1
|
Thabet MA, Penadés JR, Haag AF. The ClpX protease is essential for inactivating the CI master repressor and completing prophage induction in Staphylococcus aureus. Nat Commun 2023; 14:6599. [PMID: 37852980 PMCID: PMC10584840 DOI: 10.1038/s41467-023-42413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/10/2023] [Indexed: 10/20/2023] Open
Abstract
Bacteriophages (phages) are the most abundant biological entities on Earth, exerting a significant influence on the dissemination of bacterial virulence, pathogenicity, and antimicrobial resistance. Temperate phages integrate into the bacterial chromosome in a dormant state through intricate regulatory mechanisms. These mechanisms repress lytic genes while facilitating the expression of integrase and the CI master repressor. Upon bacterial SOS response activation, the CI repressor undergoes auto-cleavage, producing two fragments with the N-terminal domain (NTD) retaining significant DNA-binding ability. The process of relieving CI NTD repression, essential for prophage induction, remains unknown. Here we show a specific interaction between the ClpX protease and CI NTD repressor fragment of phages Ф11 and 80α in Staphylococcus aureus. This interaction is necessary and sufficient for prophage activation after SOS-mediated CI auto-cleavage, defining the final stage in the prophage induction cascade. Our findings unveil unexpected roles of bacterial protease ClpX in phage biology.
Collapse
Affiliation(s)
- Mohammed A Thabet
- School of Infection & Immunity, University of Glasgow, G12 8TA, Glasgow, UK
- Department of Biology, Faculty of Science, Al-Baha University, Al-Baha city, Al Aqiq, 65779, Kingdom of Saudi Arabia
| | - José R Penadés
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Andreas F Haag
- School of Infection & Immunity, University of Glasgow, G12 8TA, Glasgow, UK.
- School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, UK.
| |
Collapse
|
2
|
Characterization of Dextran Produced by the Food-Related Strain Weissella cibaria C43-11 and of the Relevant Dextransucrase Gene. Foods 2022; 11:foods11182819. [PMID: 36140946 PMCID: PMC9498152 DOI: 10.3390/foods11182819] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
A metabolic feature of lactic acid bacteria (LAB) is the production of exopolysaccharides (EPSs), which have technological and functional properties of interest to the food sector. The present study focused on the characterization of the Weissella cibaria strain C43-11, a high EPS producer in the presence of sucrose, in comparison with a low-producing strain (C2-32), and on possible genetic regulatory elements responsible for the modulation of dextransucrase (dsr) genes expression. NMR analysis of the polymeric material produced by the C43-11 strain indicated the presence of dextran consisting mainly of a linear scaffold formed by α-(1–6) glycosidic linkages and a smaller amounts of branches derived from α-(1–2), α-(1–3), and α-(1–4) linkages. Molecular analysis of the dsr genes and the putative transcriptional promoters of the two strains showed differences in their regulatory regions. Such variations may have a role in the modulation of dsr expression levels in the presence of sucrose. The strong upregulation of the dsr gene in the C43-11 strain resulted in a high accumulation of EPS. This is the first report showing differences in the regulatory elements of the dsr gene in W. cibaria and indicates a new perspective of investigation to identify the regulatory mechanism of EPS production.
Collapse
|
3
|
Kaushik V, Tiwari M, Tiwari V. Interaction of RecA mediated SOS response with bacterial persistence, biofilm formation, and host response. Int J Biol Macromol 2022; 217:931-943. [PMID: 35905765 DOI: 10.1016/j.ijbiomac.2022.07.176] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/28/2022]
Abstract
Antibiotics have a primary mode of actions, and most of them have a common secondary mode of action via reactive species (ROS and RNS) mediated DNA damage. Bacteria have been able to tolerate this DNA damage by SOS (Save-Our-Soul) response. RecA is the universal essential key protein of the DNA damage mediated SOS repair in various bacteria including ESKAPE pathogens. In addition, antibiotics also triggers activation of various other bacterial mechanisms such as biofilm formation, host dependent responses, persister subpopulation formation. These supporting the survival of bacteria in unfriendly natural conditions i.e. antibiotic presence. This review highlights the detailed mechanism of RecA mediated SOS response as well as role of RecA-LexA interaction in SOS response. The review also focuses on inter-connection between DNA damage repair pathway (like SOS response) with other survival mechanisms of bacteria such as host mediated RecA induction, persister-SOS interplay, and biofilm-SOS interplay. This understanding of inter-connection of SOS response with different other survival mechanisms will prove beneficial in targeting the SOS response for prevention and development of therapeutics against recalcitrant bacterial infections. The review also covers the significance of RecA as a promising potent therapeutic target for hindering bacterial SOS response in prevailing successful treatments of bacterial infections and enhancing the conventional antibiotic efficiency.
Collapse
Affiliation(s)
- Vaishali Kaushik
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India.
| |
Collapse
|
4
|
Genome-Wide Identification of the LexA-Mediated DNA Damage Response in Streptomyces venezuelae. J Bacteriol 2022; 204:e0010822. [PMID: 35862789 PMCID: PMC9380542 DOI: 10.1128/jb.00108-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
DNA damage triggers a widely conserved stress response in bacteria called the SOS response, which involves two key regulators, the activator RecA and the transcriptional repressor LexA. Despite the wide conservation of the SOS response, the number of genes controlled by LexA varies considerably between different organisms. The filamentous soil-dwelling bacteria of the genus Streptomyces contain LexA and RecA homologs, but their roles in Streptomyces have not been systematically studied. Here, we demonstrate that RecA and LexA are required for the survival of Streptomyces venezuelae during DNA-damaging conditions and for normal development during unperturbed growth. Monitoring the activity of a fluorescent recA promoter fusion and LexA protein levels revealed that the activation of the SOS response is delayed in S. venezuelae. By combining global transcriptional profiling and chromatin immunoprecipitation sequencing (ChIP-seq) analysis, we determined the LexA regulon and defined the core set of DNA damage repair genes that are expressed in response to treatment with the DNA-alkylating agent mitomycin C. Our results show that DNA damage-induced degradation of LexA results in the differential regulation of LexA target genes. Using surface plasmon resonance, we further confirmed the LexA DNA binding motif (SOS box) and demonstrated that LexA displays tight but distinct binding affinities to its target promoters, indicating a graded response to DNA damage. IMPORTANCE The transcriptional regulator LexA functions as a repressor of the bacterial SOS response, which is induced under DNA-damaging conditions. This results in the expression of genes important for survival and adaptation. Here, we report the regulatory network controlled by LexA in the filamentous antibiotic-producing Streptomyces bacteria and establish the existence of the SOS response in Streptomyces. Collectively, our work reveals significant insights into the DNA damage response in Streptomyces that will promote further studies to understand how these important bacteria adapt to their environment.
Collapse
|
5
|
Courcelle J, Worley TK, Courcelle CT. Recombination Mediator Proteins: Misnomers That Are Key to Understanding the Genomic Instabilities in Cancer. Genes (Basel) 2022; 13:genes13030437. [PMID: 35327990 PMCID: PMC8950967 DOI: 10.3390/genes13030437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Recombination mediator proteins have come into focus as promising targets for cancer therapy, with synthetic lethal approaches now clinically validated by the efficacy of PARP inhibitors in treating BRCA2 cancers and RECQ inhibitors in treating cancers with microsatellite instabilities. Thus, understanding the cellular role of recombination mediators is critically important, both to improve current therapies and develop new ones that target these pathways. Our mechanistic understanding of BRCA2 and RECQ began in Escherichia coli. Here, we review the cellular roles of RecF and RecQ, often considered functional homologs of these proteins in bacteria. Although these proteins were originally isolated as genes that were required during replication in sexual cell cycles that produce recombinant products, we now know that their function is similarly required during replication in asexual or mitotic-like cell cycles, where recombination is detrimental and generally not observed. Cells mutated in these gene products are unable to protect and process replication forks blocked at DNA damage, resulting in high rates of cell lethality and recombination events that compromise genome integrity during replication.
Collapse
|
6
|
Mora-Garduño JD, Tamayo-Nuñez J, Padilla-Vaca F, Ramírez-Montiel FB, Rangel-Serrano Á, Santos-Escobar F, Gutiérrez-Corona F, Páramo-Pérez I, Anaya-Velázquez F, García-Contreras R, Vargas-Maya NI, Franco B. Chromogenic Escherichia coli reporter strain for screening DNA damaging agents. AMB Express 2022; 12:2. [PMID: 34989906 PMCID: PMC8739417 DOI: 10.1186/s13568-021-01342-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 11/18/2022] Open
Abstract
The presence of pollutants in soil and water has given rise to diverse analytical and biological approaches to detect and measure contaminants in the environment. Using bacterial cells as reporter strains represents an advantage for detecting pollutants present in soil or water samples. Here, an Escherichia coli reporter strain expressing a chromoprotein capable of interacting with soil or water samples and responding to DNA damaging compounds is validated. The reporter strain generates a qualitative signal and is based on the expression of the coral chromoprotein AmilCP under the control of the recA promoter. This strain can be used simply by applying soil or water samples directly and rendering activation upon DNA damage. This reporter strain responds to agents that damage DNA (with an apparent detection limit of 1 µg of mitomycin C) without observable response to membrane integrity damage, protein folding or oxidative stress generating agents, in the latter case, DNA damage was observed. The developed reporter strain reported here is effective for the detection of DNA damaging agents present in soils samples. In a proof-of-concept analysis using soil containing chromium, showing activation at 15.56 mg/L of Cr(VI) present in soil and leached samples and is consistent with Cr(III) toxicity at high concentrations (130 µg). Our findings suggest that chromogenic reporter strains can be applied for simple screening, thus reducing the number of samples requiring analytical techniques.
Collapse
|
7
|
Chen JX, Lim B, Steel H, Song Y, Ji M, Huang WE. Redesign of ultrasensitive and robust RecA gene circuit to sense DNA damage. Microb Biotechnol 2021; 14:2481-2496. [PMID: 33661573 PMCID: PMC8601168 DOI: 10.1111/1751-7915.13767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 01/10/2023] Open
Abstract
SOS box of the recA promoter, PVRecA from Vibrio natriegens was characterized, cloned and expressed in a probiotic strain E. coli Nissle 1917. This promoter was then rationally engineered according to predicted interactions between LexA repressor and PVRecA . The redesigned PVRecA-AT promoter showed a sensitive and robust response to DNA damage induced by UV and genotoxic compounds. Rational design of PVRecA coupled to an amplification gene circuit increased circuit output amplitude 4.3-fold in response to a DNA damaging compound mitomycin C. A TetR-based negative feedback loop was added to the PVRecA-AT amplifier to achieve a robust SOS system, resistant to environmental fluctuations in parameters including pH, temperature, oxygen and nutrient conditions. We found that E. coli Nissle 1917 with optimized PVRecA-AT adapted to UV exposure and increased SOS response 128-fold over 40 h cultivation in turbidostat mini-reactor. We also showed the potential of this PVRecA-AT system as an optogenetic actuator, which can be controlled spatially through UV radiation. We demonstrated that the optimized SOS responding gene circuits were able to detect carcinogenic biomarker molecules with clinically relevant concentrations. The ultrasensitive SOS gene circuits in probiotic E. coli Nissle 1917 would be potentially useful for bacterial diagnosis.
