1
|
Liu N, Wu Q, Li Q, Scheiner S. Promotion of TH 3 (T = Si and Ge) group transfer within a tetrel bond by a cation-π interaction. Phys Chem Chem Phys 2022; 24:1113-1119. [PMID: 34927648 DOI: 10.1039/d1cp05323j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The possibility of the transfer of the TH3 group across a tetrel bond is considered by ab initio calculations. The TB is constructed by pairing PhTH3 (Ph = phenyl; T = Si and Ge) with bases NH3, NHCH2, and the C3N2H4 carbene. The TH3 moves toward the base but only by a small amount in these dimers. However, when a Be2+ or Mg2+ dication is placed above the phenyl ring, the tetrel bond strength is greatly magnified reaching up to nearly 100 kcal mol-1. This dication also induces a much higher degree of transfer which can be best categorized as half-transfer for the two N-bases and a near complete transfer for the carbene.
Collapse
Affiliation(s)
- Na Liu
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People's Republic of China.
| | - Qiaozhuo Wu
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People's Republic of China.
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People's Republic of China.
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA.
| |
Collapse
|
2
|
|
3
|
Hassan M, Coutsias EA. Protein secondary structure motifs: A kinematic construction. J Comput Chem 2021; 42:271-292. [PMID: 33306852 DOI: 10.1002/jcc.26448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/02/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022]
Abstract
The kinematic geometry of protein backbone structures, constrained by either single or multiple hydrogen bonds (H-bonds), possibly in a periodic array, is discussed. These structures include regular secondary structure elements α-helices and β-sheets but also include other short H-bond stabilized irregular structural elements like β-turns. The work here shows that the variations observed in such structures have simple geometrical correlations consistent with constrained motion kinematics. A new classification of the ideal helices is given, in terms of the parameter α, the angle at a Cα atom to its two neighboring Cα 's along the helix, and shown how it can be generalized to include nonideal helices. Specifically, we derive an analytical expression of the backbone dihedrals, (ϕ, ψ), in terms of the parameter α subject to the constraint that the peptide planes are parallel to the helical axis. Helices constructed in this way exhibit near-vertical alignment of the C = O and N - H units and are the canonical objects of this study. These expressions are easily modifiable to include perturbations of parameters relevant to nonplanar peptide units and noncanonical angles. The addition of a second parameter, ε0 , inclination of successive peptide planes along a helix with respect to the helical axis leads to a generalization of the previous expression and provides an efficient parametrization of such structures in terms of coordinates consistent with H-bond parameters. An analogs parametrization of β-turns, using inverse kinematic methods, is also given. Besides offering a unifying viewpoint, our results may find useful applications to protein and peptide design.
Collapse
Affiliation(s)
- Mosavverul Hassan
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA
| | - Evangelos A Coutsias
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA.,Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
4
|
Lu J, Scheiner S. Comparison of halogen with proton transfer. Symmetric and asymmetric systems. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.136593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
|
6
|
de Paul N. Nziko V, Scheiner S. Effects of Angular Deformation on the Energetics of the S N2 Reaction. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Steve Scheiner
- Department of Chemistry and Biochemistry; Utah State University; 84322-0300 Logan UT USA
| |
Collapse
|
7
|
Relationship between the Stability of Hen Egg-White Lysozymes Mutated at Sites Designed to Interact with α-Helix Dipoles and Their Secretion Amounts in Yeast. Biosci Biotechnol Biochem 2014; 71:2952-61. [DOI: 10.1271/bbb.70354] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
|
9
|
Bowie JU. Membrane protein folding: how important are hydrogen bonds? Curr Opin Struct Biol 2010; 21:42-9. [PMID: 21075614 DOI: 10.1016/j.sbi.2010.10.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 10/19/2010] [Indexed: 11/28/2022]
Abstract
Water is an inhospitable environment for protein hydrogen bonds because it is polarizable and capable of forming competitive hydrogen bonds. In contrast, the apolar core of a biological membrane seems like an ideal environment for hydrogen bonds, and it has long been assumed that hydrogen bonding should be a powerful force driving membrane protein folding. Nevertheless, while backbone hydrogen bonds may be much stronger in membrane proteins, experimental measurements indicate that side chain hydrogen bond strengths are not strikingly different in membrane and water soluble proteins. How is this possible? I argue that model compounds in apolar solvents do not adequately describe the system because the protein itself is ignored. The protein chain provides a rich source of competitive hydrogen bonds and a polarizable environment that can weaken hydrogen bonds. Thus, just like water soluble proteins, evolution can drive the creation of potent hydrogen bonds in membrane proteins where necessary, but mitigating forces in their environment must still be overcome.
