1
|
Herbert C, Ohrnberger CL, Quinlisk E, Addepalli B, Limbach PA. Characterizing Benzo[a]pyrene Adducts in Transfer RNAs Using Liquid Chromatography Coupled with Tandem Mass Spectrometry (LC-MS/MS). Biomedicines 2023; 11:3270. [PMID: 38137491 PMCID: PMC10741534 DOI: 10.3390/biomedicines11123270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
The activated forms of the environmental pollutant benzo[a]pyrene (B[a]P), such as benzo[a]pyrene diol epoxide (BPDE), are known to cause damage to genomic DNA and proteins. However, the impact of BPDE on ribonucleic acid (RNA) remains unclear. To understand the full spectrum of potential BPDE-RNA adducts formed, we reacted ribonucleoside standards with BPDE and characterized the reaction products using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). To understand the potential types of adducts that could form with biological RNAs, eukaryotic transfer RNAs (tRNAs) were also reacted with BPDE. The isolation and analysis of the modified and adducted ribonucleosides using LC-MS/MS revealed several BPDE derivatives of post-transcriptional modifications. The approach outlined in this work enables the identification of RNA adducts from BPDE, which can pave the way for understanding the potential impacts of such adducts on the higher-order structure and function of modified RNAs.
Collapse
Affiliation(s)
| | | | | | | | - Patrick A. Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, 301 Clifton Court, Cincinnati, OH 45221-0172, USA; (C.H.)
| |
Collapse
|
2
|
Manzetti S. Polycyclic Aromatic Hydrocarbons in the Environment: Environmental Fate and Transformation. Polycycl Aromat Compd 2013. [DOI: 10.1080/10406638.2013.781042] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
3
|
Fekry MI, Szekely J, Dutta S, Breydo L, Zang H, Gates KS. Noncovalent DNA binding drives DNA alkylation by leinamycin: evidence that the Z,E-5-(thiazol-4-yl)-penta-2,4-dienone moiety of the natural product serves as an atypical DNA intercalator. J Am Chem Soc 2011; 133:17641-51. [PMID: 21954957 PMCID: PMC3268133 DOI: 10.1021/ja2046149] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Molecular recognition and chemical modification of DNA are important in medicinal chemistry, toxicology, and biotechnology. Historically, natural products have revealed many interesting and unexpected mechanisms for noncovalent DNA binding and covalent DNA modification. The studies reported here characterize the molecular mechanisms underlying the efficient alkylation of duplex DNA by the Streptomyces-derived natural product leinamycin. Previous studies suggested that alkylation of duplex DNA by activated leinamycin (2) is driven by noncovalent association of the natural product with the double helix. This is striking because leinamycin does not contain a classical noncovalent DNA-binding motif, such as an intercalating unit, a groove binder, or a polycation. The experiments described here provide evidence that leinamycin is an atypical DNA-intercalating agent. A competition binding assay involving daunomycin-mediated inhibition of DNA alkylation by leinamycin provided evidence that activated leinamycin binds to duplex DNA with an apparent binding constant of approximately 4.3 ± 0.4 × 10(3) M(-1). Activated leinamycin caused duplex unwinding and hydrodynamic changes in DNA-containing solutions that are indicative of DNA intercalation. Characterization of the reaction of activated leinamycin with palindromic duplexes containing 5'-CG and 5'-GC target sites, bulge-containing duplexes, and 5-methylcytosine-containing duplexes provided evidence regarding the orientation of leinamycin with respect to target guanine residues. The data allow construction of a model for the leinamycin-DNA complex suggesting how a modest DNA-binding constant combines with proper positioning of the natural product to drive efficient alkylation of guanine residues in the major groove of duplex DNA.
