1
|
Mutational Activation of Antibiotic-Resistant Mechanisms in the Absence of Major Drug Efflux Systems of Escherichia coli. J Bacteriol 2021; 203:e0010921. [PMID: 33972351 DOI: 10.1128/jb.00109-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations are one of the common means by which bacteria acquire resistance to antibiotics. In an Escherichia coli mutant lacking major antibiotic efflux pumps AcrAB and AcrEF, mutations can activate alternative pathways that lead to increased antibiotic resistance. In this work, we isolated and characterized compensatory mutations of this nature mapping in four different regulatory genes, baeS, crp, hns, and rpoB. The gain-of-function mutations in baeS constitutively activated the BaeSR two-component regulatory system to increase the expression of the MdtABC efflux pump. Missense or insertion mutations in crp and hns caused derepression of an operon coding for the MdtEF efflux pump. Interestingly, despite the dependence of rpoB missense mutations on MdtABC for their antibiotic resistance phenotype, neither the expression of the mdtABCD-baeSR operon nor that of other known antibiotic efflux pumps went up. Instead, the transcriptome sequencing (RNA-seq) data revealed a gene expression profile resembling that of a "stringent" RNA polymerase where protein and DNA biosynthesis pathways were downregulated but pathways to combat various stresses were upregulated. Some of these activated stress pathways are also controlled by the general stress sigma factor RpoS. The data presented here also show that compensatory mutations can act synergistically to further increase antibiotic resistance to a level similar to the efflux pump-proficient parental strain. Together, the findings highlight a remarkable genetic ability of bacteria to circumvent antibiotic assault, even in the absence of a major intrinsic antibiotic resistance mechanism. IMPORTANCE Antibiotic resistance among bacterial pathogens is a chronic health concern. Bacteria possess or acquire various mechanisms of antibiotic resistance, and chief among them is the ability to accumulate beneficial mutations that often alter antibiotic targets. Here, we explored E. coli's ability to amass mutations in a background devoid of a major constitutively expressed efflux pump and identified mutations in several regulatory genes that confer resistance by activating specific or pleiotropic mechanisms.
Collapse
|
2
|
Evolutionary Rescue and Drug Resistance on Multicopy Plasmids. Genetics 2020; 215:847-868. [PMID: 32461266 DOI: 10.1534/genetics.119.303012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/15/2020] [Indexed: 11/18/2022] Open
Abstract
Bacteria often carry "extra DNA" in the form of plasmids in addition to their chromosome. Many plasmids have a copy number greater than one such that the genes encoded on these plasmids are present in multiple copies per cell. This has evolutionary consequences by increasing the mutational target size, by prompting the (transitory) co-occurrence of mutant and wild-type alleles within the same cell, and by allowing for gene dosage effects. We develop and analyze a mathematical model for bacterial adaptation to harsh environmental change if adaptation is driven by beneficial alleles on multicopy plasmids. Successful adaptation depends on the availability of advantageous alleles and on their establishment probability. The establishment process involves the segregation of mutant and wild-type plasmids to the two daughter cells, allowing for the emergence of mutant homozygous cells over the course of several generations. To model this process, we use the theory of multitype branching processes, where a type is defined by the genetic composition of the cell. Both factors-the availability of advantageous alleles and their establishment probability-depend on the plasmid copy number, and they often do so antagonistically. We find that in the interplay of various effects, a lower or higher copy number may maximize the probability of evolutionary rescue. The decisive factor is the dominance relationship between mutant and wild-type plasmids and potential gene dosage effects. Results from a simple model of antibiotic degradation indicate that the optimal plasmid copy number may depend on the specific environment encountered by the population.
Collapse
|
3
|
d’Aquino AE, Azim T, Aleksashin NA, Hockenberry AJ, Krüger A, Jewett MC. Mutational characterization and mapping of the 70S ribosome active site. Nucleic Acids Res 2020; 48:2777-2789. [PMID: 32009164 PMCID: PMC7049736 DOI: 10.1093/nar/gkaa001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/06/2019] [Accepted: 01/03/2020] [Indexed: 12/20/2022] Open
Abstract
The synthetic capability of the Escherichia coli ribosome has attracted efforts to repurpose it for novel functions, such as the synthesis of polymers containing non-natural building blocks. However, efforts to repurpose ribosomes are limited by the lack of complete peptidyl transferase center (PTC) active site mutational analyses to inform design. To address this limitation, we leverage an in vitro ribosome synthesis platform to build and test every possible single nucleotide mutation within the PTC-ring, A-loop and P-loop, 180 total point mutations. These mutant ribosomes were characterized by assessing bulk protein synthesis kinetics, readthrough, assembly, and structure mapping. Despite the highly-conserved nature of the PTC, we found that >85% of the PTC nucleotides possess mutational flexibility. Our work represents a comprehensive single-point mutant characterization and mapping of the 70S ribosome's active site. We anticipate that it will facilitate structure-function relationships within the ribosome and make possible new synthetic biology applications.
Collapse
Affiliation(s)
- Anne E d’Aquino
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Tasfia Azim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Nikolay A Aleksashin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Adam J Hockenberry
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Antje Krüger
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Michael C Jewett
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
4
|
d'Aquino AE, Kim DS, Jewett MC. Engineered Ribosomes for Basic Science and Synthetic Biology. Annu Rev Chem Biomol Eng 2018; 9:311-340. [DOI: 10.1146/annurev-chembioeng-060817-084129] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ribosome is the cell's factory for protein synthesis. With protein synthesis rates of up to 20 amino acids per second and at an accuracy of 99.99%, the extraordinary catalytic capacity of the bacterial translation machinery has attracted extensive efforts to engineer, reconstruct, and repurpose it for biochemical studies and novel functions. Despite these efforts, the potential for harnessing the translation apparatus to manufacture bio-based products beyond natural limits remains underexploited, and fundamental constraints on the chemistry that the ribosome's RNA-based active site can carry out are unknown. This review aims to cover the past and present advances in ribosome design and engineering to understand the fundamental biology of the ribosome to facilitate the construction of synthetic manufacturing machines. The prospects for the development of engineered, or designer, ribosomes for novel polymer synthesis are reviewed, future challenges are considered, and promising advances in a variety of applications are discussed.
Collapse
Affiliation(s)
- Anne E. d'Aquino
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA
| | - Do Soon Kim
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Michael C. Jewett
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
5
|
Kannan K, Mankin AS. Macrolide antibiotics in the ribosome exit tunnel: species-specific binding and action. Ann N Y Acad Sci 2012; 1241:33-47. [PMID: 22191525 DOI: 10.1111/j.1749-6632.2011.06315.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Macrolide antibiotics bind in the nascent peptide exit tunnel of the ribosome and inhibit protein synthesis. The majority of information on the principles of binding and action of these antibiotics comes from studies that employed model organisms. However, there is a growing understanding that the binding of macrolides to their target, as well as the mode of inhibition of translation, can be strongly influenced by variations in ribosome structure between bacterial species. Awareness of the existence of species-specific differences in drug action and appreciation of the extent of these differences can stimulate future work on developing better macrolide drugs. In this review, representative cases illustrating the organism-specific binding and action of macrolide antibiotics, as well as species-specific mechanisms of resistance are analyzed.
