1
|
Zheng R, Cheng M, Ma R, Schipper D, Pichugin K, Sciaini G. Solvent effects on the intramolecular charge transfer excited state of 3CzClIPN: a broadband transient absorption study. Phys Chem Chem Phys 2024; 26:1039-1045. [PMID: 38093689 DOI: 10.1039/d3cp04975b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The prediction of solvent properties using molecular probes often relies on correlating steady-state absorption and fluorescence measurements, as well as determining absorption maxima and/or Stokes shifts. In this study, we employ femtosecond broadband transient absorption (fs-bb-TA) spectroscopy to investigate the spectroscopic behaviour of the intramolecular charge transfer (ICT) excited state of 3CzClIPN (2,4,6-tri(9H-carbazol-9-yl)-5-chloroisophthalonitrile), a representative ICT organic molecule, in both aromatic and non-aromatic solvents. Unlike observations in non-aromatic media, fs-bb-TA spectra of 3CzClIPN in aromatic solvents exhibit enhanced spectral broadening that strongly correlates with the solvent's polarity. We hypothesise that this spectral broadening originates from a wider configurational energy landscape experienced by the positively charged carbazole Cz+ group, owing to the larger size and, consequently, reduced solvation effectiveness of aromatic solvent molecules.
Collapse
Affiliation(s)
- Ruofei Zheng
- The Ultrafast Electron Imaging Laboratory, University of Waterloo, Waterloo, Canada.
- Department of Chemistry, University of Waterloo, Waterloo, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Canada
| | - Meixin Cheng
- Department of Chemistry, University of Waterloo, Waterloo, Canada
| | - Ruishu Ma
- The Ultrafast Electron Imaging Laboratory, University of Waterloo, Waterloo, Canada.
- Department of Chemistry, University of Waterloo, Waterloo, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Canada
| | - Derek Schipper
- Department of Chemistry, University of Waterloo, Waterloo, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Canada
| | - Kostyantyn Pichugin
- The Ultrafast Electron Imaging Laboratory, University of Waterloo, Waterloo, Canada.
- Department of Chemistry, University of Waterloo, Waterloo, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Canada
| | - Germán Sciaini
- The Ultrafast Electron Imaging Laboratory, University of Waterloo, Waterloo, Canada.
- Department of Chemistry, University of Waterloo, Waterloo, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Canada
| |
Collapse
|
2
|
Chen H, Guan X, Liu Q, Yang L, Guo J, Gao F, Qi Y, Wu X, Zhang F, Tian X. Co-assembled Nanocarriers of De Novo Thiol-Activated Hydrogen Sulfide Donors with an RGDFF Pentapeptide for Targeted Therapy of Non-Small-Cell Lung Cancer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53475-53490. [PMID: 36413755 DOI: 10.1021/acsami.2c14570] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hydrogen sulfide releasing agents (or H2S donors) have been recognized gasotransmitters with potent cytoprotective and anticancer properties. However, the clinical application of H2S donors has been hampered by their fast H2S-release, instability, and lack of tumor targeting, despite the unclear molecular mechanism of H2S action. Here we rationally designed an amphiphilic pentapeptide (RGDFF) to coassemble with the de novo designed thiol-activated H2S donors (CL2/3) into nanocarriers for targeted therapy of non-small-cell lung cancer, which has been proved as a one-stone-three-birds strategy. The coassembly approach simply solved the solubility issue of CL2/3 by the introduction of electron-donating groups (phenyl rings) to slow down the H2S release while dramatically improving their biocompatible interface, circulation time, slow release of H2S, and tumor targeting. Experimental results confirmed that as-prepared coassembled nanocarriers can significantly induce the intrinsic apoptotic, effectively arrest cell cycle at the G2/M phase, inhibit H2S-producing enzymes, and lead to mitochondrial dysfunction by increasing intracellular ROS production in H1299 cells. The mouse tumorigenesis experiments further confirmed the in vivo anticancer effects of the coassembled nanocarriers, and such treatment made tumors more sensitive to radiotherapy then improved the prognosis of tumor-bearing mice, which holds great promise for developing a new combined approach for NSCLC.
Collapse
Affiliation(s)
- Hong Chen
- The School of Biomedical Engineering, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, China
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Xiaoying Guan
- The School of Biomedical Engineering, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, China
| | - Qianqian Liu
- The Emergency Department, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, China
| | - Longcui Yang
- The School of Biomedical Engineering, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, China
| | - Jun Guo
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Feng Gao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Wenzhou 325000, China
| | - Yueheng Qi
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Xiongting Wu
- Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Feng Zhang
- The School of Biomedical Engineering, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, China
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology, Shanghai 200093, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Wenzhou 325000, China
| | - Xiumei Tian
- The School of Biomedical Engineering, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, China
- The Emergency Department, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, China
| |
Collapse
|
3
|
Machine learning the Hohenberg-Kohn map for molecular excited states. Nat Commun 2022; 13:7044. [DOI: 10.1038/s41467-022-34436-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022] Open
Abstract
AbstractThe Hohenberg-Kohn theorem of density-functional theory establishes the existence of a bijection between the ground-state electron density and the external potential of a many-body system. This guarantees a one-to-one map from the electron density to all observables of interest including electronic excited-state energies. Time-Dependent Density-Functional Theory (TDDFT) provides one framework to resolve this map; however, the approximations inherent in practical TDDFT calculations, together with their computational expense, motivate finding a cheaper, more direct map for electronic excitations. Here, we show that determining density and energy functionals via machine learning allows the equations of TDDFT to be bypassed. The framework we introduce is used to perform the first excited-state molecular dynamics simulations with a machine-learned functional on malonaldehyde and correctly capture the kinetics of its excited-state intramolecular proton transfer, allowing insight into how mechanical constraints can be used to control the proton transfer reaction in this molecule. This development opens the door to using machine-learned functionals for highly efficient excited-state dynamics simulations.
Collapse
|
4
|
Twisted intramolecular charge transfer of nitroaromatic push-pull chromophores. Sci Rep 2022; 12:6557. [PMID: 35449231 PMCID: PMC9023442 DOI: 10.1038/s41598-022-10565-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/11/2022] [Indexed: 12/02/2022] Open
Abstract
The structural changes during the intramolecular charge transfer (ICT) of nitroaromatic chromophores, 4-dimethylamino-4′-nitrobiphenyl (DNBP) and 4-dimethylamino-4′-nitrostilbene (DNS) were investigated by femtosecond stimulated Raman spectroscopy (FSRS) with both high spectral and temporal resolutions. The kinetically resolved Raman spectra of DNBP and DNS in the locally-excited and charge-transferred states of the S1 state appear distinct, especially in the skeletal vibrational modes of biphenyl and stilbene including ν8a and νC=C. The ν8a of two phenyls and the νC=C of the central ethylene group (only for stilbene), which are strongly coupled in the planar geometries, are broken with the twist of nitrophenyl group with the ICT. Time-resolved vibrational spectroscopy measurements and the time-dependent density functional theory simulations support the ultrafast ICT dynamics of 220–480 fs with the twist of nitrophenyl group occurring in the S1 state of the nitroaromatic chromophores. While the ICT of DNBP occurs via a barrier-less pathway, the ICT coordinates of DNS are strongly coupled to several low-frequency out-of-phase deformation modes relevant to the twist of the nitrophenyl group.