Collapse
Affiliation(s)
- Jack X. Chen
- Department of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
| | - Boon Lim
- Department of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
| | - Harrison Steel
- Department of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
| | - Yizhi Song
- Department of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
| | - Mengmeng Ji
- Oxford Suzhou Centre for Advanced ResearchSuzhou215123China
| | - Wei E. Huang
- Department of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
| |
Collapse
|
8
|
Brady A, Felipe-Ruiz A, Gallego Del Sol F, Marina A, Quiles-Puchalt N, Penadés JR. Molecular Basis of Lysis-Lysogeny Decisions in Gram-Positive Phages. Annu Rev Microbiol 2021; 75:563-581. [PMID: 34343015 DOI: 10.1146/annurev-micro-033121-020757] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Temperate bacteriophages (phages) are viruses of bacteria. Upon infection of a susceptible host, a temperate phage can establish either a lytic cycle that kills the host or a lysogenic cycle as a stable prophage. The life cycle pursued by an infecting temperate phage can have a significant impact not only on the individual host bacterium at the cellular level but also on bacterial communities and evolution in the ecosystem. Thus, understanding the decision processes of temperate phages is crucial. This review delves into the molecular mechanisms behind lysis-lysogeny decision-making in Gram-positive phages. We discuss a variety of molecular mechanisms and the genetic organization of these well-understood systems. By elucidating the strategies used by phages to make lysis-lysogeny decisions, we can improve our understanding of phage-host interactions, which is crucial for a variety of studies including bacterial evolution, community and ecosystem diversification, and phage therapeutics. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Aisling Brady
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom;
| | - Alonso Felipe-Ruiz
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain;
| | - Francisca Gallego Del Sol
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain;
| | - Alberto Marina
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain;
| | - Nuria Quiles-Puchalt
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom;
| | - José R Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom; .,MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom;
| |
Collapse
|
9
|
Sikand A, Jaszczur M, Bloom LB, Woodgate R, Cox MM, Goodman MF. The SOS Error-Prone DNA Polymerase V Mutasome and β-Sliding Clamp Acting in Concert on Undamaged DNA and during Translesion Synthesis. Cells 2021; 10:cells10051083. [PMID: 34062858 PMCID: PMC8147279 DOI: 10.3390/cells10051083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022] Open
Abstract
In the mid 1970s, Miroslav Radman and Evelyn Witkin proposed that Escherichia coli must encode a specialized error-prone DNA polymerase (pol) to account for the 100-fold increase in mutations accompanying induction of the SOS regulon. By the late 1980s, genetic studies showed that SOS mutagenesis required the presence of two “UV mutagenesis” genes, umuC and umuD, along with recA. Guided by the genetics, decades of biochemical studies have defined the predicted error-prone DNA polymerase as an activated complex of these three gene products, assembled as a mutasome, pol V Mut = UmuD’2C-RecA-ATP. Here, we explore the role of the β-sliding processivity clamp on the efficiency of pol V Mut-catalyzed DNA synthesis on undamaged DNA and during translesion DNA synthesis (TLS). Primer elongation efficiencies and TLS were strongly enhanced in the presence of β. The results suggest that β may have two stabilizing roles: its canonical role in tethering the pol at a primer-3’-terminus, and a possible second role in inhibiting pol V Mut’s ATPase to reduce the rate of mutasome-DNA dissociation. The identification of umuC, umuD, and recA homologs in numerous strains of pathogenic bacteria and plasmids will ensure the long and productive continuation of the genetic and biochemical journey initiated by Radman and Witkin.
Collapse
Affiliation(s)
- Adhirath Sikand
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA;
| | - Malgorzata Jaszczur
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA;
| | - Linda B. Bloom
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA;
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20814, USA;
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Myron F. Goodman
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA;
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA;
- Correspondence:
| |
Collapse
|
10
|
Abstract
Feedback mechanisms are critical to control physiological responses. In gene regulation, one important example, termed negative autoregulation (NAR), occurs when a transcription factor (TF) inhibits its own production. NAR is common across the tree of life, enabling rapid homeostatic control of gene expression. NAR behavior can be described in accordance with its core biochemical parameters, but how constrained these parameters are by evolution is unclear. Here, we describe a model genetic network controlled by an NAR circuit within the bacterium Escherichia coli and elucidate these constraints by experimentally changing a key parameter and measuring its effect on circuit response and fitness. This analysis yielded a parameter-fitness landscape representing the genetic network, providing a window into what gene-environment conditions favor evolution of this regulatory strategy. Feedback mechanisms are fundamental to the control of physiological responses. One important example in gene regulation, termed negative autoregulation (NAR), occurs when a transcription factor (TF) inhibits its own production through transcriptional repression. This enables more-rapid homeostatic control of gene expression. NAR circuits presumably evolve to limit the fitness costs of gratuitous gene expression. The key biochemical reactions of NAR can be parameterized using a mathematical model of promoter activity; however, this model of NAR has been studied mostly in the context of synthetic NAR circuits that are disconnected from the target genes of the TFs. Thus, it remains unclear how constrained NAR parameters are in a native circuit context, where the TF target genes can have fitness effects on the cell. To quantify these constraints, we created a panel of Escherichia coli strains with different lexA-NAR circuit parameters and analyzed the effect on SOS response function and bacterial fitness. Using a mathematical model for NAR, these experimental data were used to calculate NAR parameter values and derive a parameter-fitness landscape. Without feedback, survival of DNA damage was decreased due to high LexA concentrations and slower SOS “turn-on” kinetics. However, we show that, even in the absence of DNA damage, the lexA promoter is strong enough that, without feedback, high levels of lexA expression result in a fitness cost to the cell. Conversely, hyperfeedback can mimic lexA deletion, which is also costly. This work elucidates the lexA-NAR parameter values capable of balancing the cell’s requirement for rapid SOS response activation with limiting its toxicity. IMPORTANCE Feedback mechanisms are critical to control physiological responses. In gene regulation, one important example, termed negative autoregulation (NAR), occurs when a transcription factor (TF) inhibits its own production. NAR is common across the tree of life, enabling rapid homeostatic control of gene expression. NAR behavior can be described in accordance with its core biochemical parameters, but how constrained these parameters are by evolution is unclear. Here, we describe a model genetic network controlled by an NAR circuit within the bacterium Escherichia coli and elucidate these constraints by experimentally changing a key parameter and measuring its effect on circuit response and fitness. This analysis yielded a parameter-fitness landscape representing the genetic network, providing a window into what gene-environment conditions favor evolution of this regulatory strategy.
Collapse
|
11
|
Peterson MA, Grice AN, Hare JM. A corepressor participates in LexA-independent regulation of error-prone polymerases in Acinetobacter. MICROBIOLOGY (READING, ENGLAND) 2020; 166:212-226. [PMID: 31687925 PMCID: PMC7273328 DOI: 10.1099/mic.0.000866] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/07/2019] [Indexed: 01/03/2023]
Abstract
The DNA damage response of the multidrug-resistant pathogen Acinetobacter baumannii, which induces mutagenic UmuD'2C error-prone polymerases, differs from that of many bacteria. Acinetobacter species lack a LexA repressor, but induce gene transcription after DNA damage. One regulator, UmuDAb, binds to and represses the promoters of the multiple A. baumannii ATCC 17978 umuDC alleles and the divergently transcribed umuDAb and ddrR genes. ddrR is unique to the genus Acinetobacter and of unknown function. 5' RACE (rapid amplification of cDNA ends) PCR mapping of the umuDAb and ddrR transcriptional start sites revealed that their -35 promoter elements overlapped the UmuDAb binding site, suggesting that UmuDAb simultaneously repressed expression of both genes by blocking polymerase access. This coordinated control of ddrR and umuDAb suggested that ddrR might also regulate DNA damage-inducible gene transcription. RNA-sequencing experiments in 17 978 ddrR- cells showed that ddrR regulated approximately 25 % (n=39) of the mitomycin C-induced regulon, with umuDAb coregulating 17 of these ddrR-regulated genes. Eight genes (the umuDC polymerases, umuDAb and ddrR) were de-repressed in the absence of DNA damage, and nine genes were uninduced in the presence of DNA damage, in both ddrR and umuDAb mutant strains. These data suggest ddrR has multiple roles, both as a co-repressor and as a positive regulator of DNA damage-inducible gene transcription. Additionally, 57 genes were induced by mitomycin C in the ddrR mutant but not in wild-type cells. This regulon contained multiple genes for DNA replication, recombination and repair, transcriptional regulators, RND efflux, and transport. This study uncovered another regulator of the atypical DNA damage response of this genus, to help describe how this pathogen acquires drug resistance through its expression of the error-prone polymerases under DdrR and UmuDAb control.
Collapse
Affiliation(s)
- Megan A. Peterson
- Department of Biology and Chemistry, Morehead State University, Morehead, KY 40351, USA
| | - Alison N. Grice
- Department of Biology and Chemistry, Morehead State University, Morehead, KY 40351, USA
- Office of Information Technology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Janelle M. Hare
- Department of Biology and Chemistry, Morehead State University, Morehead, KY 40351, USA
| |
Collapse
|
12
|
Regulation of Cell Division in Bacteria by Monitoring Genome Integrity and DNA Replication Status. J Bacteriol 2020; 202:JB.00408-19. [PMID: 31548275 DOI: 10.1128/jb.00408-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
All organisms regulate cell cycle progression by coordinating cell division with DNA replication status. In eukaryotes, DNA damage or problems with replication fork progression induce the DNA damage response (DDR), causing cyclin-dependent kinases to remain active, preventing further cell cycle progression until replication and repair are complete. In bacteria, cell division is coordinated with chromosome segregation, preventing cell division ring formation over the nucleoid in a process termed nucleoid occlusion. In addition to nucleoid occlusion, bacteria induce the SOS response after replication forks encounter DNA damage or impediments that slow or block their progression. During SOS induction, Escherichia coli expresses a cytoplasmic protein, SulA, that inhibits cell division by directly binding FtsZ. After the SOS response is turned off, SulA is degraded by Lon protease, allowing for cell division to resume. Recently, it has become clear that SulA is restricted to bacteria closely related to E. coli and that most bacteria enforce the DNA damage checkpoint by expressing a small integral membrane protein. Resumption of cell division is then mediated by membrane-bound proteases that cleave the cell division inhibitor. Further, many bacterial cells have mechanisms to inhibit cell division that are regulated independently from the canonical LexA-mediated SOS response. In this review, we discuss several pathways used by bacteria to prevent cell division from occurring when genome instability is detected or before the chromosome has been fully replicated and segregated.
