1
|
Dalto JF, Medina JH, Pastor V. Molecular Underpinnings of Memory Persistence and Forgetting. J Neurochem 2025; 169:e70089. [PMID: 40411122 DOI: 10.1111/jnc.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/26/2025]
Abstract
The fate of memories depends mainly on external and internal factors affecting cellular and systems consolidation on the one hand and the decay or weakening of the memory trace on the other hand. Over the past 40 years, research has focused on the mechanisms of memory consolidation, retrieval, and its consequences: extinction and reconsolidation. In contrast, much less is known about the molecular mechanisms required for the maintenance of memory storage and forgetting. These opposing forces are both activity- and time-dependent. Here, we summarize the molecular signatures and inherent mechanisms involved in memory persistence and active forgetting, highlighting recent findings on the role of dopamine neurotransmission, intracellular signaling cascades, and actin cytoskeleton dynamics in these processes.
Collapse
Affiliation(s)
- Juliana F Dalto
- Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
| | - Jorge H Medina
- Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
- Instituto de Biología Celular y Neurociencias "Prof. Eduardo De Robertis", CONICET-UBA, Buenos Aires, Argentina
| | - Verónica Pastor
- Instituto de Biología Celular y Neurociencias "Prof. Eduardo De Robertis", CONICET-UBA, Buenos Aires, Argentina
| |
Collapse
|
2
|
Bin Ibrahim MZ, Wang Z, Sajikumar S. Synapses tagged, memories kept: synaptic tagging and capture hypothesis in brain health and disease. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230237. [PMID: 38853570 PMCID: PMC11343274 DOI: 10.1098/rstb.2023.0237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 06/11/2024] Open
Abstract
The synaptic tagging and capture (STC) hypothesis lays the framework on the synapse-specific mechanism of protein synthesis-dependent long-term plasticity upon synaptic induction. Activated synapses will display a transient tag that will capture plasticity-related products (PRPs). These two events, tag setting and PRP synthesis, can be teased apart and have been studied extensively-from their electrophysiological and pharmacological properties to the molecular events involved. Consequently, the hypothesis also permits interactions of synaptic populations that encode different memories within the same neuronal population-hence, it gives rise to the associativity of plasticity. In this review, the recent advances and progress since the experimental debut of the STC hypothesis will be shared. This includes the role of neuromodulation in PRP synthesis and tag integrity, behavioural correlates of the hypothesis and modelling in silico. STC, as a more sensitive assay for synaptic health, can also assess neuronal aberrations. We will also expound how synaptic plasticity and associativity are altered in ageing-related decline and pathological conditions such as juvenile stress, cancer, sleep deprivation and Alzheimer's disease. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Mohammad Zaki Bin Ibrahim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117597, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore119077, Singapore
| | - Zijun Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117597, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore119077, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117597, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore119077, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117597, Singapore
| |
Collapse
|
3
|
Lee CT, Bell M, Bonilla-Quintana M, Rangamani P. Biophysical Modeling of Synaptic Plasticity. Annu Rev Biophys 2024; 53:397-426. [PMID: 38382115 DOI: 10.1146/annurev-biophys-072123-124954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Dendritic spines are small, bulbous compartments that function as postsynaptic sites and undergo intense biochemical and biophysical activity. The role of the myriad signaling pathways that are implicated in synaptic plasticity is well studied. A recent abundance of quantitative experimental data has made the events associated with synaptic plasticity amenable to quantitative biophysical modeling. Spines are also fascinating biophysical computational units because spine geometry, signal transduction, and mechanics work in a complex feedback loop to tune synaptic plasticity. In this sense, ideas from modeling cell motility can inspire us to develop multiscale approaches for predictive modeling of synaptic plasticity. In this article, we review the key steps in postsynaptic plasticity with a specific focus on the impact of spine geometry on signaling, cytoskeleton rearrangement, and membrane mechanics. We summarize the main experimental observations and highlight how theory and computation can aid our understanding of these complex processes.