Collapse
|
5
|
Policht VR, Niedringhaus A, Willow R, Laible PD, Bocian DF, Kirmaier C, Holten D, Mančal T, Ogilvie JP. Hidden vibronic and excitonic structure and vibronic coherence transfer in the bacterial reaction center. SCIENCE ADVANCES 2022; 8:eabk0953. [PMID: 34985947 PMCID: PMC8730630 DOI: 10.1126/sciadv.abk0953] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We report two-dimensional electronic spectroscopy (2DES) experiments on the bacterial reaction center (BRC) from purple bacteria, revealing hidden vibronic and excitonic structure. Through analysis of the coherent dynamics of the BRC, we identify multiple quasi-resonances between pigment vibrations and excitonic energy gaps, and vibronic coherence transfer processes that are typically neglected in standard models of photosynthetic energy transfer and charge separation. We support our assignment with control experiments on bacteriochlorophyll and simulations of the coherent dynamics using a reduced excitonic model of the BRC. We find that specific vibronic coherence processes can readily reveal weak exciton transitions. While the functional relevance of such processes is unclear, they provide a spectroscopic tool that uses vibrations as a window for observing excited state structure and dynamics elsewhere in the BRC via vibronic coupling. Vibronic coherence transfer reveals the upper exciton of the “special pair” that was weakly visible in previous 2DES experiments.
Collapse
Affiliation(s)
- Veronica R. Policht
- Department of Physics, University of Michigan, 450 Church St, Ann Arbor, MI 48109, USA
| | - Andrew Niedringhaus
- Department of Physics, University of Michigan, 450 Church St, Ann Arbor, MI 48109, USA
| | - Rhiannon Willow
- Department of Physics, University of Michigan, 450 Church St, Ann Arbor, MI 48109, USA
| | - Philip D. Laible
- Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - David F. Bocian
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Tomáš Mančal
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic
| | - Jennifer P. Ogilvie
- Department of Physics, University of Michigan, 450 Church St, Ann Arbor, MI 48109, USA
- Corresponding author.
| |
Collapse
|
6
|
Madhu M, Ramakrishnan R, Vijay V, Hariharan M. Free Charge Carriers in Homo-Sorted π-Stacks of Donor-Acceptor Conjugates. Chem Rev 2021; 121:8234-8284. [PMID: 34133137 DOI: 10.1021/acs.chemrev.1c00078] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inspired by the high photoconversion efficiency observed in natural light-harvesting systems, the hierarchical organization of molecular building blocks has gained impetus in the past few decades. Particularly, the molecular arrangement and packing in the active layer of organic solar cells (OSCs) have garnered significant attention due to the decisive role of the nature of donor/acceptor (D/A) heterojunctions in charge carrier generation and ultimately the power conversion efficiency. This review focuses on the recent developments in emergent optoelectronic properties exhibited by self-sorted donor-on-donor/acceptor-on-acceptor arrangement of covalently linked D-A systems, highlighting the ultrafast excited state dynamics of charge transfer and transport. Segregated organization of donors and acceptors promotes the delocalization of photoinduced charges among the stacks, engendering an enhanced charge separation lifetime and percolation pathways with ambipolar conductivity and charge carrier yield. Covalently linking donors and acceptors ensure a sufficient D-A interface and interchromophoric electronic coupling as required for faster charge separation while providing better control over their supramolecular assemblies. The design strategies to attain D-A conjugate assemblies with optimal charge carrier generation efficiency, the scope of their application compared to state-of-the-art OSCs, current challenges, and future opportunities are discussed in the review. An integrated overview of rational design approaches derived from the comprehension of underlying photoinduced processes can pave the way toward superior optoelectronic devices and bring in new possibilities to the avenue of functional supramolecular architectures.
Collapse
Affiliation(s)
- Meera Madhu
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, India 695551
| | - Remya Ramakrishnan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, India 695551
| | - Vishnu Vijay
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, India 695551
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, India 695551
| |
Collapse
|
7
|
Aksu H, Maiti B, Ptaszek M, Dunietz BD. Photoinduced charge transfer in Zn(II) and Au(III)-ligated symmetric and asymmetric bacteriochlorin dyads: A computational study. J Chem Phys 2021; 153:134111. [PMID: 33032416 DOI: 10.1063/5.0023609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The excited-state properties and photoinduced charge-transfer (CT) kinetics in a series of symmetrical and asymmetrical Zn- and Au-ligated meso-meso-connected bacteriochlorin (BChl) complexes are studied computationally. BChl derivatives, which are excellent near-IR absorbing chromophores, are found to play a central role in bacterial photosynthetic reaction centers but are rarely used in artificial solar energy harvesting systems. The optical properties of chemically linked BChl complexes can be tuned by varying the linking group and involving different ligated metal ions. We investigate charge transfer in BChl dyads that are either directly linked or through a phenylene ring (1,4-phenylene) and which are ligating Zn or Au ions. The directly linked dyads with a nearly perpendicular arrangement of the BChl units bear markedly different properties than phenylene linked dyads. In addition, we find that the dielectric dependence of the intramolecular CT rate is very strong in neutral Zn-ligated dyads, whereas cationic Au-ligated dyads show negligible dielectric dependence of the CT rate. Rate constants of the photo induced CT process are calculated at the semiclassical Marcus level and are compared to fully quantum mechanical Fermi's golden rule based values. The rates are calculated using a screened range separated hybrid functional that offers a consistent framework for addressing environment polarization. We study solvated systems in two solvents of a low and a high scalar dielectric constant.
Collapse
Affiliation(s)
- Huseyin Aksu
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242-0001, USA
| | - Buddhadev Maiti
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242-0001, USA
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore, Maryland 21250-1000, USA
| | - Barry D Dunietz
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242-0001, USA
| |
Collapse
|
8
|
Paz ASP, Glover WJ. Diabatic Many-Body Expansion: Development and Application to Charge-Transfer Reactions. J Chem Theory Comput 2021; 17:1497-1511. [DOI: 10.1021/acs.jctc.0c01231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amiel S. P. Paz
- NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshang Road North, Shanghai 200062, China
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - William J. Glover
- NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshang Road North, Shanghai 200062, China
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
9
|
Ultrafast structural changes within a photosynthetic reaction centre. Nature 2021; 589:310-314. [PMID: 33268896 DOI: 10.1038/s41586-020-3000-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/28/2020] [Indexed: 01/29/2023]
Abstract
Photosynthetic reaction centres harvest the energy content of sunlight by transporting electrons across an energy-transducing biological membrane. Here we use time-resolved serial femtosecond crystallography1 using an X-ray free-electron laser2 to observe light-induced structural changes in the photosynthetic reaction centre of Blastochloris viridis on a timescale of picoseconds. Structural perturbations first occur at the special pair of chlorophyll molecules of the photosynthetic reaction centre that are photo-oxidized by light. Electron transfer to the menaquinone acceptor on the opposite side of the membrane induces a movement of this cofactor together with lower amplitude protein rearrangements. These observations reveal how proteins use conformational dynamics to stabilize the charge-separation steps of electron-transfer reactions.
