1
|
Li W, He Z, Di W, Xu W, Li Y, Sun B. Transposition mechanism of IS Apl1-the determinant of colistin resistance dissemination. Antimicrob Agents Chemother 2024; 68:e0123123. [PMID: 38289082 PMCID: PMC10916398 DOI: 10.1128/aac.01231-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/18/2023] [Indexed: 03/07/2024] Open
Abstract
Multidrug-resistant Enterobacteriaceae, a prominent family of gram-negative pathogenic bacteria, causes a wide range of severe diseases. Strains carrying the mobile colistin resistance (mcr-1) gene show resistance to polymyxin, the last line of defense against multidrug-resistant gram-negative bacteria. However, the transmission of mcr-1 is not well understood. In this study, genomes of mcr-1-positive strains were obtained from the NCBI database, revealing their widespread distribution in China. We also showed that ISApl1, a crucial factor in mcr-1 transmission, is capable of self-transposition. Moreover, the self-cyclization of ISApl1 is mediated by its own encoded transposase. The electrophoretic mobility shift assay experiment validated that the transposase can bind to the inverted repeats (IRs) on both ends, facilitating the cyclization of ISApl1. Through knockout or shortening of IRs at both ends of ISApl1, we demonstrated that the cyclization of ISApl1 is dependent on the sequences of the IRs at both ends. Simultaneously, altering the ATCG content of the bases at both ends of ISApl1 can impact the excision rate by modifying the binding ability between IRs and ISAPL1. Finally, we showed that heat-unstable nucleoid protein (HU) can inhibit ISApl1 transposition by binding to the IRs and preventing ISAPL1 binding and expression. In conclusion, the regulation of ISApl1-self-circling is predominantly controlled by the inverted repeat (IR) sequence and the HU protein. This molecular mechanism deepens our comprehension of mcr-1 dissemination.
Collapse
Affiliation(s)
- Wei Li
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhien He
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wei Di
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Weifeng Xu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yujie Li
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Baolin Sun
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
2
|
Twenty Years of Collaboration to Sort out Phage Mu Replication and Its Dependence on the Mu Central Gyrase Binding Site. Viruses 2023; 15:v15030637. [PMID: 36992345 PMCID: PMC10052514 DOI: 10.3390/v15030637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
For 20 years, the intricacies in bacteriophage Mu replication and its regulation were elucidated in collaboration between Ariane Toussaint and her co-workers in the Laboratory of Genetics at the Université Libre de Bruxelles, and the groups of Martin Pato and N. Patrick Higgins in the US. Here, to honor Martin Pato’s scientific passion and rigor, we tell the history of this long-term sharing of results, ideas and experiments between the three groups, and Martin’s final discovery of a very unexpected step in the initiation of Mu replication, the joining of Mu DNA ends separated by 38 kB with the assistance of the host DNA gyrase.
Collapse
|
3
|
Kamagata K, Itoh Y, Tan C, Mano E, Wu Y, Mandali S, Takada S, Johnson RC. Testing mechanisms of DNA sliding by architectural DNA-binding proteins: dynamics of single wild-type and mutant protein molecules in vitro and in vivo. Nucleic Acids Res 2021; 49:8642-8664. [PMID: 34352099 PMCID: PMC8421229 DOI: 10.1093/nar/gkab658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/10/2021] [Accepted: 07/22/2021] [Indexed: 01/06/2023] Open
Abstract
Architectural DNA-binding proteins (ADBPs) are abundant constituents of eukaryotic or bacterial chromosomes that bind DNA promiscuously and function in diverse DNA reactions. They generate large conformational changes in DNA upon binding yet can slide along DNA when searching for functional binding sites. Here we investigate the mechanism by which ADBPs diffuse on DNA by single-molecule analyses of mutant proteins rationally chosen to distinguish between rotation-coupled diffusion and DNA surface sliding after transient unbinding from the groove(s). The properties of yeast Nhp6A mutant proteins, combined with molecular dynamics simulations, suggest Nhp6A switches between two binding modes: a static state, in which the HMGB domain is bound within the minor groove with the DNA highly bent, and a mobile state, where the protein is traveling along the DNA surface by means of its flexible N-terminal basic arm. The behaviors of Fis mutants, a bacterial nucleoid-associated helix-turn-helix dimer, are best explained by mobile proteins unbinding from the major groove and diffusing along the DNA surface. Nhp6A, Fis, and bacterial HU are all near exclusively associated with the chromosome, as packaged within the bacterial nucleoid, and can be modeled by three diffusion modes where HU exhibits the fastest and Fis the slowest diffusion.
Collapse
Affiliation(s)
- Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Yuji Itoh
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Cheng Tan
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Eriko Mano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Yining Wu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Sridhar Mandali
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Reid C Johnson
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Samuels DS, Lybecker MC, Yang XF, Ouyang Z, Bourret TJ, Boyle WK, Stevenson B, Drecktrah D, Caimano MJ. Gene Regulation and Transcriptomics. Curr Issues Mol Biol 2020; 42:223-266. [PMID: 33300497 DOI: 10.21775/cimb.042.223] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Borrelia (Borreliella) burgdorferi, along with closely related species, is the etiologic agent of Lyme disease. The spirochete subsists in an enzootic cycle that encompasses acquisition from a vertebrate host to a tick vector and transmission from a tick vector to a vertebrate host. To adapt to its environment and persist in each phase of its enzootic cycle, B. burgdorferi wields three systems to regulate the expression of genes: the RpoN-RpoS alternative sigma factor cascade, the Hk1/Rrp1 two-component system and its product c-di-GMP, and the stringent response mediated by RelBbu and DksA. These regulatory systems respond to enzootic phase-specific signals and are controlled or fine- tuned by transcription factors, including BosR and BadR, as well as small RNAs, including DsrABb and Bb6S RNA. In addition, several other DNA-binding and RNA-binding proteins have been identified, although their functions have not all been defined. Global changes in gene expression revealed by high-throughput transcriptomic studies have elucidated various regulons, albeit technical obstacles have mostly limited this experimental approach to cultivated spirochetes. Regardless, we know that the spirochete, which carries a relatively small genome, regulates the expression of a considerable number of genes required for the transitions between the tick vector and the vertebrate host as well as the adaptation to each.
Collapse
Affiliation(s)
- D Scott Samuels
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Meghan C Lybecker
- Department of Biology, University of Colorado, Colorado Springs, CO 80918, USA
| | - X Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Zhiming Ouyang
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Travis J Bourret
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, 68105 USA
| | - William K Boyle
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, 68105 USA
| | - Brian Stevenson
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky School of Medicine, Lexington, KY 40536, USA
| | - Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Melissa J Caimano
- Departments of Medicine, Pediatrics, and Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| |
Collapse
|
5
|
Arias-Palomo E, Berger JM. An Atypical AAA+ ATPase Assembly Controls Efficient Transposition through DNA Remodeling and Transposase Recruitment. Cell 2015; 162:860-71. [PMID: 26276634 PMCID: PMC4537775 DOI: 10.1016/j.cell.2015.07.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 04/21/2015] [Accepted: 06/24/2015] [Indexed: 01/27/2023]
Abstract
Transposons are ubiquitous genetic elements that drive genome rearrangements, evolution, and the spread of infectious disease and drug-resistance. Many transposons, such as Mu, Tn7, and IS21, require regulatory AAA+ ATPases for function. We use X-ray crystallography and cryo-electron microscopy to show that the ATPase subunit of IS21, IstB, assembles into a clamshell-shaped decamer that sandwiches DNA between two helical pentamers of ATP-associated AAA+ domains, sharply bending the duplex into a 180° U-turn. Biochemical studies corroborate key features of the structure and further show that the IS21 transposase, IstA, recognizes the IstB•DNA complex and promotes its disassembly by stimulating ATP hydrolysis. Collectively, these studies reveal a distinct manner of higher-order assembly and client engagement by a AAA+ ATPase and suggest a mechanistic model where IstB binding and subsequent DNA bending primes a selected insertion site for efficient transposition.