Collapse
Affiliation(s)
- James U Bowie
- Department of Chemistry and Biochemistry, UCLA-DOE Institute of Genomics and Proteomics, Molecular Biology Institute, University of California, Los Angeles, USA.
| |
Collapse
|
10
|
Kamerlin SCL, Chu ZT, Warshel A. On catalytic preorganization in oxyanion holes: highlighting the problems with the gas-phase modeling of oxyanion holes and illustrating the need for complete enzyme models. J Org Chem 2010; 75:6391-401. [PMID: 20825150 PMCID: PMC2945449 DOI: 10.1021/jo100651s] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxyanion holes play a major role in catalyzing enzymatic reactions, yet the corresponding energetics is frequently misunderstood. The main problem may be associated with the nontrivial nature of the electrostatic preorganization effect, without following the relevant formulation. That is, although the energetics of oxyanion holes have been fully quantified in early studies (which include both the enzymatic and reference solution reactions), the findings of these studies are sometimes overlooked, and, in some cases, it is assumed that gas-phase calculations with a fixed model of an oxyanion hole are sufficient for assessing the corresponding effect in the protein. Herein, we present a systematic analysis of this issue, clarifying the problems associated with modeling oxyanions by means of two fixed water molecules (or related constructs). We then re-emphasize the point that the effect of the oxyanion hole is mainly due to the fact that the relevant dipoles are already set in an orientation that stabilizes the TS charges, whereas the corresponding dipoles in solution are randomly oriented, resulting in the need to pay a very large reorganization energy. Simply calculating interaction energies with relatively fixed species cannot capture this crucial point, and considering it may help in advancing rational enzyme design.
Collapse
Affiliation(s)
- Shina C. L. Kamerlin
- Department of Chemistry (SGM418), University of Southern California, 3620 McClintock Ave., Los Angeles CA-90089, USA
| | - Zhen T. Chu
- Department of Chemistry (SGM418), University of Southern California, 3620 McClintock Ave., Los Angeles CA-90089, USA
| | - A. Warshel
- Department of Chemistry (SGM418), University of Southern California, 3620 McClintock Ave., Los Angeles CA-90089, USA
| |
Collapse
|
11
|
Preiss L, Yildiz Ö, Hicks DB, Krulwich TA, Meier T. A new type of proton coordination in an F(1)F(o)-ATP synthase rotor ring. PLoS Biol 2010; 8:e1000443. [PMID: 20689804 PMCID: PMC2914638 DOI: 10.1371/journal.pbio.1000443] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 06/24/2010] [Indexed: 11/26/2022] Open
Abstract
The high-resolution structure of the rotor ring from alkaliphilic Bacillus pseudofirmus OF4 reveals a new type of ion binding in F1Fo-ATP synthases. We solved the crystal structure of a novel type of c-ring isolated from Bacillus pseudofirmus OF4 at 2.5 Å, revealing a cylinder with a tridecameric stoichiometry, a central pore, and an overall shape that is distinct from those reported thus far. Within the groove of two neighboring c-subunits, the conserved glutamate of the outer helix shares the proton with a bound water molecule which itself is coordinated by three other amino acids of outer helices. Although none of the inner helices contributes to ion binding and the glutamate has no other hydrogen bonding partner than the water oxygen, the site remains in a stable, ion-locked conformation that represents the functional state present at the c-ring/membrane interface during rotation. This structure reveals a new, third type of ion coordination in ATP synthases. It appears in the ion binding site of an alkaliphile in which it represents a finely tuned adaptation of the proton affinity during the reaction cycle. Like the wind turbines that generate electricity, the F1Fo-ATP synthases are natural “ion turbines” each made up of a stator and a rotor that turns, when driven by a flow of ions, to generate the cell's energy supply of ATP. The Fo motor rotates by reversible binding and release of coupling ions that flow down the electrochemical ion gradient across the cytoplasmic cell membrane (in the case of bacteria) or intracellular organelle membranes (in the case of eukaryotic cells). Here, we present the structure of a rotor (c-)ring from a Bacillus species (B. pseudofirmus OF4) determined at high-resolution by X-ray crystallography. This bacterium prefers alkaline environments where the concentration of protons (H+) is lower outside than inside the cell – the inverse of the situation usually found in organisms that prefer neutral or acidic environments. The amino acid sequence of the protein subunits in this rotor, nevertheless, has features common to an important group of ATP synthases in organisms from bacteria to man. The structure reveals a new type of ion binding in which a protonated glutamate residue in the protein associates with a water molecule. This finding raises the possibility considered by Nobel laureate Paul Boyer several decades ago that a hydronium ion (a protonated water molecule, H3O+), rather than a proton alone, might be the coupling species that energizes ATP synthesis. Also, it demonstrates the finely tuned adaptation of ATP synthase rotor rings and their ion-binding sites to the specific requirements of different organisms.