Collapse
|
10
|
Kajimoto K, Araki K, Usami Y, Ohoyama H, Matsumoto T. Visualization of Charge Migration in Conductive Polymers via Time-Resolved Electrostatic Force Microscopy. J Phys Chem A 2020; 124:5063-5070. [PMID: 32442379 DOI: 10.1021/acs.jpca.9b12017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Charge dynamics play an important role in numerous natural phenomena and artificial devices, and tracking charge migration and recombination is crucial for understanding the mechanism and function of systems involving charge transfer. Tip-synchronized pump-probe electrostatic force microscopy simultaneously permits highly sensitive detection, microsecond time resolution, and nanoscale spatial resolution, where the spatial distribution in static measurement (usual EFM) reflects differences in the carrier density and the time evolution reveals the surface carrier mobility. By using this method, carrier injection and ejection in sulfonated polyaniline (SPAN) thin films were visualized. Comparison of tr-EFM results of SPAN thin films with different doping levels revealed the individual differences in carrier density and mobility.
Collapse
Affiliation(s)
- Kentaro Kajimoto
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Kento Araki
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yuki Usami
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Hiroshi Ohoyama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Takuya Matsumoto
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
11
|
Turley AT, Danos A, Prlj A, Monkman AP, Curchod BFE, McGonigal PR, Etherington MK. Modulation of charge transfer by N-alkylation to control photoluminescence energy and quantum yield. Chem Sci 2020; 11:6990-6995. [PMID: 34122995 PMCID: PMC8159361 DOI: 10.1039/d0sc02460k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Charge transfer in organic fluorophores is a fundamental photophysical process that can be either beneficial, e.g., facilitating thermally activated delayed fluorescence, or detrimental, e.g., mediating emission quenching. N-Alkylation is shown to provide straightforward synthetic control of the charge transfer, emission energy and quantum yield of amine chromophores. We demonstrate this concept using quinine as a model. N-Alkylation causes changes in its emission that mirror those caused by changes in pH (i.e., protonation). Unlike protonation, however, alkylation of quinine's two N sites is performed in a stepwise manner to give kinetically stable species. This kinetic stability allows us to isolate and characterize an N-alkylated analogue of an ‘unnatural’ protonation state that is quaternized selectively at the less basic site, which is inaccessible using acid. These materials expose (i) the through-space charge-transfer excited state of quinine and (ii) the associated loss pathway, while (iii) developing a simple salt that outperforms quinine sulfate as a quantum yield standard. This N-alkylation approach can be applied broadly in the discovery of emissive materials by tuning charge-transfer states. A versatile N-alkylation strategy controls the presence of charge-transfer excited states and the emission colour of N-heterocyclic chromophores.![]()
Collapse
Affiliation(s)
- Andrew T Turley
- Department of Chemistry, Durham University South Road Durham DH1 3LE UK
| | - Andrew Danos
- Department of Physics, Durham University South Road Durham DH1 3LE UK
| | - Antonio Prlj
- Department of Chemistry, Durham University South Road Durham DH1 3LE UK
| | - Andrew P Monkman
- Department of Physics, Durham University South Road Durham DH1 3LE UK
| | | | - Paul R McGonigal
- Department of Chemistry, Durham University South Road Durham DH1 3LE UK
| | - Marc K Etherington
- Department of Physics, Durham University South Road Durham DH1 3LE UK .,Department of Mathematics, Physics and Electrical Engineering, Northumbria University Ellison Place NE1 8ST UK
| |
Collapse
|
12
|
Khmelnitskiy A, Reinot T, Jankowiak R. Mixed Upper Exciton State of the Special Pair in Bacterial Reaction Centers. J Phys Chem B 2019; 123:852-859. [PMID: 30624937 DOI: 10.1021/acs.jpcb.8b12542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Excitonic interactions between two closely separated bacteriochlorophyll a molecules (BChls) in the special pair of the reaction center (RC) of purple bacteria determine the positions and relative oscillator strengths of its two excitonic components. While the absorption of the lower excitonic band is well-defined, the position and the intensity of the upper excitonic band ( PY+) are still under debate. Recent 77 K two-dimensional electronic spectroscopy data on Rba. capsulatus suggested that the PY+ component absorbs at ∼840 nm, i.e., at a significantly lower energy than previously suggested. In the present work, we argue that the PY+ state is mixed with the excited states of the accessory BChls ( B*/ P Y+) leading to excitons contributing to the 785-825 nm spectral region which is consistent with previously published data. This conclusion is based on hole-burning/linear dichroism data and modeling studies of the excitonic structure of the RC using a non-Markovian reduced density matrix approach.
Collapse
|
13
|
Hummert J, Reitsma G, Mayer N, Ikonnikov E, Eckstein M, Kornilov O. Femtosecond Extreme Ultraviolet Photoelectron Spectroscopy of Organic Molecules in Aqueous Solution. J Phys Chem Lett 2018; 9:6649-6655. [PMID: 30388021 DOI: 10.1021/acs.jpclett.8b02937] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Time-resolved valence photoelectron spectroscopy is an established tool for studies of ultrafast molecular dynamics in the gas phase. Here we demonstrate time-resolved XUV photoelectron spectroscopy from dilute aqueous solutions of organic molecules, paving the way to application of this method to photodynamics studies of organic molecules in natural environments, which so far have only been accessible to all-optical transient spectroscopies. We record static and time-resolved photoelectron spectra of a sample molecule, quinoline yellow WS, analyze its electronic structure, and follow the relaxation dynamics upon excitation with 400 nm pulses. The dynamics exhibit three time scales, of which a 250 ± 70 fs time scale is attributed to solvent rearrangement. The two longer time scales of 1.3 ± 0.4 and 90 ± 20 ps can be correlated to the recently proposed ultrafast excited-state intramolecular proton transfer in a closely related molecule, quinophthalone.
