Moffett J, Mendiaz E, Jones M, Englesberg E. Two membrane-bound proteins associated with alanine resistance and increased A-system amino acid transport in mutants of CHO-K1.
SOMATIC CELL AND MOLECULAR GENETICS 1988;
14:1-12. [PMID:
3422520 DOI:
10.1007/bf01535044]
[Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Growth of CHO-K1, a proline auxotroph, is inhibited by amino acids that prevent proline transport. From a hydroxyurea-treated, alanine-resistant, constitutive mutant, alar4, we isolated, in a stepwise fashion, mutants, resistant to higher concentrations of alanine, that have increased velocity of amino acid transport through the A system. Two such mutants, alar4-H2.1 and alar4-H3.9, isolated as resistant to 50 mM and 125 mM alanine, respectively, showed increases in Vmax of proline transport through the A system that are directly proportional to their resistance to alanine. Alar4-H3.9, as compared to alar4 and CHO-K1, has six and 29 times the Vmax of proline transport through the A system and two and five times the velocity of transport through the combined ASC and P systems, respectively, and no change in system L. No double-minute or homologous staining regions were detectable in alar4-H3.9. A-system activity of alar4-H2.1 and alar4-H3.9, when grown under nonselective conditions, was stable for 20 generations and then declined. The phenotype of alar4-H3.9 is codominant with that of alar4 and partially recessive to that of CHO-K1. Membrane vesicles prepared from alar4-H3.9 show increases mainly in A-system transport. In sodium dodecylsulfate-polyacrylamide gel electrophoresis analysis of A-system active membrane vesicles and endoplasmic reticulum, two bands of molecular weight of approximately 62-66 kd and 29 kd are present in higher concentrations in alar4-H3.9 than in CHO-K1. These results are compatible with the hypothesis that the phenotype of alar4-H3.9 is the result of gene amplification of an A-system transporter structural gene and that the two bands may represent this transporter.
Collapse