Collapse
Affiliation(s)
- Ernesto Arias-Palomo
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
6
|
Bushman FD. Engineering the human genome: reflections on the beginning. Hum Gene Ther 2014; 25:395-400. [PMID: 24848314 DOI: 10.1089/hum.2014.2524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Frederic D Bushman
- Department of Microbiology, University of Pennsylvania School of Medicine , Philadelphia, PA 19104-6076
| |
Collapse
|
7
|
Saha RP, Lou Z, Meng L, Harshey RM. Transposable prophage Mu is organized as a stable chromosomal domain of E. coli. PLoS Genet 2013; 9:e1003902. [PMID: 24244182 PMCID: PMC3820752 DOI: 10.1371/journal.pgen.1003902] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/06/2013] [Indexed: 11/19/2022] Open
Abstract
The E. coli chromosome is compacted by segregation into 400–500 supercoiled domains by both active and passive mechanisms, for example, transcription and DNA-protein association. We find that prophage Mu is organized as a stable domain bounded by the proximal location of Mu termini L and R, which are 37 kbp apart on the Mu genome. Formation/maintenance of the Mu ‘domain’ configuration, reported by Cre-loxP recombination and 3C (chromosome conformation capture), is dependent on a strong gyrase site (SGS) at the center of Mu, the Mu L end and MuB protein, and the E. coli nucleoid proteins IHF, Fis and HU. The Mu domain was observed at two different chromosomal locations tested. By contrast, prophage λ does not form an independent domain. The establishment/maintenance of the Mu domain was promoted by low-level transcription from two phage promoters, one of which was domain dependent. We propose that the domain confers transposition readiness to Mu by fostering topological requirements of the reaction and the proximity of Mu ends. The potential benefits to the host cell from a subset of proteins expressed by the prophage may in turn help its long-term stability. A majority of sequenced bacterial genomes harbor prophage sequences. Some prophages are viable, while others have decayed from accumulating mutations and genome rearrangements. Prophages, including defective ones, can contribute important biological properties such as antibiotic resistance, toxins, and serum resistance that increase the survival and ecological range of their hosts. We show in this study that the 37 kbp transposable prophage Mu exists in a unique configuration we call the ‘Mu domain’, where its two ends are paired, segregating the Mu sequences from those of the host chromosome. This is the largest stable chromosomal domain in E. coli mapped to date. The Mu domain configuration promotes low-level transcription from an early prophage promoter, which controls the expression of several genes, not all essential for phage growth. Some non-essential genes include DNA repair functions. We suggest that the Mu domain provides long-term survival benefits to both the prophage and the host: to the prophage in bestowing transposition-ready topological properties unique to the Mu reaction, and to the host in contributing extraneous DNA housekeeping functions.
Collapse
Affiliation(s)
- Rudra P. Saha
- Department of Molecular Biosciences & Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Zheng Lou
- Department of Molecular Biosciences & Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Luke Meng
- Department of Molecular Biosciences & Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Rasika M. Harshey
- Department of Molecular Biosciences & Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
8
|
Dramićanin M, Ramón-Maiques S. MuB gives a new twist to target DNA selection. Mob Genet Elements 2013; 3:e27515. [PMID: 24478936 PMCID: PMC3894238 DOI: 10.4161/mge.27515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/12/2013] [Indexed: 11/27/2022] Open
Abstract
Transposition target immunity is a phenomenon observed in some DNA transposons that are able to distinguish the host chromosome from their own DNA sequence, thus avoiding self-destructive insertions. The first molecular insight into target selection and immunity mechanisms came from the study of phage Mu transposition, which uses the protein MuB as a barrier to self-insertion. MuB is an ATP-dependent non-specific DNA binding protein that regulates the activity of the MuA transposase and captures target DNA for transposition. However, a detailed mechanistic understanding of MuB functioning was hindered by the poor solubility of the MuB-ATP complexes. Here we comment on the recent discovery that MuB is an AAA+ ATPase that upon ATP binding assembles into helical filaments that coat the DNA. Remarkably, the helical parameters of the MuB filament do not match those of the bound DNA. This intriguing mismatch symmetry led us to propose a model on how MuB targets DNA for transposition, favoring DNA bending and recognition by the transposase at the filament edge. We also speculate on a different protective role of MuB during immunity, where filament stickiness could favor the condensation of the DNA into a compact state that occludes it from the transposase.
Collapse
Affiliation(s)
- Marija Dramićanin
- Structural Bases of Genome Integrity Group; Structural Biology and Biocomputing Programme; Spanish National Cancer Research Centre (CNIO); Madrid, Spain
| | - Santiago Ramón-Maiques
- Structural Bases of Genome Integrity Group; Structural Biology and Biocomputing Programme; Spanish National Cancer Research Centre (CNIO); Madrid, Spain
| |
Collapse
|
9
|
MuB is an AAA+ ATPase that forms helical filaments to control target selection for DNA transposition. Proc Natl Acad Sci U S A 2013; 110:E2441-50. [PMID: 23776210 DOI: 10.1073/pnas.1309499110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MuB is an ATP-dependent nonspecific DNA-binding protein that regulates the activity of the MuA transposase and captures target DNA for transposition. Mechanistic understanding of MuB function has previously been hindered by MuB's poor solubility. Here we combine bioinformatic, mutagenic, biochemical, and electron microscopic analyses to unmask the structure and function of MuB. We demonstrate that MuB is an ATPase associated with diverse cellular activities (AAA+ ATPase) and forms ATP-dependent filaments with or without DNA. We also identify critical residues for MuB's ATPase, DNA binding, protein polymerization, and MuA interaction activities. Using single-particle electron microscopy, we show that MuB assembles into a helical filament, which binds the DNA in the axial channel. The helical parameters of the MuB filament do not match those of the coated DNA. Despite this protein-DNA symmetry mismatch, MuB does not deform the DNA duplex. These findings, together with the influence of MuB filament size on strand-transfer efficiency, lead to a model in which MuB-imposed symmetry transiently deforms the DNA at the boundary of the MuB filament and results in a bent DNA favored by MuA for transposition.
Collapse
|
10
|
Madison KE, Abdelmeguid MR, Jones-Foster EN, Nakai H. A new role for translation initiation factor 2 in maintaining genome integrity. PLoS Genet 2012; 8:e1002648. [PMID: 22536160 PMCID: PMC3334882 DOI: 10.1371/journal.pgen.1002648] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 02/24/2012] [Indexed: 11/25/2022] Open
Abstract
Escherichia coli translation initiation factor 2 (IF2) performs the unexpected function of promoting transition from recombination to replication during bacteriophage Mu transposition in vitro, leading to initiation by replication restart proteins. This function has suggested a role of IF2 in engaging cellular restart mechanisms and regulating the maintenance of genome integrity. To examine the potential effect of IF2 on restart mechanisms, we characterized its influence on cellular recovery following DNA damage by methyl methanesulfonate (MMS) and UV damage. Mutations that prevent expression of full-length IF2-1 or truncated IF2-2 and IF2-3 isoforms affected cellular growth or recovery following DNA damage differently, influencing different restart mechanisms. A deletion mutant (del1) expressing only IF2-2/3 was severely sensitive to growth in the presence of DNA-damaging agent MMS. Proficient as wild type in repairing DNA lesions and promoting replication restart upon removal of MMS, this mutant was nevertheless unable to sustain cell growth in the presence of MMS; however, growth in MMS could be partly restored by disruption of sulA, which encodes a cell division inhibitor induced during replication fork arrest. Moreover, such characteristics of del1 MMS sensitivity were shared by restart mutant priA300, which encodes a helicase-deficient restart protein. Epistasis analysis indicated that del1 in combination with priA300 had no further effects on cellular recovery from MMS and UV treatment; however, the del2/3 mutation, which allows expression of only IF2-1, synergistically increased UV sensitivity in combination with priA300. The results indicate that full-length IF2, in a function distinct from truncated forms, influences the engagement or activity of restart functions dependent on PriA helicase, allowing cellular growth when a DNA–damaging agent is present. Translation Initiation Factor 2 (IF2) is a bacterial protein that plays an essential role in the initiation of protein synthesis. As such, it not only has an important influence on cellular growth but also is subject to regulation in response to physiological conditions such as nutritional deprivation. Biochemical characterization of IF2's function in replicating movable genetic elements has suggested a new role in the maintenance of genome integrity, potentially regulating replication restart. The parasitic elements exploit the cellular replication restart system to duplicate themselves as they transpose to new positions of the chromosome. In this process, IF2 makes way for action of restart proteins, which assemble replication enzymes for initiation of DNA synthesis. For the bacterial cell, the restart system is the means by which it copes with accidents that result in arrest of chromosomal replication, promoting resumption of replication. We present evidence for an IF2 function associated with restart proteins, allowing chromosomal replication in the presence of DNA–damaging agents. As the IF2 function is a highly conserved one found in all organisms, the findings have implications for understanding the maintenance of genome integrity with respect to physiological status, which can be sensed by the translation apparatus.