Collapse
Affiliation(s)
- Johan Hummert
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Geert Reitsma
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Nicola Mayer
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Evgenii Ikonnikov
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Martin Eckstein
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Oleg Kornilov
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy , Max-Born-Strasse 2a , 12489 Berlin , Germany
| |
Collapse
|
14
|
Konar A, Sechrist R, Song Y, Policht VR, Laible PD, Bocian DF, Holten D, Kirmaier C, Ogilvie JP. Electronic Interactions in the Bacterial Reaction Center Revealed by Two-Color 2D Electronic Spectroscopy. J Phys Chem Lett 2018; 9:5219-5225. [PMID: 30136848 DOI: 10.1021/acs.jpclett.8b02394] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The bacterial reaction center (BRC) serves as an important model system for understanding the charge separation processes in photosynthesis. Knowledge of the electronic structure of the BRC is critical for understanding its charge separation mechanism. While it is well-accepted that the "special pair" pigments are strongly coupled, the degree of coupling among other BRC pigments has been thought to be relatively weak. Here we study the W(M250)V mutant BRC by two-color two-dimensional electronic spectroscopy to correlate changes in the Q x region with excitation of the Q y transitions. The resulting Q y-Q x cross-peaks provide a sensitive measure of the electronic interactions throughout the BRC pigment network and complement one-color 2D studies in which such interactions are often obscured by energy transfer and excited-state absorption signals. Our observations should motivate the refinement of electronic structure models of the BRC to facilitate improved understanding of the charge separation mechanism.
Collapse
Affiliation(s)
- Arkaprabha Konar
- Department of Physics , University of Michigan , Ann Arbor , Michigan 49109-1040 , United States
| | - Riley Sechrist
- Department of Physics , University of Michigan , Ann Arbor , Michigan 49109-1040 , United States
| | - Yin Song
- Department of Physics , University of Michigan , Ann Arbor , Michigan 49109-1040 , United States
| | - Veronica R Policht
- Department of Physics , University of Michigan , Ann Arbor , Michigan 49109-1040 , United States
| | - Philip D Laible
- Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - David F Bocian
- Department of Chemistry , University of California , Riverside , California 92521 , United States
| | - Dewey Holten
- Department of Chemistry , Washington University , St. Louis , Missouri 63130 , United States
| | - Christine Kirmaier
- Department of Chemistry , Washington University , St. Louis , Missouri 63130 , United States
| | - Jennifer P Ogilvie
- Department of Physics , University of Michigan , Ann Arbor , Michigan 49109-1040 , United States
| |
Collapse
|
15
|
McCleese C, Yu Z, Esemoto NN, Kolodziej C, Maiti B, Bhandari S, Dunietz BD, Burda C, Ptaszek M. Excitonic Interactions in Bacteriochlorin Homo-Dyads Enable Charge Transfer: A New Approach to the Artificial Photosynthetic Special Pair. J Phys Chem B 2018. [PMID: 29526105 DOI: 10.1021/acs.jpcb.8b02123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Excitonically coupled bacteriochlorin (BC) dimers constitute a primary electron donor (special pair) in bacterial photosynthesis and absorbing units in light-harvesting antenna. However, the exact nature of the excited state of these dyads is still not fully understood. Here, we report a detailed spectroscopic and computational investigation of a series of symmetrical bacteriochlorin dimers, where the bacteriochlorins are connected either directly or by a phenylene bridge of variable length. The excited state of these dyads is quenched in high-dielectric solvents, which we attribute to photoinduced charge transfer. The mixing of charge transfer with the excitonic state causes accelerated (within 41 ps) decay of the excited state for the directly linked dyad, which is reduced by orders of magnitude with each additional phenyl ring separating the bacteriochlorins. These results highlight the origins of the excited-state dynamics in symmetric BC dyads and provide a new model for studying the primary processes in photosynthesis and for the development of artificial, biomimetic systems for solar energy conversion.
Collapse
Affiliation(s)
- Christopher McCleese
- Department of Chemistry , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Zhanqian Yu
- Department of Chemistry and Biochemistry , University of Maryland , Baltimore County, Baltimore , Maryland 21250 , United States
| | - Nopondo N Esemoto
- Department of Chemistry and Biochemistry , University of Maryland , Baltimore County, Baltimore , Maryland 21250 , United States
| | - Charles Kolodziej
- Department of Chemistry , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Buddhadev Maiti
- Department of Chemistry and Biochemistry , Kent State University , Kent , Ohio 44242 , United States
| | - Srijana Bhandari
- Department of Chemistry and Biochemistry , Kent State University , Kent , Ohio 44242 , United States
| | - Barry D Dunietz
- Department of Chemistry and Biochemistry , Kent State University , Kent , Ohio 44242 , United States
| | - Clemens Burda
- Department of Chemistry , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry , University of Maryland , Baltimore County, Baltimore , Maryland 21250 , United States
| |
Collapse
|
16
|
Primary processes in the bacterial reaction center probed by two-dimensional electronic spectroscopy. Proc Natl Acad Sci U S A 2018; 115:3563-3568. [PMID: 29555738 DOI: 10.1073/pnas.1721927115] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In the initial steps of photosynthesis, reaction centers convert solar energy to stable charge-separated states with near-unity quantum efficiency. The reaction center from purple bacteria remains an important model system for probing the structure-function relationship and understanding mechanisms of photosynthetic charge separation. Here we perform 2D electronic spectroscopy (2DES) on bacterial reaction centers (BRCs) from two mutants of the purple bacterium Rhodobacter capsulatus, spanning the Q y absorption bands of the BRC. We analyze the 2DES data using a multiexcitation global-fitting approach that employs a common set of basis spectra for all excitation frequencies, incorporating inputs from the linear absorption spectrum and the BRC structure. We extract the exciton energies, resolving the previously hidden upper exciton state of the special pair. We show that the time-dependent 2DES data are well-represented by a two-step sequential reaction scheme in which charge separation proceeds from the excited state of the special pair (P*) to P+HA- via the intermediate P+BA- When inhomogeneous broadening and Stark shifts of the B* band are taken into account we can adequately describe the 2DES data without the need to introduce a second charge-separation pathway originating from the excited state of the monomeric bacteriochlorophyll BA*.
Collapse
|
17
|
Engel N, Bokarev SI, Moguilevski A, Raheem AA, Al-Obaidi R, Möhle T, Grell G, Siefermann KR, Abel B, Aziz SG, Kühn O, Borgwardt M, Kiyan IY, Aziz EF. Light-induced relaxation dynamics of the ferricyanide ion revisited by ultrafast XUV photoelectron spectroscopy. Phys Chem Chem Phys 2017; 19:14248-14255. [DOI: 10.1039/c7cp01288h] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The photoexcited ferricyanide undergoes an ultrafast spin crossover followed by Jahn–Teller distortion.