Collapse
Affiliation(s)
- Laura Preiss
- Department of Structural Biology, Max-Planck Institute of Biophysics, Frankfurt, Germany
| | - Özkan Yildiz
- Department of Structural Biology, Max-Planck Institute of Biophysics, Frankfurt, Germany
| | - David B. Hicks
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Terry A. Krulwich
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Thomas Meier
- Department of Structural Biology, Max-Planck Institute of Biophysics, Frankfurt, Germany
- Cluster of Excellence Macromolecular Complexes, Max-Planck Institute of Biophysics, Frankfurt, Germany
- * E-mail:
| |
Collapse
|
12
|
Chronister EL, Corcoran TC, Song L, El-Sayed MA. On the molecular mechanisms of the Schiff base deprotonation during the bacteriorhodopsin photocycle. Proc Natl Acad Sci U S A 2010; 83:8580-4. [PMID: 16578793 PMCID: PMC386974 DOI: 10.1073/pnas.83.22.8580] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using optical flash photolysis and time-resolved Raman methods, we examined intermediates formed during the photocycle of bacteriorhodopsin (bR), as well as the bR color change, as a function of pH (in the 7.0-1.5 region) and as a function of the number of bound Ca(2+) ions. It is found that at a pH just below 3 or with less than two bound Ca(2+) per bR, the deprotonation (the L(550) --> M(412)) step ceases, yet the K(610) and L(550) analogues are still formed as in native bR. The lack of deprotonation in the photocycle of both acid blue and deionized blue bR and the similarity of their Raman spectra as well as of their K(610) and L(550) analogues strongly suggest that both blue samples have nearly the same retinal active site. It is suggested that in both blue species, bound cations are removed via a proton-cation exchange equilibrium, either on the cation exchange column for the deionized sample or in solution for the acid blue sample. The proton-cation exchange equilibrium is found to quantitatively account for the pH dependence of the purple-to-blue color change. The different mechanisms responsible for the large reduction ( approximately 11 units) of the pK(a) value of the protonated Schiff base (PSB) during the photocycle are discussed. The absence of the L(550) --> M(412) deprotonation process in both blue species is discussed in terms of the previously proposed cation model for the deprotonation of the PSB during the photocycle of native bR. The extent of the deprotonation and the blue-to-purple color change are found to follow the same dependence on either the pH or the amount of cations added to deionized blue bR. This observed correlation is briefly discussed.
Collapse
Affiliation(s)
- E L Chronister
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90024
| | | | | | | |
Collapse
|
13
|
Vasileiou C, Wang W, Jia X, Lee KSS, Watson CT, Geiger JH, Borhan B. Elucidating the exact role of engineered CRABPII residues for the formation of a retinal protonated Schiff base. Proteins 2010; 77:812-22. [PMID: 19603486 DOI: 10.1002/prot.22495] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cellular Retinoic Acid Binding Protein II (CRABPII) has been reengineered to specifically bind and react with all-trans-retinal to form a protonated Schiff base. Each step of this process has been dissected and four residues (Lys132, Tyr134, Arg111, and Glu121) within the CRABPII binding site have been identified as crucial for imine formation and/or protonation. The precise role of each residue has been examined through site directed mutagenesis and crystallographic studies. The crystal structure of the R132K:L121E-CRABPII (PDB-3I17) double mutant suggests a direct interaction between engineered Glu121 and the native Arg111, which is critical for both Schiff base formation and protonation.
Collapse
Affiliation(s)
- Chrysoula Vasileiou
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Braun-Sand S, Sharma PK, Chu ZT, Pisliakov AV, Warshel A. The energetics of the primary proton transfer in bacteriorhodopsin revisited: it is a sequential light-induced charge separation after all. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1777:441-52. [PMID: 18387356 PMCID: PMC2443747 DOI: 10.1016/j.bbabio.2008.03.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Revised: 02/29/2008] [Accepted: 03/03/2008] [Indexed: 11/26/2022]
Abstract
The light-induced proton transport in bacteriorhodopsin has been considered as a model for other light-induced proton pumps. However, the exact nature of this process is still unclear. For example, it is not entirely clear what the driving force of the initial proton transfer is and, in particular, whether it reflects electrostatic forces or other effects. The present work simulates the primary proton transfer (PT) by a specialized combination of the EVB and the QCFF/PI methods. This combination allows us to obtain sufficient sampling and a quantitative free energy profile for the PT at different protein configurations. The calculated profiles provide new insight about energetics of the primary PT and its coupling to the protein conformational changes. Our finding confirms the tentative analysis of an earlier work (A. Warshel, Conversion of light energy to electrostatic energy in the proton pump of Halobacterium halobium, Photochem. Photobiol. 30 (1979) 285-290) and determines that the overall PT process is driven by the energetics of the charge separation between the Schiff base and its counterion Asp85. Apparently, the light-induced relaxation of the steric energy of the chromophore leads to an increase in the ion-pair distance, and this drives the PT process. Our use of the linear response approximation allows us to estimate the change in the protein conformational energy and provides the first computational description of the coupling between the protein structural changes and the PT process. It is also found that the PT is not driven by twist-modulated changes of the Schiff base's pKa, changes in the hydrogen bond directionality, or other non-electrostatic effects. Overall, based on a consistent use of structural information as the starting point for converging free energy calculations, we conclude that the primary event should be described as a light-induced formation of an unstable ground state, whose relaxation leads to charge separation and to the destabilization of the ion-pair state. This provides the driving force for the subsequent PT steps.