Collapse
Affiliation(s)
- Mostafa I. Fekry
- University of Missouri–Columbia Departments of Chemistry and Biochemistry 125 Chemistry Building Columbia, MO 65211
- Cairo University Pharmacognosy Department Faculty of Pharmacy Kasr El-Aini, Cairo, Egypt 11562
| | - Jozsef Szekely
- University of Missouri–Columbia Departments of Chemistry and Biochemistry 125 Chemistry Building Columbia, MO 65211
| | - Sanjay Dutta
- University of Missouri–Columbia Departments of Chemistry and Biochemistry 125 Chemistry Building Columbia, MO 65211
| | - Leonid Breydo
- University of Missouri–Columbia Departments of Chemistry and Biochemistry 125 Chemistry Building Columbia, MO 65211
| | - Hong Zang
- University of Missouri–Columbia Departments of Chemistry and Biochemistry 125 Chemistry Building Columbia, MO 65211
| | - Kent S. Gates
- University of Missouri–Columbia Departments of Chemistry and Biochemistry 125 Chemistry Building Columbia, MO 65211
| |
Collapse
|
4
|
Xu R, Birke S, Carberry SE, Geacintov NE, Swenberg CE, Harvey RG. Differences in unwinding of supercoiled DNA induced by the two enantiomers of anti-benzo[a]pyrene diol epoxide. Nucleic Acids Res 1992; 20:6167-76. [PMID: 1475180 PMCID: PMC334500 DOI: 10.1093/nar/20.23.6167] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The unwinding of supercoiled phi X174 RFI DNA induced by the tumorigenic (+) and non-tumorigenic (-) enantiomers of trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) has been investigated by agarose slab-gel and ethidium titration tube gel electrophoresis. The differences in adduct conformations were verified by flow linear dichroism techniques. Both enantiomers cause a reversible unwinding by the formation of noncovalent intercalative complexes. The effects of covalently bound BPDE residues on the electrophoretic mobilities of the RF I DNA form in agarose gels were investigated in detail in the range of binding ratios rb approximately 0.0-0.06 (covalently bound BPDE residues/nucleotide). In this range of rb values, there is a striking difference in the mobilities of (+)-BPDE- and (-)-BPDE-adducted phi X174 DNA in agarose slab-gels, the covalently bound (+)-BPDE residues causing a significantly greater retardation than (-)-BPDE residues. Increasing the level of covalent adducts beyond rb approximately 0.06 in the case of the (+)-BPDE enantiomer, leads to further unwinding and a minimum in the mobilities (corresponding to comigration of the nicked form and the covalently closed relaxed modified form) at rb 0.10 +/- 0.01; at still higher rb values, rewinding of the modified DNA in the opposite sense is observed. From the minimum in the mobility, a mean unwinding angle (per BPDE residue) of theta = 12 +/- 1.5 degrees is determined, which is in good agreement the value of theta = 11 +/- 1.8 degrees obtained by the tube gel titration method. Using this latter method, values of theta = 6.8 +/- 1.7 degrees for (-)-BPDE-phi X174 adducts are observed. It is concluded that agarose slab gel techniques are not suitable for determining unwinding angles for (-)-BPDE-modified phi X174 DNA because the alterations in the tertiary structures for rb < 0.06 are too small to cause sufficiently large changes in the electrophoretic mobilities. The major trans (+)-BPDE-N2-guanosine covalent adduct is situated at external binding sites and the mechanisms of unwinding are therefore different from those relevant to noncovalent intercalative BPDE-DNA complexes or to classical intercalating drug molecules; a flexible hinge joint and a widening of the minor groove at the site of the lesion may account for the observed unwinding effects. The more heterogeneous (-)-BPDE-nucleoside adducts (involving cis and trans N2-guanosine, and adenosine adducts) are less effective in causing unwinding of supercoiled DNA for reasons which remain to be elucidated.