Collapse
Affiliation(s)
- Krishna Kannan
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 60607, USA
| | | |
Collapse
|
6
|
Bogdanov AA, Sumbatyan NV, Shishkina AV, Karpenko VV, Korshunova GA. Ribosomal tunnel and translation regulation. BIOCHEMISTRY (MOSCOW) 2011; 75:1501-16. [DOI: 10.1134/s0006297910130018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
7
|
Abstract
Protein synthesis is one of the major targets in the cell for antibiotics. This review endeavors to provide a comprehensive "post-ribosome structure" A-Z of the huge diversity of antibiotics that target the bacterial translation apparatus, with an emphasis on correlating the vast wealth of biochemical data with more recently available ribosome structures, in order to understand function. The binding site, mechanism of action, and modes of resistance for 26 different classes of protein synthesis inhibitors are presented, ranging from ABT-773 to Zyvox. In addition to improving our understanding of the process of translation, insight into the mechanism of action of antibiotics is essential to the development of novel and more effective antimicrobial agents to combat emerging bacterial resistance to many clinically-relevant drugs.
Collapse
Affiliation(s)
- Daniel N Wilson
- Gene Center and Department of Chemistry and Biochemistry, University of Munich, LMU, Munich, Germany.
| |
Collapse
|
8
|
Mankin AS. Macrolide myths. Curr Opin Microbiol 2008; 11:414-21. [PMID: 18804176 DOI: 10.1016/j.mib.2008.08.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 08/11/2008] [Accepted: 08/22/2008] [Indexed: 10/21/2022]
Abstract
In spite of decades of research, our knowledge of the mode of interaction of macrolide antibiotics with their ribosomal target and of the mechanism of action of these drugs remain fragmentary. Experimental facts obtained over the past several years question some of the concepts that were viewed as a 'common knowledge'. This review focuses on certain aspects of binding and action of macrolides that may need re-evaluation in view of the new findings.
Collapse
Affiliation(s)
- Alexander S Mankin
- Center for Pharmaceutical Biotechnology-m/c 870, University of Illinois at Chicago, 900 S. Ashland Avenue, Room 3052, Chicago, IL 60607, USA.
| |
Collapse
|
9
|
Sherman D, Xiong L, Mankin AS, Melman A. Synthesis and biological investigation of new 4″-malonyl tethered derivatives of erythromycin and clarithromycin. Bioorg Med Chem Lett 2006; 16:1506-9. [PMID: 16387493 DOI: 10.1016/j.bmcl.2005.12.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 12/12/2005] [Indexed: 11/28/2022]
Abstract
A new approach to 4''-substituted derivatives of erythromycin and clarithromycin was developed by converting them into corresponding 4''-malonic monoesters. Subsequent carbodiimide coupling with alcohols and amines provided new macrolide derivatives that are capable of binding to 50S ribosomal subunits and inhibiting protein synthesis in cell-free system.
Collapse
Affiliation(s)
- Daniel Sherman
- Department of Organic Chemistry, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
10
|
Beyer D, Pepper K. The streptogramin antibiotics: update on their mechanism of action. Expert Opin Investig Drugs 2005; 7:591-9. [PMID: 15991995 DOI: 10.1517/13543784.7.4.591] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Antibiotics of the streptogramin class are an association of two types of chemically different compounds, group A molecules and group B molecules, acting in synergy. The combination of these molecules generally inhibits bacterial growth at a lower concentration than does either the group A or group B molecule alone and is often bactericidal against strains of bacteria for which each type of molecule alone is only bacteriostatic. The semisynthetic streptogramin quinupristin/dalfopristin (RP 59500), the first water-soluble member of this class, is under development for the treatment of severe infections caused by methicillin-resistant Staphylococcus aureus, methicillin-resistant Staphylococcus epidermidis, penicillin-resistant Streptococcus pneumoniae, glycopeptide-resistant Enterococcus faecium, and other organisms. The streptogramins block the translation of mRNA into protein. Both group A and group B molecules bind to the peptidyl-transferase domain of the bacterial ribosome. The group B molecule stimulates the dissociation of peptidyl-tRNA from the ribosome and may interfere with the passage of the completed polypeptide away from the peptidyl-transferase centre. The group A molecule inhibits the elongation of the polypeptide chain by preventing both the binding of aminoacyl-tRNA to the ribosomal A site and the formation of the peptide bond. When the two types of molecule are used in combination, the binding of the group A molecule alters the conformation of the ribosome such that the affinity of the ribosome for the B molecule is increased. This accounts, in part or entirely, for the observed synergy. This synergy is unaffected by ribosomal modifications conferring resistance to the macrolides, lincosamides, and group B molecules alone.
Collapse
Affiliation(s)
- D Beyer
- Rhône-Poulenc Rorer S. A., Centre de Recherche, 13 Quai Jules Guesde, F-94403 Vitry sur Seine, France.
| | | |
Collapse
|
11
|
Xiong L, Korkhin Y, Mankin AS. Binding site of the bridged macrolides in the Escherichia coli ribosome. Antimicrob Agents Chemother 2005; 49:281-8. [PMID: 15616307 PMCID: PMC538896 DOI: 10.1128/aac.49.1.281-288.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ketolides represent the latest group of macrolide antibiotics. Tight binding of ketolides to the ribosome appears to correlate with the presence of an extended alkyl-aryl side chain. Recently developed 6,11-bridged bicyclic ketolides extend the spectrum of platforms used to generate new potent macrolides with extended alkyl-aryl side chains. The purpose of the present study was to characterize the site of binding and the action of bridged macrolides in the ribosomes of Escherichia coli. All the bridged macrolides investigated efficiently protected A2058 and A2059 in domain V of 23S rRNA from modification by dimethyl sulfate and U2609 from modification by carbodiimide. In addition, bridged macrolides that carry extended alkyl-aryl side chains protruding from the 6,11 bridge protected A752 in helix 35 of domain II of 23S rRNA from modification by dimethyl sulfate. Bridged macrolides efficiently displaced erythromycin from the ribosome in a competition binding assay. The A2058G mutation in 23S rRNA conferred resistance to the bridged macrolides. The U2609C mutation, which renders E. coli resistant to the previously studied ketolides telithromycin and cethromycin, barely affected cell susceptibility to the bridged macrolides used in this study. The results of the biochemical and genetic studies indicate that in the E. coli ribosome, bridged macrolides bind in the nascent peptide exit tunnel at the site previously described for other macrolide antibiotics. The presence of the side chain promotes the formation of specific interactions with the helix 35 of 23S rRNA.