Collapse
Affiliation(s)
- Sonja Braun-Sand
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Avenue, Los Angeles, CA 90089-1062, USA
- Department of Chemistry, University of Colorado at Colorado Springs (UCCS), Colorado Springs, CO 80918
| | - Pankaz K. Sharma
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Avenue, Los Angeles, CA 90089-1062, USA
| | - Zhen T. Chu
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Avenue, Los Angeles, CA 90089-1062, USA
| | - Andrei V. Pisliakov
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Avenue, Los Angeles, CA 90089-1062, USA
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Avenue, Los Angeles, CA 90089-1062, USA
| |
Collapse
|
16
|
Bondar AN, Smith JC, Fischer S. Structural and energetic determinants of primary proton transfer in bacteriorhodopsin. Photochem Photobiol Sci 2006; 5:547-52. [PMID: 16761083 DOI: 10.1039/b516451f] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the light-driven bacteriorhodopsin proton pump, the first proton transfer step is from the retinal Schiff base to a nearby carboxylate group. The mechanism of this transfer step is highly controversial, in particular whether a direct proton jump is allowed. Here, we review the structural and energetic determinants of the direct proton transfer path computed by using a combined quantum mechanical/molecular mechanical approach. Both protein flexibility and electrostatic interactions play an important role in shaping the proton transfer energy profile. Detailed analysis of the energetics of putative transitions in the first half of the photocycle focuses on two elements that determine the likelihood that a given configuration of the active site is populated during the proton-pumping cycle. First, the rate-limiting barrier for proton transfer must be consistent with the kinetics of the photocycle. Second, the active-site configuration must be compatible with a productive overall pumping cycle.
Collapse
Affiliation(s)
- Ana-Nicoleta Bondar
- Computational Molecular Biophysics, IWR, Heidelberg University, Im Neuenheimer Feld 368, Heidelberg, Germany
| | | | | |
Collapse
|
17
|
Gutman M, Nachliel E, Friedman R. The mechanism of proton transfer between adjacent sites on the molecular surface. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:931-41. [PMID: 16581015 DOI: 10.1016/j.bbabio.2006.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2005] [Revised: 01/19/2006] [Accepted: 01/26/2006] [Indexed: 11/20/2022]
Abstract
The surface of a protein, or a membrane, is spotted with a multitude of proton binding sites, some of which are only few A apart. When a proton is released from one site, it propagates through the water by a random walk under the bias of the local electrostatic potential determined by the distribution of the charges on the protein. Eventually, the released protons are dispersed in the bulk, but during the first few nanoseconds after the dissociation, the protons can be trapped by encounter with nearby acceptor sites. While the study of this reaction on the surface of a protein suffers from experimental and theoretical difficulties, it can be investigated with simple model compounds like derivatives of fluorescein. In the present study, we evaluate the mechanism of proton transfer reactions that proceed, preferentially, inside the Coulomb cage of the dye molecules. Kinetic analysis of the measured dynamics reveals the role of the dimension of the Coulomb cage on the efficiency of the reaction and how the ordering of the water molecules by the dye affects the kinetic isotope effect.
Collapse
Affiliation(s)
- Menachem Gutman
- Laser Laboratory for Fast Reactions in Biology, Department of Biochemistry, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel.
| | | | | |
Collapse
|
18
|
Knox PP, Baptista MS, Uchoa AF, Zakharova NI. Effects of Oxygen, Heavy Water, and Glycerol on Electron Transfer in the Acceptor Part of Rhodobacter sphaeroides Reaction Centers. BIOCHEMISTRY (MOSCOW) 2005; 70:1268-73. [PMID: 16336188 DOI: 10.1007/s10541-005-0258-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The kinetics of electron transfer between primary and secondary quinone acceptors of the photosynthetic reaction center (RC) of the purple bacterium Rhodobacter sphaeroides wild type was studied at the wavelengths 400 and 450 nm. It was shown that removing of molecular oxygen from RC preparations slowed down the fast phase of the process from 4-4.5 microsec to tens of microseconds. Similar effects were observed after the incubation of RC in heavy water for 72 h or glycerol addition (90% v/v) to RC preparations. The observed effects are interpreted in terms of the influence of these agents on the hydrogen bond system of the RC. The state of this system can determine the formation of different RC conformations that are characterized by different rates of electron transfer between quinone acceptors.