Collapse
Affiliation(s)
- Christopher T Lee
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA;
| | - Miriam Bell
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA;
| | - Mayte Bonilla-Quintana
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA;
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA;
| |
Collapse
|
4
|
Nicoll RA, Schulman H. Synaptic memory and CaMKII. Physiol Rev 2023; 103:2877-2925. [PMID: 37290118 PMCID: PMC10642921 DOI: 10.1152/physrev.00034.2022] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 06/10/2023] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) and long-term potentiation (LTP) were discovered within a decade of each other and have been inextricably intertwined ever since. However, like many marriages, it has had its up and downs. Based on the unique biochemical properties of CaMKII, it was proposed as a memory molecule before any physiological linkage was made to LTP. However, as reviewed here, the convincing linkage of CaMKII to synaptic physiology and behavior took many decades. New technologies were critical in this journey, including in vitro brain slices, mouse genetics, single-cell molecular genetics, pharmacological reagents, protein structure, and two-photon microscopy, as were new investigators attracted by the exciting challenge. This review tracks this journey and assesses the state of this marriage 40 years on. The collective literature impels us to propose a relatively simple model for synaptic memory involving the following steps that drive the process: 1) Ca2+ entry through N-methyl-d-aspartate (NMDA) receptors activates CaMKII. 2) CaMKII undergoes autophosphorylation resulting in constitutive, Ca2+-independent activity and exposure of a binding site for the NMDA receptor subunit GluN2B. 3) Active CaMKII translocates to the postsynaptic density (PSD) and binds to the cytoplasmic C-tail of GluN2B. 4) The CaMKII-GluN2B complex initiates a structural rearrangement of the PSD that may involve liquid-liquid phase separation. 5) This rearrangement involves the PSD-95 scaffolding protein, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), and their transmembrane AMPAR-regulatory protein (TARP) auxiliary subunits, resulting in an accumulation of AMPARs in the PSD that underlies synaptic potentiation. 6) The stability of the modified PSD is maintained by the stability of the CaMKII-GluN2B complex. 7) By a process of subunit exchange or interholoenzyme phosphorylation CaMKII maintains synaptic potentiation in the face of CaMKII protein turnover. There are many other important proteins that participate in enlargement of the synaptic spine or modulation of the steps that drive and maintain the potentiation. In this review we critically discuss the data underlying each of the steps. As will become clear, some of these steps are more firmly grounded than others, and we provide suggestions as to how the evidence supporting these steps can be strengthened or, based on the new data, be replaced. Although the journey has been a long one, the prospect of having a detailed cellular and molecular understanding of learning and memory is at hand.
Collapse
Affiliation(s)
- Roger A Nicoll
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California, United States
| | - Howard Schulman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California, United States
- Panorama Research Institute, Sunnyvale, California, United States
| |
Collapse
|
5
|
Rumian NL, Freund RK, Dell’Acqua ML, Coultrap SJ, Bayer KU. Decreased nitrosylation of CaMKII causes aging-associated impairments in memory and synaptic plasticity in mice. Sci Signal 2023; 16:eade5892. [PMID: 37490545 PMCID: PMC10485821 DOI: 10.1126/scisignal.ade5892] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 07/04/2023] [Indexed: 07/27/2023]
Abstract
CaMKII has molecular memory functions because transient calcium ion stimuli can induce long-lasting increases in its synaptic localization and calcium ion-independent (autonomous) activity, thereby leaving memory traces of calcium ion stimuli beyond their duration. The synaptic effects of two mechanisms that induce CaMKII autonomy are well studied: autophosphorylation at threonine-286 and binding to GluN2B. Here, we examined the neuronal functions of additional autonomy mechanisms: nitrosylation and oxidation of the CaMKII regulatory domain. We generated a knock-in mouse line with mutations that render the CaMKII regulatory domain nitrosylation/oxidation-incompetent, CaMKIIΔSNO, and found that it had deficits in memory and synaptic plasticity that were similar to those in aged wild-type mice. In addition, similar to aged wild-type mice, in which CaMKII was hyponitrosylated, but unlike mice with impairments of other CaMKII autonomy mechanisms, CaMKIIΔSNO mice showed reduced long-term potentiation (LTP) when induced by theta-burst stimulation but not high-frequency stimulation (HFS). As in aged wild-type mice, the HFS-LTP in the young adult CaMKIIΔSNO mice required L-type voltage-gated calcium ion channels. The effects in aged mice were likely caused by the loss of nitrosylation because no decline in CaMKII oxidation was detected. In hippocampal neurons, nitrosylation of CaMKII induced its accumulation at synapses under basal conditions in a manner mediated by GluN2B binding, like after LTP stimuli. However, LTP-induced synaptic CaMKII accumulation did not require nitrosylation. Thus, an aging-associated decrease in CaMKII nitrosylation may cause impairments by chronic synaptic effects, such as the decrease in basal synaptic CaMKII.
