 10.1128/genomea.01676-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/05/2017] [Indexed: 11/23/2022]
Abstract
Here, we report the annotated draft genome sequences of nine different cyanobacteria, which were originally collected from different habitats, including hot springs, terrestrial, freshwater, and marine environments, and cover four of the five morphological subsections of cyanobacteria.
Collapse
Affiliation(s)
- Tao Zhu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Beijing, China
| | - Shengwei Hou
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Xuefeng Lu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Beijing, China
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
38
|
Hill EA, Chrisler WB, Beliaev AS, Bernstein HC. A flexible microbial co-culture platform for simultaneous utilization of methane and carbon dioxide from gas feedstocks. BIORESOURCE TECHNOLOGY 2017; 228:250-256. [PMID: 28092828 DOI: 10.1016/j.biortech.2016.12.111] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/30/2016] [Accepted: 12/31/2016] [Indexed: 06/06/2023]
Abstract
A new co-cultivation technology is presented that converts greenhouse gasses, CH4 and CO2, into microbial biomass. The methanotrophic bacterium, Methylomicrobium alcaliphilum 20z, was coupled to a cyanobacterium, Synechococcus PCC 7002 via oxygenic photosynthesis. The system exhibited robust growth on diverse gas mixtures ranging from biogas to those representative of a natural gas feedstock. A continuous processes was developed on a synthetic natural gas feed that achieved steady-state by imposing coupled light and O2 limitations on the cyanobacterium and methanotroph, respectively. Continuous co-cultivation resulted in an O2 depleted reactor and does not require CH4/O2 mixtures to be fed into the system, thereby enhancing process safety considerations over traditional methanotroph mono-culture platforms. This co-culture technology is scalable with respect to its ability to utilize different gas streams and its biological components constructed from model bacteria that can be metabolically customized to produce a range of biofuels and bioproducts.
Collapse
Affiliation(s)
- Eric A Hill
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - William B Chrisler
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Alex S Beliaev
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Hans C Bernstein
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA; The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA.
| |
Collapse
|
39
|
Xiong W, Shen G, Bryant DA. Synechocystis sp. PCC 6803 CruA (sll0147) encodes lycopene cyclase and requires bound chlorophyll a for activity. PHOTOSYNTHESIS RESEARCH 2017; 131:267-280. [PMID: 27743323 DOI: 10.1007/s11120-016-0316-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/06/2016] [Indexed: 05/15/2023]
Abstract
The genome of the model cyanobacterium, Synechococcus sp. PCC 7002, encodes two paralogs of CruA-type lycopene cyclases, SynPCC7002_A2153 and SynPCC7002_A0043, which are denoted cruA and cruP, respectively. Unlike the wild-type strain, a cruA deletion mutant is light-sensitive, grows slowly, and accumulates lycopene, γ-carotene, and 1-OH-lycopene; however, this strain still produces β-carotene and other carotenoids derived from it. Expression of cruA from Synechocystis sp. PCC 6803 (cruA 6803) in Escherichia coli strains that synthesize either lycopene or γ-carotene did not lead to the synthesis of either γ-carotene or β-carotene, respectively. However, expression of this orthologous cruA 6803 gene (sll0147) in the Synechococcus sp. PCC 7002 cruA deletion mutant produced strains with phenotypic properties identical to the wild type. CruA6803 was purified from Synechococcus sp. PCC 7002 by affinity chromatography, and the purified protein was pale yellow-green due to the presence of bound chlorophyll (Chl) a and β-carotene. Native polyacrylamide gel electrophoresis of the partly purified protein in the presence of lithium dodecylsulfate at 4 °C confirmed that the protein was yellow-green in color. When purified CruA6803 was assayed in vitro with either lycopene or γ-carotene as substrate, β-carotene was synthesized. These data establish that CruA6803 is a lycopene cyclase and that it requires a bound Chl a molecule for activity. Possible binding sites for Chl a and the potential regulatory role of the Chl a in coordination of Chl and carotenoid biosynthesis are discussed.