Collapse
Affiliation(s)
| | | | | | - Hiroshi Nakai
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, D.C, United States of America
- * E-mail:
| |
Collapse
|
11
|
Mukherjee A, Bhattacharyya G, Grove A. The C-Terminal Domain of HU-Related Histone-like Protein Hlp from Mycobacterium smegmatis Mediates DNA End-Joining. Biochemistry 2008; 47:8744-53. [DOI: 10.1021/bi800010s] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Anirban Mukherjee
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Gargi Bhattacharyya
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Anne Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| |
Collapse
|
12
|
North SH, Kirtland SE, Nakai H. Translation factor IF2 at the interface of transposition and replication by the PriA-PriC pathway. Mol Microbiol 2007; 66:1566-78. [PMID: 18028309 DOI: 10.1111/j.1365-2958.2007.06022.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacteriophage Mu DNA synthesis is initiated during transposition by replication restart proteins PriA, DnaT and either PriB or PriC. The PriA-PriC pathway requires PriA's helicase activity and other host factors that promote the orderly transition from transpososome to replisome on the Mu DNA template. The host factor MRFalpha-PR, which removes obstacles to PriA binding and promotes the PriA-PriC pathway, was identified to be the translation initiation factor IF2. Purified isoform IF2-2, which is truncated at the N-terminal end, had full MRFalpha-PR activity whereas full-length IF2-1 was inactive. IF2-2 was bound to the Mu DNA template specifically at the step for prereplisome assembly. Prior steps in the orderly transition from transpososome were essential to promote efficient IF2-2 binding. Moreover, PriA helicase activity was subsequently needed to displace IF2-2, remodelling the template to permit replisome assembly. IF2's role in the transition mechanism as well as its function as G protein and translation factor suggest its potential to regulate DNA synthesis by this pathway.
Collapse
Affiliation(s)
- Stella H North
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Rm. 331 Basic Science Bldg., 3900 Reservoir Road NW, Washington, DC 20057-1455, USA
| | | | | |
Collapse
|
13
|
Twiss E, Coros AM, Tavakoli NP, Derbyshire KM. Transposition is modulated by a diverse set of host factors in Escherichia coli and is stimulated by nutritional stress. Mol Microbiol 2005; 57:1593-607. [PMID: 16135227 DOI: 10.1111/j.1365-2958.2005.04794.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of host factors in regulating bacterial transposition has never been comprehensively addressed, despite the potential consequences of transposition. Here, we describe a screen for host factors that influence transposition of IS903, and the effect of these mutations on two additional transposons, Tn10 and Tn552. Over 20,000 independent insertion mutants were screened in two strains of Escherichia coli; from these we isolated over 100 mutants that altered IS903 transposition. These included mutations that increased or decreased the extent of transposition and also altered the timing of transposition during colony growth. The large number of gene products affecting transposition, and their diverse functions, indicate that the overall process of transposition is modulated at many different steps and by a range of processes. Previous work has suggested that transposition is triggered by cellular stress. We describe two independent mutations that are in a gene required for fermentative metabolism during anaerobic growth, and that cause transposition to occur earlier than normal during colony development. The ability to suppress this phenotype by the addition of fumarate therefore provides direct evidence that transposition occurs in response to nutritional stress. Other mutations that altered transposition disrupted genes normally associated with DNA metabolism, intermediary metabolism, transport, cellular redox, protein folding and proteolysis and together these define a network of host proteins that could potentially allow readout of the cell's environmental and nutritional status. In summary, this work identifies a collection of proteins that allow the host to modulate transposition in response to cell stress.
Collapse
Affiliation(s)
- Erin Twiss
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, NY, USA
| | | | | | | |
Collapse
|
14
|
Burton BM, Baker TA. Remodeling protein complexes: insights from the AAA+ unfoldase ClpX and Mu transposase. Protein Sci 2005; 14:1945-54. [PMID: 16046622 PMCID: PMC2279306 DOI: 10.1110/ps.051417505] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Multiprotein complexes in the cell are dynamic entities that are constantly undergoing changes in subunit composition and conformation to carry out their functions. The protein-DNA complex that promotes recombination of the bacteriophage Mu is a prime example of a complex that must undergo specific changes to carry out its function. The Clp/Hsp100 family of AAA+ ATPases plays a critical role in mediating such changes. The Clp/Hsp100 unfolding enzymes have been extensively studied for the roles they play in protein degradation. However, degradation is not the only fate for proteins that come in contact with the ATP-dependent unfolding enzymes. The Clp/Hsp100 enzymes induce structural changes in their substrates. These structural changes, which we refer to as "remodeling", ultimately change the biological activity of the substrate. These biological changes include activation, inactivation (not associated with degradation), and relocation within the cell. Analysis of the interaction between Escherichia coli ClpX unfoldase and the Mu recombination complex, has provided molecular insight into the mechanisms of protein remodeling. We discuss the key mechanistic features of the remodeling reactions promoted by ClpX and possible implications of these findings for other biological reactions.
Collapse
Affiliation(s)
- Briana M Burton
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
15
|
Wardle SJ, O'Carroll M, Derbyshire KM, Haniford DB. The global regulator H-NS acts directly on the transpososome to promote Tn10 transposition. Genes Dev 2005; 19:2224-35. [PMID: 16166383 PMCID: PMC1221892 DOI: 10.1101/gad.1338905] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The histone-like nucleoid structuring (H-NS) protein is a global transcriptional regulator that is known to regulate stress response pathways and virulence genes in bacteria. It has also been implicated in the regulation of bacterial transposition systems, including Tn10. We demonstrate here that H-NS promotes Tn10 transposition by binding directly to the transposition complex (or transpososome). We present evidence that, upon binding, H-NS induces the unfolding of the Tn10 transpososome and helps to maintain the transpososome in an unfolded state. This ensures that intermolecular (as opposed to self-destructive intramolecular) transposition events are favored. We present evidence that H-NS binding to the flanking donor DNA of the transpososome is the initiating event in the unfolding process. We propose that by recruiting H-NS as a modulator of transposition, Tn10 has evolved a means of sensing changes in host physiology, as the amount of H-NS in the cell, as well its activity, are responsive to changes in environmental conditions. Sensing of environmental changes through H-NS would allow transposition to occur when it is most opportune for both the transposon and the host.
Collapse
Affiliation(s)
- Simon J Wardle
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1 Canada
| | | | | | | |
Collapse
|
16
|
Saariaho AH, Lamberg A, Elo S, Savilahti H. Functional comparison of the transposition core machineries of phage Mu and Haemophilus influenzae Mu-like prophage Hin-Mu reveals interchangeable components. Virology 2005; 331:6-19. [PMID: 15582649 DOI: 10.1016/j.virol.2004.09.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Revised: 11/23/2003] [Accepted: 09/16/2004] [Indexed: 11/16/2022]
Abstract
Bacteriophage Mu uses DNA transposition for propagation and is a model for transposition studies in general. Recent identification of Mu-like prophages within bacterial genomes offers new material for evolutionary and comparative functional studies. One such prophage, Hin-Mu of Haemophilus influenzae Rd, was studied for its transpositional properties. The components of its transposition core machinery, the encoded transposase (MuA(Hin)) and the transposase binding sites, were evaluated for functional properties by sequence comparisons and DNase I footprinting. Transpositional activity of Hin-Mu was examined by in vitro assays directly assessing the assembly and catalytic function of the transposition core machinery. The Hin-Mu components readily assembled catalytically competent protein-DNA complexes, transpososomes. Thus, Hin-Mu encodes a functional transposase and contains critical transposase binding sites. Despite marked sequence differences, components of the Hin-Mu and Mu transposition core machineries are partially interchangeable, reflecting both conservation and flexibility in the functionally important regions within the transpososome structure.
Collapse
Affiliation(s)
- Anna-Helena Saariaho
- Institute of Biotechnology, Program in Cellular Biotechnology, Viikki Biocenter, University of Helsinki, PO Box 56, Viikinkaari 9, 00014 Helsinki, Finland
| | | | | | | |
Collapse
|
17
|
Abstract
The genes that encode immunoglobulins and T-cell receptors must be assembled from the multiple variable (V), joining (J), and sometimes diversity (D) gene segments present in the germline loci. This process of V(D)J recombination is the major source of the immense diversity of the immune repertoire of jawed vertebrates. The recombinase that initiates the process, recombination-activating genes 1 (RAG1) and RAG2, belongs to a large family that includes transposases and retroviral integrases. RAG1/2 cleaves the DNA adjacent to the gene segments to be recombined, and the segments are then joined together by DNA repair factors. A decade of biochemical research on RAG1/2 has revealed many similarities to transposition, culminating with the observation that RAG1/2 can carry out transpositional strand transfer. Here, we discuss the parallels between V(D)J recombination and transposition, focusing specifically on the assembly of the recombination nucleoprotein complex, the mechanism of cleavage, the disassembly of post-cleavage complexes, and aberrant reactions carried out by the recombinase that do not result in successful locus rearrangement and may be deleterious to the organism. This work highlights the considerable diversity of transposition systems and their relation to V(D)J recombination.