Collapse
Affiliation(s)
- Liqun Xiong
- Center for Pharmaceutical Biotechnology, University of Illinois, 900 S. Ashland Ave., Chicago, IL 60607, USA
| | | | | |
Collapse
|
12
|
Cochella L, Green R. Isolation of antibiotic resistance mutations in the rRNA by using an in vitro selection system. Proc Natl Acad Sci U S A 2004; 101:3786-91. [PMID: 15001709 PMCID: PMC374322 DOI: 10.1073/pnas.0307596101] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic, biochemical, and structural data support an essential role for the ribosomal RNA in all steps of the translation process. Although in vivo genetic selection techniques have been used to identify mutations in the rRNAs that result in various miscoding phenotypes and resistance to known ribosome-targeted antibiotics, these are limited because the resulting mutant ribosomes must be only marginally disabled if they are able to support growth of the cell. Furthermore, in vivo, it is not possible to control the environment in precise ways that might allow for the isolation of certain types of rRNA variants. To overcome these limitations, we have developed an in vitro selection system for the isolation of functionally competent ribosomal particles from populations containing variant rRNAs. Here, we describe this system and present an example of its application to the selection of antibiotic resistance mutations. From a pool of 4,096 23S rRNA variants, a double mutant (A2058U/A2062G) was isolated after iteration of the selection process. This mutant was highly resistant to clindamycin in in vitro translation reactions and yet was not viable in Escherichia coli. These data establish that this system has the potential to identify mutations in the rRNA not readily accessed by comparable in vivo systems, thus allowing for more exhaustive ribosomal genetic screens.
Collapse
Affiliation(s)
- Luisa Cochella
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
13
|
Garza-Ramos G, Xiong L, Zhong P, Mankin A. Binding site of macrolide antibiotics on the ribosome: new resistance mutation identifies a specific interaction of ketolides with rRNA. J Bacteriol 2001; 183:6898-907. [PMID: 11698379 PMCID: PMC95531 DOI: 10.1128/jb.183.23.6898-6907.2001] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Macrolides represent a clinically important class of antibiotics that block protein synthesis by interacting with the large ribosomal subunit. The macrolide binding site is composed primarily of rRNA. However, the mode of interaction of macrolides with rRNA and the exact location of the drug binding site have yet to be described. A new class of macrolide antibiotics, known as ketolides, show improved activity against organisms that have developed resistance to previously used macrolides. The biochemical reasons for increased potency of ketolides remain unknown. Here we describe the first mutation that confers resistance to ketolide antibiotics while leaving cells sensitive to other types of macrolides. A transition of U to C at position 2609 of 23S rRNA rendered E. coli cells resistant to two different types of ketolides, telithromycin and ABT-773, but increased slightly the sensitivity to erythromycin, azithromycin, and a cladinose-containing derivative of telithromycin. Ribosomes isolated from the mutant cells had reduced affinity for ketolides, while their affinity for erythromycin was not diminished. Possible direct interaction of ketolides with position 2609 in 23S rRNA was further confirmed by RNA footprinting. The newly isolated ketolide-resistance mutation, as well as 23S rRNA positions shown previously to be involved in interaction with macrolide antibiotics, have been modeled in the crystallographic structure of the large ribosomal subunit. The location of the macrolide binding site in the nascent peptide exit tunnel at some distance from the peptidyl transferase center agrees with the proposed model of macrolide inhibitory action and explains the dominant nature of macrolide resistance mutations. Spatial separation of the rRNA residues involved in universal contacts with macrolides from those believed to participate in structure-specific interactions with ketolides provides the structural basis for the improved activity of the broader spectrum group of macrolide antibiotics.
Collapse
Affiliation(s)
- G Garza-Ramos
- Center for Pharmaceutical Biotechnology, University of Illinois, 900 S. Ashland Ave., Chicago, IL 60607, USA
| | | | | | | |
Collapse
|
14
|
Lee K, Holland-Staley CA, Cunningham PR. Genetic approaches to studying protein synthesis: effects of mutations at Psi516 and A535 in Escherichia coli 16S rRNA. J Nutr 2001; 131:2994S-3004S. [PMID: 11694635 DOI: 10.1093/jn/131.11.2994s] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A genetic system for the study of ribosomal RNA function and structure was developed. First, the ribosome binding sequence of the chloramphenicol acetyltransferase gene and the message binding sequence of 16S ribosomal RNA were randomly mutated and alternative highly functional sequences were selected and characterized. From this set of mutants, a single clone was chosen and subjected to a second round of mutagenesis to optimize the specificity of the system. In the resulting system, plasmid-encoded ribosomes efficiently and exclusively translate specific mRNA containing the appropriate ribosome binding sequences. This system allows facile isolation and analysis of mutations that would normally be lethal and allows direct selection of rRNA mutants with predetermined levels of ribosome function. The system was used to examine the effects of mutations at the sole pseudouridine (Psi) in Escherichia coli 16S rRNA which is located at position 516 of the conserved 530 loop. The nucleotide opposite Psi516 in the hairpin, A535, was also mutated. The data show that a pyrimidine (Psi or C) is required at position 516, while substitutions at position 535 reduce ribosome function by < 50%. A requirement for base pair formation between Psi516 and A535 was not indicated.
Collapse
Affiliation(s)
- K Lee
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | | |
Collapse
|
15
|
Springer B, Kidan YG, Prammananan T, Ellrott K, Böttger EC, Sander P. Mechanisms of streptomycin resistance: selection of mutations in the 16S rRNA gene conferring resistance. Antimicrob Agents Chemother 2001; 45:2877-84. [PMID: 11557484 PMCID: PMC90746 DOI: 10.1128/aac.45.10.2877-2884.2001] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromosomally acquired streptomycin resistance is frequently due to mutations in the gene encoding the ribosomal protein S12, rpsL. The presence of several rRNA operons (rrn) and a single rpsL gene in most bacterial genomes prohibits the isolation of streptomycin-resistant mutants in which resistance is mediated by mutations in the 16S rRNA gene (rrs). Three strains were constructed in this investigation: Mycobacterium smegmatis rrnB, M. smegmatis rpsL(3+), and M. smegmatis rrnB rpsL(3+). M. smegmatis rrnB carries a single functional rrn operon, i.e., rrnA (comprised of 16S, 23S, and 5S rRNA genes) and a single rpsL+ gene; M. smegmatis rpsL(3+) is characterized by the presence of two rrn operons (rrnA and rrnB) and three rpsL+ genes; and M. smegmatis rrnB rpsL(3+) carries a single functional rrn operon (rrnA) and three rpsL+ genes. By genetically altering the number of rpsL and rrs alleles in the bacterial genome, mutations in rrs conferring streptomycin resistance could be selected, as revealed by analysis of streptomycin-resistant derivatives of M. smegmatis rrnB rpsL(3+). Besides mutations well known to confer streptomycin resistance, novel streptomycin resistance conferring mutations were isolated. Most of the mutations were found to map to a functional pseudoknot structure within the 530 loop region of the 16S rRNA. One of the mutations observed, i.e., 524G-->C, severely distorts the interaction between nucleotides 524G and 507C, a Watson-Crick interaction which has been thought to be essential for ribosome function. The use of the single rRNA allelic M. smegmatis strain should help to elucidate the principles of ribosome-drug interactions.