Collapse
Affiliation(s)
- Wei Xiong
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
40
|
Zn2+-Inducible Expression Platform for Synechococcus sp. Strain PCC 7002 Based on the smtA Promoter/Operator and smtB Repressor. Appl Environ Microbiol 2017; 83:AEM.02491-16. [PMID: 27836841 DOI: 10.1128/aem.02491-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 11/07/2016] [Indexed: 12/31/2022] Open
Abstract
Synechococcus sp. strain PCC 7002 has been gaining significance as both a model system for photosynthesis research and for industrial applications. Until recently, the genetic toolbox for this model cyanobacterium was rather limited and relied primarily on tools that only allowed constitutive gene expression. This work describes a two-plasmid, Zn2+-inducible expression platform that is coupled with a zurA mutation, providing enhanced Zn2+ uptake. The control elements are based on the metal homeostasis system of a class II metallothionein gene (smtA7942) and its cognate SmtB7942 repressor from Synechococcus elongatus strain PCC 7942. Under optimal induction conditions, yellow fluorescent protein (YFP) levels were about half of those obtained with the strong, constitutive phycocyanin (cpcBA6803) promoter of Synechocystis sp. strain PCC 6803. This metal-inducible expression system in Synechococcus sp. strain PCC 7002 allowed the titratable gene expression of YFP that was up to 19-fold greater than the background level. This system was utilized successfully to control the expression of the Drosophila melanogaster β-carotene 15,15'-dioxygenase, NinaB, which is toxic when constitutively expressed from a strong promoter in Synechococcus sp. strain PCC 7002. Together, these properties establish this metal-inducible system as an additional useful tool that is capable of controlling gene expression for applications ranging from basic research to synthetic biology in Synechococcus sp. strain PCC 7002. IMPORTANCE This is the first metal-responsive expression system in cyanobacteria, to our knowledge, that does not exhibit low sensitivity for induction, which is one of the major hurdles for utilizing this class of genetic tools. In addition, high levels of expression can be generated that approximate those of established constitutive systems, with the added advantage of titratable control. Together, these properties establish this Zn2+-inducible system, which is based on the smtA7942 operator/promoter and smtB7942 repressor, as a versatile gene expression platform that expands the genetic toolbox of Synechococcus sp. strain PCC 7002.
Collapse
|
41
|
Kopka J, Schmidt S, Dethloff F, Pade N, Berendt S, Schottkowski M, Martin N, Dühring U, Kuchmina E, Enke H, Kramer D, Wilde A, Hagemann M, Friedrich A. Systems analysis of ethanol production in the genetically engineered cyanobacterium Synechococcus sp. PCC 7002. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:56. [PMID: 28286551 PMCID: PMC5340023 DOI: 10.1186/s13068-017-0741-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/23/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND Future sustainable energy production can be achieved using mass cultures of photoautotrophic microorganisms, which are engineered to synthesize valuable products directly from CO2 and sunlight. As cyanobacteria can be cultivated in large scale on non-arable land, these phototrophic bacteria have become attractive organisms for production of biofuels. Synechococcus sp. PCC 7002, one of the cyanobacterial model organisms, provides many attractive properties for biofuel production such as tolerance of seawater and high light intensities. RESULTS Here, we performed a systems analysis of an engineered ethanol-producing strain of the cyanobacterium Synechococcus sp. PCC 7002, which was grown in artificial seawater medium over 30 days applying a 12:12 h day-night cycle. Biosynthesis of ethanol resulted in a final accumulation of 0.25% (v/v) ethanol, including ethanol lost due to evaporation. The cultivation experiment revealed three production phases. The highest production rate was observed in the initial phase when cells were actively growing. In phase II growth of the producer strain stopped, but ethanol production rate was still high. Phase III was characterized by a decrease of both ethanol production and optical density of the culture. Metabolomics revealed that the carbon drain due to ethanol diffusion from the cell resulted in the expected reduction of pyruvate-based intermediates. Carbon-saving strategies successfully compensated the decrease of central intermediates of carbon metabolism during the first phase of fermentation. However, during long-term ethanol production the producer strain showed clear indications of intracellular carbon limitation. Despite the decreased levels of glycolytic and tricarboxylic acid cycle intermediates, soluble sugars and even glycogen accumulated in the producer strain. The changes in carbon assimilation patterns are partly supported by proteome analysis, which detected decreased levels of many enzymes and also revealed the stress phenotype of ethanol-producing cells. Strategies towards improved ethanol production are discussed. CONCLUSIONS Systems analysis of ethanol production in Synechococcus sp. PCC 7002 revealed initial compensation followed by increasing metabolic limitation due to excessive carbon drain from primary metabolism.