Collapse
Affiliation(s)
- Jessica M Jones
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington DC, USA
| | | |
Collapse
|
18
|
Ilves H, Hõrak R, Teras R, Kivisaar M. IHF is the limiting host factor in transposition of Pseudomonas putida transposon Tn4652 in stationary phase. Mol Microbiol 2004; 51:1773-85. [PMID: 15009901 DOI: 10.1111/j.1365-2958.2003.03948.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transpositional activity of mobile elements is not constant. Conditional regulation of host factors involved in transposition may severely change the activity of mobile elements. We have demonstrated previously that transposition of Tn4652 in Pseudomonas putida is a stationary phase-specific event, which requires functional sigma S (Ilves et al., 2001, J Bacteriol 183: 5445-5448). We hypothesized that integration host factor (IHF), the concentration of which is increased in starving P. putida, might contribute to the transposition of Tn4652 as well. Here, we demonstrate that transposition of Tn4652 in stationary phase P. putida is essentially limited by the amount of IHF. No transposition of Tn4652 occurs in a P. putida ihfA-defective strain. Moreover, overexpression of IHF results in significant enhancement of transposition compared with the wild-type strain. This indicates that the amount of IHF is a bottleneck in Tn4652 transposition. Gel mobility shift and DNase I footprinting studies revealed that IHF is necessary for the binding of transposase to both transposon ends. In vitro, transposase can bind to inverted repeats of transposon only after the binding of IHF. The results obtained in this study indicate that, besides sigma S, IHF is another host factor that is implicated in the elevation of transposition in stationary phase.
Collapse
Affiliation(s)
- Heili Ilves
- Estonian Biocentre and Institute of Molecular and Cell Biology, Tartu University, 23 Riia Street, 51010 Tartu, Estonia
| | | | | | | |
Collapse
|
19
|
Burton BM, Baker TA. Mu transpososome architecture ensures that unfolding by ClpX or proteolysis by ClpXP remodels but does not destroy the complex. CHEMISTRY & BIOLOGY 2003; 10:463-72. [PMID: 12770828 DOI: 10.1016/s1074-5521(03)00102-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Clp/Hsp100 ATPases are protein unfoldases that both alter protein conformation and target proteins for degradation. An unresolved question has been how such seemingly destructive enzymes can "remodel" some protein substrates rather than destroy them. Here, we investigate the products of ClpX-mediated remodeling of a hyper-stable protein-DNA complex, the Mu transpososome. We find that although an oligomeric complex is maintained, release of some subunits accompanies ClpX action. Replacement of transposase's endogenous ClpX-recognition sequence with an exogenous signal reveals that the mechanism of remodeling is independent of both the recognition signal and the identity of the unfoldase. Finally, examination of the transposase-DNA contacts reveals only a localized region that is altered during remodeling. These results provide a framework for protein remodeling, wherein the physical attributes of a complex can limit the unfolding activity of its remodeler.
Collapse
Affiliation(s)
- Briana M Burton
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
20
|
Ryan VT, Grimwade JE, Nievera CJ, Leonard AC. IHF and HU stimulate assembly of pre-replication complexes at Escherichia coli oriC by two different mechanisms. Mol Microbiol 2002; 46:113-24. [PMID: 12366835 DOI: 10.1046/j.1365-2958.2002.03129.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pre-replication complexes (pre-RC) assemble on replication origins and unwind DNA in the presence of chromatin proteins. As components of Escherichia coli pre-RC, two histone-like proteins HU and IHF (integration host factor), stimulate initiator DnaA-catalysed unwinding of the chromosomal replication origin, oriC. Using in vivo footprint analysis just before DNA synthesis initiates, we detect IHF binding coincident with a shift of DnaA to weaker central oriC sites. Integration host factor redistributed pre-bound DnaA to identical sites in vitro. HU did not redistribute DnaA, but suppressed binding specifically at I3. These results suggest that different pathways mediated by bacterial chromatin proteins exist to regulate pre-RC assembly and unwind oriC.
Collapse
Affiliation(s)
- Valorie T Ryan
- Department of Biological Services, Florida Institute of Technology, 150 W. University Blvd, Melbourne, Florida 32901, USA
| | | | | | | |
Collapse
|
21
|
Kobryn K, Watson MA, Allison RG, Chaconas G. The Mu three-site synapse: a strained assembly platform in which delivery of the L1 transposase binding site triggers catalytic commitment. Mol Cell 2002; 10:659-69. [PMID: 12408832 DOI: 10.1016/s1097-2765(02)00596-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Mu DNA transposition reaction proceeds through a three-site synaptic complex (LER), including the two Mu ends and the transpositional enhancer. We show that the LER contains highly stressed DNA regions in the enhancer and in the L1 transposase binding site. We propose that the L1 site acts as the keystone for assembly of a catalytically competent transpososome. Delivery of L1 through HU-mediated bending completes LER assembly, provides the trigger for necessary conformational transitions in transpososome formation, and allows target capture to occur. Relief of the stress at L1 and the enhancer may help drive Mu A tetramerization and engagement of the Mu ends by the transposase active site.
Collapse
Affiliation(s)
- Kerri Kobryn
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
22
|
Nakai H, Doseeva V, Jones JM. Handoff from recombinase to replisome: insights from transposition. Proc Natl Acad Sci U S A 2001; 98:8247-54. [PMID: 11459960 PMCID: PMC37428 DOI: 10.1073/pnas.111007898] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteriophage Mu replicates as a transposable element, exploiting host enzymes to promote initiation of DNA synthesis. The phage-encoded transposase MuA, assembled into an oligomeric transpososome, promotes transfer of Mu ends to target DNA, creating a fork at each end, and then remains tightly bound to both forks. In the transition to DNA synthesis, the molecular chaperone ClpX acts first to weaken the transpososome's interaction with DNA, apparently activating its function as a molecular matchmaker. This activated transpososome promotes formation of a new nucleoprotein complex (prereplisome) by yet unidentified host factors [Mu replication factors (MRF alpha 2)], which displace the transpososome in an ATP-dependent reaction. Primosome assembly proteins PriA, PriB, DnaT, and the DnaB--DnaC complex then promote the binding of the replicative helicase DnaB on the lagging strand template of the Mu fork. PriA helicase plays an important role in opening the DNA duplex for DnaB binding, which leads to assembly of DNA polymerase III holoenzyme to form the replisome. The MRF alpha 2 transition factors, assembled into a prereplisome, not only protect the fork from action by nonspecific host enzymes but also appear to aid in replisome assembly by helping to activate PriA's helicase activity. They consist of at least two separable components, one heat stable and the other heat labile. Although the MRF alpha 2 components are apparently not encoded by currently known homologous recombination genes such as recA, recF, recO, and recR, they may fulfill an important function in assembling replisomes on arrested replication forks and products of homologous strand exchange.
Collapse
Affiliation(s)
- H Nakai
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, 331 Basic Science Building, 3900 Reservoir Road NW, Washington, DC 20007, USA.
| | | | | |
Collapse
|
23
|
Coros CJ, Chaconas G. Effect of mutations in the Mu-host junction region on transpososome assembly. J Mol Biol 2001; 310:299-309. [PMID: 11428891 DOI: 10.1006/jmbi.2001.4772] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mu transposition occurs through a series of higher-order nucleoprotein complexes called transpososomes. The region where the Mu DNA joins the host DNA plays an integral role in the assembly of these transpososomes. We have created a series of point mutations at the Mu-host junction and characterized their effect on the Mu in vitro strand transfer reaction. Analysis of these mutant constructs revealed an inhibition in transpososome assembly at the point in the reaction pathway when the junction region is engaged by the transposase active site (i.e. the transition from LER to type 0). We found that the degree of inhibition was dependent upon the particular base-pair change at each position and whether the substitution occurred at the left or right transposon end. The MuB transposition protein, an allosteric effector of MuA, was shown to suppress all of the inhibitory Mu-host junction mutants. Most of the mutant constructs were also suppressed, to varying degrees, by the substitution of Mg(2+) with Mn(2+). Analysis of the mutant constructs has revealed hierarchical nucleotide preferences at positions -1 through +3 for transpososome assembly and suggests the possibility that specific metal ion-DNA base interactions are involved in DNA recognition and transpososome assembly.