Collapse
|
18
|
Yakovlev AG, Shuvalov VA. Spectral exhibition of electron-vibrational relaxation in P* state of Rhodobacter sphaeroides reaction centers. PHOTOSYNTHESIS RESEARCH 2015; 125:9-22. [PMID: 25240681 DOI: 10.1007/s11120-014-0041-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/15/2014] [Indexed: 06/03/2023]
Abstract
Electron-vibrational relaxation in the excited state of the primary electron donor, bacteriochlorophyll dimer P, in the reaction centers (RCs) of purple photosynthetic bacteria Rhodobacter sphaeroides is modeled. A multimode model of three states (i.e., the ground state Pg, initially excited P1*, and relaxed excited P2*) is used to calculate the incoherent dynamics of the difference (ΔA) spectra on a femtosecond timescale for the YM210 W mutant RCs. The relaxation processes are described by the step-ladder model. The model shows that the electron-vibrational relaxation in the excited state of P is visualized by the transient red shift of the stimulated emission from P*. The dynamics of this shift is observed as a change in the ΔA spectrum shape in its red-most part, within a few hundreds of femtoseconds after excitation. As a result, an initial rise in the red-side ΔA kinetics is delayed with respect to the blue-side kinetics. The time constant of the P1* → P2* electronic relaxation (54 fs) and the Pg, P1*, and P2* vibrational relaxations (120 fs), used in the model, provided the best fit of the experimental time-resolved ΔA spectra and kinetics at 90 and 293 K. The possible nature of the P1* → P2* electronic relaxation is discussed.
Collapse
Affiliation(s)
- Andrei G Yakovlev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991, Moscow, Russia,
| | | |
Collapse
|
19
|
Harris MA, Luehr CA, Faries KM, Wander M, Kressel L, Holten D, Hanson DK, Laible PD, Kirmaier C. Protein Influence on Charge-Asymmetry of the Primary Donor in Photosynthetic Bacterial Reaction Centers Containing a Heterodimer: Effects on Photophysical Properties and Electron Transfer. J Phys Chem B 2013; 117:4028-41. [DOI: 10.1021/jp401138h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Michelle A. Harris
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United
States
| | - Craig A. Luehr
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439,
United States
| | - Kaitlyn M. Faries
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United
States
| | - Marc Wander
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439,
United States
| | - Lucas Kressel
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439,
United States
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United
States
| | - Deborah K. Hanson
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439,
United States
| | - Philip D. Laible
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439,
United States
| | - Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United
States
| |
Collapse
|
20
|
Rafiq S, Sen P. Dielectric controlled excited state relaxation pathways of a representative push-pull stilbene: A mechanistic study using femtosecond fluorescence up-conversion technique. J Chem Phys 2013; 138:084308. [DOI: 10.1063/1.4792933] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Bixner O, Lukeš V, Mančal T, Hauer J, Milota F, Fischer M, Pugliesi I, Bradler M, Schmid W, Riedle E, Kauffmann HF, Christensson N. Ultrafast photo-induced charge transfer unveiled by two-dimensional electronic spectroscopy. J Chem Phys 2012; 136:204503. [DOI: 10.1063/1.4720492] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
22
|
Neupane B, Jaschke P, Saer R, Beatty JT, Reppert M, Jankowiak R. Electron Transfer in Rhodobacter sphaeroides Reaction Centers Containing Zn-Bacteriochlorophylls: A Hole-Burning Study. J Phys Chem B 2012; 116:3457-66. [DOI: 10.1021/jp300304r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Paul Jaschke
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Rafael Saer
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - J. Thomas Beatty
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Mike Reppert
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | | |
Collapse
|
23
|
Paul BK, Guchhait N. A spectral deciphering of the binding interaction of an intramolecular charge transfer fluorescence probe with a cationic protein: thermodynamic analysis of the binding phenomenon combined with blind docking study. Photochem Photobiol Sci 2011; 10:980-91. [DOI: 10.1039/c0pp00309c] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Lockhart DJ, Boxer SG. Stark effect spectroscopy of Rhodobacter sphaeroides and Rhodopseudomonas viridis reaction centers. Proc Natl Acad Sci U S A 2010; 85:107-11. [PMID: 16578825 PMCID: PMC279492 DOI: 10.1073/pnas.85.1.107] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nature of the initially excited state of the primary electron donor or special pair has been investigated by Stark effect spectroscopy for reaction centers from the photosynthetic bacteria Rhodopseudomonas viridis and Rhodobacter sphaeroides at 77 K. The data provide values for the magnitude of the difference in permanent dipole moment between the ground and excited state, [unk]Deltamu[unk], and the angle [unk] between Deltamu and the transition dipole moment for the electronic transition. [unk]Deltamu[unk] and [unk] for the lowest-energy singlet electronic transition associated with the special pair primary electron donor were found to be very similar for the two species. [unk]Deltamu[unk] for this transition is substantially larger than for the Q(y) transitions of the monomeric pigments in the reaction center or for pure monomeric bacteriochlorophylls, for which Stark data are also reported. We conclude that the excited state of the special pair has substantial charge-transfer character, and we suggest that charge separation in bacterial photosynthesis is initiated immediately upon photoexcitation of the special pair. Data for Rhodobacter sphaeroides between 340 and 1340 nm are presented and discussed in the context of the detection of charge-transfer states by Stark effect spectroscopy.
Collapse
Affiliation(s)
- D J Lockhart
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | | |
Collapse
|
25
|
Lous EJ, Hoff AJ. Exciton interactions in reaction centers of the photosynthetic bacterium Rhodopseudomonas viridis probed by optical triplet-minus-singlet polarization spectroscopy at 1.2 K monitored through absorbance-detected magnetic resonance. Proc Natl Acad Sci U S A 2010; 84:6147-51. [PMID: 16578814 PMCID: PMC299026 DOI: 10.1073/pnas.84.17.6147] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Linear dichroic triplet-minus-singlet [LD-(T - S)] spectra of isolated reaction centers of the photosynthetic bacterium Rhodopseudomonas viridis have been measured at 1.2 K with the linear dichroic absorbance-detected magnetic resonance (LD-ADMR) technique for two mutually perpendicular directions of the preferred axis. The LD-(T - S) spectra have been calibrated with respect to the corresponding (T - S) spectra as a function of applied microwave power and quantitatively interpreted using the formalism of photoselection. The transition moment of the optical transition at 1007 nm makes angles of 72 degrees +/- 5 degrees and 15 degrees +/- 5 degrees with the triplet x and y spin axes, respectively. The experimental spectra have been simulated employing exciton theory and using the atomic coordinates of the resolved crystal structure of the reaction center. The spectral interpretation yields the angles between the transition moments of the various absorption bands of the (T - S) spectra and the triplet axes, and between the moments themselves, with the triplet state of the primary donor (3)P localized on the P-bacteriochlorophyll b in the "active" (L) chain.
Collapse
Affiliation(s)
- E J Lous
- Department of Biophysics, Huygens Laboratory of the State University, P. O. Box 9504, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
26
|
Abstract
Assignments are proposed for the long wavelength absorption bands observed in the reaction center of Rhodopseudomonas viridis. The assignments are based on a theoretical treatment in which quantum mechanical calculations are first carried out on the individual chromophores of the reaction center. The energies and wave functions that are obtained are then introduced into an exciton-type perturbation treatment in which extensive configuration interaction is carried out between the excited states of the four bacteriochlorophylls and two bacteriopheophytins of the reaction center. Calculated values for absorption maxima, transition moments, linear dichroism, and rotational strength are compared with experiments in an attempt to distinguish among different assignments. The calculations alone do not lead to unambiguous assignments; indeed it is difficult to account for the reaction center spectra without introducing assumptions as to the effects of the protein on the energy levels of the individual molecules. Even if these effects are treated as free parameters, the experimental spectra still provide useful constraints that restrict the models that are possible. The major result of this work is that the weak 850-nm absorption band is due, primarily, to the higher energy exciton state of the bacteriochlorophyll special pair. Accounting for the 960-nm absorption band of the low energy exciton state of the special pair requires either that a large spectroscopic effect of the protein be introduced, or possibly, that charge transfer states play a major spectroscopic role. The difference in spectra seen in the formation of oxidized or triplet state reaction centers can be understood in terms of a combination of electrochromic effects and modified exciton interactions.
