1
|
Yakovlev AG, Taisova AS. Downhill excitation energy flow in reaction centers of purple bacteria Rhodospirillum rubrum G9. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149499. [PMID: 39069149 DOI: 10.1016/j.bbabio.2024.149499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Using femtosecond differential spectroscopy, excitation energy transfer in reaction centers (RCs) of the carotenoidless strain of purple bacteria Rhodospirillum rubrum G9 was studied at room temperature. Excitation and probing of the Qy, Qx and Soret absorption bands of the RCs were carried out by pulses with duration of 25-30 fs. Modeling of ΔA (light - dark) kinetics made it possible to estimate the characteristic time of various stages of excitation energy transformation. It is shown that the dynamics of the downhill energy flow in the RCs is determined both by the internal energy conversion Soret→ Qx → Qy in each cofactor and by the energy transfer H* → B* → P* (H - bacteriopheophytin, B - bacteriochlorophyll a, P - bacteriochlorophyll a dimer) between cofactors. The transfer of energy between the upper excited levels (Soret and Qx) of the cofactors accelerates its arrival to the lower exciton level of the P, from where charge separation begins. It turned out that all conversion and energy transfer processes occur within 40-160 fs: the conversion Soret → Qx occurs in 40-50 fs, the conversion Qx → Qy occurs in 100-140 fs, the transfer H* → B* has a time constant of 80-120 fs, and the transfer B* → P* has a time constant of 130-160 fs. The rate of energy transfer between the upper excited levels is close to the rate of transfer between Qy levels.
Collapse
Affiliation(s)
- Andrei G Yakovlev
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory, 119991 Moscow, Russian Federation.
| | - Alexandra S Taisova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory, 119991 Moscow, Russian Federation
| |
Collapse
|
2
|
Gorka M, Baldansuren A, Malnati A, Gruszecki E, Golbeck JH, Lakshmi KV. Shedding Light on Primary Donors in Photosynthetic Reaction Centers. Front Microbiol 2021; 12:735666. [PMID: 34659164 PMCID: PMC8517396 DOI: 10.3389/fmicb.2021.735666] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Chlorophylls (Chl)s exist in a variety of flavors and are ubiquitous in both the energy and electron transfer processes of photosynthesis. The functions they perform often occur on the ultrafast (fs-ns) time scale and until recently, these have been difficult to measure in real time. Further, the complexity of the binding pockets and the resulting protein-matrix effects that alter the respective electronic properties have rendered theoretical modeling of these states difficult. Recent advances in experimental methodology, computational modeling, and emergence of new reaction center (RC) structures have renewed interest in these processes and allowed researchers to elucidate previously ambiguous functions of Chls and related pheophytins. This is complemented by a wealth of experimental data obtained from decades of prior research. Studying the electronic properties of Chl molecules has advanced our understanding of both the nature of the primary charge separation and subsequent electron transfer processes of RCs. In this review, we examine the structures of primary electron donors in Type I and Type II RCs in relation to the vast body of spectroscopic research that has been performed on them to date. Further, we present density functional theory calculations on each oxidized primary donor to study both their electronic properties and our ability to model experimental spectroscopic data. This allows us to directly compare the electronic properties of hetero- and homodimeric RCs.
Collapse
Affiliation(s)
- Michael Gorka
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Amgalanbaatar Baldansuren
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Amanda Malnati
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Elijah Gruszecki
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - John H. Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - K. V. Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
3
|
Dubas K, Szewczyk S, Białek R, Burdziński G, Jones MR, Gibasiewicz K. Antagonistic Effects of Point Mutations on Charge Recombination and a New View of Primary Charge Separation in Photosynthetic Proteins. J Phys Chem B 2021; 125:8742-8756. [PMID: 34328746 PMCID: PMC8389993 DOI: 10.1021/acs.jpcb.1c03978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Light-induced electron-transfer
reactions were investigated in
wild-type and three mutant Rhodobacter sphaeroides reaction centers with the secondary electron acceptor (ubiquinone
QA) either removed or permanently reduced. Under such conditions,
charge separation between the primary electron donor (bacteriochlorophyll
dimer, P) and the electron acceptor (bacteriopheophytin, HA) was followed by P+HA– →
PHA charge recombination. Two reaction centers were used
that had different single amino-acid mutations that brought about
either a 3-fold acceleration in charge recombination compared to that
in the wild-type protein, or a 3-fold deceleration. In a third mutant
in which the two single amino-acid mutations were combined, charge
recombination was similar to that in the wild type. In all cases,
data from transient absorption measurements were analyzed using similar
models. The modeling included the energetic relaxation of the charge-separated
states caused by protein dynamics and evidenced the appearance of
an intermediate charge-separated state, P+BA–, with BA being the bacteriochlorophyll
located between P and HA. In all cases, mixing of the states
P+BA– and P+HA– was observed and explained in terms of
electron delocalization over BA and HA. This
delocalization, together with picosecond protein relaxation, underlies
a new view of primary charge separation in photosynthesis.