Collapse
|
13
|
Müller AU, Leibundgut M, Ban N, Weber-Ban E. Structure and functional implications of WYL domain-containing bacterial DNA damage response regulator PafBC. Nat Commun 2019; 10:4653. [PMID: 31604936 PMCID: PMC6789036 DOI: 10.1038/s41467-019-12567-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/16/2019] [Indexed: 01/15/2023] Open
Abstract
In mycobacteria, transcriptional activator PafBC is responsible for upregulating the majority of genes induced by DNA damage. Understanding the mechanism of PafBC activation is impeded by a lack of structural information on this transcription factor that contains a widespread, but poorly understood WYL domain frequently encountered in bacterial transcription factors. Here, we determine the crystal structure of Arthrobacter aurescens PafBC. The protein consists of two modules, each harboring an N-terminal helix-turn-helix DNA-binding domain followed by a central WYL and a C-terminal extension (WCX) domain. The WYL domains exhibit Sm-folds, while the WCX domains adopt ferredoxin-like folds, both characteristic for RNA-binding proteins. Our results suggest a mechanism of regulation in which WYL domain-containing transcription factors may be activated by binding RNA or other nucleic acid molecules. Using an in vivo mutational screen in Mycobacterium smegmatis, we identify potential co-activator binding sites on PafBC.
Collapse
Affiliation(s)
- Andreas U Müller
- ETH Zurich, Institute of Molecular Biology and Biophysics, CH-8093, Zurich, Switzerland
| | - Marc Leibundgut
- ETH Zurich, Institute of Molecular Biology and Biophysics, CH-8093, Zurich, Switzerland
| | - Nenad Ban
- ETH Zurich, Institute of Molecular Biology and Biophysics, CH-8093, Zurich, Switzerland
| | - Eilika Weber-Ban
- ETH Zurich, Institute of Molecular Biology and Biophysics, CH-8093, Zurich, Switzerland.
| |
Collapse
|
14
|
Yang R, Santos Garcia D, Pérez Montaño F, da Silva GM, Zhao M, Jiménez Guerrero I, Rosenberg T, Chen G, Plaschkes I, Morin S, Walcott R, Burdman S. Complete Assembly of the Genome of an Acidovorax citrulli Strain Reveals a Naturally Occurring Plasmid in This Species. Front Microbiol 2019; 10:1400. [PMID: 31281298 PMCID: PMC6595937 DOI: 10.3389/fmicb.2019.01400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 06/04/2019] [Indexed: 11/13/2022] Open
Abstract
Acidovorax citrulli is the causal agent of bacterial fruit blotch (BFB), a serious threat to cucurbit crop production worldwide. Based on genetic and phenotypic properties, A. citrulli strains are divided into two major groups: group I strains have been generally isolated from melon and other non-watermelon cucurbits, while group II strains are closely associated with watermelon. In a previous study, we reported the genome of the group I model strain, M6. At that time, the M6 genome was sequenced by MiSeq Illumina technology, with reads assembled into 139 contigs. Here, we report the assembly of the M6 genome following sequencing with PacBio technology. This approach not only allowed full assembly of the M6 genome, but it also revealed the occurrence of a ∼53 kb plasmid. The M6 plasmid, named pACM6, was further confirmed by plasmid extraction, Southern-blot analysis of restricted fragments and obtention of M6-derivative cured strains. pACM6 occurs at low copy numbers (average of ∼4.1 ± 1.3 chromosome equivalents) in A. citrulli M6 and contains 63 open reading frames (ORFs), most of which (55.6%) encoding hypothetical proteins. The plasmid contains several genes encoding type IV secretion components, and typical plasmid-borne genes involved in plasmid maintenance, replication and transfer. The plasmid also carries an operon encoding homologs of a Fic-VbhA toxin-antitoxin (TA) module. Transcriptome data from A. citrulli M6 revealed that, under the tested conditions, the genes encoding the components of this TA system are among the highest expressed genes in pACM6. Whether this TA module plays a role in pACM6 maintenance is still to be determined. Leaf infiltration and seed transmission assays revealed that, under tested conditions, the loss of pACM6 did not affect the virulence of A. citrulli M6. We also show that pACM6 or similar plasmids are present in several group I strains, but absent in all tested group II strains of A. citrulli.
Collapse
Affiliation(s)
- Rongzhi Yang
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Diego Santos Garcia
- Department of Entomology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Francisco Pérez Montaño
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.,Department of Microbiology, University of Seville, Seville, Spain
| | - Gustavo Mateus da Silva
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Mei Zhao
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Irene Jiménez Guerrero
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tally Rosenberg
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Gong Chen
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Inbar Plaschkes
- Bioinformatics Unit, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shai Morin
- Department of Entomology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ron Walcott
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Saul Burdman
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
15
|
Wu AC, Van Werven FJ. Transcribe this way: Rap1 confers promoter directionality by repressing divergent transcription. Transcription 2019; 10:164-170. [PMID: 31057041 PMCID: PMC6602560 DOI: 10.1080/21541264.2019.1608716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 02/07/2023] Open
Abstract
In eukaryotes, divergent transcription is a major source of noncoding RNAs. Recent studies have uncovered that in yeast, the transcription factor Rap1 restricts transcription in the divergent direction and thereby controls promoter directionality. Here, we summarize these findings, propose regulatory principles, and discuss the implications for eukaryotic gene regulation.
Collapse
Affiliation(s)
- Andrew C.K. Wu
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London, UK
| | | |
Collapse
|
16
|
Muenter MM, Aiken A, Akanji JO, Baig S, Bellou S, Carlson A, Conway C, Cowell CM, DeLateur NA, Hester A, Joshi C, Kramer C, Leifer BS, Nash E, Qi MH, Travers M, Wong KC, Hu M, Gou N, Giese RW, Gu AZ, Beuning PJ. The response of Escherichia coli to the alkylating agents chloroacetaldehyde and styrene oxide. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 840:1-10. [PMID: 30857727 DOI: 10.1016/j.mrgentox.2019.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 02/06/2019] [Accepted: 02/06/2019] [Indexed: 10/27/2022]
Abstract
DNA damage is ubiquitous and can arise from endogenous or exogenous sources. DNA-damaging alkylating agents are present in environmental toxicants as well as in cancer chemotherapy drugs and are a constant threat, which can lead to mutations or cell death. All organisms have multiple DNA repair and DNA damage tolerance pathways to resist the potentially negative effects of exposure to alkylating agents. In bacteria, many of the genes in these pathways are regulated as part of the SOS reponse or the adaptive response. In this work, we probed the cellular responses to the alkylating agents chloroacetaldehyde (CAA), which is a metabolite of 1,2-dichloroethane used to produce polyvinyl chloride, and styrene oxide (SO), a major metabolite of styrene used in the production of polystyrene and other polymers. Vinyl chloride and styrene are produced on an industrial scale of billions of kilograms annually and thus have a high potential for environmental exposure. To identify stress response genes in E. coli that are responsible for tolerance to the reactive metabolites CAA and SO, we used libraries of transcriptional reporters and gene deletion strains. In response to both alkylating agents, genes associated with several different stress pathways were upregulated, including protein, membrane, and oxidative stress, as well as DNA damage. E. coli strains lacking genes involved in base excision repair and nucleotide excision repair were sensitive to SO, whereas strains lacking recA and the SOS gene ybfE were sensitive to both alkylating agents tested. This work indicates the varied systems involved in cellular responses to alkylating agents, and highlights the specific DNA repair genes involved in the responses.
Collapse
Affiliation(s)
- Mark M Muenter
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Ariel Aiken
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Jadesola O Akanji
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Samir Baig
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Sirine Bellou
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Alyssa Carlson
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Charles Conway
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Courtney M Cowell
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Nicholas A DeLateur
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Alexis Hester
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Christopher Joshi
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Caitlin Kramer
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Becky S Leifer
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Emma Nash
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Macee H Qi
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Meghan Travers
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Kelly C Wong
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Man Hu
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115 USA
| | - Na Gou
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115 USA; School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Roger W Giese
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115 USA
| | - April Z Gu
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115 USA; School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Penny J Beuning
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA.
| |
Collapse
|
17
|
Ghodke H, Paudel BP, Lewis JS, Jergic S, Gopal K, Romero ZJ, Wood EA, Woodgate R, Cox MM, van Oijen AM. Spatial and temporal organization of RecA in the Escherichia coli DNA-damage response. eLife 2019; 8:42761. [PMID: 30717823 PMCID: PMC6363387 DOI: 10.7554/elife.42761] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/22/2019] [Indexed: 12/14/2022] Open
Abstract
The RecA protein orchestrates the cellular response to DNA damage via its multiple roles in the bacterial SOS response. Lack of tools that provide unambiguous access to the various RecA states within the cell have prevented understanding of the spatial and temporal changes in RecA structure/function that underlie control of the damage response. Here, we develop a monomeric C-terminal fragment of the λ repressor as a novel fluorescent probe that specifically interacts with RecA filaments on single-stranded DNA (RecA*). Single-molecule imaging techniques in live cells demonstrate that RecA is largely sequestered in storage structures during normal metabolism. Upon DNA damage, the storage structures dissolve and the cytosolic pool of RecA rapidly nucleates to form early SOS-signaling complexes, maturing into DNA-bound RecA bundles at later time points. Both before and after SOS induction, RecA* largely appears at locations distal from replisomes. Upon completion of repair, RecA storage structures reform.