Collapse
|
27
|
Nibbering ET. Preface to special issue “Douwe Alle Wiersma – 30 years of molecular photon echo spectroscopy”. Chem Phys 2007. [DOI: 10.1016/j.chemphys.2007.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Mikhailyuk IK, Knox PP, Paschenko VZ, Razjivin AP, Lokstein H. Analysis of absorption spectra of purple bacterial reaction centers in the near infrared region by higher order derivative spectroscopy. Biophys Chem 2006; 122:16-26. [PMID: 16513249 DOI: 10.1016/j.bpc.2006.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 02/09/2006] [Accepted: 02/09/2006] [Indexed: 11/17/2022]
Abstract
Reaction centers (RCs) of purple bacteria are uniquely suited objects to study the mechanisms of the photosynthetic conversion of light energy into chemical energy. A recently introduced method of higher order derivative spectroscopy [I.K. Mikhailyuk, H. Lokstein, A.P. Razjivin, A method of spectral subband decomposition by simultaneous fitting the initial spectrum and a set of its derivatives, J. Biochem. Biophys. Methods 63 (2005) 10-23] was used to analyze the NIR absorption spectra of RC preparations from Rhodobacter (R.) sphaeroides strain 2R and Blastochloris (B.) viridis strain KH, containing bacteriochlorophyll (BChl) a and b, respectively. Q(y) bands of individual RC porphyrin components (BChls and bacteriopheophytins, BPheo) were identified. The results indicate that the upper exciton level P(y+) of the photo-active BChl dimer in RCs of R. sphaeroides has an absorption maximum of 810nm. The blue shift of a complex integral band at approximately 800nm upon oxidation of the RC is caused primarily by bleaching of P(y+), rather than by an electrochromic shift of the absorption band(s) of the monomeric BChls. Likewise, the disappearance of a band peaking at 842nm upon oxidation of RCs from B. viridis indicates that this band has to be assigned to P(y+). A blue shift of an absorption band at approximately 830nm upon oxidation of RCs of B. viridis is also essentially caused by the disappearance of P(y+), rather than by an electrochromic shift of the absorption bands of monomeric BChls. Absorption maxima of the monomeric BChls, B(B) and B(A) are at 802 and 797nm, respectively, in RCs of R. sphaeroides at room temperature. BPheo co-factors H(B) and H(A) peak at 748 and 758nm, respectively, at room temperature. For B. viridis RCs the spectral positions of H(B) and H(A) were found to be 796 and 816nm, respectively, at room temperature.
Collapse
Affiliation(s)
- I K Mikhailyuk
- A.N. Belozerski Institute of Physico-Chemical Biology, Biology Faculty of the M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| | | | | | | | | |
Collapse
|
29
|
Kirmaier C, Bautista JA, Laible PD, Hanson DK, Holten D. Probing the Contribution of Electronic Coupling to the Directionality of Electron Transfer in Photosynthetic Reaction Centers. J Phys Chem B 2005; 109:24160-72. [PMID: 16375408 DOI: 10.1021/jp054726z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Subpicosecond transient absorption studies are reported for a set of Rhodobacter (R.) capsulatus bacterial photosynthetic reaction centers (RCs) designed to probe the origins of the unidirectionality of charge separation via one of two electron transport chains in the native pigment-protein complex. All of the RCs have been engineered to contain a heterodimeric primary electron donor (D) consisting of a bacteriochlorophyll (BChl) and a bacteriopheophytin (BPh). The BPh component of the M heterodimer (Mhd) or L heterodimer (Lhd) is introduced by substituting a Leu for His M200 or His L173, respectively. Previous work on primary charge separation in heterodimer mutants has not included the Lhd RC from R. capsulatus, which we report for the first time. The Lhd and Mhd RCs are used as controls against which we assess RCs that combine the heterodimer mutations with a second mutation (His substituted for Leu at M212) that results in replacement of the native L-side BPh acceptor with a BChl (beta). The transient absorption spectra reveal clear evidence for charge separation to the normally inactive M-side BPh acceptor (H(M)) in Lhd-beta RCs to form D+H(M)- with a yield of approximately 6%. This state also forms in Mhd-beta RCs but with about one-quarter the yield. In both RCs, deactivation to the ground state is the predominant pathway of D decay, as it is in the Mhd and Lhd single mutants. Analysis of the results indicates an upper limit ofV2L/V2m < or = 4 for the contribution of the electronic coupling elements to the relative rates of electron transfer to the L versus M sides of the wild-type RC. In comparison to the L/M rate ratio (kL/kM) approximately 30 for wild-type RCs, our findings indicate that electronic factors contribute approximately 35% at most to directionality with the other 65% deriving from energetic considerations, which includes differences in free energies, reorganization energies, and contributions of one- and two-step mechanisms on the two sides of the RC.