Collapse
Affiliation(s)
- K Dubas
- Faculty of Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznanskiego 2, 61-614 Poznań, Poland.,Department of Optometry, Poznan University of Medical Sciences, ul. Rokietnicka 5d, 60-806 Poznań, Poland
| | - S Szewczyk
- Faculty of Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznanskiego 2, 61-614 Poznań, Poland
| | - R Białek
- Faculty of Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznanskiego 2, 61-614 Poznań, Poland
| | - G Burdziński
- Faculty of Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznanskiego 2, 61-614 Poznań, Poland
| | - M R Jones
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, U.K
| | - K Gibasiewicz
- Faculty of Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznanskiego 2, 61-614 Poznań, Poland
| |
Collapse
|
4
|
Bukartė E, Paleček D, Edlund P, Westenhoff S, Zigmantas D. Dynamic band-shift signal in two-dimensional electronic spectroscopy: A case of bacterial reaction center. J Chem Phys 2021; 154:115102. [PMID: 33752351 DOI: 10.1063/5.0033805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Optical nonlinear spectroscopies carry a high amount of information about the systems under investigation; however, as they report polarization signals, the resulting spectra are often congested and difficult to interpret. To recover the landscape of energy states and physical processes such as energy and electron transfer, a clear interpretation of the nonlinear signals is prerequisite. Here, we focus on the interpretation of the electrochromic band-shift signal, which is generated when an internal electric field is established in the system following optical excitation. Whereas the derivative shape of the band-shift signal is well understood in transient absorption spectroscopy, its emergence in two-dimensional electronic spectroscopy (2DES) has not been discussed. In this work, we employed 2DES to follow the dynamic band-shift signal in reaction centers of purple bacteria Rhodobacter sphaeroides at 77 K. The prominent two-dimensional derivative-shape signal appears with the characteristic formation time of the charge separated state. To explain and characterize the band-shift signal, we use expanded double-sided Feynman diagram formalism. We propose to distinguish two types of Feynman diagrams that lead to signals with negative amplitude: excited state absorption and re-excitation. The presented signal decomposition and modeling analysis allows us to recover precise electrochromic shifts of accessory bacteriochlorophylls, identify additional signals in the B band range, and gain a further insight into the electron transfer mechanism. In a broader perspective, expanded Feynman diagram formalism will allow for interpretation of all 2D signals in a clearer and more intuitive way and therefore facilitate studying the underlying photophysics.
Collapse
Affiliation(s)
- Eglė Bukartė
- Chemical Physics, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - David Paleček
- Chemical Physics, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Petra Edlund
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Donatas Zigmantas
- Chemical Physics, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
5
|
Razjivin AP, Kozlovsky VS. Unique features of the 'photo-energetics' of purple bacteria: a critical survey by the late Aleksandr Yuryevich Borisov (1930-2019). PHOTOSYNTHESIS RESEARCH 2020; 146:17-24. [PMID: 31655967 DOI: 10.1007/s11120-019-00683-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
We provide here an edited version of the "Farewell discussion" by the late Aleksandr (Alex) Yuryevich (Yu) Borisov (1930-2019) on several aspects related to the excitation energy transfer in photosynthetic bacteria. It is preceded by a prolog giving the events that led to our decision to publish it. Further, we include here a few photographs to give a personal glimpse of this unique biophysicist of our time. In addition, we provide here a reminiscence, by Andrei B. Rubin, on the scientific beginnings of Borisov. This article follows a Tribute to Borisov by Semenov et al. (2019, Photosynthesis Research, this issue).
Collapse
Affiliation(s)
- Andrei P Razjivin
- Department of Photosynthesis, A.N.Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vladimir S Kozlovsky
- Department of Photosynthesis, A.N.Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
6
|
Ding R, Yan W, Wu Y, Xiao Y, Gang H, Wang S, Chen L, Zhao F. Light-excited photoelectrons coupled with bio-photocatalysis enhanced the degradation efficiency of oxytetracycline. WATER RESEARCH 2018; 143:589-598. [PMID: 30015099 DOI: 10.1016/j.watres.2018.06.068] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/09/2018] [Accepted: 06/28/2018] [Indexed: 06/08/2023]
Abstract
Intimately coupled photocatalysis and biodegradation (ICPB) is a novel wastewater treatment technique that has potential applications in refractory degradation. This paper reports a synergistic degradation protocol that allowing the transfer of photoelectrons between photocatalysts and microbes without supplementary electron donors or improving the loading rate of the photocatalysts. As a result, a degradation rate of ∼94% was sustained for 400 h in a perturbation setup with a hydraulic retention time of 4.0 h. We achieved the degradation of β-apo-oxytetracycline, a stable antimicrobial intermediate compound (half-life of 270 d in soil interstitial water), within 10 min, and no accumulation was observed. Moreover, the required loading rate of the photocatalyst was dramatically reduced to 18.3% compared to previous reports which mentioned much higher rates. The results of our study provided a new strategy to improve the degradation efficiency of oxytetracycline and give new insight into the degradation mechanism of the bio-photocatalytic degradation system.
Collapse
Affiliation(s)
- Rui Ding
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weifu Yan
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Yan Wu
- University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Yong Xiao
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Haiyin Gang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Shuhua Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lixiang Chen
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Zhao
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
7
|
Light harvesting in phototrophic bacteria: structure and function. Biochem J 2017; 474:2107-2131. [DOI: 10.1042/bcj20160753] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/23/2022]
Abstract
This review serves as an introduction to the variety of light-harvesting (LH) structures present in phototrophic prokaryotes. It provides an overview of the LH complexes of purple bacteria, green sulfur bacteria (GSB), acidobacteria, filamentous anoxygenic phototrophs (FAP), and cyanobacteria. Bacteria have adapted their LH systems for efficient operation under a multitude of different habitats and light qualities, performing both oxygenic (oxygen-evolving) and anoxygenic (non-oxygen-evolving) photosynthesis. For each LH system, emphasis is placed on the overall architecture of the pigment–protein complex, as well as any relevant information on energy transfer rates and pathways. This review addresses also some of the more recent findings in the field, such as the structure of the CsmA chlorosome baseplate and the whole-cell kinetics of energy transfer in GSB, while also pointing out some areas in need of further investigation.
Collapse
|
8
|
Mukherjee P, Biswas S, Sen P. Real Time Quantification of Ultrafast Photoinduced Bimolecular Electron Transfer Rate: Direct Probing of the Transient Intermediate. J Phys Chem B 2015; 119:11253-61. [DOI: 10.1021/acs.jpcb.5b03105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Puspal Mukherjee
- Department
of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, Uttar Pradesh, India
| | - Somnath Biswas
- Department
of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, Uttar Pradesh, India
| | - Pratik Sen
- Department
of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, Uttar Pradesh, India
| |
Collapse
|
9
|
Abstract
Technical progress in laser-sources and detectors has allowed the temporal and spatial resolution of chemical reactions down to femtoseconds and Å-units. In photon-excitable systems the key to chemical kinetics, trajectories across the vibrational saddle landscape, are experimentally accessible. Simple and thus well-defined chemical compounds are preferred objects for calibrating new methodologies and carving out paradigms of chemical dynamics, as shown in several contributions to this Faraday Discussion. Aerobic life on earth is powered by solar energy, which is captured by microorganisms and plants. Oxygenic photosynthesis relies on a three billion year old molecular machinery which is as well defined as simpler chemical constructs. It has been analysed to a very high precision. The transfer of excitation between pigments in antennae proteins, of electrons between redox-cofactors in reaction centres, and the oxidation of water by a Mn4Ca-cluster are solid state reactions. ATP, the general energy currency of the cell, is synthesized by a most agile, rotary molecular machine. While the efficiency of photosynthesis competes well with photovoltaics at the time scale of nanoseconds, it is lower by an order of magnitude for crops and again lower for bio-fuels. The enormous energy demand of mankind calls for engineered (bio-mimetic or bio-inspired) solar-electric and solar-fuel devices.