Collapse
Affiliation(s)
- B Springer
- Institut für Medizinische Mikrobiologie, Medizinische Hochschule Hannover, 30623 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Adrian PV, Mendrick C, Loebenberg D, McNicholas P, Shaw KJ, Klugman KP, Hare RS, Black TA. Evernimicin (SCH27899) inhibits a novel ribosome target site: analysis of 23S ribosomal DNA mutants. Antimicrob Agents Chemother 2000; 44:3101-6. [PMID: 11036030 PMCID: PMC101610 DOI: 10.1128/aac.44.11.3101-3106.2000] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2000] [Accepted: 08/21/2000] [Indexed: 11/20/2022] Open
Abstract
Spontaneous mutants of susceptible clinical and laboratory isolates of Streptococcus pneumoniae exhibiting reduced susceptibility to evernimicin (SCH27899; MIC, 0.5 to 4.0 mg/liter) were selected on plates containing evernimicin. Four isolates that did not harbor mutations in rplP (which encodes ribosomal protein L16) were further analyzed. Whole chromosomal DNA or PCR products of the 23S ribosomal DNA (rDNA) operons from these mutants could be used to transform the susceptible S. pneumoniae strain R6 to resistance at frequencies of 10(-5) and 10(-4), respectively, rates 10- to 100-fold lower than that for a single-allele chromosomal marker. The transformants appeared slowly (48 to 72 h) on selective medium, and primary transformants passaged on nonselective medium produced single colonies that displayed heterogeneous susceptibilities to evernimicin. A single passage on selective medium of colonies derived from a single primary transformant homogenized the resistance phenotype. Sequence analysis of the 23S rDNA and rRNA from the resistant mutants revealed single, unique mutations in each isolate at the equivalent Escherichia coli positions 2469 (A --> C), 2480 (C --> T), 2535 (G --> A), and 2536 (G --> C). The mutations map within two different stems of the peptidyltransferase region of domain V. Because multiple copies of rDNA are present in the chromosome, gene conversion between mutant and wild-type 23S rDNA alleles may be necessary for stable resistance. Additionally, none of the characterized mutants showed cross-resistance to any of a spectrum of protein synthesis inhibitors, suggesting that the target site of evernimicin may be unique.
Collapse
MESH Headings
- Alleles
- Aminoglycosides
- Anti-Bacterial Agents/pharmacology
- Bacterial Proteins/genetics
- Base Sequence
- DNA, Bacterial/genetics
- Drug Resistance, Microbial
- Humans
- Microbial Sensitivity Tests
- Molecular Sequence Data
- Mutation
- Nucleic Acid Conformation
- RNA, Bacterial/analysis
- RNA, Bacterial/genetics
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/drug effects
- RNA, Ribosomal, 23S/genetics
- Streptococcus pneumoniae/drug effects
- Streptococcus pneumoniae/genetics
- Transformation, Bacterial
Collapse
Affiliation(s)
- P V Adrian
- Pneumococcal Diseases Research Unit, South African Institute for Medical Research, University of the Witwatersrand, and the Medical Research Council, Johannesburg, South Africa.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Triman KL. Mutational analysis of 23S ribosomal RNA structure and function in Escherichia coli. ADVANCES IN GENETICS 1999; 41:157-95. [PMID: 10494619 DOI: 10.1016/s0065-2660(08)60153-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Affiliation(s)
- K L Triman
- Department of Biology, Franklin and Marshall College, Lancaster, Pennsylvania 17604, USA
| |
Collapse
|
18
|
Xiong L, Shah S, Mauvais P, Mankin AS. A ketolide resistance mutation in domain II of 23S rRNA reveals the proximity of hairpin 35 to the peptidyl transferase centre. Mol Microbiol 1999; 31:633-9. [PMID: 10027979 DOI: 10.1046/j.1365-2958.1999.01203.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ketolides represent a new generation of macrolide antibiotics. In order to identify the ketolide-binding site on the ribosome, a library of Escherichia coli clones, transformed with a plasmid carrying randomly mutagenized rRNA operon, was screened for mutants exhibiting resistance to the ketolide HMR3647. Sequencing of the plasmid isolated from one of the resistant clones and fragment exchange demonstrated that a single U754A mutation in hairpin 35 of domain II of the E. coli 23S rRNA was sufficient to confer resistance to low concentrations of the ketolide. The same mutation also conferred erythromycin resistance. Both the ketolide and erythromycin protected A2058 and A2059 in domain V of 23S rRNA from modification with dimethyl sulphate, whereas, in domain II, the ketolide protected, while erythromycin enhanced, modification of A752 in the loop of the hairpin 35. Thus, mutational and footprinting results strongly suggest that the hairpin 35 constitutes part of the macrolide binding site on the ribosome. Strong interaction of ketolides with the hairpin 35 in 23S rRNA may account for the high activity of ketolides against erythromycin-resistant strains containing rRNA methylated at A2058. The existence of macrolide resistance mutations in the central loop of domain V and in hairpin 35 in domain II together with antibiotic footprinting data suggest that these rRNA segments may be in close proximity in the ribosome and that hairpin 35 may be a constituent part of the ribosomal peptidyl transferase centre.
Collapse
Affiliation(s)
- L Xiong
- Center for Pharmaceutical Biotechnology, University of Illinois, Chicago 60607, USA
| | | | | | | |
Collapse
|
19
|
Unge J, berg A, Al-Kharadaghi S, Nikulin A, Nikonov S, Davydova N, Nevskaya N, Garber M, Liljas A. The crystal structure of ribosomal protein L22 from Thermus thermophilus: insights into the mechanism of erythromycin resistance. Structure 1998; 6:1577-86. [PMID: 9862810 DOI: 10.1016/s0969-2126(98)00155-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND . The ribosomal protein L22 is one of five proteins necessary for the formation of an early folding intermediate of the 23S rRNA. L22 has been found on the cytoplasmic side of the 50S ribosomal subunit. It can also be labeled by an erythromycin derivative bound close to the peptidyl-transfer center at the interface side of the 50S subunit, and the amino acid sequence of an erythromycin-resistant mutant is known. Knowing the structure of the protein may resolve this apparent conflict regarding the location of L22 on the ribosome. RESULTS . The structure of Thermus thermophilus L22 was solved using X-ray crystallography. L22 consists of a small alpha+beta domain and a protruding beta hairpin that is 30 A long. A large part of the surface area of the protein has the potential to be involved in interactions with rRNA. A structural similarity to other RNA-binding proteins is found, possibly indicating a common evolutionary origin. CONCLUSIONS . The extensive surface area of L22 has the characteristics of an RNA-binding protein, consistent with its role in the folding of the 23S rRNA. The erythromycin-resistance conferring mutation is located in the protruding beta hairpin that is postulated to be important in L22-rRNA interactions. This region of the protein might be at the erythromycin-binding site close to the peptidyl transferase center, whereas the opposite end may be exposed to the cytoplasm.