Collapse
Affiliation(s)
- Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, USA
| | | | | | | | | |
Collapse
|
30
|
Breton J, Martin JL, Fleming GR, Lambry JC. Low-temperature femtosecond spectroscopy of the initial step of electron transfer in reaction centers from photosynthetic purple bacteria. Biochemistry 2002. [DOI: 10.1021/bi00421a043] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Burning of a narrow spectral hole at 1.7 K in the absorbance band of the primary electron donor of Rhodopseudomonas viridis
reaction centers with blocked electron transfer. FEBS Lett 2001. [DOI: 10.1016/0014-5793(88)80171-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Klevanik A, Ganago A, Shkuropatov A, Shuvalov V. Electron-phonon and vibronic structure of absorption spectra of the primary electron donor in reaction centers of Rhodopseudomonas viridis, Rhodobacter sphaeroides
and Chloroflexus aurantiacus
at 1.7-70 K. FEBS Lett 2001. [DOI: 10.1016/0014-5793(88)80172-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Braun H, Michel-Beyerle M, Breton J, Buchanan S, Michel H. Electric field effect on absorption spectra of reaction centers ofRb. sphaeroidesandRps. viridis. FEBS Lett 2001. [DOI: 10.1016/0014-5793(87)80929-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Jordanides XJ, Scholes GD, Fleming GR. The Mechanism of Energy Transfer in the Bacterial Photosynthetic Reaction Center. J Phys Chem B 2001. [DOI: 10.1021/jp003572e] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xanthipe J. Jordanides
- Department of Chemistry, University of California, Berkeley and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Gregory D. Scholes
- Department of Chemistry, University of California, Berkeley and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Graham R. Fleming
- Department of Chemistry, University of California, Berkeley and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
35
|
King BA, McAnaney TB, deWinter A, Boxer SG. Excited State Energy Transfer Pathways in Photosynthetic Reaction Centers. 3. Ultrafast Emission from the Monomeric Bacteriochlorophylls. J Phys Chem B 2000. [DOI: 10.1021/jp001745u] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Zhou C, Diers JR, Bocian DF. Qy-Excitation Resonance Raman Spectra of Chlorophyll a and Related Complexes. Normal Mode Characteristics of the Low-Frequency Vibrations. J Phys Chem B 1997. [DOI: 10.1021/jp971965g] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chengli Zhou
- Department of Chemistry, University of California, Riverside, California 92521-0403
| | - James R. Diers
- Department of Chemistry, University of California, Riverside, California 92521-0403
| | - David F. Bocian
- Department of Chemistry, University of California, Riverside, California 92521-0403
| |
Collapse
|
37
|
Schellenberg P, Louwe RJW, Shochat S, Gast P, Aartsma TJ. Accumulated Photon Echo Studies on Bacterial Photosynthetic Reaction Centers: Charge-Transfer Rate Distribution and Electron−Phonon Coupling. J Phys Chem B 1997. [DOI: 10.1021/jp9714577] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- P. Schellenberg
- Department of Biophysics, University of Leiden, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| | - R. J. W. Louwe
- Department of Biophysics, University of Leiden, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| | - S. Shochat
- Department of Biophysics, University of Leiden, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| | - P. Gast
- Department of Biophysics, University of Leiden, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| | - T. J. Aartsma
- Department of Biophysics, University of Leiden, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| |
Collapse
|
38
|
Czarnecki K, Diers JR, Chynwat V, Erickson JP, Frank HA, Bocian DF. Characterization of the Strongly Coupled, Low-Frequency Vibrational Modes of the Special Pair of Photosynthetic Reaction Centers via Isotopic Labeling of the Cofactors. J Am Chem Soc 1997. [DOI: 10.1021/ja963281c] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kazimierz Czarnecki
- Contribution from the Department of Chemistry, University of California, Riverside, California 92521, and Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| | - James R. Diers
- Contribution from the Department of Chemistry, University of California, Riverside, California 92521, and Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| | - Veeradej Chynwat
- Contribution from the Department of Chemistry, University of California, Riverside, California 92521, and Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| | - Joy P. Erickson
- Contribution from the Department of Chemistry, University of California, Riverside, California 92521, and Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| | - Harry A. Frank
- Contribution from the Department of Chemistry, University of California, Riverside, California 92521, and Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| | - David F. Bocian
- Contribution from the Department of Chemistry, University of California, Riverside, California 92521, and Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| |
Collapse
|
39
|
Laporte LL, Palaniappan V, Davis DG, Kirmaier C, Schenck CC, Holten D, Bocian DF. Influence of Electronic Asymmetry on the Spectroscopic and Photodynamic Properties of the Primary Electron Donor in the Photosynthetic Reaction Center. ACTA ACUST UNITED AC 1996. [DOI: 10.1021/jp961658v] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laurent L. Laporte
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, Department of Chemistry, University of California at Riverside, Riverside, California 92521, and Department of Biochemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Vaithianathan Palaniappan
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, Department of Chemistry, University of California at Riverside, Riverside, California 92521, and Department of Biochemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Dianna G. Davis
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, Department of Chemistry, University of California at Riverside, Riverside, California 92521, and Department of Biochemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, Department of Chemistry, University of California at Riverside, Riverside, California 92521, and Department of Biochemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Craig C. Schenck
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, Department of Chemistry, University of California at Riverside, Riverside, California 92521, and Department of Biochemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, Department of Chemistry, University of California at Riverside, Riverside, California 92521, and Department of Biochemistry, Colorado State University, Fort Collins, Colorado 80523
| | - David F. Bocian
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, Department of Chemistry, University of California at Riverside, Riverside, California 92521, and Department of Biochemistry, Colorado State University, Fort Collins, Colorado 80523
| |
Collapse
|
40
|
Aartsma TJ, Amesz J. Reaction center and antenna processes in photosynthesis at low temperature. PHOTOSYNTHESIS RESEARCH 1996; 48:99-106. [PMID: 24271290 DOI: 10.1007/bf00041000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/1995] [Accepted: 01/29/1996] [Indexed: 06/02/2023]
Abstract
Around 1960 experiments of Arnold and Clayton, Chance and Nishimura and Calvin and coworkers demonstrated that the primary photosynthetic electron transfer processes are not abolished by cooling to cryogenic temperatures. After a brief historical introduction, this review discusses some aspects of electron transfer in bacterial reaction centers and of optical spectroscopy of photosynthetic systems with emphasis on low-temperature experiments.
Collapse
Affiliation(s)
- T J Aartsma
- Department of Biophysics, Huygens Laboratory, University of Leiden, P.O. Box 9504, 2300 RA, Leiden, The Netherlands
| | | |
Collapse
|
41
|
Joo T, Jia Y, Yu J, Lang MJ, Fleming GR. Third‐order nonlinear time domain probes of solvation dynamics. J Chem Phys 1996. [DOI: 10.1063/1.471276] [Citation(s) in RCA: 345] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
42
|
Laporte L, McDowell LM, Kirmaier C, Schenck CC, Holten D. Insights into the factors controlling the rates of the deactivation processes that compete with charge separation in photosynthetic reaction centers. Chem Phys 1993. [DOI: 10.1016/0301-0104(93)80265-b] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Abstract
We explore the possibility of virtual transfer in the primary charge separation of photosynthetic bacteria within the context of several types of experimental data. We show that the peak that might be expected in the virtual rate as electric fields vary the intermediate state energy is severely broadened by coupling to high-frequency modes. The Stark absorption kinetics data are thus consistent with virtual transfer in the primary charge separation. High-frequency coupling also makes the temperature dependence weak over a wide range of parameters. We demonstrate that Stark fluorescence anisotropy data, usually taken as evidence of virtual transfer, can in fact be consistent with two-step transfer. We suggest a two-pulse excitation experiment to quantify the contributions from two-step and virtual transfer. We show that virtual absorption into a charge transfer state can make a substantial contribution to the Stark absorption spectrum in a way that is not related to any derivative of the absorption spectrum.