Collapse
Affiliation(s)
- Wolfgang Junge
- Dept. Biology & Chemistry, University of Osnabrück, R. 35/E42 Barbarastrasse 11, 49076 Osnabrück, Germany.
| |
Collapse
|
10
|
Borrelli R, Peluso A. Quantum Dynamics of Radiationless Electronic Transitions Including Normal Modes Displacements and Duschinsky Rotations: A Second-Order Cumulant Approach. J Chem Theory Comput 2015; 11:415-22. [DOI: 10.1021/ct500966c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Raffaele Borrelli
- Department
of Agricultural, Forestry and Food Science, University of Torino, I-10195 Grugliasco, Italy
| | - Andrea Peluso
- Department
of Chemistry and Biology, University of Salerno, I-84081 Fisciano, Italy
| |
Collapse
|
11
|
Pishchalnikov RY, Razjivin AP. From localized excited States to excitons: changing of conceptions of primary photosynthetic processes in the twentieth century. BIOCHEMISTRY (MOSCOW) 2014; 79:242-50. [PMID: 24821451 DOI: 10.1134/s0006297914030109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A short description of two theories of the primary photosynthetic processes is given. Generally accepted in 1950s-1990s, the localized excited states theory has been changed to the modern exciton theory. Appearance of the new experimental data and the light-harvesting complex crystal structure are reasons why the exciton theory has become important. The bulk of data for the old theory and outstanding experiments that have been the driving force for a new theory are discussed in detail.
Collapse
Affiliation(s)
- R Y Pishchalnikov
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119992, Russia.
| | | |
Collapse
|
12
|
Dominguez PN, Himmelstoss M, Michelmann J, Lehner FT, Gardiner AT, Cogdell RJ, Zinth W. Primary reactions in photosynthetic reaction centers of Rhodobacter sphaeroides – Time constants of the initial electron transfer. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.03.085] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Structural and kinetic properties of Rhodobacter sphaeroides photosynthetic reaction centers containing exclusively Zn-coordinated bacteriochlorophyll as bacteriochlorin cofactors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:366-74. [DOI: 10.1016/j.bbabio.2013.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/21/2013] [Accepted: 11/26/2013] [Indexed: 11/22/2022]
|
14
|
Hou HJM. Unidirectional photodamage of pheophytin in photosynthesis. FRONTIERS IN PLANT SCIENCE 2014; 4:554. [PMID: 24454319 PMCID: PMC3888939 DOI: 10.3389/fpls.2013.00554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 12/26/2013] [Indexed: 06/03/2023]
|
15
|
Bixon M, Michel-Beyerle M, Jortner J. Formation Dynamics, Decay Kinetics, and Singlet-Triplet Splitting of the (Bacteriochlorophyll Dimer)+(Bacteriopheophytin)−Radical Pair in Bacterial Photosynthesis. Isr J Chem 2013. [DOI: 10.1002/ijch.198800026] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Moser CC, Alegria G, Gunner M, Leslie Dutton P. Interpretation of the Electric Field Sensitivity of the Primary Charge Separation in Photosynthetic Reaction Centers. Isr J Chem 2013. [DOI: 10.1002/ijch.198800023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Won Y, Friesner RA. A Thermal Expansion Model for the Special Pair of the Bacterial Reaction Center. Isr J Chem 2013. [DOI: 10.1002/ijch.198800014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Kirmaier C, Holten D. Subpicosecond Spectroscopy of Charge Separation inRhodobacter capsulatusReaction Centers. Isr J Chem 2013. [DOI: 10.1002/ijch.198800016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Johnson DG, Svec WA, Wasielewski MR. Solvent Polarity Dependent Photophysics of a Fixed-Distance, Symmetric Chlorophyll Dimer. A Model of the Special Pair in Photosynthetic Reaction Centers. Isr J Chem 2013. [DOI: 10.1002/ijch.198800030] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Chin CH, Shiu HJ, Wang HW, Chen YL, Wang CC, Lin SH, Hayashi M. Theoretical Treatments of Radiationless Transitions. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200600016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Models of Ultrafast Energy and Electron Transfers in Bacterial Reaction Centers. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200000101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Antonucci L, Bonvalet A, Solinas X, Jones MR, Vos MH, Joffre M. Arbitrary-detuning asynchronous optical sampling pump-probe spectroscopy of bacterial reaction centers. OPTICS LETTERS 2013; 38:3322-3324. [PMID: 23988946 DOI: 10.1364/ol.38.003322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A recently reported variant of asynchronous optical sampling compatible with arbitrary unstabilized laser repetition rates is applied to pump-probe spectroscopy. This makes possible the use of a 5.1 MHz chirped pulse oscillator as the pump laser, thus extending the available time window to almost 200 ns with a time resolution as good as about 320 fs. The method is illustrated with the measurement in a single experiment of the complete charge transfer dynamics of the reaction center from Rhodobacter sphaeroides.