Collapse
MESH Headings
- 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/chemistry
- 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/pharmacology
- DNA, Superhelical/chemistry
- DNA, Superhelical/drug effects
- DNA, Superhelical/metabolism
- Electrophoresis, Agar Gel
- Kinetics
- Nucleic Acid Conformation/drug effects
- Spectrum Analysis
- Stereoisomerism
Collapse
Affiliation(s)
- R Xu
- Chemistry Department, New York University, NY 10003
| | | | | | | | | | | |
Collapse
|
5
|
Horowitz B, Valinsky J. Inactivation of viruses found with cellular components. BIOTECHNOLOGY (READING, MASS.) 1991; 19:431-50. [PMID: 1786477 DOI: 10.1016/b978-0-7506-9120-8.50023-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Abstract
One of the best-studied DNA repair pathways is nucleotide excision repair, a process consisting of DNA damage recognition, incision, excision, repair resynthesis, and DNA ligation. Escherichia coli has served as a model organism for the study of this process. Recently, many of the proteins that mediate E. coli nucleotide excision have been purified to homogeneity; this had led to a molecular description of this repair pathway. One of the key repair enzymes of this pathway is the UvrABC nuclease complex. The individual subunits of this enzyme cooperate in a complex series of partial reactions to bind to and incise the DNA near a damaged nucleotide. The UvrABC complex displays a remarkable substrate diversity. Defining the structural features of DNA lesions that provide the specificity for damage recognition by the UvrABC complex is of great importance, since it represents a unique form of protein-DNA interaction. Using a number of in vitro assays, researchers have been able to elucidate the action mechanism of the UvrABC nuclease complex. Current research is devoted to understanding how these complex events are mediated within the living cell.
Collapse
Affiliation(s)
- B Van Houten
- Department of Pathology, University of Vermont, Burlington 05405
| |
Collapse
|
7
|
Geacintov NE, Cosman M, Ibanez V, Birke SS, Swenberg CE. Characteristics of Noncovalent and Covalent Interactions of (+) and (-) Anti-Benzo[a]Pyrene Diol Epoxide Stereoisomers of Different Biological Activities with DNA. ACTA ACUST UNITED AC 1990. [DOI: 10.1007/978-94-011-3728-7_29] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
8
|
Wolfe A, Shimer GH, Meehan T. Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. Biochemistry 1987; 26:6392-6. [PMID: 3427013 DOI: 10.1021/bi00394a013] [Citation(s) in RCA: 1675] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have investigated the physical binding of pyrene and benzo[a]pyrene derivatives to denatured DNA. These compounds exhibit a red shift in their absorbance spectra of 9 nm when bound to denatured calf thymus DNA, compared to a shift of 10 nm when binding occurs to native DNA. Fluorescence from the hydrocarbons is severely quenched when bound to both native and denatured DNA. Increasing sodium ion concentration decreases binding of neutral polycyclic aromatic hydrocarbons to native DNA and increases binding to denatured DNA. The direct relationship between binding to denatured DNA and salt concentration appears to be a general property of neutral polycyclic aromatic hydrocarbons. Absorption measurements at 260 nm were used to determine the duplex content of denatured DNA. When calculated on the basis of duplex binding sites, equilibrium constants for binding of 7,8,9,10-tetrahydroxy-7,8,9,10-tetrahydro-benzo[a]pyrene to denatured DNA are an order of magnitude larger than for binding to native DNA. The effect of salt on the binding constant was used to calculate the sodium ion release per bound ligand, which was 0.36 for both native and denatured DNA. Increasing salt concentration increases the duplex content of denatured DNA, and it appears that physical binding of polycyclic aromatic hydrocarbons consists of intercalation into these sites.