Collapse
Affiliation(s)
- Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Stefanie Schmidt
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Frederik Dethloff
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Max-Planck-Institute of Psychiatry, Kraepelinstraße 2-10, 80804 Munich, Germany
| | - Nadin Pade
- Institute of Biological Sciences, Plant Physiology, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | - Susanne Berendt
- Algenol Biofuels Germany GmbH, Magnusstraße 11, 12489 Berlin, Germany
| | | | - Nico Martin
- Algenol Biofuels Germany GmbH, Magnusstraße 11, 12489 Berlin, Germany
| | - Ulf Dühring
- Algenol Biofuels Germany GmbH, Magnusstraße 11, 12489 Berlin, Germany
| | - Ekaterina Kuchmina
- Institute of Biology III, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Heike Enke
- Algenol Biofuels Germany GmbH, Magnusstraße 11, 12489 Berlin, Germany
- Cyano Biotech GmbH, Magnusstraße 11, 12489 Berlin, Germany
| | - Dan Kramer
- Algenol Biofuels Germany GmbH, Magnusstraße 11, 12489 Berlin, Germany
- Cyano Biotech GmbH, Magnusstraße 11, 12489 Berlin, Germany
| | - Annegret Wilde
- Institute of Biology III, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Martin Hagemann
- Institute of Biological Sciences, Plant Physiology, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | | |
Collapse
|
42
|
Flux balance analysis of photoautotrophic metabolism: Uncovering new biological details of subsystems involved in cyanobacterial photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1858:276-287. [PMID: 28012908 DOI: 10.1016/j.bbabio.2016.12.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/03/2016] [Accepted: 12/20/2016] [Indexed: 11/24/2022]
Abstract
We have constructed and experimentally tested a comprehensive genome-scale model of photoautotrophic growth, denoted iSyp821, for the cyanobacterium Synechococcus sp. PCC 7002. iSyp821 incorporates a variable biomass objective function (vBOF), in which stoichiometries of the major biomass components vary according to light intensity. The vBOF was constrained to fit the measured cellular carbohydrate/protein content under different light intensities. iSyp821 provides rigorous agreement with experimentally measured cell growth rates and inorganic carbon uptake rates as a function of light intensity. iSyp821 predicts two observed metabolic transitions that occur as light intensity increases: 1) from PSI-cyclic to linear electron flow (greater redox energy), and 2) from carbon allocation as proteins (growth) to carbohydrates (energy storage) mode. iSyp821 predicts photoautotrophic carbon flux into 1) a hybrid gluconeogenesis-pentose phosphate (PP) pathway that produces glycogen by an alternative pathway than conventional gluconeogenesis, and 2) the photorespiration pathway to synthesize the essential amino acid, glycine. Quantitative fluxes through both pathways were verified experimentally by following the kinetics of formation of 13C metabolites from 13CO2 fixation. iSyp821 was modified to include changes in gene products (enzymes) from experimentally measured transcriptomic data and applied to estimate changes in concentrations of metabolites arising from nutrient stress. Using this strategy, we found that iSyp821 correctly predicts the observed redistribution pattern of carbon products under nitrogen depletion, including decreased rates of CO2 uptake, amino acid synthesis, and increased rates of glycogen and lipid synthesis.