Collapse
Affiliation(s)
- P P Knox
- Biology Faculty, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | | | | | | |
Collapse
|
19
|
Gutman M. Intra-protein proton transfer; presentation of the most massive flux in the biosphere at quantum chemistry resolution. Structure 2004; 12:1123-5. [PMID: 15242586 DOI: 10.1016/j.str.2004.06.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Baasov T, Sheves M. Alteration of pKa of the bacteriorhodopsin protonated Schiff base. A study with model compounds. Biochemistry 2002. [DOI: 10.1021/bi00366a040] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Tajkhorshid E, Baudry J, Schulten K, Suhai S. Molecular dynamics study of the nature and origin of retinal's twisted structure in bacteriorhodopsin. Biophys J 2000; 78:683-93. [PMID: 10653781 PMCID: PMC1300671 DOI: 10.1016/s0006-3495(00)76626-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The planarity of the polyene chain of the retinal chromophore in bacteriorhodopsin is studied using molecular dynamics simulation techniques and applying different force-field parameters and starting crystal structures. The largest deviations from a planar structure are observed for the C(13)==C(14) and C(15)==N(16) double bonds in the retinal Schiff base structure. The other dihedral angles along the polyene chain of the chromophore, although having lower torsional barriers in some cases, do not significantly deviate from the planar structure. The results of the simulations of different mutants of the pigment show that, among the studied amino acids of the binding pocket, the side chain of Trp-86 has the largest impact on the planarity of retinal, and the mutation of this amino acid to alanine leads to chromophore planarity. Deletion of the methyl C(20), removal of a water molecule hydrogen-bonded to H(15), or mutation of other amino acids to alanine did not show any significant influence on the distortion of the chromophore. The results from the present study suggest the importance of the bulky residue of Trp-86 in the isomerization process, in both ground and excited states of the chromophore, and in fine-tuning of the pK(a) of the retinal protonated Schiff base in bacteriorhodopsin. The dark adaptation of the pigment and the last step of the bacteriorhodopsin photocycle imply low barriers against the rotation of the double bonds in the Schiff base region. The twisted double bonds found in the present study are consistent with the proposed mechanism of these ground state isomerization events.
Collapse
Affiliation(s)
- E Tajkhorshid
- Theoretical Biophysics Group, Beckman Institute, University of Illinois at Urbana-Champaign 61801, USA
| | | | | | | |
Collapse
|
22
|
Tajkhorshid E, Suhai S. Influence of the Methyl Groups on the Structure, Charge Distribution, and Proton Affinity of the Retinal Schiff Base. J Phys Chem B 1999. [DOI: 10.1021/jp983742b] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Emadeddin Tajkhorshid
- Department of Molecular Biophysics, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Sándor Suhai
- Department of Molecular Biophysics, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| |
Collapse
|
23
|
Tajkhorshid E, Paizs B, Suhai S. Role of Isomerization Barriers in the pKa Control of the Retinal Schiff Base: A Density Functional Study. J Phys Chem B 1999. [DOI: 10.1021/jp982625d] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Emadeddin Tajkhorshid
- Department of Molecular Biophysics, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Béla Paizs
- Department of Molecular Biophysics, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Sándor Suhai
- Department of Molecular Biophysics, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| |
Collapse
|
24
|
Abstract
Bacteriorhodopsin is a seven-transmembrane helical protein that contains all-trans retinal. In this light-driven pump, a reaction cycle initiated by photoisomerization to 13-cis causes translocation of a proton across the membrane. Local changes in the geometry of the protonated Schiff base and the proton acceptor Asp85, and the proton conductivities of the half channels that lead from this active site to the two membrane surfaces, interact so as to allow timely proton transfers that result in proton release on the extracellular side and proton uptake on the cytoplasmic one. The details of the steps in this photocycle, and the underlying principles that ensure unidirectionality of the movement of a proton across the protein, provide strong clues to how ion pumps function.
Collapse
Affiliation(s)
- J K Lanyi
- Department of Physiology and Biophysics, University of California, Irvine 92697-4560, USA
| |
Collapse
|
25
|
|
26
|
Cherny VV, Markin VS, DeCoursey TE. The voltage-activated hydrogen ion conductance in rat alveolar epithelial cells is determined by the pH gradient. J Gen Physiol 1995; 105:861-96. [PMID: 7561747 PMCID: PMC2216954 DOI: 10.1085/jgp.105.6.861] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Voltage-activated H+ currents were studied in rat alveolar epithelial cells using tight-seal whole-cell voltage clamp recording and highly buffered, EGTA-containing solutions. Under these conditions, the tail current reversal potential, Vrev, was close to the Nernst potential, EH, varying 52 mV/U pH over four delta pH units (delta pH = pHo - pHi). This result indicates that H+ channels are extremely selective, PH/PTMA > 10(7), and that both internal and external pH, pHi, and pHo, were well controlled. The H+ current amplitude was practically constant at any fixed delta pH, in spite of up to 100-fold symmetrical changes in H+ concentration. Thus, the rate-limiting step in H+ permeation is pH independent, must be localized to the channel (entry, permeation, or exit), and is not bulk diffusion limitation. The instantaneous current-voltage relationship exhibited distinct outward rectification at symmetrical pH, suggesting asymmetry in the permeation pathway. Sigmoid activation kinetics and biexponential decay of tail currents near threshold potentials indicate that H+ channels pass through at least two closed states before opening. The steady state H+ conductance, gH, as well as activation and deactivation kinetic parameters were all shifted along the voltage axis by approximately 40 mV/U pH by changes in pHi or pHo, with the exception of the fast component of tail currents which was shifted less if at all. The threshold potential at which H+ currents were detectably activated can be described empirically as approximately 20-40(pHo-pHi) mV. If internal and external protons regulate the voltage dependence of gH gating at separate sites, then they must be equally effective. A simpler interpretation is that gating is controlled by the pH gradient, delta pH. We propose a simple general model to account for the observed delta pH dependence. Protonation at an externally accessible site stabilizes the closed channel conformation. Deprotonation of this site permits a conformational change resulting in the appearance of a protonation site, possibly the same one, which is accessible via the internal solution. Protonation of the internal site stabilizes the open conformation of the channel. In summary, within the physiological range of pH, the voltage dependence of H+ channel gating depends on delta pH and not on the absolute pH.