Collapse
Affiliation(s)
- J Unge
- Molecular Biophysics, Lund University, PO Box 124 221 00 Lund, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Clones expressing pentapeptides conferring resistance to a ketolide antibiotic, HMR3004, were selected from a random pentapeptide mini-gene library. The pentapeptide MRFFV conferred the highest level of resistance and was encoded in three different mini-genes. Comparison of amino acid sequences of peptides conferring resistance to a ketolide with those conferring resistance to erythromycin reveals a correspondence between the peptide sequence and the chemical structure of macrolide antibiotic, indicating possible interaction between the peptide and the drug on the ribosome. Based on these observations, a "bottle brush" model of action of macrolide resistance peptides is proposed, in which newly translated peptide interacts with the macrolide molecule on the ribosome and actively displaces it from its binding site. Temporal "cleaning" of the ribosome from the bound antibiotic may be sufficient to allow continuation of protein synthesis even despite the presence of the drug in the medium.
Collapse
Affiliation(s)
- S Tripathi
- Center for Pharmaceutical Biotechnology, University of Illinois, Chicago, Illinois 60607, USA
| | | | | |
Collapse
|
21
|
Occhialini A, Urdaci M, Doucet-Populaire F, Bébéar CM, Lamouliatte H, Mégraud F. Macrolide resistance in Helicobacter pylori: rapid detection of point mutations and assays of macrolide binding to ribosomes. Antimicrob Agents Chemother 1997; 41:2724-8. [PMID: 9420046 PMCID: PMC164196 DOI: 10.1128/aac.41.12.2724] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Resistance of Helicobacter pylori to macrolides is a major cause of failure of eradication therapies. Single base substitutions in the H. pylori 23S rRNA genes have been associated with macrolide resistance in the United States. Our goal was to extend this work to European strains, to determine the consequence of this mutation on erythromycin binding to H. pylori ribosomes, and to find a quick method to detect the mutation. Seven pairs of H. pylori strains were used, the parent strain being naturally susceptible to macrolides and the second strain having acquired an in vivo resistance during a treatment regimen that included clarithromycin. The identity of the strains was confirmed by random amplified polymorphic DNA testing with two different primers, indicating that resistance was the result of the selection of variants of the infecting strain. All resistant strains were found to have point mutations at position 2143 (three cases) or 2144 (four cases) but never on the opposite DNA fragment of domain V of the 23S rRNA gene. The mutation was A-->G in all cases except one (A-->C) at position 2143. Using BsaI and BbsI restriction enzymes on the amplified products, we confirmed the mutations of A-->G at positions 2144 and 2143, respectively. Macrolide binding was tested on purified ribosomes isolated from four pairs of strains with [14C]erythromycin. Erythromycin binding increased in a dose-dependent manner for the susceptible strain but not for the resistant one. In conclusion we suggest that the limited disruption of the peptidyltransferase loop conformation, caused by a point mutation, reduces drug binding and consequently confers resistance to macrolides. Finally, the macrolide resistance could be detected without sequencing by performing restriction fragment length polymorphism with appropriate restriction enzymes.
Collapse
Affiliation(s)
- A Occhialini
- Laboratoire de Bactériologie, Hôpital Pellegrin, and Université de Bordeaux 2, France
| | | | | | | | | | | |
Collapse
|
22
|
Tenson T, DeBlasio A, Mankin A. A functional peptide encoded in the Escherichia coli 23S rRNA. Proc Natl Acad Sci U S A 1996; 93:5641-6. [PMID: 8643630 PMCID: PMC39301 DOI: 10.1073/pnas.93.11.5641] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A pentapeptide open reading frame equipped with a canonical ribosome-binding site is present in the Escherichia coli 23S rRNA. Overexpression of 23S rRNA fragments containing the mini-gene renders cells resistant to the ribosome-inhibiting antibiotic erythromycin. Mutations that change either the initiator or stop codons of the peptide mini-gene result in the loss of erythromycin resistance. Nonsense mutations in the mini-gene also abolish erythromycin resistance, which can be restored in the presence of the suppressor tRNA, thus proving that expression of the rRNA-encoded peptide is essential for the resistance phenotype. The ribosome appears to be the likely target of action of the rRNA-encoded pentapeptide, because in vitro translation of the peptide mini-gene decreases the inhibitory action of erythromycin on cell-free protein synthesis. Thus, the new mechanism of drug resistance reveals that in addition to the structural and functional role of rRNA in the ribosome, it may also have a peptide-coding function.
Collapse
Affiliation(s)
- T Tenson
- Center for Pharmaceutical Biotechnology, University of Illinois, Chicago 60607-7173, USA
| | | | | |
Collapse
|
23
|
Lucier TS, Heitzman K, Liu SK, Hu PC. Transition mutations in the 23S rRNA of erythromycin-resistant isolates of Mycoplasma pneumoniae. Antimicrob Agents Chemother 1995; 39:2770-3. [PMID: 8593017 PMCID: PMC163027 DOI: 10.1128/aac.39.12.2770] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Erythromycin is the drug of choice for treatment of Mycoplasma pneumoniae infections due to its susceptibility to low levels of this antibiotic. After exposure of susceptible strains to erythromycin in vitro and in vivo, mutants resistant to erythromycin and other macrolides were isolated. Their phenotypes have been characterized, but the genetic basis for resistance has never been determined. We isolated two resistant mutants (M129-ER1 and M129-ER2) by growing M. pneumoniae M129 on agar containing different amounts of erythromycin. In broth dilution tests both strains displayed resistance to high levels of several macrolide-lincosamide-streptogramin B (MLS) antibiotics. In binding studies, ribosomes isolated from the resistant strains exhibited significantly lower affinity for [14C]erythromycin than did ribosomes from the M129 parent strain. Sequencing of DNA amplified from the region of the 2S rRNA gene encoding domain V revealed an A-to-G transition in the central loop at position 2063 of M129-ER1 and a similar A-to-G transition at position 2064 in M129-ER2. Transitions at homologous locations in the 23S rRNA from other organisms have been shown to result in resistance to MLS antibiotics. Thus, MLS-like resistance can occur in M. pneumoniae as the result of point mutations in the 23S rRNA gene which reduce the affinity of these antibiotics for the ribosome. Since they involve only single-base changes, development of resistance to erythromycin in vivo by these mechanisms could be relatively frequent event.
Collapse
Affiliation(s)
- T S Lucier
- Department of Pediatrics, University of North Carolina at Chapel Hill 27599, USA
| | | | | | | |
Collapse
|
24
|
Chittum HS, Champney WS. Erythromycin inhibits the assembly of the large ribosomal subunit in growing Escherichia coli cells. Curr Microbiol 1995; 30:273-9. [PMID: 7766155 DOI: 10.1007/bf00295501] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Erythromycin and other macrolide antibiotics have been examined for their effects on ribosome assembly in growing Escherichia coli cells. Formation of the 50S ribosomal subunit was specifically inhibited by erythromycin and azithromycin. Other related compounds tested, including oleandomycin, clarithromycin, spiramycin, and virginiamycin M1, did not influence assembly. Erythromycin did not promote the breakdown of ribosomes formed in the absence of the drug. Two erythromycin-resistant mutants with alterations in ribosomal proteins L4 and L22 were also examined for an effect on assembly. Subunit assembly was affected in the mutant containing the L22 alteration only at erythromycin concentrations fourfold greater than those needed to stop assembly in wild-type cells. Ribosomal subunit assembly was only marginally affected at the highest drug concentration tested in the cells that contained the altered L4 protein. These novel results indicate that erythromycin has two effects on translation, preventing elongation of the polypeptide chain and also inhibiting the formation of the large ribosomal subunit.