Collapse
Affiliation(s)
- A Wolfe
- Division of Toxicology, University of California, San Francisco 94143
| | | | | |
Collapse
|
9
|
Yoshida H, Swenberg CE, Geacintov NE. Kinetic flow dichroism study of conformational changes in supercoiled DNA induced by ethidium bromide and noncovalent and covalent binding of benz[a]pyrene diol epoxide. Biochemistry 1987; 26:1351-8. [PMID: 2952167 DOI: 10.1021/bi00379a022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The dynamic conformational changes due to the noncovalent intercalative binding of ethidium bromide and racemic trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE), and the covalent binding of BPDE to supercoiled phi X174 DNA, have been studied by gel electrophoresis and a novel application of a kinetic flow linear dichroism technique. The magnitude of the linear dichroism (delta A) of the DNA oriented in the flow gradient is sensitive to the hydrodynamic shape of the DNA molecule which is affected by the binding of the drug or the carcinogen BPDE. While the linear dichroism of ethidium bromide supercoiled DNA is time independent, the delta A spectra of BPDE-DNA reaction mixtures vary on time scales of minutes, which correspond to the reaction rate constant of BPDE to form 7,8,9,10-tetrahydroxytetrahydrobenzo[a]pyrene hydrolysis products and covalent DNA adducts. The rapid noncovalent intercalation of BPDE causes an initial large increase in delta A (up to 250%, corresponding to the dichroism observed with relaxed circular DNA), followed by a slower decrease in the linear dichroism signal. This decrease in delta A is attributed to the removal of intercalated diol epoxide molecules and the resulting reversible increase in the number of superhelical turns. The kinetic flow dichroism spectra indicate that the noncovalent BPDE-DNA complexes are intercalative in nature, while the covalent adducts are characterized by a very different conformation in which the long axes of the pyrenyl residues are oriented at a large angle with respect to the average orientation of the planes of the DNA bases.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
10
|
Spadari S, Sutherland BM, Pedrali-Noy G, Focher F, Chiesa MT, Ciarrocchi G. Alteration of DNA tertiary structure by physical and chemical carcinogens: involvement in DNA repair processes. Toxicol Pathol 1987; 15:82-7. [PMID: 3033809 DOI: 10.1177/019262338701500111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Parameters defining the topological state of DNA seem extremely important for describing the reactive state of the same DNA molecules. We have shown that physical and chemical DNA modifying agents alter the tertiary structure of DNA molecules. Variations in the tertiary structure of DNA were studied by one dimensional electrophoresis on an agarose gel of partially relaxed plasmid DNA topoisomers, a technique allowing the measurement of alterations in the degree of supercoiling equivalent to fractions of superhelical turns. Unwinding angles of -10.1 degrees or -8.7 degrees per pyrimidine or thymine dimer respectively, of -12 degrees per apurinic site, and of -3.4 degrees per methylated purine were obtained by titrating the number of damaged sites necessary to reduce the number of superhelical turns by one in each topoisomer. On the contrary, enzymatic methylation of the C-5 position of cytosine (a modified base present in prokaryotic and eukaryotic DNAs) did not alter the DNA tertiary structure. We have also shown that local alterations in DNA structure caused by UV-irradiation inhibit bacterial DNA topoisomerase I and DNA methylase, and that the topological state of DNA substrate influences the mode of methylation of Hpa II DNA methylase. These findings suggest that the natural topological state of DNA substrate (linear, relaxed, or covalently closed duplex DNA with varying degrees of supercoiling) influences the mode of action of enzymes possibly involved in DNA repair processes, while DNA structural alterations caused by DNA modifying agents might influence DNA repair processes in two ways: either by driving the interaction between repair enzymes and the modified sites of DNA, or by inhibiting or changing the mode of action of enzymes normally acting on unmodified DNA.
Collapse
|
11
|
Kasprzak KS, Waalkes MP. The role of calcium, magnesium, and zinc in carcinogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1986; 206:497-515. [PMID: 3591535 DOI: 10.1007/978-1-4613-1835-4_35] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The effects of calcium, magnesium, and zinc supplementation and of magnesium depletion on carcinogenesis are comprehensively reviewed, including epidemiologic and experimental investigations. Some data on the effects of neoplasia on the homeostasis of these metals are also presented. Despite many conflicting results, this review reveals that calcium supplementation is more likely to enhance than inhibit chemical carcinogenesis; magnesium or zinc supplementation tends to inhibit carcinogenesis; magnesium deficiency increases the incidence of neoplasia in humans and animals; parenteral administration of magnesium along with a carcinogen produces local anticarcinogenic effects, while zinc's activity tends to be systemic; and there is a simple correlation between the inhibition of carcinogenesis by the magnesium and zinc supplementation and the reduction of carcinogen binding to cells and DNA. The mechanisms of these effects are not clear. They may involve molecular interactions between metal and carcinogen at different enzymatic and regulatory sites of target cells undergoing neoplastic transformation, as well as stimulation of the host immune system.