Collapse
Affiliation(s)
- Laura Antonucci
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, Centre National de la Recherche Scientifique, 91128 Palaiseau, France
| | | | | | | | | | | |
Collapse
|
23
|
Lakhno VD. Dynamical theory of primary processes of charge separation in the photosynthetic reaction center. J Biol Phys 2013; 31:145-59. [PMID: 23345889 DOI: 10.1007/s10867-005-5109-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
A dynamical theory has been developed for primary separation of charges in the course of photosynthesis. The theory deals with both hopping and superexchange transfer mechanisms. Dynamics of electron transfer from dimeric bacteriochlorophyll to quinone has been calculated. The results obtained agree with experimental data and provide a unified explanation of both the hierarchy of the transfer time in the photosynthetic reaction center and the phenomenon of coherent oscillations accompanying the transfer process.
Collapse
Affiliation(s)
- Victor D Lakhno
- Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Pushchino, Moscow Region 142290 Russia
| |
Collapse
|
24
|
Auböck G, Consani C, Monni R, Cannizzo A, van Mourik F, Chergui M. Femtosecond pump/supercontinuum-probe setup with 20 kHz repetition rate. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2012; 83:093105. [PMID: 23020360 DOI: 10.1063/1.4750978] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We developed a fast multichannel detection system for pump-probe spectroscopy, capable of detecting single shot super-continuum spectra at the repetition rate (10-50 kHz) of an amplified femtosecond laser system. By tandem pumping the amplifier with three pump lasers we obtain very low noise operation, with less than 0.1% rms intensity fluctuations at the output of the amplifier. We also propose an alternative way of chopping the pump beam. With a synchronized scanning mirror two spots in the sample are illuminated by the train of pump pulses in an alternating fashion, such that when both spots are interrogated by the probe pulse, the duty cycle of the experiment is doubled.
Collapse
Affiliation(s)
- Gerald Auböck
- Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Spectroscopie Ultrarapide, ISIC-FSB, station 6, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Photosynthetic reaction centers (PRCs) employ multiple-step tunneling (hopping) to separate electrons and holes that ultimately drive the chemistry required for metabolism. We recently developed hopping maps that can be used to interpret the rates and energetics of electron/hole hopping in three-site (donor-intermediate-acceptor) tunneling reactions, including those in PRCs. Here we analyze several key ET reactions in PRCs, including forward ET in the L-branch, and hopping that could involve thermodynamically uphill intermediates in the M-branch, which is ET-inactive in vivo. We also explore charge recombination reactions, which could involve hopping. Our hopping maps support the view that electron flow in PRCs involves strong electronic coupling between cofactors and reorganization energies that are among the lowest in biology (≤ 0.4 eV).
Collapse
|
26
|
Fujitsuka M, Majima T. Photoinduced Electron Transfer Processes in Biological and Artificial Supramolecules. Supramol Chem 2012. [DOI: 10.1002/9780470661345.smc090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Paschenko VZ, Gorokhov VV, Korvatovskiy BN, Bocharov EA, Knox PP, Sarkisov OM, Theiss C, Eichler HJ, Renger G, Rubin AB. The rate of Q(x)→Q(y) relaxation in bacteriochlorophylls of reaction centers from Rhodobacter sphaeroides determined by kinetics of the ultrafast carotenoid bandshift. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1399-406. [PMID: 22366029 DOI: 10.1016/j.bbabio.2012.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 01/23/2012] [Accepted: 02/07/2012] [Indexed: 10/14/2022]
Abstract
Transient absorption changes induced by excitation of isolated reaction centers (RCs) from Rhodobacter sphaeroides with 600nm laser pulses of 20fs (full width at half maximum) were monitored in the wavelength region of 420-560nm. The spectral features of the spectrum obtained are characteristic for an electrochromic band shift of the single carotenoid (Car) molecule spheroidene, which is an integral constituent of these RCs. This effect is assigned to an electrochromic bandshift of Car due to the local electric field of the dipole moment formed by electronic excitation of bacteriochlorophyll (BChl) molecule(s) in the neighborhood of Car. Based on the known distances between the pigments, the monomeric BChl (B(B)) in the inactive B-branch is inferred to dominate this effect. The excitation of B(B) at 600nm leads to a transition into the S(2) state (Q(x) band), which is followed by rapid internal conversion to the S(1) state (Q(y) band), thus leading to a change of strength and orientation of the dipole moment, i.e., of the electric field acting on the Car molecule. Therefore, the time course of the electrochromic bandshift reflects the rate of the internal conversion from S(2) to S(1) of B(B). The evaluation of the kinetics leads to a value of 30fs for this relaxation process. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
Affiliation(s)
- Vladimir Z Paschenko
- Department of Biophysics, Biology Faculty of the M.V. Lomonosov Moscow State University, Moscow, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Khatypov RA, Khmelnitskiy AY, Khristin AM, Fufina TY, Vasilieva LG, Shuvalov VA. Primary charge separation within P870* in wild type and heterodimer mutants in femtosecond time domain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:1392-8. [PMID: 22209778 DOI: 10.1016/j.bbabio.2011.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 12/09/2011] [Accepted: 12/14/2011] [Indexed: 10/14/2022]
Abstract
Primary charge separation dynamics in the reaction center (RC) of purple bacterium Rhodobacter sphaeroides and its P870 heterodimer mutants have been studied using femtosecond time-resolved spectroscopy with 20 and 40fs excitation at 870nm at 293K. Absorbance increase in the 1060-1130nm region that is presumably attributed to P(A)(δ+) cation radical molecule as a part of mixed state with a charge transfer character P*(P(A)(δ+)P(B)(δ-)) was found. This state appears at 120-180fs time delay in the wild type RC and even faster in H(L173)L and H(M202)L heterodimer mutants and precedes electron transfer (ET) to B(A) bacteriochlorophyll with absorption band at 1020nm in WT. The formation of the P(A)(δ+)B(A)(δ-) state is a result of the electron transfer from P*(P(A)(δ+)P(B)(δ-)) to the primary electron acceptor B(A) (still mixed with P*) with the apparent time delay of ~1.1ps. Next step of ET is accompanied by the 3-ps appearance of bacteriopheophytin a(-) (H(A)(-)) band at 960nm. The study of the wave packet formation upon 20-fs illumination has shown that the vibration energy of the wave packet promotes reversible overcoming of an energy barrier between two potential energy surfaces P* and P*(P(A)(δ+)B(A)(δ-)) at ~500fs. For longer excitation pulses (40fs) this promotion is absent and tunneling through an energy barrier takes about 3ps. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
Affiliation(s)
- R A Khatypov
- Russian Academy of Sciences, Moscow, Russian Federation
| | | | | | | | | | | |
Collapse
|
29
|
Pudlak M, Pichugin KN, Nazmitdinov RG, Pincak R. Quantum nonequilibrium approach for fast electron transport in open systems: photosynthetic reaction centers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:051912. [PMID: 22181449 DOI: 10.1103/physreve.84.051912] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 10/19/2011] [Indexed: 05/31/2023]
Abstract
Creation of electrons or excitons by external fields in a system with initially statistically independent unrelaxed vibrational modes leads to an initial condition term. The contribution of this term in the time convolution generalized master-equation approach is studied in the second order of the perturbation theory in path-integral formalism. The developed approach, applied for the analysis of dynamics in the photosynthetic reaction center, exhibits the key role of the initial condition terms at the primary stage of electron transfer.