Collapse
|
43
|
Shimakawa G, Akimoto S, Ueno Y, Wada A, Shaku K, Takahashi Y, Miyake C. Diversity in photosynthetic electron transport under [CO 2]-limitation: the cyanobacterium Synechococcus sp. PCC 7002 and green alga Chlamydomonas reinhardtii drive an O 2-dependent alternative electron flow and non-photochemical quenching of chlorophyll fluorescence during CO 2-limited photosynthesis. PHOTOSYNTHESIS RESEARCH 2016; 130:293-305. [PMID: 27026083 DOI: 10.1007/s11120-016-0253-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/22/2016] [Indexed: 06/05/2023]
Abstract
Some cyanobacteria, but not all, experience an induction of alternative electron flow (AEF) during CO2-limited photosynthesis. For example, Synechocystis sp. PCC 6803 (S. 6803) exhibits AEF, but Synechococcus elongatus sp. PCC 7942 does not. This difference is due to the presence of flavodiiron 2 and 4 proteins (FLV2/4) in S. 6803, which catalyze electron donation to O2. In this study, we observed a low-[CO2] induced AEF in the marine cyanobacterium Synechococcus sp. PCC 7002 that lacks FLV2/4. The AEF shows high affinity for O2, compared with AEF mediated by FLV2/4 in S. 6803, and can proceed under extreme low [O2] (about a few µM O2). Further, the transition from CO2-saturated to CO2-limited photosynthesis leads a preferential excitation of PSI to PSII and increased non-photochemical quenching of chlorophyll fluorescence. We found that the model green alga Chlamydomonas reinhardtii also has an O2-dependent AEF showing the same affinity for O2 as that in S. 7002. These data represent the diverse molecular mechanisms to drive AEF in cyanobacteria and green algae. In this paper, we further discuss the diversity, the evolution, and the physiological function of strategy to CO2-limitation in cyanobacterial and green algal photosynthesis.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan.
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
- Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Yoshifumi Ueno
- Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Ayumi Wada
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Keiichiro Shaku
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Yuichiro Takahashi
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
| | - Chikahiro Miyake
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| |
Collapse
|
44
|
|
45
|
Ruffing AM, Jensen TJ, Strickland LM. Genetic tools for advancement of Synechococcus sp. PCC 7002 as a cyanobacterial chassis. Microb Cell Fact 2016; 15:190. [PMID: 27832791 PMCID: PMC5105302 DOI: 10.1186/s12934-016-0584-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/28/2016] [Indexed: 11/10/2022] Open
Abstract
Background Successful implementation of modified cyanobacteria as hosts for industrial applications requires the development of a cyanobacterial chassis. The cyanobacterium Synechococcus sp. PCC 7002 embodies key attributes for an industrial host, including a fast growth rate and high salt, light, and temperature tolerances. This study addresses key limitations in the advancement of Synechococcus sp. PCC 7002 as an industrial chassis. Results Tools for genome integration were developed and characterized, including several putative neutral sites for genome integration. The minimum homology arm length for genome integration in Synechococcus sp. PCC 7002 was determined to be approximately 250 bp. Three fluorescent protein reporters (hGFP, Ypet, and mOrange) were characterized for gene expression, microscopy, and flow cytometry applications in Synechococcus sp. PCC 7002. Of these three proteins, the yellow fluorescent protein (Ypet) had the best optical properties for minimal interference with the native photosynthetic pigments and for detection using standard microscopy and flow cytometry optics. Twenty-five native promoters were characterized as tools for recombinant gene expression in Synechococcus sp. PCC 7002 based on previous RNA-seq results. This characterization included comparisons of protein and mRNA levels as well as expression under both continuous and diurnal light conditions. Promoters A2520 and A2579 were found to have strong expression in Synechococcus sp. PCC 7002 while promoters A1930, A1961, A2531, and A2813 had moderate expression. Promoters A2520 and A2813 showed more than twofold increases in gene expression under light conditions compared to dark, suggesting these promoters may be useful tools for engineering diurnal regulation. Conclusions The genome integration, fluorescent protein, and promoter tools developed in this study will help to advance Synechococcus sp. PCC 7002 as a cyanobacterial chassis. The long minimum homology arm length for Synechococcus sp. PCC 7002 genome integration indicates native exonuclease activity or a low efficiency of homologous recombination. Low correlation between transcript and protein levels in Synechococcus sp. PCC 7002 suggests that transcriptomic data are poor selection criteria for promoter tool development. Lastly, the conventional strategy of using promoters from photosynthetic operons as strong promoter tools is debunked, as promoters from hypothetical proteins (A2520 and A2579) were found to have much higher expression levels. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0584-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne M Ruffing
- Department of Bioenergy and Defense Technologies, Sandia National Laboratories, P.O. Box 5800, MS 1413, Albuquerque, NM, 87185-1413, USA.