Collapse
Affiliation(s)
- Nicole L. Rumian
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ronald K. Freund
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mark L. Dell’Acqua
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Steven J. Coultrap
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - K. Ulrich Bayer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Sun 孙意冉 Y, Yan C, He L, Xiang S, Wang P, Li Z, Chen Y, Zhao J, Yuan Y, Wang W, Zhang X, Su P, Su Y, Ma J, Xu J, Peng Q, Ma H, Xie Z, Zhang Z. Inhibition of ferroptosis through regulating neuronal calcium homeostasis: An emerging therapeutic target for Alzheimer's disease. Ageing Res Rev 2023; 87:101899. [PMID: 36871781 DOI: 10.1016/j.arr.2023.101899] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Alzheimer's disease (AD), a chronic and progressive neurodegenerative disease, generates a serious threat to the health of the elderly. The AD brain is microscopically characterized by amyloid plaques and neurofibrillary tangles. There are still no effective therapeutic drugs to restrain the progression of AD though much attention has been paid to exploit AD treatments. Ferroptosis, a type of programmed cell death, has been reported to promote the pathological occurrence and development of AD, and inhibition of neuronal ferroptosis can effectively improve the cognitive impairment of AD. Studies have shown that calcium (Ca2+) dyshomeostasis is closely related to the pathology of AD, and can drive the occurrence of ferroptosis through several pathways, such as interacting with iron, and regulating the crosstalk between endoplasmic reticulum (ER) and mitochondria. This paper mainly reviews the roles of ferroptosis and Ca2+ in the pathology of AD, and highlights that restraining ferroptosis through maintaining the homeostasis of Ca2+ may be an innovative target for the treatment of AD.
Collapse
Affiliation(s)
- Yiran Sun 孙意冉
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Chenchen Yan
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Libo He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Shixie Xiang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Pan Wang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhonghua Li
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yuanzhao Chen
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jie Zhao
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Ye Yuan
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Wang Wang
- School of basic medicine, Nanchang Medical College, Nanchang 330052, Jiangxi, China
| | - Xiaowei Zhang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Pan Su
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yunfang Su
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jinlian Ma
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jiangyan Xu
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Quekun Peng
- School of Biosciences and Technology, Chengdu Medical College, Chengdu 610500, China.
| | - Huifen Ma
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Zhishen Xie
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Zhenqiang Zhang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| |
Collapse
|
7
|
Abstract
Activation of Ca2+/calmodulin-dependent kinase II (CaMKII) plays a critical role in long-term potentiation (LTP), a long accepted cellular model for learning and memory. However, how LTP and memories survive the turnover of synaptic proteins, particularly CaMKII, remains a mystery. Here, we take advantage of the finding that constitutive Ca2+-independent CaMKII activity, acquired prior to slice preparation, provides a lasting memory trace at synapses. In slice culture, this persistent CaMKII activity, in the absence of Ca2+ stimulation, remains stable over a 2-wk period, well beyond the turnover of CaMKII protein. We propose that the nascent CaMKII protein present at 2 wk acquired its activity from preexisting active CaMKII molecules, which transferred their activity to newly synthesized CaMKII molecules and thus maintain the memory in the face of protein turnover.
Collapse
|
8
|
Glucocorticoid-Regulated Kinase CAMKIγ in the Central Amygdala Controls Anxiety-like Behavior in Mice. Int J Mol Sci 2022; 23:ijms232012328. [PMID: 36293185 PMCID: PMC9604347 DOI: 10.3390/ijms232012328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022] Open
Abstract
The expression of the Calcium/Calmodulin-Dependent Protein Kinase I gamma (encoded by the Camk1g gene) depends on the activation of glucocorticoid receptors (GR) and is strongly regulated by stress. Since Camk1g is primarily expressed in neuronal cells of the limbic system in the brain, we hypothesized that it could be involved in signaling mechanisms that underlie the adaptive or maladaptive responses to stress. Here, we find that restraint-induced stress and the GR agonist dexamethasone robustly increase the expression of Camk1g in neurons of the amygdalar nuclei in the mouse brain. To assess the functional role of Camk1g expression, we performed a virally induced knock-down of the transcript. Mice with bilateral amygdala-specific Camk1g knock-down showed increased anxiety-like behaviors in the light-dark box, and an increase in freezing behavior after fear-conditioning, but normal spatial working memory during exploration of a Y-maze. Thus, we confirm that Camk1g is a neuron-specific GR-regulated transcript, and show that it is specifically involved in behaviors related to anxiety, as well as responses conditioned by aversive stimuli.