Collapse
Affiliation(s)
- M Pudlak
- Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovak Republic
| | | | | | | |
Collapse
|
30
|
Shibanuma T, Nakamura R, Hirakawa Y, Hashimoto K, Ishii K. Observation of In Vivo Cytochrome-Based Electron-Transport Dynamics Using Time-Resolved Evanescent Wave Electroabsorption Spectroscopy. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201101810] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Shibanuma T, Nakamura R, Hirakawa Y, Hashimoto K, Ishii K. Observation of in vivo cytochrome-based electron-transport dynamics using time-resolved evanescent wave electroabsorption spectroscopy. Angew Chem Int Ed Engl 2011; 50:9137-40. [PMID: 21812075 DOI: 10.1002/anie.201101810] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/02/2011] [Indexed: 11/11/2022]
Affiliation(s)
- Toshihiko Shibanuma
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
32
|
DOI K, UEDA M, KAWANO S. Theoretical Model of Nanoparticle Detection Mechanism in Microchannel with Gating Probe Electrodes. ACTA ACUST UNITED AC 2011. [DOI: 10.1299/jcst.5.78] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kentaro DOI
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University
| | - Masahiro UEDA
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University
| | - Satoyuki KAWANO
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University
| |
Collapse
|
33
|
|
34
|
Paschenko VZ, Gorokhov VV, Korvatovsky BN, Knox PP, Zakharova NI, Teiss C, Eichler HJ, Renger G, Sarkisov OM, Rubin AB. Electrochemical shift of the carotenoid molecule absorption band as an indicator of processes of energy migration in the reaction center of Rhodobacter sphaeroides. DOKL BIOCHEM BIOPHYS 2010; 434:257-61. [PMID: 20960251 DOI: 10.1134/s1607672910050108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Indexed: 11/23/2022]
Affiliation(s)
- V Z Paschenko
- Department of Biophysics, Faculty of Biology, Moscow State University, Moscow, 119991, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Fox LS, Kozik M, Winkler JR, Gray HB. Gaussian free-energy dependence of electron-transfer rates in iridium complexes. Science 2010; 247:1069-71. [PMID: 17800065 DOI: 10.1126/science.247.4946.1069] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The kinetics of photoinduced electron-transfer (ET) reactions have been measured in a series of synthetic donor-acceptor complexes. The electron donors are singlet or triplet excited iridium(I) dimers (Ir(2)), and the acceptors are N-alkylpyridinium groups covalently bound to phosphinite ligands on the Ir(2) core. Rate constants for excited-state ET range from 3.5 x 10(6) to 1.1 x 10(11) per second, and thermal back ET (pyridinium radical to Ir(2)(+)) rates vary from 2.0 x 10(10) to 6.7 x 10(7) per second. The variation of these rates with driving force is in remarkably good agreement with the Marcus theory prediction of a Gaussian free-energy dependence.
Collapse
|
36
|
Shuvalov VA, Duysens LN. Primary electron transfer reactions in modified reaction centers from Rhodopseudomonas sphaeroides. Proc Natl Acad Sci U S A 2010; 83:1690-4. [PMID: 16593664 PMCID: PMC323149 DOI: 10.1073/pnas.83.6.1690] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Absorption spectra were measured by means of an optical multichannel analyzer in Rhodopseudomonas sphaeroides R-26 reaction centers (RCs) modified by treatment with NaBH(4) at various times (>/=1 ps) after the onset of a short excitation flash at 880 nm. Most of these RCs (75-95%) have only one "monomeric" bacteriochlorophyll-800 (B(1)) molecule and are as active as the original RCs. The duration of the excitation and measuring pulses was approximately 33 ps. If the center of the excitation pulse preceded the center of the measuring pulse by 36-40 ps, the formation of a state P(E) (early state), which is converted to the state P(F) (P(+) bacteriopheophytin(-)) in 4 +/- 1 ps (1/e time), was observed. Also the kinetics and the spectrum of the stimulated emission (reflecting the kinetics and the emission spectrum of the excited state P(*)) were determined. The difference spectrum of the state P(E) approximately equals the sum of the spectra of the states P(*) ( approximately 65%) and (1)[P(+)B(1) (-)] ( approximately 35%). This indicates that B(1) (-) is an intermediate in the electron transfer from P(*) to bacteriopheophytin, H(1), transferring this electron with a rate constant of (4 x 0.35 ps)(-1) = 7 x 10(11) s(-1).
Collapse
Affiliation(s)
- V A Shuvalov
- Department of Biophysics, Huygens Laboratory of the State University, P. O. Box 9504, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
37
|
Won Y, Friesner RA. Simulation of photochemical hole-burning experiments on photosynthetic reaction centers. Proc Natl Acad Sci U S A 2010; 84:5511-5. [PMID: 16593865 PMCID: PMC298892 DOI: 10.1073/pnas.84.16.5511] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An effective Hamiltonian formalism is used to calculate the homogeneous linewidth of long-wavelength absorption in the photosynthetic reaction center. Agreement with the experimental values of approximately 400 cm(-1) for the hole width of the 990-nm band of Rhodopseudomonas viridis is obtained. The anomalously (two orders of magnitude) large width is explained in terms of resonant coupling to charge transfer states. These results support a dynamical model of primary charge separation [Friesner, R. & Wertheimer, R. (1982) Proc. Natl. Acad. Sci USA 79, 2138-2142] in which such resonant coupling was also concluded to be important.