Collapse
Affiliation(s)
- V V Cherny
- Department of Molecular Biophysics and Physiology, Rush Presbyterian St. Luke's Medical Center, Chicago, Illinois 60612, USA
| | | | | |
Collapse
|
27
|
Brown LS, Gat Y, Sheves M, Yamazaki Y, Maeda A, Needleman R, Lanyi JK. The retinal Schiff base-counterion complex of bacteriorhodopsin: changed geometry during the photocycle is a cause of proton transfer to aspartate 85. Biochemistry 1994; 33:12001-11. [PMID: 7918419 DOI: 10.1021/bi00206a001] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bacteriorhodopsin contains all-trans-retinal linked via a protonated Schiff base to K216. The proton transport in this pump is initiated by all-trans to 13-cis photoisomerization of the retinal and the ensuing transfer of the Schiff base proton to D85. Changed geometrical relationship of the Schiff base and D85 after the photoisomerization is a possible reason for the proton transfer. We introduced small volume/shape changes with site-specific mutagenesis of residues V49 and A53 that contact the side chain of K216, in order to force the Schiff base into somewhat different positions relative to D85. Earlier [Zimányi, L., Váró, G., Chang, M., Ni, B., Needleman, R., & Lanyi, J. K. (1992) Biochemistry 31, 8535-8543] we had described the kinetics of absorbance changes in the microsecond to millisecond time range after photoexcitation with the scheme L<-->M1<-->M2 + H+ (where the first equilibrium is the internal proton transfer and the second is proton release on the extracellular surface). Testing it at various pH values with mutants, where selected rate constants are changed, now confirms the validity of this scheme. The kinetics of the M state thus allowed examination of the transient equilibrium that develops in the L<-->M1 reaction and represents the redistribution of the proton between the Schiff base and D85. From the structure of the protein, the V49A and V49M residue replacements were both predicted to cause decreased alignment of the Schiff base and D85, and indeed we found that they both changed the equilibrium toward the protonated Schiff base. In contrast, the residue replacements A53V and A53G were predicted to move the Schiff base in opposite directions, away from and closer to alignment with D85, respectively. The former indeed changed the equilibrium toward the protonated Schiff base and the latter toward the deprotonated Schiff base. In addition, the hydroxyl stretch band of a bound water in the L state was affected by all mutations that disfavor proton transfer to D85. We conclude that the geometry of the proton donor and acceptor in the Schiff base-D85 pair, mediated by bound water, is a determinant of the proton transfer equilibrium.
Collapse
Affiliation(s)
- L S Brown
- Department of Physiology and Biophysics, University of California, Irvine 92717
| | | | | | | | | | | | | |
Collapse
|
28
|
Rouvière-Fourmy N, Capeillère-Blandin C, Lederer F. Role of tyrosine 143 in lactate dehydrogenation by flavocytochrome b2. Primary kinetic isotope effect studies with a phenylalanine mutant. Biochemistry 1994; 33:798-806. [PMID: 8292608 DOI: 10.1021/bi00169a022] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Flavocytochrome b2 catalyzes the oxidation of lactate at the expense of cytochrome c. After flavin (FMN) reduction by the substrate, reducing equivalents are transferred one by one to heme b2, and from there on to cytochrome c. The crystal structure of the enzyme is known at 2.4-A resolution, and specific roles in catalysis have been assigned to active side chains. Tyr143 in particular, located at the interface between the flavodehydrogenase moiety and the heme-binding domain, was thought to take part in substrate binding, as well as to orient the heme-binding domain for efficient electron transfer. A first study of the properties of a Tyr143Phe mutant showed that the major effect of the mutation was to decrease the rate of electron transfer from flavin to heme [Miles, C.S., Rouvière-Fourmy, N., Lederer, F., Mathews, F.S., Reid, G.A., Black, M.T., & Chapman, S.K. (1992) Biochem. J. 285, 187-192]. In the present paper, we focus on the effect of the mutation on catalysis of lactate dehydrogenation. We report the deuterium kinetic isotope effects on flavin reduction as measured with stopped-flow methods and on cytochrome c reduction in the steady-state using L-[2-2H]lactate. For the wild-type enzyme, isotope effects on FMN reduction, D(kredF) and D(kredF)/Km), were 7.2 +/- 0.9 and 4.2 +/- 1.3, respectively, and for the Y143F mutant values of 4.4 +/- 0.5 and 3.9 +/- 1.1 were obtained. Calculations, from deuterium isotope effects, of substrate Kd values, combined with knowledge of kcat/Km values, lead to the conclusion that Tyr143 does stabilize the Michaelis complex by hydrogen bonding to a substrate carboxylate, as was postulated; but the mutation does not destabilize the transition state more than the Michaelis complex.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- N Rouvière-Fourmy
- Centre National de la Recherche Scientifique, URA 1461, Hôpital Necker, Paris, France
| | | | | |
Collapse
|
29
|