Collapse
Affiliation(s)
- Harshad Ghodke
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Bishnu P Paudel
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Jacob S Lewis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Slobodan Jergic
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Kamya Gopal
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Zachary J Romero
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Elizabeth A Wood
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | | |
Collapse
|
18
|
Burby PE, Simmons ZW, Simmons LA. DdcA antagonizes a bacterial DNA damage checkpoint. Mol Microbiol 2019; 111:237-253. [PMID: 30315724 PMCID: PMC6351180 DOI: 10.1111/mmi.14151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2018] [Indexed: 12/15/2022]
Abstract
Bacteria coordinate DNA replication and cell division, ensuring a complete set of genetic material is passed onto the next generation. When bacteria encounter DNA damage, a cell cycle checkpoint is activated by expressing a cell division inhibitor. The prevailing model is that activation of the DNA damage response and protease-mediated degradation of the inhibitor is sufficient to regulate the checkpoint process. Our recent genome-wide screens identified the gene ddcA as critical for surviving exposure to DNA damage. Similar to the checkpoint recovery proteases, the DNA damage sensitivity resulting from ddcA deletion depends on the checkpoint enforcement protein YneA. Using several genetic approaches, we show that DdcA function is distinct from the checkpoint recovery process. Deletion of ddcA resulted in sensitivity to yneA overexpression independent of YneA protein levels and stability, further supporting the conclusion that DdcA regulates YneA independent of proteolysis. Using a functional GFP-YneA fusion we found that DdcA prevents YneA-dependent cell elongation independent of YneA localization. Together, our results suggest that DdcA acts by helping to set a threshold of YneA required to establish the cell cycle checkpoint, uncovering a new regulatory step controlling activation of the DNA damage checkpoint in Bacillus subtilis.
Collapse
Affiliation(s)
- Peter E. Burby
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Zackary W. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
19
|
Xu X, Du Z, Liu R, Li T, Zhao Y, Chen X, Yang Y. A Single-Component Optogenetic System Allows Stringent Switch of Gene Expression in Yeast Cells. ACS Synth Biol 2018; 7:2045-2053. [PMID: 30157641 DOI: 10.1021/acssynbio.8b00180] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Light is a highly attractive actuator that allows spatiotemporal control of diverse cellular activities. In this study, we developed a single-component light-switchable gene expression system for yeast cells, termed yLightOn system. The yLightOn system is independent of exogenous cofactors, and exhibits more than a 500-fold ON/OFF ratio, extremely low leakage, fast expression kinetics, and high spatial resolution. We demonstrated the usefulness of the yLightOn system in regulating cell growth and cell cycle by stringently controlling the expression of His3 and ΔN Sic1 genes, respectively. Furthermore, we engineered a bidirectional expression module that allows the simultaneous control of the expression of two genes by light. With ClpX and ClpP as the reporters, the fast, quantitative, and spatially specific degradation of ssrA-tagged protein was observed. We suggest that this single-component optogenetic system will be immensely helpful in understanding cellular gene regulatory networks and in the design of robust genetic circuits for synthetic biology.
Collapse
Affiliation(s)
- Xiaopei Xu
- CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai 200031 , China
| | - Zhaoxia Du
- CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai 200031 , China
| | - Renmei Liu
- CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai 200031 , China
| | - Ting Li
- CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai 200031 , China
| | - Yuzheng Zhao
- CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai 200031 , China
| | - Xianjun Chen
- CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai 200031 , China
| | - Yi Yang
- CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai 200031 , China
| |
Collapse
|
20
|
Almughlliq FB, Koh YQ, Peiris HN, Vaswani K, McDougall S, Graham EM, Burke CR, Arachchige BJ, Reed S, Mitchell MD. Proteomic content of circulating exosomes in dairy cows with or without uterine infection. Theriogenology 2018; 114:173-179. [PMID: 29631032 DOI: 10.1016/j.theriogenology.2018.03.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 12/26/2022]
Abstract
In the past few decades, there has been a global decrease in dairy cow reproductive performance. An activated inflammatory system, due to uterine infection, has been associated with decreased cow fertility and as such, there is a need to detect uterine disease earlier. Early detection could be achieved by identifying biomarkers for uterine disease. Exosomes are small nanovesicles known to package and deliver protein, mRNA, and miRNAs to near and distant sites. Therefore, the content of circulating exosomes may have the potential to carry biomarkers for earlier diagnosis of disease. We hypothesized that circulating exosomes from cows with and without uterine infection may contain information representative of endometrial health or disease. We compared the proteomic content of circulating exosomes derived from plasma of dairy cows with (n = 10) or without (n = 10) induced uterine infection, using high-performance liquid chromatography tandem mass spectrometry (HPLC MS/MS). Our results demonstrate that there were a total of 103 bovine and 9 Trueperella pyogenes proteins found in plasma exosomes derived from infected cows (infected exosomes), and 90 bovine and 5 T. pyogenes proteins found in exosomes derived from plasma of non-infected cows (non-infected exosomes). 71 bovine proteins were found to be unique to the infected exosomes while only 4 bovine proteins were found to be unique to the non-infected exosomes. 8 unique T. pyogenes proteins were identified in infected exosomes and 4 were found to be unique to the non-infected exosomes. Pathway analysis showed that infected exosomes had more proteins involved in structural molecule activity and immune system processes than non-infected exosomal protein. Additionally, proteins from infected exosomes were involved in unique pathways: angiogenesis and integrin signaling pathway. Our data provide preliminary evidence of a potential role for exosomes in the early diagnosis of uterine infection in dairy cows.
Collapse
Affiliation(s)
- Fatema B Almughlliq
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4029, Australia
| | - Yong Q Koh
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4029, Australia
| | - Hassendrini N Peiris
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4029, Australia
| | - Kanchan Vaswani
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4029, Australia
| | | | | | - Chris R Burke
- DairyNZ Ltd., Private Bag 3221, Hamilton, 3240, New Zealand
| | - Buddhika J Arachchige
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4029, Australia
| | - Sarah Reed
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4029, Australia
| | - Murray D Mitchell
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4029, Australia.
| |
Collapse
|
21
|
Mycobacterium smegmatis PafBC is involved in regulation of DNA damage response. Sci Rep 2017; 7:13987. [PMID: 29070902 PMCID: PMC5656591 DOI: 10.1038/s41598-017-14410-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 10/11/2017] [Indexed: 01/08/2023] Open
Abstract
Two genes, pafB and pafC, are organized in an operon with the Pup-ligase gene pafA, which is part of the Pup-proteasome system (PPS) present in mycobacteria and other actinobacteria. The PPS is crucial for Mycobacterium tuberculosis resistance towards reactive nitrogen intermediates (RNI). However, pafB and pafC apparently play only a minor role in RNI resistance. To characterize their function, we generated a pafBC deletion in Mycobacterium smegmatis (Msm). Proteome analysis of the mutant strain revealed decreased cellular levels of various proteins involved in DNA damage repair, including recombinase A (RecA). In agreement with this finding, Msm ΔpafBC displayed increased sensitivity to DNA damaging agents. In mycobacteria two pathways regulate DNA repair genes: the LexA/RecA-dependent SOS response and a predominant pathway that controls gene expression via a LexA/RecA-independent promoter, termed P1. PafB and PafC feature winged helix-turn-helix DNA binding motifs and we demonstrate that together they form a stable heterodimer in vitro, implying a function as a heterodimeric transcriptional regulator. Indeed, P1-driven transcription of recA was decreased in Msm ΔpafBC under standard conditions and induction of recA expression upon DNA damage was strongly impaired. Taken together, our data indicate an important regulatory function of PafBC in the mycobacterial DNA damage response.
Collapse
|
22
|
Ranawat P, Rawat S. Radiation resistance in thermophiles: mechanisms and applications. World J Microbiol Biotechnol 2017; 33:112. [DOI: 10.1007/s11274-017-2279-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/26/2017] [Indexed: 12/28/2022]
|
23
|
Colon MP, Chakraborty D, Pevzner Y, Koudelka GB. Mechanisms that Determine the Differential Stability of Stx⁺ and Stx(-) Lysogens. Toxins (Basel) 2016; 8:96. [PMID: 27043626 PMCID: PMC4848623 DOI: 10.3390/toxins8040096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/23/2016] [Accepted: 03/25/2016] [Indexed: 01/29/2023] Open
Abstract
Phages 933W, BAA2326, 434, and λ are evolutionarily-related temperate lambdoid phages that infect Escherichia coli. Although these are highly-similar phages, BAA2326 and 933W naturally encode Shiga toxin 2 (Stx+), but phage 434 and λ do not (Stx−). Previous reports suggest that the 933W Stx+ prophage forms less stable lysogens in E. coli than does the Stx− prophages λ, P22, and 434. The higher spontaneous induction frequency of the Stx+ prophage may be correlated with both virulence and dispersion of the Stx2-encoding phage. Here, we examined the hypothesis that lysogen instability is a common feature of Stx+ prophages. We found in both the absence and presence of prophage inducers (DNA damaging agents, salts), the Stx+ prophages induce at higher frequencies than do Stx− prophages. The observed instability of Stx+ prophages does not appear to be the result of any differences in phage development properties between Stx+ and Stx− phages. Our results indicate that differential stability of Stx+ and Stx− prophages results from both RecA-dependent and RecA-independent effects on the intracellular concentration of the respective cI repressors.
Collapse
Affiliation(s)
- Michael P Colon
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA.
| | | | - Yonatan Pevzner
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA.
| | - Gerald B Koudelka
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA.
| |
Collapse
|
24
|
Witkowski TA, Grice AN, Stinnett DB, Wells WK, Peterson MA, Hare JM. UmuDAb: An Error-Prone Polymerase Accessory Homolog Whose N-Terminal Domain Is Required for Repression of DNA Damage Inducible Gene Expression in Acinetobacter baylyi. PLoS One 2016; 11:e0152013. [PMID: 27010837 PMCID: PMC4807011 DOI: 10.1371/journal.pone.0152013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 03/08/2016] [Indexed: 12/01/2022] Open
Abstract
In many bacteria, the DNA damage response induces genes (SOS genes) that were repressed by LexA. LexA represses transcription by binding to SOS promoters via a helix-turn-helix motif in its N-terminal domain (NTD). Upon DNA damage, LexA cleaves itself and allows induction of transcription. In Acinetobacter baumannii and Acinetobacter baylyi, multiple genes are induced by DNA damage, and although the Acinetobacter genus lacks LexA, a homolog of the error-prone polymerase subunit UmuD, called UmuDAb, regulates some DNA damage-induced genes. The mechanism of UmuDAb regulation has not been determined. We constructed UmuDAb mutant strains of A. baylyi to test whether UmuDAb mediates gene regulation through LexA-like repressor actions consisting of relief of repression through self-cleavage after DNA damage. Real-time quantitative PCR experiments in both a null umuDAb mutant and an NTD mutant showed that the DNA damage-inducible, UmuDAb-regulated gene ddrR was highly expressed even in the absence of DNA damage. Protein modeling identified a potential LexA-like helix-turn-helix structure in the UmuDAb NTD, which when disrupted, also relieved ddrR and umuDAb repression under non-inducing conditions. Mutations in a putative SOS box in the shared umuDAb-ddrR promoter region similarly relieved these genes’ repression under non-inducing conditions. Conversely, cells possessing a cleavage-deficient UmuDAb were unable to induce gene expression after MMC-mediated DNA damage. This evidence of a UmuDAb repressor mechanism was contrasted with the failure of umuDAb to complement an Escherichia coli umuD mutant for UmuD error-prone DNA replication activity. Similarly, A. baumannii null umuDAb mutant cells did not have a reduced UmuDˊ2UmuC-mediated mutation rate after DNA damage, suggesting that although this UmuDAb protein may have evolved from a umuDC operon in this genus, it now performs a LexA-like repressor function for a sub-set of DNA damage-induced genes.