Collapse
Affiliation(s)
- Y Won
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1167
| | | |
Collapse
|
38
|
Schatz GH, Brock H, Holzwarth AR. Picosecond kinetics of fluorescence and absorbance changes in photosystem II particles excited at low photon density. Proc Natl Acad Sci U S A 2010; 84:8414-8. [PMID: 16593899 PMCID: PMC299554 DOI: 10.1073/pnas.84.23.8414] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oxygen-evolving photosystem II particles (from Synechococcus) with about 80 chlorophyll molecules per primary electron donor (P(680)) were used for a correlated study of picosecond kinetics of fluorescence and absorbance changes, detected by the single-photon-timing technique and by a pump-probe apparatus, respectively. Chlorophyll fluorescence decays were biexponential with lifetimes tau(1) = 80 +/- 20 ps and tau(2) = 520 +/- 120 ps in open reaction centers and tau(1) = 220 +/- 30 ps and tau(2) = 1.3 +/- 0.15 ns in closed reaction centers. The corresponding fluorescence yield ratio F(max)/F(o) was 3-4. Absorbance changes were monitored in the spectral range of 620-700 nm after excitation at 675 nm with 10-ps pulses sufficiently weak (<7 x 10(12) photons/cm(2) per pulse) to avoid singlet-singlet annihilation. With open reaction centers, the absorbance changes could be fit to the sum of three exponentials. The associated absorbance difference spectra were attributed to (i) exciton trapping and charge separation (tau = 100 +/- 20 ps), (ii) the electron-transfer step P(680) (+) I(-) Q(A) --> P(680) (+) I Q(A) (-) (where I is the primary electron acceptor and Q(A) is the first quinone acceptor) (tau = 510 +/- 50 ps), and (iii) the reduction of P(680) (+) by the intact donor side (tau > 10 ns). With closed reaction centers, the absorbance changes were biexponential with lifetimes tau(1) = 170-260 ps and tau(2) = 1.6-1.75 ns. The results are explained in terms of a kinetic model that assumes P(680) to constitute a shallow trap. The results show that Q(A) reduction in these photosystem II particles decreases both the apparent rate and the yield of the primary charge separation by a factor of 2-3 and increases the mean lifetime of excitons in the antenna by a factor of 3-4. Thus, we conclude that the long-lived, nanosecond chlorophyll fluorescence is not charge-recombination luminescence but rather emission from equilibrated excited states of antenna chlorophylls.
Collapse
Affiliation(s)
- G H Schatz
- Max-Planck-Institut für Strahlenchemie, Stiftstrasse 34-36, D-4330 Mülheim a.d. Ruhr, Federal Republic of Germany
| | | | | |
Collapse
|
39
|
Kirmaier C, Holten D, Debus RJ, Feher G, Okamura MY. Primary photochemistry of iron-depleted and zinc-reconstituted reaction centers from Rhodopseudomonas sphaeroides. Proc Natl Acad Sci U S A 2010; 83:6407-11. [PMID: 16593750 PMCID: PMC386512 DOI: 10.1073/pnas.83.17.6407] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The primary photochemistry of Fe-depleted and Zn-reconstituted reaction centers from Rhodopseudomonas sphaeroides R-26.1 was studied by transient absorption spectroscopy and compared with native, Fe(2+)-containing reaction centers. Excitation of metal-free reaction centers with 30-ps flashes produced the initial charge-separated state P(+)I(-) (P(+)BPh(-), where P is the primary donor and BPh is bacteriopheophytin) with a yield and visible/near-infrared absorption difference spectrum indistinguishable from that observed in native reaction centers. However, the lifetime of P(+)I(-) was found to increase approximately 20-fold to 4.2 +/- 0.3 ns (compared to 205 ps in native reaction centers), and the yield of formation of the subsequent state P(+)Q(A) (-) (Q(A) is the primary quinone acceptor) was reduced to 47 +/- 5% (compared to essentially 100% in native reaction centers). The remaining 53% of the metal-free reaction centers were found to undergo charge recombination during the P(+)I(-) lifetime to yield both the ground state (28 +/- 5%) and the triplet state P(R) (25 +/- 5%). Reconstitution of Fe-depleted reaction centers with Zn(2+) restored the "native" photochemistry. Possible mechanisms responsible for the reduced decay rate of P(+)I(-) in metal-free reaction centers are discussed.
Collapse
Affiliation(s)
- C Kirmaier
- Department of Chemistry, Washington University, St. Louis, MO 63130
| | | | | | | | | |
Collapse
|
40
|
Meech SR, Hoff AJ, Wiersma DA. Role of charge-transfer states in bacterial photosynthesis. Proc Natl Acad Sci U S A 2010; 83:9464-8. [PMID: 16593787 PMCID: PMC387160 DOI: 10.1073/pnas.83.24.9464] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photon echo, photon-echo excitation, and "hole-burning" data recorded in the 800-990 nm region of Rhodobacter sphaeroides R26 and Rhodopseudomonas viridis reaction centers are reported. The primary process in these reaction centers, following excitation, was found to occur in approximately 25 fsec; the long-wavelength band of the primary electron donor (P) was largely homogeneously broadened. In accordance with our previous explanation of hole-burning and photon-echo measurements on Rb. sphaeroides [Meech, S. R., Hoff, A. J. & Wiersma, D. A. (1985) Chem. Phys. Lett. 121, 287-292], we interpret this as resulting from a dephasing of the excitation in P into a background of strongly coupled charge-transfer states. The previously reported picosecond lifetime of the excited P state is assigned to decay of these strongly mixed states. Further, a coupling between P and an adjacent bacteriochlorophyll was observed. The extent of this coupling and the role of charge-transfer states in the functioning of reaction centers is discussed.