Collapse
Affiliation(s)
- J S Joseph
- Graduate Group in Biophysics, University of California, Berkeley 94720
| | | |
Collapse
|
44
|
Vos MH, Lambry JC, Robles SJ, Youvan DC, Breton J, Martin JL. Femtosecond spectral evolution of the excited state of bacterial reaction centers at 10 K. Proc Natl Acad Sci U S A 1992; 89:613-7. [PMID: 1731331 PMCID: PMC48289 DOI: 10.1073/pnas.89.2.613] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The femtosecond spectral evolution of reaction centers of Rhodobacter sphaeroides R-26 was studied at 10 K. Transient spectra in the near infrared region, obtained with 45-fs pulses (pump pulses centered at 870 nm and continuum probe pulses), were analyzed with associated kinetics at specific wavelengths. The t = 0-fs transient spectrum is very rich in structure; it contains separate induced bands at 807 and 796 nm and a bleaching near 760 nm, reflecting strong changes in interaction between all pigments upon formation of the excited state. A complex spectral evolution in the 800-nm region, most notably the bleaching of the 796-nm band, takes place within a few hundred femtosecond--i.e., on a time scale much faster than electron transfer from the primary donor P to the bacteriopheophytin acceptor HL. The remarkable initial spectral features and their evolution are presumably related to the presence of HL, as they were not observed in the DLL mutant of Rhodobacter capsulatus, which lacks this pigment. A simple linear reaction scheme with an intermediate state cannot account for our data; the initial spectral evolution must reflect relaxation processes within the excited state. The importance for primary photochemistry of long distance interactions in the reaction center is discussed.
Collapse
Affiliation(s)
- M H Vos
- Laboratoire d'Optique Appliquée, Institut National de la Santé et de la Recherche Médicale Unité 275, Ecole Polytechnique-Ecole Nationale Supérieure de Techniques Avancées, Palaiseau, France
| | | | | | | | | | | |
Collapse
|
45
|
Shreve AP, Cherepy NJ, Franzen S, Boxer SG, Mathies RA. Rapid-flow resonance Raman spectroscopy of bacterial photosynthetic reaction centers. Proc Natl Acad Sci U S A 1991; 88:11207-11. [PMID: 1763034 PMCID: PMC53103 DOI: 10.1073/pnas.88.24.11207] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Rapid-flow resonance Raman vibrational spectra of bacterial photosynthetic reaction centers from the R-26 mutant of Rhodobacter sphaeroides have been obtained by using excitation wavelengths (810-910 nm) resonant with the lowest energy, photochemically active electronic absorption. The technique of shifted excitation Raman difference spectroscopy is used to identify genuine Raman scattering bands in the presence of a large fluorescence background. The comparison of spectra obtained from untreated reaction centers and from reaction centers treated with the oxidant K3Fe(CN)6 demonstrates that resonance enhancement is obtained from the special pair. Relatively strong Raman scattering is observed for special pair vibrations with frequencies of 36, 94, 127, 202, 730, and 898 cm-1; other modes are observed at 71, 337, and 685 cm-1. Qualitative Raman excitation profiles are reported for some of the strong modes, and resonance enhancement is observed to occur throughout the near-IR absorption band of the special pair. These Raman data determine which vibrations are coupled to the optical absorption in the special pair and, thus, probe the nuclear motion that occurs after electronic excitation. Implications for the interpretation of previous hole-burning experiments and for the excited-state dynamics and photochemistry of reaction centers are discussed.
Collapse
Affiliation(s)
- A P Shreve
- Department of Chemistry, University of California, Berkeley 94720
| | | | | | | | | |
Collapse
|
46
|
Ganago AO, Shkuropatov AYa, Shuvalov VA. Sub-picosecond dynamics of excited state of primary electron donor in reaction centers of Rhodopseudomonas viridis as revealed by hole burning at 1.7K broad and narrow holes. FEBS Lett 1991; 284:199-202. [PMID: 2060638 DOI: 10.1016/0014-5793(91)80684-u] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Within the QF band of the primary electron donor (P), the spectra of absorbance changes due to the formation of a state of P+QA- (QA is the primary quinone) at 1.7K in Rhodopseudomonas viridis reaction centers excited at 1014 nm have been shown to involve two spectral features characterized by: (i) a progression of broad (170-190 cm-1) Gaussian vibronic bands (S-factor = 1.4) separated by 150 cm-1 and (ii) a 'narrow' structure near 1014 nm, characterized by 0-0 transition at 1014 nm with a width of approximately 50 cm-1 and 0-1 transition at 1000 nm with the width of approximately 100 cm-1, and S-factor = 0.9. The width of 50 cm-1 can be related to either zero-phonon hole (ZPH) width or the structure involving phonon wings and ZPH being unresolved. Since dichroic value (approximately 0.37) is unvarying over the P band, the vibrations involved are totally symmetric. The ZPH (width of approximately 3 cm-1) and phonon wings (frequency of approximately 30 cm-1) are resolved within the P band near 1014 nm when the spectrum of delta A due to the formation of bacteriopheophytinL- is measured at 1.7K.
Collapse
Affiliation(s)
- A O Ganago
- Institute of Soil Science and Photosynthesis, USSR Academy of Sciences, Pushchino, Moscow region
| | | | | |
Collapse
|
47
|
A Structural Basis for Electron Transfer in Bacterial Photosynthesis. ACTA ACUST UNITED AC 1990. [DOI: 10.1007/978-94-009-0489-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
48
|
Structure and Marker Mode of The Primary Electron Donor State Absorption of Photosynthetic Bacteria: Hole Burned Spectra. ACTA ACUST UNITED AC 1990. [DOI: 10.1007/978-94-009-0489-7_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
49
|
Site-Directed Mutations Affecting Primary Photochemistry in Reaction Centers: Effects of Dissymmetry in the Special Pair. ACTA ACUST UNITED AC 1990. [DOI: 10.1007/978-3-642-61297-8_23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
50
|
Gillie JK, Lyle PA, Small GJ, Golbeck JH. Spectral hole burning of the primary electron donor state of Photosystem I. PHOTOSYNTHESIS RESEARCH 1989; 22:233-246. [PMID: 24424813 DOI: 10.1007/bf00048302] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/1989] [Accepted: 06/17/1989] [Indexed: 05/28/2023]
Abstract
Persistent photochemical hole burned profiles are reported for the primary electron donor state P700 of the reaction center of PS I. The hole profiles at 1.6 K for a wide range of burn wavelengths (λB) are broad (FWHM∼310 cm(-1)) and for the 45:1 enriched particles studied exhibit no sharp zero-phonon hole feature coincident with λB. The λB hole profiles are analyzed using the theory of Hayes et al. [J Phys Chem 1986, 90: 4928] for hole burning in the presence of arbitrarily strong linear electron-phonon coupling. A Huang-Rhys factor S in the range 4-6 and a corresponding mean phonon frequency in the range 35-50 cm(-1) together with an inhomogeneous line broadening of∼100 cm(-1) are found to provide good agreement with experiment. The zero-point level of P700(*) is predicted to lie at∼710 nm at 1.6K with an absorption maximum at∼702 nm. The hole spectra are discussed in the context of the hole spectra for the primary electron donor states of PS II and purple bacteria.
Collapse
Affiliation(s)
- J K Gillie
- Ames Laboratory-USDOE, Iowa State University, 50011, Ames, Iowa, U.S.A
| | | | | | | |
Collapse
|