Collapse
Affiliation(s)
- H S Chittum
- Department of Biochemistry, J.H. Quillen College of Medicine, East Tennessee State University, Johnson City 37614, USA
| | | |
Collapse
|
25
|
Affiliation(s)
- B Weisblum
- Department of Pharmacology, University of Wisconsin Medical School, Madison 53706, USA
| |
Collapse
|
26
|
Triman KL. Mutational analysis of 16S ribosomal RNA structure and function in Escherichia coli. ADVANCES IN GENETICS 1995; 33:1-39. [PMID: 7484450 DOI: 10.1016/s0065-2660(08)60329-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- K L Triman
- Department of Biology, Franklin and Marshall College, Lancaster, Pennsylvania 17604, USA
| |
Collapse
|
27
|
Chittum HS, Champney WS. Ribosomal protein gene sequence changes in erythromycin-resistant mutants of Escherichia coli. J Bacteriol 1994; 176:6192-8. [PMID: 7928988 PMCID: PMC196958 DOI: 10.1128/jb.176.20.6192-6198.1994] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The genes for ribosomal proteins L4 and L22 from two erythromycin-resistant mutants of Escherichia coli have been isolated and sequenced. In the L4 mutant, an A-to-G transition in codon 63 predicted a Lys-to-Glu change in the protein. In the L22 strain, a 9-bp deletion removed codons 82 to 84, eliminating the sequence Met-Lys-Arg from the protein. Consistent with these DNA changes, in comparison with wild-type proteins, both mutant proteins had reduced first-dimension mobilities in two-dimensional polyacrylamide gels. Complementation of each mutation by a wild-type gene on a plasmid vector resulted in increased erythromycin sensitivity in the partial-diploid strains. The fraction of ribosomes containing the mutant form of the protein was increased by growth in the presence of erythromycin. Erythromycin binding was increased by the fraction of wild-type protein present in the ribosome population. The strain with the L4 mutation was found to be cold sensitive for growth at 20 degrees C, and 50S-subunit assembly was impaired at this temperature. The mutated sequences are highly conserved in the corresponding proteins from a number of species. The results indicate the participation of these proteins in the interaction of erythromycin with the ribosome.
Collapse
Affiliation(s)
- H S Chittum
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | | |
Collapse
|
28
|
Vannuffel P, Di Giambattista M, Cocito C. The role of rRNA bases in the interaction of peptidyltransferase inhibitors with bacterial ribosomes. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41974-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
29
|
|
30
|
Yan W, Taylor DE. Characterization of erythromycin resistance in Campylobacter jejuni and Campylobacter coli. Antimicrob Agents Chemother 1991; 35:1989-96. [PMID: 1759819 PMCID: PMC245313 DOI: 10.1128/aac.35.10.1989] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The mechanism of resistance to erythromycin, the drug of choice in the treatment of campylobacter gastroenteritis, was investigated. Erythromycin resistance (MICs, greater than 1,024 micrograms/ml) in three clinical isolates of Campylobacter jejuni and one C. coli isolate was determined to be constitutive and chromosomally mediated. In vivo protein synthesis in erythromycin-susceptible C. jejuni and C. coli strains was completely inhibited by low levels of erythromycin (5 micrograms/ml), whereas a high concentration of the antibiotic (100 micrograms/ml) had no effect on protein synthesis in erythromycin-resistant strains. Biological assays showed that extracellular degradation of erythromycin was not responsible for erythromycin resistance in strains of Campylobacter species. The rates and amounts of uptake of [14C]erythromycin by resistant and susceptible campylobacter cells were determined to be similar. Binding assays with purified campylobacter 70S ribosomes as well as 50S ribosomal subunits showed that those from erythromycin-resistant strans bound much less [14C]erythromycin than did those from susceptible strains. Genomic DNA from C. coli UA585 was used to transform erythromycin resistance to C. coli UA417. The erythromycin resistance marker was associated with a 240-kb SmaI fragment of the C. coli UA585 genome. Our results rule out erythromycin inactivation or efflux and are not consistent with the production of an RNA methylase, although they are consistent with a mutational mechanism of resistance due to a change in a ribosomal protein gene. This study constitutes a detailed biochemical and genetic characterization of erythromycin resistance in Campylobacter species.
Collapse
Affiliation(s)
- W Yan
- Department of Medical Microbiology and Infectious Diseases, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
31
|
Di Giambattista M, Nyssen E, Pecher A, Cocito C. Affinity labeling of the virginiamycin S binding site on bacterial ribosome. Biochemistry 1990; 29:9203-11. [PMID: 2125475 DOI: 10.1021/bi00491a014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Virginiamycin S (VS, a type B synergimycin) inhibits peptide bond synthesis in vitro and in vivo. The attachment of virginiamycin S to the large ribosomal subunit (50S) is competitively inhibited by erythromycin (Ery, a macrolide) and enhanced by virginiamycin M (VM, a type A synergimycin). We have previously shown, by fluorescence energy transfer measurements, that virginiamycin S binds at the base of the central protuberance of 50S, the putative location of peptidyltransferase domain [Di Giambattista et al. (1986) Biochemistry 25, 3540-3547]. In the present work, the ribosomal protein components at the virginiamycin S binding site were affinity labeled by the N-hydroxysuccinimide ester derivative (HSE) of this antibiotic. Evidence has been provided for (a) the association constant of HSE-ribosome complex formation being similar to that of native virginiamycin S, (b) HSE binding to ribosomes being antagonized by erythromycin and enhanced by virginiamycin M, and (c) a specific linkage of HSE with a single region of 50S, with virtually no fixation to 30S. After dissociation of covalent ribosome-HSE complexes, the resulting ribosomal proteins have been fractionated by electrophoresis and blotted to nitrocellulose, and the HSE-binding proteins have been detected by an immunoenzymometric procedure. More than 80% of label was present within a double spot corresponding to proteins L18 and L22, whose Rfs were modified by the affinity-labeling reagent. It is concluded that these proteins are components of the peptidyltransferase domain of bacterial ribosomes, for which a topographical model, including the available literature data, is proposed.