Collapse
Affiliation(s)
- S R Meech
- Picosecond Laser and Spectroscopy Laboratory, Department of Physical Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | | | | |
Collapse
|
41
|
Breton J, Martin JL, Migus A, Antonetti A, Orszag A. Femtosecond spectroscopy of excitation energy transfer and initial charge separation in the reaction center of the photosynthetic bacterium Rhodopseudomonas viridis. Proc Natl Acad Sci U S A 2010; 83:5121-5. [PMID: 16593728 PMCID: PMC323902 DOI: 10.1073/pnas.83.14.5121] [Citation(s) in RCA: 236] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reaction centers from the photosynthetic bacterium Rhodopseudomonas viridis have been excited within the near-infrared absorption bands of the dimeric primary donor (P), of the "accessory" bacteriochlorophylls (B), and of the bacteriopheophytins (H) by using laser pulses of 150-fsec duration. The transfer of excitation energy between H, B, and P occurs in slightly less than 100 fsec and leads to the ultrafast formation of an excited state of P. This state is characterized by a broad absorption spectrum and exhibits stimulated emission. It decays in 2.8 +/- 0.2 psec with the simultaneous oxidation of the primary donor and reduction of the bacteriopheophytin acceptor, which have been monitored at 545, 675, 815, 830, and 1310 nm. Although a transient bleaching relaxing in 400 +/- 100 fsec is specifically observed upon excitation and observation in the 830-nm absorption band, we have found no indication that an accessory bacteriochlorophyll is involved as a resolvable intermediary acceptor in the primary electron transfer process.
Collapse
Affiliation(s)
- J Breton
- Service de Biophysique, Département de Biologie, Centre d'Etudes Nucléaires de Saclay, 91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
42
|
Wasielewski MR, Johnson DG, Seibert M. Determination of the primary charge separation rate in isolated photosystem II reaction centers with 500-fs time resolution. Proc Natl Acad Sci U S A 2010; 86:524-8. [PMID: 16594012 PMCID: PMC286504 DOI: 10.1073/pnas.86.2.524] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have measured directly the rate of formation of the oxidized chlorophyll a electron donor (P680(+)) and the reduced electron acceptor pheophytin a(-) (Pheoa(-)) following excitation of isolated spinach photosystem II reaction centers at 4 degrees C. The reaction-center complex consists of D(1), D(2), and cytochrome b-559 proteins and was prepared by a procedure that stabilizes the protein complex. Transient absorption difference spectra were measured from 440 to 850 nm as a function of time with 500-fs resolution following 610-nm laser excitation. The formation of P680(+)-Pheoa(-) is indicated by the appearance of a band due to P680(+) at 820 nm and corresponding absorbance changes at 505 and 540 nm due to formation of Pheoa(-). The appearance of the 820-nm band is monoexponential with tau = 3.0 +/- 0.6 ps. The time constant for decay of (1*)P680, the lowest excited singlet state of P680, monitored at 650 nm, is tau = 2.6 +/- 0.6 ps and agrees with that of the appearance of P680(+) within experimental error. Treatment of the photosystem II reaction centers with sodium dithionite and methyl viologen followed by exposure to laser excitation, conditions known to result in accumulation of Pheoa(-), results in formation of a transient absorption spectrum due to (1*)P680. We find no evidence for an electron acceptor that precedes the formation of Pheoa(-).
Collapse
Affiliation(s)
- M R Wasielewski
- Chemistry Division, Argonne National Laboratory, Argonne, IL 60439
| | | | | |
Collapse
|
43
|
Deprez J, Trissl HW, Breton J. Excitation trapping and primary charge stabilization in Rhodopseudomonas viridis cells, measured electrically with picosecond resolution. Proc Natl Acad Sci U S A 2010; 83:1699-703. [PMID: 16593665 PMCID: PMC323151 DOI: 10.1073/pnas.83.6.1699] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transmembrane primary charge separation in the photosynthetic bacterium Rhodopseudomonas viridis was monitored by electric measurements of the light-gradient type [Trissl, H. W. & Kunze, U. (1985) Biochim. Biophys. Acta 806, 136-144]. Excitation of whole cells with 30-ps laser pulses at either 532 nm or 1064 nm gave rise to a biphasic increase of the photovoltage. The fast phase, contributing about 50% of the total, rose with an exponential time constant </=40 ps and was independent of the redox state of the quinone electron acceptor. It is assigned to the migration of the excitation energy in the antenna and its subsequent trapping by the reaction center, monitored by the ultrafast charge separation between the primary electron donor and the bacteriopheophytin intermediary acceptor. The slower phase (125 +/- 50 ps) only occurred when the quinone was oxidized and disappeared when it was reduced (either chemically or photochemically). It is assigned to the forward electron transfer from the bacteriopheophytin to the quinone. The relative amplitudes of these two electrogenic steps demonstrate that the bacteriopheophytin intermediary acceptor is located halfway between the primary donor and the quinone.
Collapse
Affiliation(s)
- J Deprez
- Service de Biophysique, Département de Biologie, Centre d'Etudes Nucléaire de Saclay, 91191 Gif-sur-Yvette Cedex, France
| | | | | |
Collapse
|
44
|
Goldstein RA, Boxer SG. Effects of nuclear spin polarization on reaction dynamics in photosynthetic bacterial reaction centers. Biophys J 2010; 51:937-46. [PMID: 19431700 DOI: 10.1016/s0006-3495(87)83421-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Singlet-triplet mixing in the initial radical-pair state, P[unk]I[unk], of photosynthetic bacterial reaction centers is due to the hyperfine mechanism at low magnetic fields and both the hyperfine and Deltag mechanisms at high magnetic fields (>1 kG). Since the hyperfine field felt by the electron spins in P[unk]I[unk] is dependent upon the nuclear spin state in each radical, the relative probabilities of charge recombination to the triplet state of the primary electron donor, (3)PI, or the ground state, PI, will depend on the nuclear spin configuration. As a result these recombination products will have non-equilibrium distributions of nuclear spin states (nuclear spin polarization). This polarization will persist until the (3)PI state decays. In addition, due to unequal nuclear spin relaxation rates in the diamagnetic PI and paramagnetic (3)PI states, net polarization of the nuclear spins can result, especially in experiments that involve recycling of the system through the radical-pair state. This net polarization can persist for very long times, especially at low temperatures. Nuclear spin polarization can have consequences on any subsequent process that involves re-formation of the radical-pair state.Numerical calculations of the nuclear polarization caused by both of these mechanics are presented, including the effect of such polarization on subsequent yields of (3)PI, (3)PI decay rates, the decay rate of the radical pair, and saturation behavior. The effect of this polarization under certain circumstances can be very dramatic and can explain previously noted discrepancies between experiments and theories that do not include nuclear spin polarization effects. Our analysis suggests new classes of experiments and indicates the need to reinterpret some past experimental results.