| | - Travis J Jensen
- Department of Bioenergy and Defense Technologies, Sandia National Laboratories, P.O. Box 5800, MS 1413, Albuquerque, NM, 87185-1413, USA
| | - Lucas M Strickland
- Department of Bioenergy and Defense Technologies, Sandia National Laboratories, P.O. Box 5800, MS 1413, Albuquerque, NM, 87185-1413, USA
| |
Collapse
|
46
|
Cassier-Chauvat C, Veaudor T, Chauvat F. Comparative Genomics of DNA Recombination and Repair in Cyanobacteria: Biotechnological Implications. Front Microbiol 2016; 7:1809. [PMID: 27881980 PMCID: PMC5101192 DOI: 10.3389/fmicb.2016.01809] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/27/2016] [Indexed: 12/16/2022] Open
Abstract
Cyanobacteria are fascinating photosynthetic prokaryotes that are regarded as the ancestors of the plant chloroplast; the purveyors of oxygen and biomass for the food chain; and promising cell factories for an environmentally friendly production of chemicals. In colonizing most waters and soils of our planet, cyanobacteria are inevitably challenged by environmental stresses that generate DNA damages. Furthermore, many strains engineered for biotechnological purposes can use DNA recombination to stop synthesizing the biotechnological product. Hence, it is important to study DNA recombination and repair in cyanobacteria for both basic and applied research. This review reports what is known in a few widely studied model cyanobacteria and what can be inferred by mining the sequenced genomes of morphologically and physiologically diverse strains. We show that cyanobacteria possess many E. coli-like DNA recombination and repair genes, and possibly other genes not yet identified. E. coli-homolog genes are unevenly distributed in cyanobacteria, in agreement with their wide genome diversity. Many genes are extremely well conserved in cyanobacteria (mutMS, radA, recA, recFO, recG, recN, ruvABC, ssb, and uvrABCD), even in small genomes, suggesting that they encode the core DNA repair process. In addition to these core genes, the marine Prochlorococcus and Synechococcus strains harbor recBCD (DNA recombination), umuCD (mutational DNA replication), as well as the key SOS genes lexA (regulation of the SOS system) and sulA (postponing of cell division until completion of DNA reparation). Hence, these strains could possess an E. coli-type SOS system. In contrast, several cyanobacteria endowed with larger genomes lack typical SOS genes. For examples, the two studied Gloeobacter strains lack alkB, lexA, and sulA; and Synechococcus PCC7942 has neither lexA nor recCD. Furthermore, the Synechocystis PCC6803 lexA product does not regulate DNA repair genes. Collectively, these findings indicate that not all cyanobacteria have an E. coli-type SOS system. Also interestingly, several cyanobacteria possess multiple copies of E. coli-like DNA repair genes, such as Acaryochloris marina MBIC11017 (2 alkB, 3 ogt, 7 recA, 3 recD, 2 ssb, 3 umuC, 4 umuD, and 8 xerC), Cyanothece ATCC51142 (2 lexA and 4 ruvC), and Nostoc PCC7120 (2 ssb and 3 xerC).
Collapse
Affiliation(s)
- Corinne Cassier-Chauvat
- Institute for Integrative Biology of the Cell, CEA, Centre Nationnal de la Recherche Scientifique (CNRS), Universite Paris-Sud, Université Paris-Saclay Gif-sur-Yvette Cedex, France
| | - Théo Veaudor
- Institute for Integrative Biology of the Cell, CEA, Centre Nationnal de la Recherche Scientifique (CNRS), Universite Paris-Sud, Université Paris-Saclay Gif-sur-Yvette Cedex, France
| | - Franck Chauvat
- Institute for Integrative Biology of the Cell, CEA, Centre Nationnal de la Recherche Scientifique (CNRS), Universite Paris-Sud, Université Paris-Saclay Gif-sur-Yvette Cedex, France
| |
Collapse
|
47
|
Shimakawa G, Shaku K, Miyake C. Oxidation of P700 in Photosystem I Is Essential for the Growth of Cyanobacteria. PLANT PHYSIOLOGY 2016; 172:1443-1450. [PMID: 27613853 PMCID: PMC5100761 DOI: 10.1104/pp.16.01227] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/07/2016] [Indexed: 05/21/2023]
Abstract
The photoinhibition of photosystem I (PSI) is lethal to oxygenic phototrophs. Nevertheless, it is unclear how photodamage occurs or how oxygenic phototrophs prevent it. Here, we provide evidence that keeping P700 (the reaction center chlorophyll in PSI) oxidized protects PSI. Previous studies have suggested that PSI photoinhibition does not occur in the two model cyanobacteria, Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942, when photosynthetic CO2 fixation was suppressed under low CO2 partial pressure even in mutants deficient in flavodiiron protein (FLV), which mediates alternative electron flow. The lack of FLV in Synechococcus sp. PCC 7002 (S. 7002), however, is linked directly to reduced growth and PSI photodamage under CO2-limiting conditions. Unlike Synechocystis sp. PCC 6803 and S. elongatus PCC 7942, S. 7002 reduced P700 during CO2-limited illumination in the absence of FLV, resulting in decreases in both PSI and photosynthetic activities. Even at normal air CO2 concentration, the growth of S. 7002 mutant was retarded relative to that of the wild type. Therefore, P700 oxidation is essential for protecting PSI against photoinhibition. Here, we present various strategies to alleviate PSI photoinhibition in cyanobacteria.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe 657-8501, Japan (G.S., K.S., C.M.); and
- Core Research for Environmental Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan (C.M.)