Collapse
Affiliation(s)
- M Di Giambattista
- Unit of Microbiology and Genetics, ICP, Medical School, University of Louvain, Brussels, Belgium
| | | | | | | |
Collapse
|
32
|
Harris EH, Burkhart BD, Gillham NW, Boynton JE. Antibiotic resistance mutations in the chloroplast 16S and 23S rRNA genes of Chlamydomonas reinhardtii: correlation of genetic and physical maps of the chloroplast genome. Genetics 1989; 123:281-92. [PMID: 2583478 PMCID: PMC1203800 DOI: 10.1093/genetics/123.2.281] [Citation(s) in RCA: 139] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mutants resistant to streptomycin, spectinomycin, neamine/kanamycin and erythromycin define eight genetic loci in a linear linkage group corresponding to about 21 kb of the circular chloroplast genome of Chlamydomonas reinhardtii. With one exception, all of these mutants represent single base-pair changes in conserved regions of the genes encoding the 16S and 23S chloroplast ribosomal RNAs. Streptomycin resistance can result from changes at the bases equivalent to Escherichia coli 13, 523, and 912-915 in the 16S gene, or from mutations in the rps12 gene encoding chloroplast ribosomal protein S12. In the 912-915 region of the 16S gene, three mutations were identified that resulted in different levels of streptomycin resistance in vitro. Although the three regions of the 16S rRNA mutable to streptomycin resistance are widely separated in the primary sequence, studies by other laboratories of RNA secondary structure and protein cross-linking suggest that all three regions are involved in a common ribosomal neighborhood that interacts with ribosomal proteins S4, S5 and S12. Three different changes within a conserved region of the 16S gene, equivalent to E. coli bases 1191-1193, confer varying levels of spectinomycin resistance, while resistance to neamine and kanamycin results from mutations in the 16S gene at bases equivalent to E. coli 1408 and 1409. Five mutations in two genetically distinct erythromycin resistance loci map in the 23S rDNA of C. reinhardtii, at positions equivalent to E. coli 2057-2058 and 2611, corresponding to the rib3 and rib2 loci of yeast mitochondria respectively. Although all five mutants are highly resistant to erythromycin, they differ in levels of cross-resistance to lincomycin and clindamycin. The order and spacing of all these mutations in the physical map are entirely consistent with our genetic map of the same loci and thereby validate the zygote clone method of analysis used to generate this map. These results are discussed in comparison with other published maps of chloroplast genes based on analysis by different methods using many of the same mutants.
Collapse
Affiliation(s)
- E H Harris
- Department of Botany, Duke University, Durham, North Carolina 27706
| | | | | | | |
Collapse
|
33
|
Melançon P, Lemieux C, Brakier-Gingras L. A mutation in the 530 loop of Escherichia coli 16S ribosomal RNA causes resistance to streptomycin. Nucleic Acids Res 1988; 16:9631-9. [PMID: 3054810 PMCID: PMC338768 DOI: 10.1093/nar/16.20.9631] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Oligonucleotide-directed mutagenesis was used to introduce an A to C transversion at position 523 in the 16S ribosomal RNA gene of Escherichia coli rrnB operon cloned in plasmid pKK3535. E. coli cells transformed with the mutated plasmid were resistant to streptomycin. The mutated ribosomes isolated from these cells were not stimulated by streptomycin to misread the message in a poly(U)-directed assay. They were also restrictive to the stimulation of misreading by other error-promoting related aminoglycoside antibiotics such as neomycin, kanamycin or gentamicin, which do not compete for the streptomycin binding site. The 530 loop where the mutation in the 16S rRNA is located has been mapped at the external surface of the 30S subunit, and is therefore distal from the streptomycin binding site at the subunit interface. Our results support the conclusion that the mutation at position 523 in the 16S rRNA does not interfere with the binding of streptomycin, but prevents the drug from inducing conformational changes in the 530 loop which account for its miscoding effect. Since this effect primarily results from a perturbation of the translational proofreading control, our results also provide evidence that the 530 loop of the 16S rRNA is involved in this accuracy control.
Collapse
Affiliation(s)
- P Melançon
- Département de Biochimie, Université de Montréal, Québec, Canada
| | | | | |
Collapse
|
34
|
Cseplö A, Etzold T, Schell J, Schreier PH. Point mutations in the 23 S rRNA genes of four lincomycin resistant Nicotiana plumbaginifolia mutants could provide new selectable markers for chloroplast transformation. MOLECULAR & GENERAL GENETICS : MGG 1988; 214:295-9. [PMID: 3070353 DOI: 10.1007/bf00337724] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Experiments designed to establish stable chloroplast transformation require selectable marker genes encoded by the chloroplast genome. The antibiotic lincomycin is a specific inhibitor of chloroplast ribosomal activity and is known to bind to the large ribosomal subunit. We have investigated a defined region of the chloroplast 23 S rRNA genes from four lincomycin resistant Nicotiana plumbaginifolia mutants and from wild-type N. plumbaginifolia. The mutants LR415, LR421 and LR446 have A to G transitions at positions equivalent to the nucleotides 2058 and 2059 in the Escherichia coli 23 S rRNA. The mutant, LR400, possesses a G to A transition at a position corresponding to nucleotide 2032 of the E. coli 23 S rRNA.
Collapse
Affiliation(s)
- A Cseplö
- Max Planck Institut für Züchtungsforschung, Abteilung Genetische Grundlagen der Pflanzenzüchtung, Köln, Federal Republic of Germany
| | | | | | | |
Collapse
|
35
|
Arévalo MA, Tejedor F, Polo F, Ballesta JP. Protein components of the erythromycin binding site in bacterial ribosomes. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)57355-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
36
|
Montandon PE, Wagner R, Stutz E. E. coli ribosomes with a C912 to U base change in the 16S rRNA are streptomycin resistant. EMBO J 1986; 5:3705-8. [PMID: 3104030 PMCID: PMC1167414 DOI: 10.1002/j.1460-2075.1986.tb04703.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Resistance to streptomycin (Sm) of Euglena gracilis chloroplasts can be due to a single C to T transition of the 16S rRNA gene in an invariant position which is equivalent to C912 of the Escherichia coli 16S rRNA. Since Euglena chloroplasts cannot be transformed we introduced, by site-directed mutagenesis, a C912 to T transition in the cloned rrnB operon (pKK3535) of E. coli and used this new construct (pEM109) in transformation experiments. Transformed E. coli cells were selected for Sm resistance by colony plating and stepwise increase of Sm up to 25 micrograms/ml of culture medium. Several Sm-resistant colonies were obtained. Ribosomes were isolated from pEM109-transformed Sm-resistant and pKK3535-transformed Sm-sensitive cells. The ribosomes were assayed in vitro for Sm-induced misreading of poly(U) mRNA. We isolated 16S rRNA and sequenced the crucial RNA region by reverse transcription. The results clearly show that ribosomes from Sm-resistant cells correctly read the poly(U) mRNA in the presence of 25 micrograms Sm/ml of reaction mixture and the 16S rRNA contains the C912 to U transition. We conclude that C912 is involved in a translation step(s) which is (are) sensitive to streptomycin.