Collapse
|
12
|
Chen FM. Covalent binding of (+)- and (-)-trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyr ene to B and Z DNAs. Biochemistry 1985; 24:6219-27. [PMID: 3936541 DOI: 10.1021/bi00343a028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Circular dichroism (CD) as well as absorption spectral measurements reveals that poly(dG-m5dC).poly(dG-m5dC) suffers more extensive covalent modification by (+)-dihydroxy-anti-epoxybenzo[a]pyrene [(+)-anti-BPDE] than its unmethylated counterpart and that the covalently attached pyrenyl moiety exhibits stronger stacking interactions with the bases in the methylated polymer as suggested by the much larger pyrenyl spectral red shifts, most likely the consequence of intercalation. Stereoselective binding properties of these polymers are evidenced by the much reduced preference for the (-) enantiomer. Modifications due to (+)-anti-BPDE on the 50 microM hexaamminecobalt induced Z DNAs are much less pronounced and much less stereoselective, with the pyrenyl spectral characteristics being distinct from those of the B form. Salt titrations on the (+)-anti-BPDE modified poly(dG-dC).poly(dG-dC) and poly(dG-m5dC).poly(dG-m5dC) indicate much reduced cooperativity on the B to Z transition when compared to the unmodified counterparts. Evidence also suggests that covalent modification by anti-BPDE inhibits the B to Z conversion of base pairs in its immediate vicinity, presumably through intercalative stabilization of the B conformer at high salt. In contrast to stabilizing the B conformation for the proximal base pairs, covalent lesion by (+)-anti-BPDE appears to destabilize distal base pairs with the consequence of kinetic facilitation of B to Z transformation for these regions. Interesting differential effects on the reverse Z to B transforming abilities of these two enantiomers are observed with the covalent binding of the (-) isomer showing higher potency for inducing such conversion.
Collapse
|
13
|
Scovell WM, Collart F. Unwinding of supercoiled DNA by cis- and trans-diamminedichloroplatinum(II): influence of the torsional strain on DNA unwinding. Nucleic Acids Res 1985; 13:2881-95. [PMID: 4039817 PMCID: PMC341201 DOI: 10.1093/nar/13.8.2881] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The effective unwinding angle, phi, for cis-diamminedichloroplatinum(II) (cis-DDP) and trans-DDP was determined by utilizing high resolution gel electrophoresis and supercoiled phi X174 RF DNA as a substrate. The effective unwinding angle was calculated by equating the reduction in mobility of the DDP-modified DNA to the removal of a number of superhelical turns. The value of the effective unwinding angle for both DDP isomers was greatest at the low levels of DDP bound and decreased with increasing amounts of unwinding agent. The cis-isomer is a better unwinding agent than is the trans-isomer, being nearly twice as effective in unwinding the supercoiled DNA at the DDP levels investigated. A comparison of the magnitude of phi below rb values of 0.005 and those at high levels of binding reveals that the extent of torsional strain in the supercoiled DNA influences the magnitude of the unwinding of the DNA by these complexes. When this method is used in the analysis of the unwinding angle for a covalently bound species on supercoiled DNA, it may provide a more reliable estimate of the magnitude of phi at high degrees of supercoiling and at low levels of modification.