| | - Keiichiro Shaku
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe 657-8501, Japan (G.S., K.S., C.M.); and
- Core Research for Environmental Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan (C.M.)
| | - Chikahiro Miyake
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe 657-8501, Japan (G.S., K.S., C.M.); and
- Core Research for Environmental Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan (C.M.)
| |
Collapse
|
48
|
Identification and Regulation of Genes for Cobalamin Transport in the Cyanobacterium Synechococcus sp. Strain PCC 7002. J Bacteriol 2016; 198:2753-61. [PMID: 27457716 DOI: 10.1128/jb.00476-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/19/2016] [Indexed: 01/16/2023] Open
Abstract
UNLABELLED The cyanobacterium Synechococcus sp. strain PCC 7002 is a cobalamin auxotroph and utilizes this coenzyme solely for the synthesis of l-methionine by methionine synthase (MetH). Synechococcus sp. strain PCC 7002 is unable to synthesize cobalamin de novo, and because of the large size of this tetrapyrrole, an active-transport system must exist for cobalamin uptake. Surprisingly, no cobalamin transport system was identified in the initial annotation of the genome of this organism. With more sophisticated in silico prediction tools, a btuB-cpdA-btuC-btuF operon encoding components putatively required for a B12 uptake (btu) system was identified. The expression of these genes was predicted to be controlled by a cobalamin riboswitch. Global transcriptional profiling by high-throughput RNA sequencing of a cobalamin-independent form of Synechococcus sp. strain PCC 7002 grown in the absence or presence of cobalamin confirmed regulation of the btu operon by cobalamin. Pérez et al. (A. A. Pérez, Z. Liu, D. A. Rodionov, Z. Li, and D. A. Bryant, J Bacteriol 198:2743-2752, 2016, http://dx.doi.org/10.1128/JB.00475-16) developed a cobalamin-dependent yellow fluorescent protein reporter system in a Synechococcus sp. strain PCC 7002 variant that had been genetically modified to allow cobalamin-independent growth. This reporter system was exploited to validate components of the btu uptake system by assessing the ability of targeted mutants to transport cobalamin. The btuB promoter and a variant counterpart mutated in an essential element of the predicted cobalamin riboswitch were fused to a yfp reporter. The combined data indicate that the btuB-cpdA-btuF-btuC operon in this cyanobacterium is transcriptionally regulated by a cobalamin riboswitch. IMPORTANCE With a cobalamin-regulated reporter system for expression of yellow fluorescent protein, genes previously misidentified as encoding subunits of a siderophore transporter were shown to encode components of cobalamin uptake in the cyanobacterium Synechococcus sp. strain PCC 7002. This study demonstrates the importance of experimental validation of in silico predictions and provides a general scheme for in vivo verification of similar cobalamin transport systems. A putative cobalamin riboswitch was identified in Synechococcus sp. strain PCC 7002. This riboswitch acts as a potential transcriptional attenuator of the btu operon that encodes the components of the cobalamin active-transport system.