Collapse
|
37
|
Lampson BC, von David W, Parisi JT. Novel mechanism for plasmid-mediated erythromycin resistance by pNE24 from Staphylococcus epidermidis. Antimicrob Agents Chemother 1986; 30:653-8. [PMID: 3800341 PMCID: PMC176508 DOI: 10.1128/aac.30.5.653] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We describe an unusual type of erythromycin resistance (Emr) mediated by a plasmid designated pNE24 from Staphylococcus epidermidis. This 26.5-kilobase plasmid encodes resistance strictly to 14-membered macrolide antibiotics, erythromycin, and oleandomycin. Resistance to other macrolide-lincosamide-streptogramin B (MLS) antibiotics was not observed even after a prior induction stimulus with various MLS antibiotics. Plasmid pNE24 was found to express resistance constitutively and manifested a low to intermediate MIC (62.5 micrograms/ml) for erythromycin. The resistance gene, designated erpA, appears to mediate resistance by altering the permeability of the host cell for erythromycin, because the measured uptake of 14C-labeled erythromycin by strain 958-2 (containing pNE24) was lower than for the erythromycin-susceptible, isogenic strain 958-1. No inactivation of erythromycin in overnight broth culture supernatants could be detected. In addition, no significant loss in binding affinity between [14C]erythromycin and ribosome could be detected for ribosomes isolated from strain 958-2 relative to 958-1, indicating that pNE24 probably does not produce a modification of the bacterial ribosome. No other selectable marker was found associated with pNE24; however, a 60,000-dalton protein was present only in the membrane fractions of cells (958-2) containing pNE24 and may play a role in mediating resistance to erythromycin.
Collapse
|
38
|
Steen R, Jemiolo DK, Skinner RH, Dunn JJ, Dahlberg AE. Expression of plasmid-coded mutant ribosomal RNA in E. coli: choice of plasmid vectors and gene expression systems. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1986; 33:1-18. [PMID: 3541039 DOI: 10.1016/s0079-6603(08)60018-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
39
|
Douthwaite S, Prince JB, Noller HF. Evidence for functional interaction between domains II and V of 23S ribosomal RNA from an erythromycin-resistant mutant. Proc Natl Acad Sci U S A 1985; 82:8330-4. [PMID: 3909142 PMCID: PMC390909 DOI: 10.1073/pnas.82.24.8330] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A mutation affording low levels of erythromycin resistance has been obtained by in vitro hydroxylamine mutagenesis of a cloned ribosomal RNA operon from Escherichia coli. The site of the mutational event responsible for antibiotic resistance was localized to the gene region encoding domain II of 23S rRNA by replacement of restriction fragments in the wild-type plasmid by corresponding fragments from the mutant plasmid. DNA sequencing showed that positions 1219-1230 of the 23S rRNA gene are deleted in the mutant. Since all previously characterized rRNA mutations conferring resistance to erythromycin show changes exclusively in domain V, our present findings provide direct evidence for functional interaction between domains II and V of 23S rRNA.
Collapse
|
40
|
Ettayebi M, Prasad SM, Morgan EA. Chloramphenicol-erythromycin resistance mutations in a 23S rRNA gene of Escherichia coli. J Bacteriol 1985; 162:551-7. [PMID: 3886627 PMCID: PMC218883 DOI: 10.1128/jb.162.2.551-557.1985] [Citation(s) in RCA: 125] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Two chloramphenicol resistance mutations were isolated in an Escherichia coli rRNA operon (rrnH) located on a multicopy plasmid. Both mutations also confer resistance to 14-atom lactone ring macrolide antibiotics, but they do not confer resistance to 16-atom lactone ring macrolide antibiotics or other inhibitors of the large ribosomal subunit. Classic genetic and recombinant DNA methods were used to map the two mutations to 154-base-pair regions of the 23S RNA genes. DNA sequencing of these regions revealed that chloramphenicol-erythromycin resistance results from a guanine-to-adenine transition at position 2057 of the 23S RNA genes of both independently isolated mutants. These mutations affect a region of 23S RNA strongly implicated in peptidyl transfer and known to interact with a variety of peptidyl transferase inhibitors.
Collapse
|
41
|
Sigmund CD, Ettayebi M, Morgan EA. Antibiotic resistance mutations in 16S and 23S ribosomal RNA genes of Escherichia coli. Nucleic Acids Res 1984; 12:4653-63. [PMID: 6330677 PMCID: PMC318865 DOI: 10.1093/nar/12.11.4653] [Citation(s) in RCA: 209] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Recombinant DNA and classic genetic procedures were used to map a spectinomycin resistance mutation to a 121 base pair region of a 16S RNA gene and a macrolide-lincosamide-streptogramin type B resistance mutation to a 32 base pair region of a 23S RNA gene. DNA sequence analysis of these regions revealed that spectinomycin resistance results from a C/G to T/A transition at position 1192 of a 16S RNA gene. Resistance to macrolide, lincosamide and streptogramin type B antibiotics results from an A/T to T/A transversion at position 2058 of a 23S RNA gene. The alteration in 16S RNA is in a sequence that can participate in alternate base pairing arrangements that have been proposed to be involved in the translocation process. The alteration in 23S RNA identifies sequences important to peptidyl transfer.
Collapse
|
42
|
Dubnau D. Translational attenuation: the regulation of bacterial resistance to the macrolide-lincosamide-streptogramin B antibiotics. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1984; 16:103-32. [PMID: 6203682 DOI: 10.3109/10409238409102300] [Citation(s) in RCA: 161] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The regulation of ermC is described in detail as an example of regulation on the level of translation. ermC specifies a ribosomal RNA methylase which confers resistance to the macrolide-lincosamide-streptogramin B group of antibiotics. Synthesis of the ermC gene product is induced by erythromycin, a macrolide antibiotic. Stimulation of methylase synthesis is mediated by binding of erythromycin to an unmethylated ribosome. The translational attenuation model, supported by sequencing data and by mutational analysis, proposes that binding of erythromycin causes stalling of a ribosome during translation of a "leader peptide", resulting in isomerization of the ermC transcript from an inactive to an active conformer. The ermC system is analogous to the transcriptional attenuation systems described for certain biosynthetic operons. ermC is unique in that interaction with a small molecule inducer mediates regulation on the translational level. However, it is but one example of nontranscriptional -level control of protein synthesis. Other systems are discussed in which control is also exerted through alterations of RNA conformation and an attempt is made to understand ermC in this more general context. Finally, other positive examples of translational attenuation are presented.
Collapse
|
43
|
Mark LG, Sigmund CD, Morgan EA. Spectinomycin resistance due to a mutation in an rRNA operon of Escherichia coli. J Bacteriol 1983; 155:989-94. [PMID: 6193099 PMCID: PMC217790 DOI: 10.1128/jb.155.3.989-994.1983] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A spectinomycin resistance mutation was isolated in an Escherichia coli rRNA operon (rrnH) located on a multicopy plasmid. Cell-free protein-synthesizing extracts made from cells containing the plasmid were partially resistant to spectinomycin. Although spectinomycin is an aminoglycoside antibiotic, the mutation did not confer resistance to any other aminoglycoside antibiotic tested.
Collapse
|