Collapse
|
14
|
Miller KJ, Rein FH, Taylor ER, Kowalczyk PJ. Generation of nucleic acid structures and binding of molecules to DNA. Ann N Y Acad Sci 1985; 439:64-80. [PMID: 3890663 DOI: 10.1111/j.1749-6632.1985.tb25789.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Wojciechowski MF, Meehan T. Inhibition of DNA methyltransferases in vitro by benzo[a]pyrene diol epoxide-modified substrates. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)42758-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
16
|
Geacintov NE, Hibshoosh H, Ibanez V, Benjamin MJ, Harvey RG. Mechanisms of reaction of benzo(a)pyrene-7,8-diol-9,10-epoxide with DNA in aqueous solutions. Biophys Chem 1984; 20:121-33. [PMID: 6435696 DOI: 10.1016/0301-4622(84)80012-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The physical and chemical reaction pathways of the metabolite model compound benzo(a)pyrene-7,8-diol-9,10-epoxide (BPDE) in aqueous (double-stranded) DNA solutions was investigated as a function of temperature (0-30 degrees C), pH (7.0-9.5), sodium chloride concentration (0-1.5M) and DNA concentration in order to clarify the relationships between the multiple reaction mechanisms of this diol epoxide in the presence of nucleic acids. The reaction pathways are (1) noncovalent intercalative complex formation with DNA, characterized by the equilibrium constant K, and Xb the fraction of molecules physically bound; (2) accelerated hydrolysis of BPDE bound to DNA; (3) covalent binding to DNA; and (4) hydrolysis of free BPDE(kh). The DNA-induced hydrolysis of BPDE to tetraols and the covalent binding to DNA are parallel pseudo-first-order reactions. Following the rapid (millisecond time scale) noncovalent complex formation between BPDE and DNA, a much slower (approximately minutes) H+-dependent (either specific or general acid catalysis) formation of a DNA-bound triol carbonium ion (rate constant k3) occurs. At pH 7.0 the activation energy of k3 is 8.7 +/- 0.9 kcal/mol, which is lower than the activation energy of hydrolysis of free BPDE in buffer solution (14.2 +/- 0.7 kcal/mol), and which thus partially accounts for the acceleration of hydrolysis of BPDE upon complexation with DNA. The formation of the triol carbonium ion is followed by a rapid reaction with either water to form tetraols (rate constant kT), or covalent binding to DNA (kc). The fraction of BPDE molecules which undergo covalent binding is fcov approximately equal to kc/(kc + kT) = 0.10 and is independent of the overall BPDE reaction rate constant k = kh(1 - Xb) + k3Xb if Xb----1.0, or is independent of Xb as long as k3Xb much greater than kh(1 - Xb). Thus, at Xb = 0.9, fcov is independent of pH (7.0-9.5) even though k exhibits a 70-fold variation in this pH range and k----kh above pH 9 (k3 = kh). Similarly, fcov is independent of temperature (0-30 degrees C), while k varies by a factor of approx. 3. In the range of 0-1.5 M NaCl, fcov decreases from 0.10 to 0.04. These variations are attributed to a combination of salt-induced variations in the factors k3, Xb and the ratio kc/kT.
Collapse
|
17
|
Meehan T, Bond DM. Hydrolysis of benzo[a]pyrene diol epoxide and its covalent binding to DNA proceed through similar rate-determining steps. Proc Natl Acad Sci U S A 1984; 81:2635-9. [PMID: 6425834 PMCID: PMC345124 DOI: 10.1073/pnas.81.9.2635] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The mutagenic and carcinogenic metabolite of benzo[a]pyrene, (7R,8S)-dihydroxy-(9R,10R)-epoxy-7,8, 9,10-tetrahydrobenzo[a]pyrene, undergoes two major reactions in the presence of DNA: (i) hydrolysis and (ii) covalent binding. We report that hydrolysis and covalent binding are specific and general acid-catalyzed reactions with the same or similar rate-determining steps. To account for the similarity of rate-determining steps in covalent binding and hydrolysis we propose and test two models. In each model, the rate-determining step results in formation of a carbonium ion, which serves as a precursor for both tetrol and adduct. In model A the carbonium ion is partitioned between two domains (1 and 2), while in model B there is only one domain. Measurements of pseudo-first-order rate constants, product ratios, and rate ratios support model A, while kinetic results are inconsistent with model B. Domain 1 most likely represents activated benzo[a]pyrenes that are intercalated into DNA, while domain 2 hydrocarbons are physically bound to the outside of the DNA helix.