Collapse
Affiliation(s)
- C J Coros
- The Department of Biochemistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | | |
Collapse
|
24
|
Roldan LA, Baker TA. Differential role of the Mu B protein in phage Mu integration vs. replication: mechanistic insights into two transposition pathways. Mol Microbiol 2001; 40:141-55. [PMID: 11298282 DOI: 10.1046/j.1365-2958.2001.02364.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Mu B protein is an ATP-dependent DNA-binding protein and an allosteric activator of the Mu transposase. As a result of these activities, Mu B is instrumental in efficient transposition and target-site choice. We analysed in vivo the role of Mu B in the two different recombination reactions performed by phage Mu: non-replicative transposition, the pathway used during integration, and replicative transposition, the pathway used during lytic growth. Utilizing a sensitive PCR-based assay for Mu transposition, we found that Mu B is not required for integration, but enhances the rate and extent of the process. Furthermore, three different mutant versions of Mu B, Mu BC99Y, Mu BK106A, and Mu B1-294, stimulate integration to a similar level as the wild-type protein. In contrast, these mutant proteins fail to support Mu growth. This deficiency is attributable to a defect in formation of an essential intermediate for replicative transposition. Biochemical analysis of the Mu B mutant proteins reveals common features: the mutants retain the ability to stimulate transposase, but are defective in DNA binding and target DNA delivery. These data indicate that activation of transposase by Mu B is sufficient for robust non-replicative transposition. Efficient replicative transposition, however, demands that the Mu B protein not only activate transposase, but also bind and deliver the target DNA.
Collapse
Affiliation(s)
- L A Roldan
- Department of Biology and the Howard Hughes Medical Institute, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 68-523 Cambridge, MA 02139, USA
| | | |
Collapse
|
25
|
Shiga Y, Sekine Y, Kano Y, Ohtsubo E. Involvement of H-NS in transpositional recombination mediated by IS1. J Bacteriol 2001; 183:2476-84. [PMID: 11274106 PMCID: PMC95163 DOI: 10.1128/jb.183.8.2476-2484.2001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
IS1, the smallest active transposable element in bacteria, encodes a transposase that promotes inter- and intramolecular transposition. Host-encoded factors, e.g., histone-like proteins HU and integration host factor (IHF), are involved in the transposition reactions of some bacterial transposable elements. Host factors involved in the IS1 transposition reaction, however, are not known. We show that a plasmid with an IS1 derivative that efficiently produces transposase did not generate miniplasmids, the products of intramolecular transposition, in mutants deficient in a nucleoid-associated DNA-binding protein, H-NS, but did generate them in mutants deficient in histone-like proteins HU, IHF, Fis, and StpA. Nor did IS1 transpose intermolecularly to the target plasmid in the H-NS-deficient mutant. The hns mutation did not affect transcription from the indigenous promoter of IS1 for the expression of the transposase gene. These findings show that transpositional recombination mediated by IS1 requires H-NS but does not require the HU, IHF, Fis, or StpA protein in vivo. Gel retardation assays of restriction fragments of IS1-carrying plasmid DNA showed that no sites were bound preferentially by H-NS within the IS1 sequence. The central domain of H-NS, which is involved in dimerization and/or oligomerization of the H-NS protein, was important for the intramolecular transposition of IS1, but the N- and C-terminal domains, which are involved in the repression of certain genes and DNA binding, respectively, were not. The SOS response induced by the IS1 transposase was absent in the H-NS-deficient mutant strain but was present in the wild-type strain. We discuss the possibility that H-NS promotes the formation of an active IS1 DNA-transposase complex in which the IS1 ends are cleaved to initiate transpositional recombination through interaction with IS1 transposase.
Collapse
Affiliation(s)
- Y Shiga
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | |
Collapse
|
26
|
Schagen FH, Rademaker HJ, Cramer SJ, van Ormondt H, van der Eb AJ, van de Putte P, Hoeben RC. Towards integrating vectors for gene therapy: expression of functional bacteriophage MuA and MuB proteins in mammalian cells. Nucleic Acids Res 2000; 28:E104. [PMID: 11095700 PMCID: PMC115188 DOI: 10.1093/nar/28.23.e104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bacteriophage Mu has one of the best studied, most efficient and largest transposition machineries of the prokaryotic world. To harness this attractive integration machinery for use in mammalian cells, we cloned the coding sequences of the phage factors MuA and MuB in a eukaryotic expression cassette and fused them to a FLAG epitope and a SV40-derived nuclear localization signal. We demonstrate that these N-terminal extensions were sufficient to target the Mu proteins to the nucleus, while their function in Escherichia coli was not impeded. In vivo transposition in mammalian cells was analysed by co-transfection of the MuA and MuB expression vectors with a donor construct, which contained a miniMu transposon carrying a Hygromycin-resistance marker (Hyg(R)). In all co-transfections, a significant but moderate (up to 2.7-fold) increase in Hyg(R) colonies was obtained if compared with control experiments in which the MuA vector was omitted. To study whether the increased efficiency was the result of bona fide Mu transposition, integrated vector copies were cloned from 43 monoclonal and one polyclonal cell lines. However, in none of these clones, the junction between the vector and the chromosomal DNA was localized precisely at the border of the Att sites. From our data we conclude that expression of MuA and MuB increases the integration of miniMu vectors in mammalian cells, but that this increase is not the result of bona fide Mu-induced transposition.
Collapse
Affiliation(s)
- F H Schagen
- Departments of Molecular Cell Biology and Biochemistry, Leiden University, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
27
|
Biery MC, Lopata M, Craig NL. A minimal system for Tn7 transposition: the transposon-encoded proteins TnsA and TnsB can execute DNA breakage and joining reactions that generate circularized Tn7 species. J Mol Biol 2000; 297:25-37. [PMID: 10704304 DOI: 10.1006/jmbi.2000.3558] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the presence of ATP and Mg(2+), the bacterial transposon Tn7 translocates via a cut and paste mechanism executed by the transposon-encoded proteins TnsA+TnsB+TnsC+TnsD. We report here that in the presence of Mn(2+), TnsA+TnsB alone can execute the DNA breakage and joining reactions of Tn7 recombination. ATP is not essential in this minimal system, revealing that this cofactor is not directly involved in the chemical steps of recombination. In both the TnsAB and TnsABC+D systems, recombination initiates with double-strand breaks at each transposon end that cut Tn7 away from flanking donor DNA. In the minimal system, breakage occurs predominantly at a single transposon end and the subsequent end-joining reactions are intramolecular, with the exposed 3' termini of a broken transposon end joining near the other end of the Tn7 element in the same donor molecule to form circular transposon species. In contrast, in TnsABC+D recombination, breaks occur at both ends of Tn7 and the two ends join to a target site on a different DNA molecule to form an intermolecular simple insertion. This demonstration of the capacity of TnsAB to execute breakage and joining reactions supports the view that these proteins form the Tn7 transposase.
Collapse
MESH Headings
- Bacterial Proteins/metabolism
- Base Sequence
- Cations, Divalent/pharmacology
- DNA Probes
- DNA Transposable Elements/genetics
- DNA Transposable Elements/physiology
- DNA, Circular/genetics
- DNA, Circular/isolation & purification
- DNA, Circular/metabolism
- DNA, Circular/ultrastructure
- DNA, Superhelical/genetics
- DNA, Superhelical/isolation & purification
- DNA, Superhelical/metabolism
- DNA, Superhelical/ultrastructure
- DNA-Binding Proteins/metabolism
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Escherichia coli Proteins
- Manganese/pharmacology
- Microscopy, Electron
- Molecular Weight
- Mutation/drug effects
- Mutation/genetics
- Nucleic Acid Conformation
- Nucleotides/genetics
- Recombination, Genetic/drug effects
- Recombination, Genetic/genetics
Collapse
Affiliation(s)
- M C Biery
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
28
|
Chaconas G. 1999 Roche Diagnostics Prize for Biomolecular and Cellular Research / Prix Roche Diagnostics 1999 pour la recherche en biologie moléculaire et cellulaireStudies on a "jumping gene machine": Higher-order nucleoprotein complexes in Mu DNA transposition. Biochem Cell Biol 1999. [DOI: 10.1139/o99-060] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Studies in my lab have focused on DNA transposition in the bacterial virus, Mu. In vitro studies have shown that Mu DNA transposition is a three-step process involving DNA breakage, strand transfer and DNA replication. In the first step, a nick is introduced at each end of the transposon. The liberated 3'-OH groups subsequently attack a target DNA molecule resulting in strand transfer. The transposon DNA, now covalently linked to the target, is finally replicated to generate the transposition end-product, referred to as a cointegrate. The DNA cleavage and strand transfer reactions are mediated by a "jumping gene machine" or transpososomes, which we discovered in 1987. They are assembled by bringing together three different DNA regions via a process involving multiple protein-DNA and protein-protein interactions. The action of four different proteins is required in addition to protein-induced DNA bending or wrapping to overcome the intrinsic stiffness of DNA, which would ordinarily prohibit the assembly of such a structure. Transpososome assembly is a gradual process involving multiple steps with an inherent flexibility whereby alternate pathways can be used in the assembly process, biasing the reaction towards completion under different conditions.Key words: DNA transposition, transposons, higher-order nucleoprotein complexes, DNA breakage and reunion, site-specific recombination.