Collapse
|
45
|
Zinth W, Arlt T, Wachtveitl J. Primary charge separation. The primary processes of bacterial photosynthesis - ultrafast reactions for the optimum use of light energy. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/bbpc.19961001206] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
46
|
Rates of the initial two steps of electron transfer in reaction centers from Rhodobacter sphaeroides as determined by singular-value decomposition followed by global fitting. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2010.03.071] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Energy transfer in light-adapted photosynthetic membranes: from active to saturated photosynthesis. Biophys J 2010; 97:2464-73. [PMID: 19883589 DOI: 10.1016/j.bpj.2009.08.033] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 07/29/2009] [Accepted: 08/03/2009] [Indexed: 11/21/2022] Open
Abstract
In bacterial photosynthesis light-harvesting complexes, LH2 and LH1 absorb sunlight energy and deliver it to reaction centers (RCs) with extraordinarily high efficiency. Submolecular resolution images have revealed that both the LH2:LH1 ratio, and the architecture of the photosynthetic membrane itself, adapt to light intensity. We investigate the functional implications of structural adaptations in the energy transfer performance in natural in vivo low- and high-light-adapted membrane architectures of Rhodospirillum photometricum. A model is presented to describe excitation migration across the full range of light intensities that cover states from active photosynthesis, where all RCs are available for charge separation, to saturated photosynthesis where all RCs are unavailable. Our study outlines three key findings. First, there is a critical light-energy density, below which the low-light adapted membrane is more efficient at absorbing photons and generating a charge separation at RCs, than the high-light-adapted membrane. Second, connectivity of core complexes is similar in both membranes, suggesting that, despite different growth conditions, a preferred transfer pathway is through core-core contacts. Third, there may be minimal subareas on the membrane which, containing the same LH2:LH1 ratio, behave as minimal functional units as far as excitation transfer efficiency is concerned.
Collapse
|
48
|
Das S, Varghese S, Kumar NSS. Butadiene-based photoresponsive soft materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:1598-1609. [PMID: 19627077 DOI: 10.1021/la901962k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The creation of stimuli-responsive materials offers considerable challenges in the area of material science. The use of light as an external stimulus has particular advantages because it can bring about rapid transformations in remote regions in a very precise manner. Naturally occurring photoresponsive systems provide the motivation for developing corresponding artificial systems using molecular self-assembly to address issues such as quantum efficiency, selectivity, and amplification. A practical strategy for developing photoresponsive materials is to utilize molecules that can undergo considerable change in shape on photoisomerization. Although the photoisomerization of polyenes between their linear all-trans isomer and bent cis isomers has been extensively investigated in solution and in organized media because of its relevance to naturally occurring photoresponsive systems, its use in developing artificial photoresponsive systems has not been well explored. This feature article provides an overview of photoresponsive soft materials such as liquid crystals and gels with special emphasis on our recent studies related to the use of the butadiene chromophore for the design of such materials. The role of molecular self-assembly in controlling the photochemical and photophysical properties of these molecules is also discussed.
Collapse
Affiliation(s)
- Suresh Das
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, National Institute for Interdisciplinary Science and Technology, Trivandrum-695 019, Kerala, India
| | | | | |
Collapse
|
49
|
Gibasiewicz K, Pajzderska M, Karolczak J, Dobek A. Excitation and electron transfer in reaction centers from Rhodobacter sphaeroides probed and analyzed globally in the 1-nanosecond temporal window from 330 to 700 nm. Phys Chem Chem Phys 2009; 11:10484-93. [PMID: 19890535 DOI: 10.1039/b912431d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Global analysis of a set of room temperature transient absorption spectra of Rhodobacter sphaeroides reaction centers, recorded in wide temporal and spectral ranges and triggered by femtosecond excitation of accessory bacteriochlorophylls at 800 nm, is presented. The data give a comprehensive review of all spectral dynamics features in the visible and near UV, from 330 to 700 nm, related to the primary events in the Rb. sphaeroides reaction center: excitation energy transfer from the accessory bacteriochlorophylls (B) to the primary donor (P), primary charge separation between the primary donor and primary acceptor (bacteriopheophytin, H), and electron transfer from the primary to the secondary electron acceptor (ubiquinone). In particular, engagement of the accessory bacteriochlorophyll in primary charge separation is shown as an intermediate electron acceptor, and the initial free energy gap of approximately 40 meV, between the states P(+)B(A)(-) and P(+)H(A)(-) is estimated. The size of this gap is shown to be constant for the whole 230 ps lifetime of the P(+)H(A)(-) state. The ultrafast spectral dynamics features recorded in the visible range are presented against a background of results from similar studies performed for the last two decades.
Collapse
Affiliation(s)
- K Gibasiewicz
- Department of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland.
| | | | | | | |
Collapse
|
50
|
Gibasiewicz K, Pajzderska M, Ziółek M, Karolczak J, Dobek A. Internal Electrostatic Control of the Primary Charge Separation and Recombination in Reaction Centers from Rhodobacter sphaeroides Revealed by Femtosecond Transient Absorption. J Phys Chem B 2009; 113:11023-31. [DOI: 10.1021/jp811234q] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- K. Gibasiewicz
- Department of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland
| | - M. Pajzderska
- Department of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland
| | - M. Ziółek
- Department of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland
| | - J. Karolczak
- Department of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland
| | - A. Dobek
- Department of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland
| |
Collapse
|