Dencher NA, Büldt G, Heberle J, Höltje HD, Höltje M. Light-Triggered Opening and Closing of an Hydrophobic Gate Controls Vectorial Proton Transfer Across Bacteriorhodopsin. NATO ASI SERIES 1992. [DOI: 10.1007/978-1-4615-3444-0_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
30
|
Dencher NA, Heberle J, Büldt G, Höltje HD, Höltje M. What Do Neutrons, X-ray Synchrotron Radiation, Optical ph-indicators, and Mutagenesis Tell us About the Light-driven Proton Pump Bacteriorhodopsin? THE JERUSALEM SYMPOSIA ON QUANTUM CHEMISTRY AND BIOCHEMISTRY 1992. [DOI: 10.1007/978-94-011-2718-9_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
31
|
Scheiner S, Duan X. Effect of intermolecular orientation upon proton transfer within a polarizable medium. Biophys J 1991; 60:874-83. [PMID: 1660318 PMCID: PMC1260138 DOI: 10.1016/s0006-3495(91)82121-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Ab initio calculations are used to investigate the proton transfer process in bacteriorhodopsin. HN = CH2 serves as a small prototype of the Schiff base while HCOO- models its carboxylate-containing counterion and HO- the hydroxyl group of water of tyrosine, leading to the HCOO-..H+..NHCH2 and HO-..H+..NHCH2 complexes. In isolation, both complexes prefer a neutral pair configuration wherein the central proton is associated with the anion. However, the Schiff base may be protonated in the former complex, producing the HCOO-..+HNHCH2 ion pair, when there is a high degree of dielectric coupling with an external polarizable medium. Within a range of intermediate level coupling, the equilibrium position of the proton (on either the carboxylate or Schiff base) can be switched by suitable changes in the intermolecular angle. pK shift resulting from a 60 degrees reorientation are calculated to be some 5-12 pK U within the coupling range where proton transfers are possible. The energy barrier to proton transfer reinforces the ability of changes in angle and dielectric coupling to induce a proton transfer.
Collapse
Affiliation(s)
- S Scheiner
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale 62901
| | | |
Collapse
|
32
|
Rothschild KJ, Braiman MS, He YW, Marti T, Khorana HG. Vibrational spectroscopy of bacteriorhodopsin mutants. Evidence for the interaction of aspartic acid 212 with tyrosine 185 and possible role in the proton pump mechanism. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)44857-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
Kovacic P, Kassel MA, Castonguay A, Kem WR, Feinberg BA. Reduction potentials of imine-substituted, biologically active pyridines: possible relation to activity. FREE RADICAL RESEARCH COMMUNICATIONS 1990; 10:185-92. [PMID: 2397922 DOI: 10.3109/10715769009149887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cyclic voltammetry data were obtained for a number of biologically active compounds which incorporate imine substitution on the pyridine nucleus. The reductions in acid (iminium ion formation) were for the most part reversible, and in the range of -0.5 to -0.7V. The toxic effect of these drugs is thought to be caused by the generation of reactive oxygen radicals that arise via charge transfer, or by disruption of electron transport chains.
Collapse
Affiliation(s)
- P Kovacic
- Department of Chemistry, University of Wisconsin-Milwaukee 53201
| | | | | | | | | |
Collapse
|
34
|
Sreerama N, Vishveshwara S. Ab initio studies on proton transfer involving Schiff base and related nitrogen compounds. J Mol Struct 1989. [DOI: 10.1016/0022-2860(89)85067-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
|
36
|
Bennett LK, Beamer RL. Molecular orbital calculations of proton transfer energetics in model systems: the interaction of opiate agonists and antagonists with opiate receptors. J Pharm Sci 1988; 77:986-90. [PMID: 2852247 DOI: 10.1002/jps.2600771119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Semiempirical (CNDO) molecular orbital calculations, based on a previously investigated morphine-receptor clastic-binding system, were performed using a series of ethyl and propyl amines as models for the analgesic receptor. Trimethyl and dimethyl amines were chosen to represent the opiate and noropiate agonist molecules. The opiate antagonist molecules, levallorphan, naloxone, nalorphine, and pentazocine were represented by a series of allyl and dimethylallyl amines. The results using these systems paralleled those of our previous investigations. The potential energy curves for all the systems studied had two minima at an internuclear distance of greater than 0.275 nm. At 0.2731 nm (the optimized N-N distance), the potential energy curve of some systems had single minima. The agonist systems studied had optimum energy curves for the conformer in which the (drug nitrogen-hydrogen) bond is equatorial. The noropiate model had the greatest transfer potential, an optimal condition for analgesic activity. The antagonist drug receptor models had energy curves that indicated a decreased proton transfer barrier that was similar to the noropiate case (although no delta E was obtained). The two largest models studied had energy curves that indicated decreased or inhibited proton transfer. The systems investigated had small deprotonation barriers, indicating deprotonation would most likely occur following protonation of the receptor.