Collapse
|
29
|
Dixon-Fyle SM, Caro L. Characterization in vitro and in vivo of a new HU family protein from Streptococcus thermophilus ST11. Plasmid 1999; 42:159-73. [PMID: 10545259 DOI: 10.1006/plas.1999.1423] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Streptococcus thermophilus is a thermophilic gram-positive bacterium belonging to the lactic acid group. We report the isolation and characterization of a new 9.6-kDa DNA-binding protein, HSth, belonging to the HU family of nucleoid-associated proteins. The hsth gene was isolated in a 2.5-kb genomic region, upstream of a gene with strong homology to Lactococcus lactis pyrD. It is transcribed from a single E. coli sigma(70)-like promoter. Based on its high level of sequence similarity to B. subtilis and E. coli HU, HSth appears to be an HU homologue. The HSth protein shows biochemical and functional properties typical of HU proteins from gram-positive bacteria, being heat-stable, acid-soluble, and homodimeric. When expressed in HU-deficient E. coli cells, HSth supported the growth of bacteriophage Mu as efficiently as E. coli HU homo- and heterodimeric proteins. It did not, however, display any IHF-specific functions. Finally, we show that HSth binds to linear DNA with no apparent specificity, forming protein-DNA complexes similar but not identical to those observed with E. coli HU proteins.
Collapse
Affiliation(s)
- S M Dixon-Fyle
- Department of Molecular Biology, University of Geneva, Geneva 4, 1211, Switzerland.
| | | |
Collapse
|
30
|
Pinson V, Takahashi M, Rouviere-Yaniv J. Differential binding of the Escherichia coli HU, homodimeric forms and heterodimeric form to linear, gapped and cruciform DNA. J Mol Biol 1999; 287:485-97. [PMID: 10092454 DOI: 10.1006/jmbi.1999.2631] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have shown recently that the relative abundance of the three dimeric forms (alpha2, alphabeta and beta2) of the HU protein from Escherichia coli varies during growth and in response to environmental changes. Using gel retardation assays we have compared the DNA binding properties of the three dimers with different DNA substrates. The determination of their DNA binding parameters shows that the relative affinities of HUalphabeta and HUalpha2 are comparable. Both recognize, with a high degree of affinity under stringent conditions, cruciform structures or DNA molecules with a nick or a gap, whereas they bind to linear DNA only at low salt. DNA containing a gap of two nucleotides is in fact the substrate recognized with the highest degree of affinity by these two forms under all conditions. Conversely, HUbeta2 binds very poorly to duplex DNA and shows a much lower affinity for nicked or gapped DNAs. However, HUbeta2 binds to cruciform DNA structures almost as well as HUalphabeta and HUalpha2. This almost exclusive binding of HUbeta2 to a unique substrate is surprising in regards of the quasi identity, in the three forms, of the flexible arms considered as the DNA-binding domains of the three forms of HU. Cruciform DNA may stabilize HUbeta2 structure which could be structurally defective.
Collapse
Affiliation(s)
- V Pinson
- Laboratoire de Physiologie Bactérienne, CNRS, UPR 9073, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, Paris, 75005, France
| | | | | |
Collapse
|
31
|
Krementsova E, Giffin MJ, Pincus D, Baker TA. Mutational analysis of the Mu transposase. Contributions of two distinct regions of domain II to recombination. J Biol Chem 1998; 273:31358-65. [PMID: 9813045 DOI: 10.1074/jbc.273.47.31358] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mu transposase is a member of a protein family that includes many transposases and the retroviral integrases. These recombinases catalyze the DNA cleavage and joining reactions essential for transpositional recombination. Here we demonstrate that, consistent with structural predictions, aspartate 336 of Mu transposase is required for catalysis of both DNA cleavage and DNA joining. This residue, although located 55 rather than 35 residues NH2-terminal of the essential glutamate, is undoubtedly the analog of the second aspartate of the Asp-Asp-35-Glu motif found in other family members. The core domain of Mu transposase consists of two subdomains: the NH2-terminal subdomain (IIA) contains the conserved Asp-Asp-Glu motif residues, whereas the smaller COOH-terminal subdomain (IIB) contains a large positively charged region exposed on its surface. To probe the function of domain IIB, we constructed mutant proteins carrying deletion or substitution mutations within this region. The activity of the deletion proteins revealed that domains IIA and IIB can be provided by different subunits in the transposase tetramer. Substitution mutations at two pairs of exposed lysine residues within the positively charged surface of domain IIB render transposase defective in transposition at a reaction step after DNA cleavage but prior to DNA joining. The severity of this defect depends on the structure of the DNA flanking the cleavage site. Thus, these data suggest that domain IIB is involved in manipulating the DNA near the cleavage site and that this function is important during the transition between the DNA cleavage and the DNA joining steps of recombination.
Collapse
Affiliation(s)
- E Krementsova
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
32
|
Abstract
MuB protein, an ATP-dependent DNA-binding protein, collaborates with Mu transposase to promote efficient transposition. MuB binds target DNA, delivers this target DNA segment to transposase and activates transposase's catalytic functions. Using ATP-bound, ADP-bound and ATPase-defective MuB proteins we investigated how nucleotide binding and hydrolysis control the activities of MuB protein, important for transposition. We found that both MuB-ADP and MuB-ATP stimulate transposase, whereas only MuB-ATP binds with high affinity to DNA. Four different ATPase-defective MuB mutants fail to activate the normal transposition pathway, further indicating that ATP plays critical regulatory roles during transposition. These mutant proteins fall into two classes: class I mutants are defective in target DNA binding, whereas class II mutants bind target DNA, deliver it to transposase, but fail to promote recombination with this DNA. Based on these studies, we propose that the switch from the ATP- to ADP-bound form allows MuB to release the target DNA while maintaining its stimulatory interaction with transposase. Thus, ATP-hydrolysis by MuB appears to function as a molecular switch controlling how target DNA is delivered to the core transposition machinery.
Collapse
Affiliation(s)
- M Yamauchi
- Department of Biology, Massachusetts Institute of Technology, 68-523, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | |
Collapse
|
33
|
Kenri T, Sasaki T, Kano Y. Identification and characterization of HU protein from Mycoplasma gallisepticum. Biochem Biophys Res Commun 1998; 249:48-52. [PMID: 9705829 DOI: 10.1006/bbrc.1998.9090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A hypothetical ORF of Mycoplasma gallisepticum with a putative 99-amino-acid product (ORF99) was noted previously in the upstream region from the type II topoisomerase gene. The amino acid sequence shows weak homology with the Escherichia coli histone-like protein HU. To identify and characterize the protein product of ORF99, we prepared mouse antiserum against recombinant GST-ORF99 fusion protein. The antiserum reacted with an 11-kDa peptide in the crude cell extract of M. gallisepticum, indicating that this protein is an ORF99 product. ORF99 protein binds to DNA, although its binding affinity is weaker than that of E. coli HU. When ORF99 was cloned in a plasmid and expressed in E. coli cells depleted of HU, Mu phage growth was strongly promoted in the cells, showing the presence of HU activity. The effect of IHF mutation was suppressed when a high level of ORF99 protein was expressed in an E. coli mutant deficient in IHF.
Collapse
Affiliation(s)
- T Kenri
- Department of Safety Research on Biologics, National Institute of Infectious Diseases, Tokyo, Japan.
| | | | | |
Collapse
|
34
|
Shanado Y, Kato J, Ikeda H. Escherichia coli HU protein suppresses DNA-gyrase-mediated illegitimate recombination and SOS induction. Genes Cells 1998; 3:511-20. [PMID: 9797453 DOI: 10.1046/j.1365-2443.1998.00208.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The HU protein is an abundant DNA binding protein of bacteria and is a major constituent of the bacterial nucleoid. HU protein is known to be involved in several fundamental biological functions, including DNA supercoiling, DNA replication, site-specific DNA inversion, and transposition. It is generally thought that a functional relationship exists between HU protein and DNA gyrase. RESULTS We found that an hupA hupB double mutant displays enhanced spontaneous illegitimate recombination during the formation of lambdabio transducing phage in Escherichia coli. Nucleotide sequence analysis of the resulting transducing phages showed that the E. coli bio and lambda recombination sites did not have any homologous sequence. This mutation also enhanced the spontaneous expression of SOS functions. Furthermore, either overproduced GyrA protein or a temperature-sensitive gyrB mutation suppressed the illegitimate recombination enhanced by the defect of HU protein. CONCLUSION These results show that the defect of HU induces illegitimate recombination and SOS response, which are probably mediated by DNA gyrase, implying that HU protein plays roles in suppression of illegitimate recombination and SOS response through interaction with DNA gyrase.