Collapse
Affiliation(s)
- Travis A. Witkowski
- Department of Biology and Chemistry, Morehead State University, Morehead, KY, United States of America
| | - Alison N. Grice
- Department of Biology and Chemistry, Morehead State University, Morehead, KY, United States of America
| | - DeAnna B. Stinnett
- Department of Biology and Chemistry, Morehead State University, Morehead, KY, United States of America
| | - Whitney K. Wells
- Department of Biology and Chemistry, Morehead State University, Morehead, KY, United States of America
| | - Megan A. Peterson
- Department of Biology and Chemistry, Morehead State University, Morehead, KY, United States of America
| | - Janelle M. Hare
- Department of Biology and Chemistry, Morehead State University, Morehead, KY, United States of America
- * E-mail:
| |
Collapse
|
25
|
Repair on the go: E. coli maintains a high proliferation rate while repairing a chronic DNA double-strand break. PLoS One 2014; 9:e110784. [PMID: 25353327 PMCID: PMC4213011 DOI: 10.1371/journal.pone.0110784] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/16/2014] [Indexed: 11/19/2022] Open
Abstract
DNA damage checkpoints exist to promote cell survival and the faithful inheritance of genetic information. It is thought that one function of such checkpoints is to ensure that cell division does not occur before DNA damage is repaired. However, in unicellular organisms, rapid cell multiplication confers a powerful selective advantage, leading to a dilemma. Is the activation of a DNA damage checkpoint compatible with rapid cell multiplication? By uncoupling the initiation of DNA replication from cell division, the Escherichia coli cell cycle offers a solution to this dilemma. Here, we show that a DNA double-strand break, which occurs once per replication cycle, induces the SOS response. This SOS induction is needed for cell survival due to a requirement for an elevated level of expression of the RecA protein. Cell division is delayed, leading to an increase in average cell length but with no detectable consequence on mutagenesis and little effect on growth rate and viability. The increase in cell length caused by chronic DNA double-strand break repair comprises three components: two types of increase in the unit cell size, one independent of SfiA and SlmA, the other dependent of the presence of SfiA and the absence of SlmA, and a filamentation component that is dependent on the presence of either SfiA or SlmA. These results imply that chronic checkpoint induction in E. coli is compatible with rapid cell multiplication. Therefore, under conditions of chronic low-level DNA damage, the SOS checkpoint operates seamlessly in a cell cycle where the initiation of DNA replication is uncoupled from cell division.
Collapse
|
26
|
Ottoz DSM, Rudolf F, Stelling J. Inducible, tightly regulated and growth condition-independent transcription factor in Saccharomyces cerevisiae. Nucleic Acids Res 2014; 42:e130. [PMID: 25034689 PMCID: PMC4176152 DOI: 10.1093/nar/gku616] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The precise control of gene expression is essential in basic biological research as well as in biotechnological applications. Most regulated systems available in yeast enable only the overexpression of the target gene, excluding the possibility of intermediate or weak expression. Moreover, these systems are frequently toxic or depend on growth conditions. We constructed a heterologous transcription factor that overcomes these limitations. Our system is a fusion of the bacterial LexA DNA-binding protein, the human estrogen receptor (ER) and an activation domain (AD). The activity of this chimera, called LexA-ER-AD, is tightly regulated by the hormone β-estradiol. The selection of the AD proved to be crucial to avoid toxic effects and to define the range of activity that can be precisely tuned with β-estradiol. As our system is based on a heterologous DNA-binding domain, induction in different metabolic contexts is possible. Additionally, by controlling the number of LexA-binding sites in the target promoter, one can scale the expression levels up or down. Overall, our LexA-ER-AD system is a valuable tool to precisely control gene expression in different experimental contexts without toxic side effects.
Collapse
Affiliation(s)
- Diana S M Ottoz
- ETH Zurich and Swiss Institute of Bioinformatics, D-BSSE, Mattenstrasse 26, 4058 Basel, Switzerland Life Science Zurich PhD Program on Molecular and Translational Biomedicine, Zurich, Switzerland Competence Center for Systems Physiology and Metabolic Diseases, ETH Zurich, 8093 Zurich, Switzerland
| | - Fabian Rudolf
- ETH Zurich and Swiss Institute of Bioinformatics, D-BSSE, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Joerg Stelling
- ETH Zurich and Swiss Institute of Bioinformatics, D-BSSE, Mattenstrasse 26, 4058 Basel, Switzerland Competence Center for Systems Physiology and Metabolic Diseases, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
27
|
Babu VMP, Sutton MD. A dnaN plasmid shuffle strain for rapid in vivo analysis of mutant Escherichia coli β clamps provides insight into the role of clamp in umuDC-mediated cold sensitivity. PLoS One 2014; 9:e98791. [PMID: 24896652 PMCID: PMC4045847 DOI: 10.1371/journal.pone.0098791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/07/2014] [Indexed: 12/05/2022] Open
Abstract
The E. coli umuDC gene products participate in two temporally distinct roles: UmuD2C acts in a DNA damage checkpoint control, while UmuD'2C, also known as DNA polymerase V (Pol V), catalyzes replication past DNA lesions via a process termed translesion DNA synthesis. These different roles of the umuDC gene products are managed in part by the dnaN-encoded β sliding clamp protein. Co-overexpression of the β clamp and Pol V severely blocked E. coli growth at 30°C. We previously used a genetic assay that was independent of the ability of β clamp to support E. coli viability to isolate 8 mutant clamp proteins (βQ61K, βS107L, βD150N, βG157S, βV170M, βE202K, βM204K and βP363S) that failed to block growth at 30°C when co-overexpressed with Pol V. It was unknown whether these mutant clamps were capable of supporting E. coli viability and normal umuDC functions in vivo. The goals of this study were to answer these questions. To this end, we developed a novel dnaN plasmid shuffle assay. Using this assay, βD150N and βP363S were unable to support E. coli viability. The remaining 6 mutant clamps, each of which supported viability, were indistinguishable from β+ with respect to umuDC functions in vivo. In light of these findings, we analyzed phenotypes of strains overexpressing either β clamp or Pol V alone. The strain overexpressing β+, but not those expressing mutant β clamps, displayed slowed growth irrespective of the incubation temperature. Moreover, growth of the Pol V-expressing strain was modestly slowed at 30°, but not 42°C. Taken together, these results suggest the mutant clamps were identified due to their inability to slow growth rather than an inability to interact with Pol V. They further suggest that cold sensitivity is due, at least in part, to the combination of their individual effects on growth at 30°C.
Collapse
Affiliation(s)
- Vignesh M. P. Babu
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
- Witebsky Center for Microbial Pathogenesis & Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Mark D. Sutton
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
- Witebsky Center for Microbial Pathogenesis & Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
- Genetics, Genomics and Bioinformatics Program, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
28
|
Macguire AE, Ching MC, Diamond BH, Kazakov A, Novichkov P, Godoy VG. Activation of phenotypic subpopulations in response to ciprofloxacin treatment in Acinetobacter baumannii. Mol Microbiol 2014; 92:138-52. [PMID: 24612352 DOI: 10.1111/mmi.12541] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2014] [Indexed: 12/13/2022]
Abstract
The multidrug-resistant, opportunistic pathogen, Acinetobacter baumannii, has spread swiftly through hospitals worldwide. Previously, we demonstrated that A. baumannii regulates the expression of various genes in response to DNA damage. Some of these regulated genes, especially those encoding the multiple error-prone DNA polymerases, can be implicated in induced mutagenesis, leading to antibiotic resistance. Here, we further explore the DNA damage-inducible system at the single cell level using chromosomal transcriptional reporters for selected DNA damage response genes. We found the genes examined respond in a bimodal fashion to ciprofloxacin treatment, forming two phenotypic subpopulations: induced and uninduced. This bimodal response to ciprofloxacin treatment in A. baumannii is unique and quite different than the Escherichia coli paradigm. The subpopulations are not genetically different, with each subpopulation returning to a starting state and differentiating with repeated treatment. We then identified a palindromic motif upstream of certain DNA damage response genes, and have shown alterations to this sequence to diminish the bimodal induction in response to DNA damaging treatment. Lastly, we are able to show a biological advantage for a bimodal response, finding that one subpopulation survives ciprofloxacin treatment better than the other.
Collapse
Affiliation(s)
- Ashley E Macguire
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
29
|
Luo Y, North JA, Rose SD, Poirier MG. Nucleosomes accelerate transcription factor dissociation. Nucleic Acids Res 2013; 42:3017-27. [PMID: 24353316 PMCID: PMC3950707 DOI: 10.1093/nar/gkt1319] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Transcription factors (TF) bind DNA-target sites within promoters to activate gene expression. TFs target their DNA-recognition sequences with high specificity by binding with resident times of up to hours in vitro. However, in vivo TFs can exchange on the order of seconds. The factors that regulate TF dynamics in vivo and increase dissociation rates by orders of magnitude are not known. We investigated TF binding and dissociation dynamics at their recognition sequence within duplex DNA, single nucleosomes and short nucleosome arrays with single molecule total internal reflection fluorescence (smTIRF) microscopy. We find that the rate of TF dissociation from its site within either nucleosomes or nucleosome arrays is increased by 1000-fold relative to duplex DNA. Our results suggest that TF binding within chromatin could be responsible for the dramatic increase in TF exchange in vivo. Furthermore, these studies demonstrate that nucleosomes regulate DNA–protein interactions not only by preventing DNA–protein binding but by dramatically increasing the dissociation rate of protein complexes from their DNA-binding sites.