Collapse
|
37
|
Abstract
The removal of 75% of the lipid from bacteriorhodopsin caused the following: (i) decreased efficiency and rate of deprotonation of the protonated Schiff base (as monitored by absorption of the M412 intermediate); (ii) increased efficiency of deprotonation of deionized samples; (iii) a decrease by 1 unit in the pH at which deprotonation ceases; (iv) increased intensity of Eu3+ emission in Eu3+-regenerated deionized delipidated samples; (v) increased exposure of the Eu3+ sites to water; and (vi) elimination of the dependence of the deprotonation efficiency on the metal cation concentration. These results are discussed in terms of changes in the protein conformation upon delipidation, which in turn control the deprotonation mechanism.
Collapse
Affiliation(s)
- D J Jang
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90024
| | | |
Collapse
|
38
|
Relationship between the angular characteristics of a hydrogen bond and the energetics of proton transfer occurring within. J Mol Struct 1988. [DOI: 10.1016/0022-2860(88)80080-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
|
40
|
Remko M, Scheiner S. Ab initio investigation of interactions between models of local anesthetics and receptor: complexes involving amine, phosphate, amide, Na+, K+, Ca2+, and Cl-. J Pharm Sci 1988; 77:304-8. [PMID: 2837566 DOI: 10.1002/jps.2600770404] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ab initio molecular orbital methods are used to study the interactions between models of local anesthetic molecules and the putative receptors within the nerve membrane: phospholipids and lipoproteins. The tertiary amine terminus of local anesthetics was modeled by ionized and un-ionized trimethylamine, while phosphate monoanion and formamide emulated the appropriate portions of the receptor. The protonated amine forms a very strong complex with the phosphate anion in which the charge is transferred to the phosphate. While somewhat weaker than this, the complex involving the amine (in either its ionized or un-ionized state) and peptide is considerably stronger than interpeptide H bonds, suggesting the anesthetic can disrupt the normal H-bond patterns in a protein. On the other hand, such interactions must compete with the rather tight binding of the anesthetic with the Na+, K+, Ca2+ and Cl- ions present in vivo.
Collapse
Affiliation(s)
- M Remko
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale 62901
| | | |
Collapse
|
41
|
Chronister EL, El-Sayed MA. TIME-RESOLVED RESONANCE RAMAN SPECTRA OF THE PHOTOCYCLE INTERMEDIATES OF ACID AND DEIONIZED BACTERIORHODOPSIN. Photochem Photobiol 1987. [DOI: 10.1111/j.1751-1097.1987.tb05410.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Crawford PW, Kovacic P, Gilman NW, Ryan MD. Charge transfer mechanism for benzodiazepine (BZ) action. ACTA ACUST UNITED AC 1986. [DOI: 10.1016/0302-4598(86)80063-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Bennett LK, Beamer RL. Molecular orbital calculations of proton transfer involving amines as models for the clastic binding of opiates with their receptor. J Pharm Sci 1986; 75:769-71. [PMID: 3021951 DOI: 10.1002/jps.2600750809] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Semi-empirical (CNDO) molecular orbital calculations, based on a previously reported ammonia-amine model system, were performed on an extended series of methyl-, ethyl-, and propylamines as models for the analgesic receptor. Methyl-, dimethyl-, and trimethylamines were chosen to represent the opiate molecules. Interatomic distances were varied within normally expected biological values. The results for the larger systems are similar to more elaborate calculations previously reported using smaller molecules. At internuclear distances of greater than 0.275 nm, the potential energy curves had two minima. At 0.2731 nm, the optimized N-N distance, the "depth" of the minima in the potential energy curve were not as great. Energy differences as well as population differences suggest deviation from the currently stated clastic binding theories mechanism for the analgesic response of the tertiary amines. The dimethylamine energy profile and population data indicate that the hypothesis of N-demethylated opiate as the active molecule needs further consideration and investigation. Investigation of larger systems is also indicated to develop increasingly realistic models for the analgesic response.
Collapse
|
44
|
Abstract
We present a combined quantum/molecular mechanical study of the trypsin-catalyzed hydrolysis of a specific tripeptide substrate, including the entire enzyme in the calculation, as well as 200 H2O molecules. The results illustrate how the enzyme and nearby H2O molecules stabilize the ionic intermediates in peptide hydrolysis, such that the reaction is calculated to have a barrier that is significantly smaller than the calculated and experimental base-catalyzed barrier of formamide hydrolysis in aqueous solution. This enables us to understand how serine proteases increase the rates for reactions that take place in their active sites, compared to the corresponding rates for analogous solution reactions.
Collapse
|