Collapse
Affiliation(s)
- Y Shanado
- Department of Molecular Biology, The Institute of Medical Science, The University of Tokyo, PO Takanawa, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
35
|
Hõrak R, Kivisaar M. Expression of the transposase gene tnpA of Tn4652 is positively affected by integration host factor. J Bacteriol 1998; 180:2822-9. [PMID: 9603867 PMCID: PMC107244 DOI: 10.1128/jb.180.11.2822-2829.1998] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/1997] [Accepted: 03/29/1998] [Indexed: 02/07/2023] Open
Abstract
Tn4652 is a derivative of the toluene degradation transposon Tn4651 that belongs to the Tn3 family of transposons (M. Tsuda and T. Iino, Mol. Gen. Genet. 210:270-276, 1987). We have sequenced the transposase gene tnpA of transposon Tn4652 and mapped its promoter to the right end of the element. The deduced amino acid sequence of tnpA revealed 96.2% identity with the putative transposase of Tn5041. Homology with other Tn3 family transposases was only moderate (about 20 to 24% identity), suggesting that Tn4652 and Tn5041 are distantly related members of the Tn3 family. Functional analysis of the tnpA promoter revealed that it is active in Pseudomonas putida but silent in Escherichia coli, indicating that some P. putida-specific factor is required for the transcription from this promoter. Additionally, tnpA promoter activity was shown to be modulated by integration host factor (IHF). The presence of an IHF-binding site upstream of the tnpA promoter enhanced the promoter activity. The positive role of IHF was also confirmed by the finding that the enhancing effect of IHF was not detected in the P. putida ihfA-deficient strain A8759. Moreover, the Tn4652 terminal sequences had a negative effect on transcription from the tnpA promoter in the ihfA-defective strain. This finding suggests that IHF not only enhances transcription from the tnpA promoter but also alleviates the negative effect of terminal sequences of Tn4652 on the promoter activity. Also, an in vitro binding assay demonstrated that both ends of Tn4652 bind IHF from a cell lysate of E. coli.
Collapse
Affiliation(s)
- R Hõrak
- Estonian Biocentre and Institute of Molecular and Cell Biology, Tartu University, EE2400 Tartu, Estonia.
| | | |
Collapse
|
36
|
Naigamwalla DZ, Chaconas G. A new set of Mu DNA transposition intermediates: alternate pathways of target capture preceding strand transfer. EMBO J 1997; 16:5227-34. [PMID: 9311983 PMCID: PMC1170155 DOI: 10.1093/emboj/16.17.5227] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mu DNA transposition occurs within the context of higher order nucleoprotein structures or transpososomes. We describe a new set of transpososomes in which Mu B-bound target DNA interacts non-covalently with previously characterized intermediates prior to the actual strand transfer. This interaction can occur at several points along the reaction pathway: with the LER, the Type 0 or the Type 1 complexes. The formation of these target capture complexes, which rapidly undergo the strand transfer chemistry, is the rate-limiting step in the overall reaction. These complexes provide alternate pathways to strand transfer, thereby maximizing transposition potential. This versatility is in contrast to other characterized transposons, which normally capture target DNA only at a single point in their respective reaction pathways.
Collapse
Affiliation(s)
- D Z Naigamwalla
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | |
Collapse
|
37
|
Painbeni E, Caroff M, Rouviere-Yaniv J. Alterations of the outer membrane composition in Escherichia coli lacking the histone-like protein HU. Proc Natl Acad Sci U S A 1997; 94:6712-7. [PMID: 9192630 PMCID: PMC21223 DOI: 10.1073/pnas.94.13.6712] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Escherichia coli cells lacking the histone-like protein HU form filaments and have an abnormal number of anucleate cells. Furthermore, their phenotype resembles that of rfa mutants, the well-characterized deep-rough phenotype, as they show an enhanced permeability that renders them hypersensitive to chloramphenicol, novobiocin, and detergents. We show that, unlike rfa mutants, hupAB mutants do not have a truncated lipopolysaccharide but do have an abnormal abundance of OmpF porin in their outer membrane. While the complete absence of HU does not abolish the osmoregulation of OmpF protein synthesis, the steady-state level of micF RNA, the negative regulator of OmpF, decreases in bacteria lacking HU, increasing the basal level of this membrane protein. These findings demonstrate a novel link between a bacterial chromosomal protein and the outer membrane composition.
Collapse
Affiliation(s)
- E Painbeni
- Unité Propre de Recherche 7090, Centre National de la Recherche Scientifique, Laboratoire de Physiologie Bacterienne, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | | |
Collapse
|
38
|
Abstract
Transcription from two overlapping gal promoters is repressed by Gal repressor binding to bipartite gal operators, O(E) and O(I), which flank the promoters. Concurrent repression of the gal promoters also requires the bacterial histone-like protein HU which acts as a co-factor. Footprinting experiments using iron-EDTA-coupled HU show that HU binding to gal DNA is orientation specific and is specifically dependent upon binding of GalR to both O(E) and O(I). We propose that HU, in concert with GalR, forms a specific nucleoprotein higher order complex containing a DNA loop. This way, HU deforms the promoter to make the latter inactive for transcription initiation while remaining sensitive to inducer. The example of gal repression provides a model for studying how a 'condensed' DNA becomes available for transcription.
Collapse
Affiliation(s)
- T Aki
- Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | | |
Collapse
|
39
|
Wu Z, Chaconas G. The Mu transposase tetramer is inactive in unassisted strand transfer: an auto-allosteric effect of Mu A promotes the reaction in the absence of Mu B. J Mol Biol 1997; 267:132-41. [PMID: 9096212 DOI: 10.1006/jmbi.1996.0854] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A tetramer of the Mu transposase is the structural and functional core in all three stable higher-order nucleoprotein complexes (Type 0, Type 1 and Type 2 transpososomes) generated in a defined in vitro strand transfer reaction. Although functional in donor cleavage, we report here that contrary to previous belief, the Mu A tetramer is incapable of unassisted strand transfer. The Mu B protein is required to stimulate the tetramer for intermolecular strand transfer. In the absence of Mu B protein we show that additional Mu A molecules must be added to the core tetramer to stimulate intramolecular strand transfer. Mapping experiments indicate that domain II of the assisting Mu A mediates functional interactions with the core tetramer. The recipient site for Mu A stimulated strand transfer on the A tetramer is likely in domain II and is clearly different from the domain IIIb site used by the Mu B protein. The Mu accessory end binding sites and the Mu enhancer are not required in the Mu A assisted strand transfer, suggesting that helper A molecules in solution can interact with the core tetramer to stimulate the reaction. Finally, we argue that the strand transfer activity and protein sites for target interaction reside within the core tetramer; hence the role of the stimulatory A molecules appears to be limited to that of an auto-allosteric effector.
Collapse
Affiliation(s)
- Z Wu
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | | |
Collapse
|
40
|
Watson MA, Chaconas G. Three-site synapsis during Mu DNA transposition: a critical intermediate preceding engagement of the active site. Cell 1996; 85:435-45. [PMID: 8616898 DOI: 10.1016/s0092-8674(00)81121-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The chemical steps of bacteriophage Mu DNA transposition take place within a higher order nucleoprotein structure. We describe a novel intermediate that precedes the previously characterized transpososomes and directly demonstrates the interaction of a distant enhancer element with recombination regions. The transpositional enhancer interacts with the Mu left and right ends to form a three-site synaptic (LER) complex. Under normal reaction conditions, the LER complex is rapidly converted into the more stable Mu transpososomes. However, mutation of the Mu terminal nucleotides results in accumulation of the LER and a failure to form the type 0 transpososome. During the transition from LER to type 0, the Mu DNA termini and the active site of the transposase engage in a catalytically competent conformation.
Collapse
Affiliation(s)
- M A Watson
- Department of Biochemistry, University of Western Ontario, Canada
| | | |
Collapse
|
41
|
Affiliation(s)
- B D Lavoie
- Department of Biochemistry, University of Western Ontario, London, Canada
| | | |
Collapse
|
42
|
Kim K, Harshey RM. Mutational analysis of the att DNA-binding domain of phage Mu transposase. Nucleic Acids Res 1995; 23:3937-43. [PMID: 7479039 PMCID: PMC307313 DOI: 10.1093/nar/23.19.3937] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The transposase (A protein) of phage Mu encodes binding to two families of DNA sites, att sites located at the Mu ends and enhancer sites located internally. Separate subdomains in the N-terminal domain I of Mu A protein are known to be involved in recognition of the att and enhancer sites. We have delineated an approximately 135 aa region within domain I beta gamma that specifies binding to Mu att sites. This peptide was overexpressed and its properties compared with that of the larger domain I beta gamma as well as the intact Mu A protein. Extensive mutagenesis of residues around a putative helix-turn-helix DNA-binding motif within the I beta domain identified several mutants defective in DNA transposition in vivo. Of these, Mu A(K157Q) was completely defective in att DNA-binding. Mu A(F131S) and Mu A(R146N) had a lower affinity for att DNA and low levels of transposition in vitro. Our results indicate that residues in the gamma region are required for activity and that residues outside the beta gamma region must also influence discrimination between the multiple att sites.