Collapse
|
18
|
Ciomei M, Spadari S, Pedrali-Noy G, Ciarrocchi G. Structural alterations of pathologically or physiologically modified DNA. Nucleic Acids Res 1984; 12:1977-89. [PMID: 6366741 PMCID: PMC318634 DOI: 10.1093/nar/12.4.1977] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We have studied the alterations of DNA conformation in in vitro depurinated or methylated topological isomers of the plasmid pAT 153. Depurination by heat/acid treatment or alkylation by methyl methanesulfonate (pathological modifications) result in DNA unwinding detected as a reduction in the degree of supercoiling of DNA topoisomers as measured by the alteration of electrophoretic mobility on agarose gel. On the contrary, in vitro enzymic methylation at the C-5 position of cytosine (physiological modification) does not measurably alter the tertiary structure of the circular substrates. From the average number of modified sites needed to remove one superhelical twist from each single topoisomer of a population of partially relaxed DNA molecules, we have calculated an unwinding angle smaller than -3.4 degree per methylated purine and of approximately -12.0 degree per apurinic site. These results, together with previously reported values of unwinding by pyrimidine dimers, suggest a possible mechanism of recognition of damaged sites by repair mechanisms that are not single-damage specific.
Collapse
|
19
|
Taylor ER, Miller KJ, Bleyer AJ. Interactions of molecules with nucleic acids. X. Covalent intercalative binding of the carcinogenic BPDE I(+) to kinked DNA. J Biomol Struct Dyn 1983; 1:883-904. [PMID: 6443879 DOI: 10.1080/07391102.1983.10507491] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A theoretical model is proposed for the covalent binding of (+) 7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10- tetrahydrobenzo[a]pyrene denoted by BPDE I(+), to N2 on guanine. The DNA must kink a minimum of 39 degrees to allow proper hybrid configurations about the C10 and N2 atoms involved in bond formation and to allow stacking of the pyrene moiety with the non-bonded adjacent base pair. Conservative (same sugar puckers and glycosidic angles as in B-DNA) and non-conservative (alternating sugar puckers as in intercalation sites) conformations are found and they are proposed structures in pathways connecting B-DNA, an intercalation site, and a kink site in the formation of a covalently intercalative bound adduct of BPDE I(+) to N2 on guanine. Stereographic projections are presented for (3') and (5') binding in the DNA. Experimental data for bending of DNA by BPDE, orientation of BPDE in DNA and unwinding of superhelical DNA is explained. The structure of a covalent intercalative complex is predicted to result from the reaction. Also, an anti----syn transition of guanine results in a structure which allows the DNA to resume its overall B-form. The only change is that guanine has been rotated by 200 degrees about its glycosidic bond so that the BPDE I(+) is bound in the major groove. The latter step may allow the DNA to be stored with an adduct which may produce an error in the genetic code.
Collapse
Affiliation(s)
- E R Taylor
- Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12181
| | | | | |
Collapse
|
20
|
Abstract
Solubilization as well as spectral studies of pyrene in natural DNA and synthetic deoxypolynucleotide solutions at neutral pH reveal at least two binding modes. Sites I are predominant in native DNA and in poly(dA-dT): poly(dA-dT) whereas sites II are found with denatured DNA and other polynucleotides such as poly(dA):poly(dT) and three different types of guanine containing copolymers which solubilize pyrene to a lesser extent. Spectral comparison with the covalent adducts of trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10- tetrahydro-benzo(a)pyrene (anti-BPDE) and the physical complexes of its tetraols lead to the suggestion of a base sequence specific binding model for this carcinogenic metabolite to account for the puzzling fact that although its physical binding is predominantly intercalative, the covalent adducts appear not to be intercalated. It is speculated that in neutral solutions, intercalation may have little, if any, to do with the chemical lesion of this metabolite to the guanine base of the DNA and may, on the contrary, provide an efficient pathway for detoxification.