Collapse
Affiliation(s)
- Yi Luo
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA, Department of Physics, The Ohio State University, Columbus, OH 43210, USA and Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
30
|
Bano S, Vankemmelbeke M, Penfold CN, James R. Pattern of induction of colicin E9 synthesis by sub MIC of Norfloxacin antibiotic. Microbiol Res 2013; 168:661-6. [DOI: 10.1016/j.micres.2013.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/01/2013] [Accepted: 04/04/2013] [Indexed: 11/28/2022]
|
31
|
Fonseca LS, da Silva JB, Milanez JS, Monteiro-Vitorello CB, Momo L, de Morais ZM, Vasconcellos SA, Marques MV, Ho PL, da Costa RMA. Leptospira interrogans serovar copenhageni harbors two lexA genes involved in SOS response. PLoS One 2013; 8:e76419. [PMID: 24098496 PMCID: PMC3789691 DOI: 10.1371/journal.pone.0076419] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 08/28/2013] [Indexed: 11/24/2022] Open
Abstract
Bacteria activate a regulatory network in response to the challenges imposed by DNA damage to genetic material, known as the SOS response. This system is regulated by the RecA recombinase and by the transcriptional repressor lexA. Leptospira interrogans is a pathogen capable of surviving in the environment for weeks, being exposed to a great variety of stress agents and yet retaining its ability to infect the host. This study aims to investigate the behavior of L. interrogans serovar Copenhageni after the stress induced by DNA damage. We show that L. interrogans serovar Copenhageni genome contains two genes encoding putative LexA proteins (lexA1 and lexA2) one of them being potentially acquired by lateral gene transfer. Both genes are induced after DNA damage, but the steady state levels of both LexA proteins drop, probably due to auto-proteolytic activity triggered in this condition. In addition, seven other genes were up-regulated following UV-C irradiation, recA, recN, dinP, and four genes encoding hypothetical proteins. This set of genes is potentially regulated by LexA1, as it showed binding to their promoter regions. All these regions contain degenerated sequences in relation to the previously described SOS box, TTTGN 5CAAA. On the other hand, LexA2 was able to bind to the palindrome TTGTAN10TACAA, found in its own promoter region, but not in the others. Therefore, the L. interrogans serovar Copenhageni SOS regulon may be even more complex, as a result of LexA1 and LexA2 binding to divergent motifs. New possibilities for DNA damage response in Leptospira are expected, with potential influence in other biological responses such as virulence.
Collapse
Affiliation(s)
- Luciane S Fonseca
- Centro de Biotecnologia, Instituto Butantan, São Paulo, Brazil ; Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yuan JB, Zhang XJ, Liu CZ, Wei JK, Li FH, Xiang JH. Horizontally transferred genes in the genome of Pacific white shrimp, Litopenaeus vannamei. BMC Evol Biol 2013; 13:165. [PMID: 23914989 PMCID: PMC3750580 DOI: 10.1186/1471-2148-13-165] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 08/02/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In recent years, as the development of next-generation sequencing technology, a growing number of genes have been reported as being horizontally transferred from prokaryotes to eukaryotes, most of them involving arthropods. As a member of the phylum Arthropoda, the Pacific white shrimp Litopenaeus vannamei has to adapt to the complex water environments with various symbiotic or parasitic microorganisms, which provide a platform for horizontal gene transfer (HGT). RESULTS In this study, we analyzed the genome-wide HGT events in L. vannamei. Through homology search and phylogenetic analysis, followed by experimental PCR confirmation, 14 genes with HGT event were identified: 12 of them were transferred from bacteria and two from fungi. Structure analysis of these genes showed that the introns of the two fungi-originated genes were substituted by shrimp DNA fragment, two genes transferred from bacteria had shrimp specific introns inserted in them. Furthermore, around other three bacteria-originated genes, there were three large DNA segments inserted into the shrimp genome. One segment was a transposon that fully transferred, and the other two segments contained only coding regions of bacteria. Functional prediction of these 14 genes showed that 6 of them might be related to energy metabolism, and 4 others related to defense of the organism. CONCLUSIONS HGT events from bacteria or fungi were happened in the genome of L. vannamei, and these horizontally transferred genes can be transcribed in shrimp. This is the first time to report the existence of horizontally transferred genes in shrimp. Importantly, most of these genes are exposed to a negative selection pressure and appeared to be functional.
Collapse
Affiliation(s)
- Jian-Bo Yuan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7, Nanhai Road, Qingdao 266071, China
| | | | | | | | | | | |
Collapse
|
33
|
SOS response activation and competence development are antagonistic mechanisms in Streptococcus thermophilus. J Bacteriol 2012. [PMID: 23204467 DOI: 10.1128/jb.01605-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus includes species that either contain or lack the LexA-like repressor (HdiR) of the classical SOS response. In Streptococcus pneumoniae, a species which belongs to the latter group, SOS response inducers (e.g., mitomycin C [Mc] and fluoroquinolones) were shown to induce natural transformation, leading to the hypothesis that DNA damage-induced competence could contribute to genomic plasticity and stress resistance. Using reporter strains and microarray experiments, we investigated the impact of the SOS response inducers mitomycin C and norfloxacin and the role of HdiR on competence development in Streptococcus thermophilus. We show that both the addition of SOS response inducers and HdiR inactivation have a dual effect, i.e., induction of the expression of SOS genes and reduction of transformability. Reduction of transformability results from two different mechanisms, since HdiR inactivation has no major effect on the expression of competence (com) genes, while mitomycin C downregulates the expression of early and late com genes in a dose-dependent manner. The downregulation of com genes by mitomycin C was shown to take place at the level of the activation of the ComRS signaling system by an unknown mechanism. Conversely, we show that a ComX-deficient strain is more resistant to mitomycin C and norfloxacin in a viability plate assay, which indicates that competence development negatively affects the resistance of S. thermophilus to DNA-damaging agents. Altogether, our results strongly suggest that SOS response activation and competence development are antagonistic processes in S. thermophilus.
Collapse
|
34
|
Multiple strategies for translesion synthesis in bacteria. Cells 2012; 1:799-831. [PMID: 24710531 PMCID: PMC3901139 DOI: 10.3390/cells1040799] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/29/2012] [Accepted: 09/30/2012] [Indexed: 12/16/2022] Open
Abstract
Damage to DNA is common and can arise from numerous environmental and endogenous sources. In response to ubiquitous DNA damage, Y-family DNA polymerases are induced by the SOS response and are capable of bypassing DNA lesions. In Escherichia coli, these Y-family polymerases are DinB and UmuC, whose activities are modulated by their interaction with the polymerase manager protein UmuD. Many, but not all, bacteria utilize DinB and UmuC homologs. Recently, a C-family polymerase named ImuC, which is similar in primary structure to the replicative DNA polymerase DnaE, was found to be able to copy damaged DNA and either carry out or suppress mutagenesis. ImuC is often found with proteins ImuA and ImuB, the latter of which is similar to Y‑family polymerases, but seems to lack the catalytic residues necessary for polymerase activity. This imuAimuBimuC mutagenesis cassette represents a widespread alternative strategy for translesion synthesis and mutagenesis in bacteria. Bacterial Y‑family and ImuC DNA polymerases contribute to replication past DNA damage and the acquisition of antibiotic resistance.
Collapse
|
35
|
Involvement of the lon protease in the SOS response triggered by ciprofloxacin in Pseudomonas aeruginosa PAO1. Antimicrob Agents Chemother 2012; 56:2879-87. [PMID: 22450976 DOI: 10.1128/aac.06014-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pseudomonas aeruginosa PAO1 lon mutants have phenotypes of deficiencies in cell division, swarming, twitching, and biofilm formation as well as a phenotype of ciprofloxacin supersusceptibility. In this study, we demonstrated that a lon mutant was also supersensitive to the DNA-damaging agent UV light. To understand the influence of lon in causing these phenotypes, global gene expression was characterized by performing microarrays on the lon mutant and the PAO1 wild type grown in the presence of subinhibitory concentrations of ciprofloxacin. This revealed major differences in the expression of genes involved in the SOS response and DNA repair. Real-time quantitative PCR confirmed that these genes were highly upregulated upon ciprofloxacin exposure in the wild type but were significantly less induced in the lon mutant, indicating that Lon modulates the SOS response and consequentially ciprofloxacin susceptibility. As the known Lon target SulA is a member of the SOS response regulon, the influence of mutating or overexpressing this gene, and the negative regulator of the SOS response, LexA, was examined. Overexpression of lexA had no effect on the Lon-related phenotypes, but sulA overexpression recapitulated certain lon mutant phenotypes, including altered motility and cell division, indicating that Lon regulates these phenotypes through SulA. However, sulA overexpression did not affect ciprofloxacin susceptibility or biofilm formation, indicating that these properties were independently determined. Lon protease was also demonstrated to strongly influence RecA protein accumulation in the presence of ciprofloxacin. A model of DNA repair involving the Lon protease is proposed.
Collapse
|
36
|
Sanchez-Alberola N, Campoy S, Barbé J, Erill I. Analysis of the SOS response of Vibrio and other bacteria with multiple chromosomes. BMC Genomics 2012; 13:58. [PMID: 22305460 PMCID: PMC3323433 DOI: 10.1186/1471-2164-13-58] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 02/03/2012] [Indexed: 12/18/2022] Open
Abstract
Background The SOS response is a well-known regulatory network present in most bacteria and aimed at addressing DNA damage. It has also been linked extensively to stress-induced mutagenesis, virulence and the emergence and dissemination of antibiotic resistance determinants. Recently, the SOS response has been shown to regulate the activity of integrases in the chromosomal superintegrons of the Vibrionaceae, which encompasses a wide range of pathogenic species harboring multiple chromosomes. Here we combine in silico and in vitro techniques to perform a comparative genomics analysis of the SOS regulon in the Vibrionaceae, and we extend the methodology to map this transcriptional network in other bacterial species harboring multiple chromosomes. Results Our analysis provides the first comprehensive description of the SOS response in a family (Vibrionaceae) that includes major human pathogens. It also identifies several previously unreported members of the SOS transcriptional network, including two proteins of unknown function. The analysis of the SOS response in other bacterial species with multiple chromosomes uncovers additional regulon members and reveals that there is a conserved core of SOS genes, and that specialized additions to this basic network take place in different phylogenetic groups. Our results also indicate that across all groups the main elements of the SOS response are always found in the large chromosome, whereas specialized additions are found in the smaller chromosomes and plasmids. Conclusions Our findings confirm that the SOS response of the Vibrionaceae is strongly linked with pathogenicity and dissemination of antibiotic resistance, and suggest that the characterization of the newly identified members of this regulon could provide key insights into the pathogenesis of Vibrio. The persistent location of key SOS genes in the large chromosome across several bacterial groups confirms that the SOS response plays an essential role in these organisms and sheds light into the mechanisms of evolution of global transcriptional networks involved in adaptability and rapid response to environmental changes, suggesting that small chromosomes may act as evolutionary test beds for the rewiring of transcriptional networks.