Collapse
Affiliation(s)
- K Kim
- Department of Microbiology, University of Texas at Austin 78712, USA
| | | |
Collapse
|
43
|
Dorman CJ. 1995 Flemming Lecture. DNA topology and the global control of bacterial gene expression: implications for the regulation of virulence gene expression. MICROBIOLOGY (READING, ENGLAND) 1995; 141 ( Pt 6):1271-1280. [PMID: 7670631 DOI: 10.1099/13500872-141-6-1271] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College,Dublin 2,Republic of Ireland
| |
Collapse
|
44
|
Baker TA, Kremenstova E, Luo L. Complete transposition requires four active monomers in the mu transposase tetramer. Genes Dev 1994; 8:2416-28. [PMID: 7958906 DOI: 10.1101/gad.8.20.2416] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A tetramer of Mu transposase (MuA) cleaves and joins multiple DNA strands to promote transposition. Derivatives of MuA altered at two acidic residues that are conserved among transposases and retroviral integrases form tetramers but are defective in both cleavage and joining. These mutant proteins were used to analyze the contribution of individual monomers to the activity of the tetramer. The performance of different protein combinations demonstrates that not all monomers need to be catalytically competent for the complex to promote an individual cleavage or joining reaction. Furthermore, the results indicate that each pair of essential residues is probably donated to the active complex by a single monomer. Although stable, tetramers composed of a mixture of mutant and wild-type MuA generate products cleaved at only one end and with only one end joined to the target DNA. The abundance of these abortive products and the ratios of the two proteins in complexes stalled at different steps indicate that the complete reaction requires the activity of all four monomers. Thus, each subunit of MuA appears to use the conserved acidic amino acids to promote one DNA cleavage or one DNA joining reaction.
Collapse
Affiliation(s)
- T A Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge
| | | | | |
Collapse
|
45
|
Preobrajenskaya O, Boullard A, Boubrik F, Schnarr M, Rouvière-Yaniv J. The protein HU can displace the LexA repressor from its DNA-binding sites. Mol Microbiol 1994; 13:459-67. [PMID: 7997162 DOI: 10.1111/j.1365-2958.1994.tb00440.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The major bacterial histone-like protein HU is a small, basic, dimeric protein composed of two closely related subunits. HU is involved in several processes in the bacterial cell such as the initiation of replication, transposition, gene inversion and cell division. It has been suggested that HU could introduce structural changes to the DNA which would facilitate or inhibit the binding of regulatory proteins to their specific sites. In this study we investigated the effect of HU on the binding of LexA protein, the regulator of SOS functions, to three of its specific binding sites. We show that HU can displace LexA from its binding sites on the operators of the lexA, recA and sfiA genes. The lexA operator was the most sensitive while the higher affinity sfiA operator was the least sensitive. Since HU, like its homologue IHF, probably binds DNA in the minor groove we tested the effect of distamycin, a drug which binds to the minor groove, on LexA binding. Like HU, this drug disrupted LexA-operator complexes. These results suggest that distortion of the minor groove of the lexA operators excludes the binding of the repressor to the major groove.
Collapse
|
46
|
Kruklitis R, Nakai H. Participation of the bacteriophage Mu A protein and host factors in the initiation of Mu DNA synthesis in vitro. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)34030-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
47
|
van Drunen CM, Mientjes E, van Zuylen O, van de Putte P, Goosen N. Transposase A binding sites in the attachment sites of bacteriophage Mu that are essential for the activity of the enhancer and A binding sites that promote transposition towards Fpro-lac. Nucleic Acids Res 1994; 22:773-9. [PMID: 8139917 PMCID: PMC307881 DOI: 10.1093/nar/22.5.773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In this paper we determine which of the A binding sites in the attachment sites of phage Mu are required for the stimulatory activity of the transpositional enhancer (IAS). For this purpose the transposition frequencies of mini-Mu's with different truncated attachment sites to an Ftet target were measured both in the presence and the absence of the IAS. The results show that in our in vivo assay the L3 and R3 sites are dispensable for functioning of the IAS. An additional deletion of L2 or R2 however abolishes the stimulating activity of the enhancer suggesting an interaction between A molecules bound to these sites and the IAS. The residual transposition activity of a IAS-containing mini Mu in which R2 (and R3) are deleted is much lower than the activity of the comparable construct without the IAS. This means that in the absence of R2 the IAS is inhibiting transposition. Such an inhibition is not observed when L2 (and L3) are deleted. This suggests that the IAS interacts with the attachment sites in an ordered fashion, first with attL and then with attR. Furthermore we show that mini-Mu transposition is enhanced when Fpro-lac is used as a target instead of Ftet. We show that this elevated transposition is dependent on the Mu A binding sites L2,L3 and R2. These sequences could possibly mediate an interaction between the mini-Mu plasmid and sequences present on Fpro-lac.
Collapse
Affiliation(s)
- C M van Drunen
- Laboratory of Molecular Genetics, Gorlaeus Laboratories, Leiden University, The Netherlands
| | | | | | | | | |
Collapse
|
48
|
Wang Z, Harshey RM. Crucial role for DNA supercoiling in Mu transposition: a kinetic study. Proc Natl Acad Sci U S A 1994; 91:699-703. [PMID: 8290584 PMCID: PMC43016 DOI: 10.1073/pnas.91.2.699] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
DNA supercoiling plays an indispensable role in an early step of bacteriophage Mu transposition. This step involves formation of a nucleoprotein complex in which the Mu ends synapse and undergo two concerted single-strand cleavages. We describe a kinetic analysis of the role of supercoiling in the Mu-end synapsis reaction as measured by the cleavage assay. We observe a dependence of the reaction rate on superhelical density as well as on the length of Mu donor plasmid DNA. The reaction has a high activation enthalpy (approximately 67 kcal/mol). These results imply that the free energy of supercoiling is used directly to lower the activation barrier of the rate-limiting step of the reaction. Only the free energy of supercoiling associated with DNA outside the Mu ends appears to be utilized, implying that the Mu ends come together before the supercoiling energy is used. Our results suggest an essential function for the bacterial sequences attached to the ends of Mu virion DNA.
Collapse
Affiliation(s)
- Z Wang
- Department of Microbiology, University of Texas, Austin 78712
| | | |
Collapse
|
49
|
|
50
|
Ding ZM, Harshey RM, Hurley LH. (+)-CC-1065 as a structural probe of Mu transposase-induced bending of DNA: overcoming limitations of hydroxyl-radical footprinting. Nucleic Acids Res 1993; 21:4281-7. [PMID: 8414983 PMCID: PMC310062 DOI: 10.1093/nar/21.18.4281] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Phage Mu transposase (A-protein) is primarily responsible for transposition of the Mu genome. The protein binds to six att sites, three at each end of Mu DNA. At most att sites interaction of a protein monomer with DNA is seen to occur over three minor and two consecutive major grooves and to result in bending up to about 90 degrees. To probe the directionality and locus of these A-protein-induced bends, we have used the antitumor antibiotic (+)-CC-1065 as a structural probe. As a consequence of binding within the minor groove, (+)-CC-1065 is able to alkylate N3 of adenine in a sequence selective manner. This selectivity is partially determined by conformational flexibility of the DNA sequence, and the covalent adduct has a bent DNA structure in which narrowing of the minor groove has occurred. Using this drug in experiments in which either gel retardation or DNA strand breakage are used to monitor the stability of the A-protein--DNA complex or the (+)-CC-1065 alkylation sites on DNA (att site L3), we have demonstrated that of the three minor grooves implicated in the interaction with A-protein, the peripheral two are 'open' or accessible to drug bonding following protein binding. These drug-bonding sites very likely represent binding at at least two A-protein-induced bending sites. Significantly, the locus of bending at these sites is spaced approximately two helical turns apart, and the bending is proposed to occur by narrowing of the minor groove of DNA. The intervening minor groove between these two peripheral sites is protected from (+)-CC-1065 alkylation. The results are discussed in reference to a proposed model for overall DNA bending in the A-protein att L3 site complex. This study illustrates the utility of (+)-CC-1065 as a probe for protein-induced bending of DNA, as well as for interactions of minor groove DNA bending proteins with DNA which may be masked in hydroxyl radical footprinting experiments.
Collapse
Affiliation(s)
- Z M Ding
- Department of Microbiology, College of Pharmacy, University of Texas at Austin 78712-1074
| | | | | |
Collapse
|