Collapse
|
49
|
Complementation of Cobalamin Auxotrophy in Synechococcus sp. Strain PCC 7002 and Validation of a Putative Cobalamin Riboswitch In Vivo. J Bacteriol 2016; 198:2743-52. [PMID: 27457714 DOI: 10.1128/jb.00475-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/19/2016] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED The euryhaline cyanobacterium Synechococcus sp. strain PCC 7002 has an obligate requirement for exogenous vitamin B12 (cobalamin), but little is known about the roles of this compound in cyanobacteria. Bioinformatic analyses suggest that only the terminal enzyme in methionine biosynthesis, methionine synthase, requires cobalamin as a coenzyme in Synechococcus sp. strain PCC 7002. Methionine synthase (MetH) catalyzes the transfer of a methyl group from N(5)-methyl-5,6,7,8-tetrahydrofolate to l-homocysteine during l-methionine synthesis and uses methylcobalamin as an intermediate methyl donor. Numerous bacteria and plants alternatively employ a cobalamin-independent methionine synthase isozyme, MetE, that catalyzes the same methyl transfer reaction as MetH but uses N(5)-methyl-5,6,7,8-tetrahydrofolate directly as the methyl donor. The cobalamin auxotrophy of Synechococcus sp. strain PCC 7002 was complemented by using the metE gene from the closely related cyanobacterium Synechococcus sp. strain PCC 73109, which possesses genes for both methionine synthases. This result suggests that methionine biosynthesis is probably the sole use of cobalamin in Synechococcus sp. strain PCC 7002. Furthermore, a cobalamin-repressible gene expression system was developed in Synechococcus sp. strain PCC 7002 that was used to validate the presence of a cobalamin riboswitch in the promoter region of metE from Synechococcus sp. strain PCC 73109. This riboswitch acts as a cobalamin-dependent transcriptional attenuator for metE in that organism. IMPORTANCE Synechococcus sp. strain PCC 7002 is a cobalamin auxotroph because, like eukaryotic marine algae, it uses a cobalamin-dependent methionine synthase (MetH) for the final step of l-methionine biosynthesis but cannot synthesize cobalamin de novo Heterologous expression of metE, encoding cobalamin-independent methionine synthase, from Synechococcus sp. strain PCC 73109, relieved this auxotrophy and enabled the construction of a truly autotrophic Synechococcus sp. strain PCC 7002 more suitable for large-scale industrial applications. Characterization of a cobalamin riboswitch expands the genetic toolbox for Synechococcus sp. strain PCC 7002 by providing a cobalamin-repressible expression system.
Collapse
|
50
|
McClure RS, Overall CC, McDermott JE, Hill EA, Markillie LM, McCue LA, Taylor RC, Ludwig M, Bryant DA, Beliaev AS. Network analysis of transcriptomics expands regulatory landscapes in Synechococcus sp. PCC 7002. Nucleic Acids Res 2016; 44:8810-8825. [PMID: 27568004 PMCID: PMC5062996 DOI: 10.1093/nar/gkw737] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 08/05/2016] [Indexed: 12/29/2022] Open
Abstract
Cyanobacterial regulation of gene expression must contend with a genome organization that lacks apparent functional context, as the majority of cellular processes and metabolic pathways are encoded by genes found at disparate locations across the genome and relatively few transcription factors exist. In this study, global transcript abundance data from the model cyanobacterium Synechococcus sp. PCC 7002 grown under 42 different conditions was analyzed using Context-Likelihood of Relatedness (CLR). The resulting network, organized into 11 modules, provided insight into transcriptional network topology as well as grouping genes by function and linking their response to specific environmental variables. When used in conjunction with genome sequences, the network allowed identification and expansion of novel potential targets of both DNA binding proteins and sRNA regulators. These results offer a new perspective into the multi-level regulation that governs cellular adaptations of the fast-growing physiologically robust cyanobacterium Synechococcus sp. PCC 7002 to changing environmental variables. It also provides a methodological high-throughput approach to studying multi-scale regulatory mechanisms that operate in cyanobacteria. Finally, it provides valuable context for integrating systems-level data to enhance gene grouping based on annotated function, especially in organisms where traditional context analyses cannot be implemented due to lack of operon-based functional organization.
Collapse
Affiliation(s)
- Ryan S McClure
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Christopher C Overall
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Jason E McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Eric A Hill
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Lye Meng Markillie
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Lee Ann McCue
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Ronald C Taylor
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Marcus Ludwig
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, PA 16802, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, PA 16802, USA Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Alexander S Beliaev
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| |
Collapse
|