Collapse
Affiliation(s)
- Neus Sanchez-Alberola
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | | | | |
Collapse
|
37
|
Induction of YdeO, a Regulator for Acid Resistance Genes, by Ultraviolet Irradiation in Escherichia coli. Biosci Biotechnol Biochem 2012; 76:1236-8. [DOI: 10.1271/bbb.120041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Hare JM, Bradley JA, Lin CL, Elam TJ. Diverse responses to UV light exposure in Acinetobacter include the capacity for DNA damage-induced mutagenesis in the opportunistic pathogens Acinetobacter baumannii and Acinetobacter ursingii. MICROBIOLOGY-SGM 2011; 158:601-611. [PMID: 22117008 DOI: 10.1099/mic.0.054668-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Error-prone and error-free DNA damage repair responses that are induced in most bacteria after exposure to various chemicals, antibiotics or radiation sources were surveyed across the genus Acinetobacter. The error-prone SOS mutagenesis response occurs when DNA damage induces a cell's umuDC- or dinP-encoded error-prone polymerases. The model strain Acinetobacter baylyi ADP1 possesses an unusual, regulatory umuD allele (umuDAb) with an extended 5' region and only incomplete fragments of umuC. Diverse Acinetobacter species were investigated for the presence of umuDC and their ability to conduct UV-induced mutagenesis. Unlike ADP1, most Acinetobacter strains possessed multiple umuDC loci containing either umuDAb or a umuD allele resembling that of Escherichia coli. The nearly omnipresent umuDAb allele was the ancestral umuD in Acinetobacter, with horizontal gene transfer accounting for over half of the umuDC operons. Despite multiple umuD(Ab)C operons in many strains, only three species conducted UV-induced mutagenesis: Acinetobacter baumannii, Acinetobacter ursingii and Acinetobacter beijerinckii. The type of umuDC locus or mutagenesis phenotype a strain possessed was not correlated with its error-free response of survival after UV exposure, but similar diversity was apparent. The survival of 30 Acinetobacter strains after UV treatment ranged over five orders of magnitude, with the Acinetobacter calcoaceticus-A. baumannii (Acb) complex and haemolytic strains having lower survival than non-Acb or non-haemolytic strains. These observations demonstrate that a genus can possess a range of DNA damage response mechanisms, and suggest that DNA damage-induced mutation could be an important part of the evolution of the emerging pathogens A. baumannii and A. ursingii.
Collapse
Affiliation(s)
- Janelle M Hare
- Department of Biology and Chemistry, Morehead State University, Morehead, KY 40351, USA
| | - James A Bradley
- Department of Biology and Chemistry, Morehead State University, Morehead, KY 40351, USA
| | - Ching-Li Lin
- Department of Biology and Chemistry, Morehead State University, Morehead, KY 40351, USA
| | - Tyler J Elam
- Department of Biology and Chemistry, Morehead State University, Morehead, KY 40351, USA
| |
Collapse
|
39
|
Hödar C, Moreno P, di Genova A, Latorre M, Reyes-Jara A, Maass A, González M, Cambiazo V. Genome wide identification of Acidithiobacillus ferrooxidans (ATCC 23270) transcription factors and comparative analysis of ArsR and MerR metal regulators. Biometals 2011; 25:75-93. [PMID: 21830017 DOI: 10.1007/s10534-011-9484-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 07/21/2011] [Indexed: 10/25/2022]
Abstract
Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophilic bacterium that obtains its energy from the oxidation of ferrous iron, elemental sulfur, or reduced sulfur minerals. This capability makes it of great industrial importance due to its applications in biomining. During the industrial processes, A. ferrooxidans survives to stressing circumstances in its environment, such as an extremely acidic pH and high concentration of transition metals. In order to gain insight into the organization of A. ferrooxidans regulatory networks and to provide a framework for further studies in bacterial growth under extreme conditions, we applied a genome-wide annotation procedure to identify 87 A. ferrooxidans transcription factors. We classified them into 19 families that were conserved among diverse prokaryotic phyla. Our annotation procedure revealed that A. ferrooxidans genome contains several members of the ArsR and MerR families, which are involved in metal resistance and detoxification. Analysis of their sequences revealed known and potentially new mechanism to coordinate gene-expression in response to metal availability. A. ferrooxidans inhabit some of the most metal-rich environments known, thus transcription factors identified here seem to be good candidates for functional studies in order to determine their physiological roles and to place them into A. ferrooxidans transcriptional regulatory networks.
Collapse
Affiliation(s)
- Christian Hödar
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, El Libano 5524, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Apostolaki A, Kalosakas G. Targets of DNA-binding proteins in bacterial promoter regions present enhanced probabilities for spontaneous thermal openings. Phys Biol 2011; 8:026006. [DOI: 10.1088/1478-3975/8/2/026006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
41
|
Cohn MT, Kjelgaard P, Frees D, Penadés JR, Ingmer H. Clp-dependent proteolysis of the LexA N-terminal domain in Staphylococcus aureus. MICROBIOLOGY-SGM 2010; 157:677-684. [PMID: 21183573 DOI: 10.1099/mic.0.043794-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The SOS response is governed by the transcriptional regulator LexA and is elicited in many bacterial species in response to DNA damaging conditions. Induction of the SOS response is mediated by autocleavage of the LexA repressor resulting in a C-terminal dimerization domain (CTD) and an N-terminal DNA-binding domain (NTD) known to retain some DNA-binding activity. The proteases responsible for degrading the LexA domains have been identified in Escherichia coli as ClpXP and Lon. Here, we show that in the human and animal pathogen Staphylococcus aureus, the ClpXP and ClpCP proteases contribute to degradation of the NTD and to a lesser degree the CTD. In the absence of the proteolytic subunit, ClpP, or one or both of the Clp ATPases, ClpX and ClpC, the LexA domains were stabilized after autocleavage. Production of a stabilized variant of the NTD interfered with mitomycin-mediated induction of sosA expression while leaving lexA unaffected, and also significantly reduced SOS-induced mutagenesis. Our results show that sequential proteolysis of LexA is conserved in S. aureus and that the NTD may differentially regulate a subset of genes in the SOS regulon.
Collapse
Affiliation(s)
- Marianne T Cohn
- Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark
| | - Peter Kjelgaard
- Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark
| | - Dorte Frees
- Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark
| | - José R Penadés
- Departamento de Quimica, Bioquimica y Biologia Molecular, Universidad Cardenal Herrera-CEU, Moncada, Valencia 46113, Spain.,Centro Investigación y Tecnologia Animal, Instituto Valenciano de Investigaciones Agrarias (CITA-IVIA), Apdo 187, Segorbe, Castellón, Spain
| | - Hanne Ingmer
- Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark
| |
Collapse
|
42
|
Schook POP, Stohl EA, Criss AK, Seifert HS. The DNA-binding activity of the Neisseria gonorrhoeae LexA orthologue NG1427 is modulated by oxidation. Mol Microbiol 2010; 79:846-60. [PMID: 21299643 DOI: 10.1111/j.1365-2958.2010.07491.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neisseria gonorrhoeae is a human-specific organism that is not usually exposed to UV light or chemicals but is likely to encounter reactive oxygen species during infection. Exposure of N. gonorrhoeae to sublethal hydrogen peroxide revealed that the ng1427 gene was upregulated sixfold. N. gonorrhoeae was thought to lack an SOS system, although NG1427 shows amino acid sequence similarity to the SOS response regulator LexA from Escherichia coli. Similar to LexA and other S24 peptidases, NG1427 undergoes autoproteolysis in vitro, which is facilitated by either the gonococcal or E. coli RecA proteins or high pH, and autoproteolysis requires the active and cleavage site residues conserved between LexA and NG1427. NG1427 controls a three gene regulon: itself; ng1428, a Neisseria-specific, putative integral membrane protein; and recN, a DNA repair gene known to be required for oxidative damage survival. Full NG1427 regulon de-repression requires RecA following methyl methanesulphonate or mitomycin C treatment, but is largely RecA-independent following hydrogen peroxide treatment. NG1427 binds specifically to the operator regions of the genes it controls, and DNA binding is abolished by oxidation of the single cysteine residue encoded in NG1427. We propose that NG1427 is inactivated independently of RecA by oxidation.
Collapse
Affiliation(s)
- Paul O P Schook
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
43
|
The three vibrio cholerae chromosome II-encoded ParE toxins degrade chromosome I following loss of chromosome II. J Bacteriol 2010; 193:611-9. [PMID: 21115657 DOI: 10.1128/jb.01185-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Three homologues of the plasmid RK2 ParDE toxin-antitoxin system are present in the Vibrio cholerae genome within the superintegron on chromosome II. Here we found that these three loci-two of which have identical open reading frames and regulatory sequences-encode functional toxin-antitoxin systems. The ParE toxins inhibit bacterial division and reduce viability, presumably due to their capacity to damage DNA. The in vivo effects of ParE1/3 mimic those of ParE2, which we have previously demonstrated to be a DNA gyrase inhibitor in vitro, suggesting that ParE1/3 is likewise a gyrase inhibitor, despite its relatively low degree of sequence identity. ParE-mediated DNA damage activates the V. cholerae SOS response, which in turn likely accounts for ParE's inhibition of cell division. Each toxin's effects can be prevented by the expression of its cognate ParD antitoxin, which acts in a toxin-specific fashion both to block toxicity and to repress the expression of its parDE operon. Derepression of ParE activity in ΔparAB2 mutant V. cholerae cells that have lost chromosome II contributes to the prominent DNA degradation that accompanies the death of these cells. Overall, our findings suggest that the ParE toxins lead to the postsegregational killing of cells missing chromosome II in a manner that closely mimics postsegregational killing mediated by plasmid-encoded homologs. Thus, the parDE loci aid in the maintenance of the integrity of the V. cholerae superintegron and in ensuring the inheritance of chromosome II.
Collapse
|
44
|
Abstract
A wide variety of biological experiments rely on the ability to express an exogenous gene in a transgenic animal at a defined level and in a spatially and temporally controlled pattern. We describe major improvements of the methods available for achieving this objective in Drosophila melanogaster. We have systematically varied core promoters, UTRs, operator sequences, and transcriptional activating domains used to direct gene expression with the GAL4, LexA, and Split GAL4 transcription factors and the GAL80 transcriptional repressor. The use of site-specific integration allowed us to make quantitative comparisons between different constructs inserted at the same genomic location. We also characterized a set of PhiC31 integration sites for their ability to support transgene expression of both drivers and responders in the nervous system. The increased strength and reliability of these optimized reagents overcome many of the previous limitations of these methods and will facilitate genetic manipulations of greater complexity and sophistication.