Collapse
|
21
|
Meehan T, Gamper H, Becker JF. Characterization of reversible, physical binding of benzo[a]pyrene derivatives to DNA. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(18)34043-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
22
|
Lipetz PD, Galsky AG, Stephens RE. Relationship of DNA tertiary and quaternary structure to carcinogenic processes. Adv Cancer Res 1982; 36:165-210. [PMID: 6751038 DOI: 10.1016/s0065-230x(08)60425-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
23
|
Povirk LF, Dattagupta N, Warf BC, Goldberg IH. Neocarzinostatin chromophore binds to deoxyribonucleic acid by intercalation. Biochemistry 1981; 20:4007-14. [PMID: 6456758 DOI: 10.1021/bi00517a009] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The nonprotein chromophore of neocarzinostatin was found to share many of the characteristics of classical intercalators in its interaction with DNA. Viscosity studies with PM2 DNA indicated that the DNA helix unwinding induced by the chromophore was 0.82 times that of ethidium or 21 degrees. Electric dichroism of the chromophore--DNA complex showed that each bound chromophore molecule lengthened DNA by 3.3 A and that absorbance transitions of the chromophore at 315--385 nm were oriented approximately parallel to DNA bases, as expected for an intercalated aromatic ring. Binding to DNA induced strong hypochromicity and a pronounced red shift in the absorbance spectrum of the chromophore. Spectrophotometric titrations suggested at least two types of chromophore binding sites on DNA; one type of site was saturated at rb = 0.125 chromophore molecule/nucleotide, but binding to additional sites continued to at least rb = 0.3. These physical--chemical studies were performed at pH 4--5 in order to keep the chromophore stable, but chromophore bound to an excess of DNA at pH 7 showed a stable absorbance spectrum identical with that seen at pH 4--5, suggesting that a similar type of binding occurs at neutral pH. Chromophore which had spontaneously degraded in pH 8 buffer did not bind to DNA at all, as judged by absorbance spectroscopy. The degree of protection afforded by DNA against spontaneous chromophore degradation implied a dissociation constant of approximately 5 microM for the DNA--chromophore complex at neutral pH and physiological ionic strength. Supercoiled DNA was nearly twice as effective as relaxed DNA in protecting chromophore from degradation, providing additional evidence for intercalation at neutral pH. Comparison of absorbance, fluorescence, and dichroism spectra suggests that the naphthalene ring system is the intercalating moiety.
Collapse
|
24
|
|
25
|
Gamper HB, Bartholomew JC, Calvin M. Mechanism of benzo[a]pyrene diol epoxide induced deoxyribonucleic acid strand scission. Biochemistry 1980; 19:3948-56. [PMID: 6250579 DOI: 10.1021/bi00558a009] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Approximately 1% of (+/-)-7 beta, 8 alpha-dihydroxy-9 alpha, 10 alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BaP-diol epoxide) DNA alkylation sites rearrange with strand scission at neutral pH. Phosphotriester hydrolysis and depurination/depyrimidination strand scission were critically examined as possible mechanisms for this phenomenon. The catalysis of nicking by alkali and the inhibition of nicking by counterions were consistent with either mechanism. The kinetics of nicking, however, were characteristic of a multistep reaction such as depurination/depyrimidination strand scission and the detection of apurinic sites in BaP-diol epoxide alkylated DNA strongly supported this mechanism. The number of such sites, especially at lower reaction levels, was probably sufficient to account for strand scission. No direct evidence was obtained for nicking occurring through phosphotriester hydrolysis. Studies with model substrates, including dibutyl phosphate, DNA homopolymers, and TMV RNA, indicated that if BaP-diol epoxide forms phosphotriesters in DNA or RNA, they do not hydrolyze with strand scission. Besides apurinic/apyrimidinic sites, a second alkali-sensitive rearrangement product was present in BaP-diol epoxide modified DNA. These latter sites accumulated with time and after 24 h accounted for as much as 4% of the initial alkylation events. Although relatively stable at neutrality, they spontaneously nicked the DNA backbone at high pH. It is possible that these sites represent a rearrangement of the major N2 guanine adduct.
Collapse
|