Collapse
|
45
|
Barreto K, Bharathikumar VM, Ricardo A, DeCoteau JF, Luo Y, Geyer CR. A genetic screen for isolating "lariat" Peptide inhibitors of protein function. ACTA ACUST UNITED AC 2010; 16:1148-57. [PMID: 19942138 DOI: 10.1016/j.chembiol.2009.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 09/30/2009] [Accepted: 10/19/2009] [Indexed: 10/20/2022]
Abstract
Functional genomic analyses provide information that allows hypotheses to be formulated on protein function. These hypotheses, however, need to be validated using reverse genetic approaches, which are difficult to perform on a large scale and in diploid organisms. We developed a genetic screen for isolating "lariat" peptides that function as trans dominant inhibitors of protein function. A lariat consists of a lactone-cyclized peptide with a covalently attached transcription activation domain, which allows combinatorial lariat libraries to be screened for protein interactions using the yeast two-hybrid assay. We isolated lariats against the bacterial repressor protein LexA. LexA regulates bacterial SOS response and LexA mutants that cannot undergo autoproteolysis make bacteria more sensitive to, and inhibit resistance against, cytotoxic reagents. We showed that an anti-LexA lariat blocked LexA autoproteolysis and potentiated the antimicrobial activity of mitomycin C.
Collapse
|
46
|
Jochmann N, Kurze AK, Czaja LF, Brinkrolf K, Brune I, Hüser AT, Hansmeier N, Pühler A, Borovok I, Tauch A. Genetic makeup of the Corynebacterium glutamicum LexA regulon deduced from comparative transcriptomics and in vitro DNA band shift assays. MICROBIOLOGY-SGM 2009; 155:1459-1477. [PMID: 19372162 DOI: 10.1099/mic.0.025841-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The lexA gene of Corynebacterium glutamicum ATCC 13032 was deleted to create the mutant strain C. glutamicum NJ2114, which has an elongated cell morphology and an increased doubling time. To characterize the SOS regulon in C. glutamicum, the transcriptomes of NJ2114 and a DNA-damage-induced wild-type strain were compared with that of a wild-type control using DNA microarray hybridization. The expression data were combined with bioinformatic pattern searches for LexA binding sites, leading to the detection of 46 potential SOS boxes located upstream of differentially expressed transcription units. Binding of a hexahistidyl-tagged LexA protein to 40 double-stranded oligonucleotides containing the potential SOS boxes was demonstrated in vitro by DNA band shift assays. It turned out that LexA binds not only to SOS boxes in the promoter-operator region of upregulated genes, but also to SOS boxes detected upstream of downregulated genes. These results demonstrated that LexA controls directly the expression of at least 48 SOS genes organized in 36 transcription units. The deduced genes encode a variety of physiological functions, many of them involved in DNA repair and survival after DNA damage, but nearly half of them have hitherto unknown functions. Alignment of the LexA binding sites allowed the corynebacterial SOS box consensus sequence TcGAA(a/c)AnnTGTtCGA to be deduced. Furthermore, the common intergenic region of lexA and the differentially expressed divS-nrdR operon, encoding a cell division suppressor and a regulator of deoxyribonucleotide biosynthesis, was characterized in detail. Promoter mapping revealed differences in divS-nrdR expression during SOS response and normal growth conditions. One of the four LexA binding sites detected in the intergenic region is involved in regulating divS-nrdR transcription, whereas the other sites are apparently used for negative autoregulation of lexA expression.
Collapse
Affiliation(s)
- Nina Jochmann
- International NRW Graduate School in Bioinformatics and Genome Research, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany.,Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 27, D-33615 Bielefeld, Germany
| | - Anna-Katharina Kurze
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 27, D-33615 Bielefeld, Germany
| | - Lisa F Czaja
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 27, D-33615 Bielefeld, Germany
| | - Karina Brinkrolf
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 27, D-33615 Bielefeld, Germany
| | - Iris Brune
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 27, D-33615 Bielefeld, Germany
| | - Andrea T Hüser
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 27, D-33615 Bielefeld, Germany
| | - Nicole Hansmeier
- Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA
| | - Alfred Pühler
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 27, D-33615 Bielefeld, Germany
| | - Ilya Borovok
- George S. Wise Faculty of Life Sciences, Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Andreas Tauch
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 27, D-33615 Bielefeld, Germany
| |
Collapse
|
47
|
Clauss M, Grotjohann N. Comparative mutagenesis of Escherichia coli strains with different repair deficiencies irradiated with 222-nm and 254-nm ultraviolet light. Mutat Res 2009; 673:83-6. [PMID: 19146982 DOI: 10.1016/j.mrgentox.2008.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 11/17/2008] [Accepted: 11/30/2008] [Indexed: 10/21/2022]
Abstract
Photoinactivation and reversion to tryptophan prototrophy were studied in four Escherichia coli strains with different repair deficiencies. Cells were irradiated with 222-nm wavelength UV emitted by an excimer lamp and with 254-nm wavelength UV emitted by a low-pressure mercury lamp. Strain DSM 9494 (trp(-)uvrA(+)) turned out to be most resistant while the strain DSM 9495 (trp(-)uvrA(-)), which is defective in nucleotide-excision repair (NER) was most sensitive to both wavelengths. UV-fluence rates for a respective inactivation were twice as high for 222-nm wavelength UV than for 254-nm UV. No clear difference in efficiency of inactivation could be observed between the two wavelengths in strains DSM 9496 (trp(-)uvrA(+) pKM101) and DSM 9497 (trp(-)uvrA(-) pKM101). In general, more revertants were induced by 254-nm wavelength UV, which corroborates the hypothesis that a higher amount of DNA damage was induced by this wavelength than by 222-nm UV, except for DSM 9497 where no clear difference could be observed regarding the number of revertants induced by both wavelengths. This strain DSM 9497 has a high sensitivity to certain oxidative mutagens compared with other strains, which is indicative of formation of reactive oxygen species during irradiation with 222-nm wavelength UV.
Collapse
Affiliation(s)
- Marcus Clauss
- Faculty of Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany.
| | | |
Collapse
|
48
|
Translesion DNA polymerases remodel the replisome and alter the speed of the replicative helicase. Proc Natl Acad Sci U S A 2009; 106:6031-8. [PMID: 19279203 DOI: 10.1073/pnas.0901403106] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
All cells contain specialized translesion DNA polymerases that replicate past sites of DNA damage. We find that Escherichia coli translesion DNA polymerase II (Pol II) and polymerase IV (Pol IV) function with DnaB helicase and regulate its rate of unwinding, slowing it to as little as 1 bp/s. Furthermore, Pol II and Pol IV freely exchange with the polymerase III (Pol III) replicase on the beta-clamp and function with DnaB helicase to form alternative replisomes, even before Pol III stalls at a lesion. DNA damage-induced levels of Pol II and Pol IV dominate the clamp, slowing the helicase and stably maintaining the architecture of the replication machinery while keeping the fork moving. We propose that these dynamic actions provide additional time for normal excision repair of lesions before the replication fork reaches them and also enable the appropriate translesion polymerase to sample each lesion as it is encountered.
Collapse
|
49
|
Lemmens K, De Bie T, Dhollander T, De Keersmaecker SC, Thijs IM, Schoofs G, De Weerdt A, De Moor B, Vanderleyden J, Collado-Vides J, Engelen K, Marchal K. DISTILLER: a data integration framework to reveal condition dependency of complex regulons in Escherichia coli. Genome Biol 2009; 10:R27. [PMID: 19265557 PMCID: PMC2690998 DOI: 10.1186/gb-2009-10-3-r27] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 01/15/2009] [Accepted: 03/06/2009] [Indexed: 11/13/2022] Open
Abstract
DISTILLER, a data integration framework for the inference of transcriptional module networks, is presented and used to investigate the condition dependency and modularity in Escherichia coli networks. We present DISTILLER, a data integration framework for the inference of transcriptional module networks. Experimental validation of predicted targets for the well-studied fumarate nitrate reductase regulator showed the effectiveness of our approach in Escherichia coli. In addition, the condition dependency and modularity of the inferred transcriptional network was studied. Surprisingly, the level of regulatory complexity seemed lower than that which would be expected from RegulonDB, indicating that complex regulatory programs tend to decrease the degree of modularity.
Collapse
Affiliation(s)
- Karen Lemmens
- Department of Electrical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Reifferscheid G, Buchinger S. Cell-based genotoxicity testing : genetically modified and genetically engineered bacteria in environmental genotoxicology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2009; 118:85-111. [PMID: 19543703 DOI: 10.1007/10_2009_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Genotoxicity test systems that are based on bacteria display an important role in the detection and assessment of DNA damaging chemicals. They belong to the basic line of test systems due to their easy realization, rapidness, broad applicability, high sensitivity and good reproducibility. Since the development of the Salmonella microsomal mutagenicity assay by Ames and coworkers in the early 1970s, significant development in bacterial genotoxicity assays was achieved and is still a subject matter of research. The basic principle of the mutagenicity assay is a reversion of a growth inhibited bacterial strain, e.g., due to auxotrophy, back to a fast growing phenotype (regain of prototrophy). Deeper knowledge of the -mutation events allows a mechanistic understanding of the induced DNA-damage by the utilization of base specific tester strains. Collections of such specific tester strains were extended by genetic engineering. Beside the reversion assays, test systems utilizing the bacterial SOS-response were invented. These methods are based on the fusion of various SOS-responsive promoters with a broad variety of reporter genes facilitating numerous methods of signal detection. A very important aspect of genotoxicity testing is the bioactivation of -xenobiotics to DNA-damaging compounds. Most widely used is the extracellular metabolic activation by making use of rodent liver homogenates. Again, genetic engineering allows the construction of highly sophisticated bacterial tester strains with significantly enhanced sensitivity due to overexpression of enzymes that are involved in the metabolism of xenobiotics. This provides mechanistic insights into the toxification and detoxification pathways of xenobiotics and helps explaining the chemical nature of hazardous substances in unknown mixtures. In summary, beginning with "natural" tester strains the rational design of bacteria led to highly specific and sensitive tools for a rapid, reliable and cost effective -genotoxicity testing that is of outstanding importance in the risk assessment of compounds (REACH) and in ecotoxicology.
Collapse
Affiliation(s)
- Georg Reifferscheid
- Division of Qualitative Hydrology, Federal Institute of Hydrology (BfG), Koblenz, 56068, Germany,
| | | |
Collapse
|