Collapse
|
9
|
Zhang Y, Smolen P, Alberini CM, Baxter DA, Byrne JH. Computational analysis of memory consolidation following inhibitory avoidance (IA) training in adult and infant rats: Critical roles of CaMKIIα and MeCP2. PLoS Comput Biol 2022; 18:e1010239. [PMID: 35759520 PMCID: PMC9269953 DOI: 10.1371/journal.pcbi.1010239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/08/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022] Open
Abstract
Key features of long-term memory (LTM), such as its stability and persistence, are acquired during processes collectively referred to as consolidation. The dynamics of biological changes during consolidation are complex. In adult rodents, consolidation exhibits distinct periods during which the engram is more or less resistant to disruption. Moreover, the ability to consolidate memories differs during developmental periods. Although the molecular mechanisms underlying consolidation are poorly understood, the initial stages rely on interacting signaling pathways that regulate gene expression, including brain-derived neurotrophic factor (BDNF) and Ca2+/calmodulin-dependent protein kinase II α (CaMKIIα) dependent feedback loops. We investigated the ways in which these pathways may contribute to developmental and dynamical features of consolidation. A computational model of molecular processes underlying consolidation following inhibitory avoidance (IA) training in rats was developed. Differential equations described the actions of CaMKIIα, multiple feedback loops regulating BDNF expression, and several transcription factors including methyl-CpG binding protein 2 (MeCP2), histone deacetylase 2 (HDAC2), and SIN3 transcription regulator family member A (Sin3a). This model provides novel explanations for the (apparent) rapid forgetting of infantile memory and the temporal progression of memory consolidation in adults. Simulations predict that dual effects of MeCP2 on the expression of bdnf, and interaction between MeCP2 and CaMKIIα, play critical roles in the rapid forgetting of infantile memory and the progress of memory resistance to disruptions. These insights suggest new potential targets of therapy for memory impairment.
Collapse
Affiliation(s)
- Yili Zhang
- Department of Neurobiology and Anatomy; W.M. Keck Center for the Neurobiology of Learning and Memory; The University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Paul Smolen
- Department of Neurobiology and Anatomy; W.M. Keck Center for the Neurobiology of Learning and Memory; The University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Cristina M. Alberini
- Center for Neural Science, New York University, New York City, New York, United States of America
| | - Douglas A. Baxter
- Department of Neurobiology and Anatomy; W.M. Keck Center for the Neurobiology of Learning and Memory; The University of Texas Medical School at Houston, Houston, Texas, United States of America
- Department of Neurobiology and Experimental Therapeutics, College of Medicine, Texas A&M University, Houston, Texas, United States of America
| | - John H. Byrne
- Department of Neurobiology and Anatomy; W.M. Keck Center for the Neurobiology of Learning and Memory; The University of Texas Medical School at Houston, Houston, Texas, United States of America
| |
Collapse
|
10
|
Bonilla-Quintana M, Rangamani P. Can biophysical models of dendritic spines be used to explore synaptic changes associated with addiction? Phys Biol 2022; 19. [PMID: 35508164 DOI: 10.1088/1478-3975/ac6cbe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/04/2022] [Indexed: 11/11/2022]
Abstract
Effective treatments that prevent or reduce drug relapse vulnerability should be developed to relieve the high burden of drug addiction on society. This will only be possible by enhancing the understanding of the molecular mechanisms underlying the neurobiology of addiction. Recent experimental data have shown that dendritic spines, small protrusions from the dendrites that receive excitatory input, of spiny neurons in the nucleus accumbens exhibit morphological changes during drug exposure and withdrawal. Moreover, these changes relate to the characteristic drug-seeking behavior of addiction. However, due to the complexity of the dendritic spines, we do not yet fully understand the processes underlying their structural changes in response to different inputs. We propose that biophysical models can enhance the current understanding of these processes by incorporating different, and sometimes, discrepant experimental data to identify the shared underlying mechanisms and generate experimentally testable hypotheses. This review aims to give an up-to-date report on biophysical models of dendritic spines, focusing on those models that describe their shape changes, which are well-known to relate to learning and memory. Moreover, it examines how these models can enhance our understanding of the effect of the drugs and the synaptic changes during withdrawal, as well as during neurodegenerative disease progression such as Alzheimer's disease.
Collapse
Affiliation(s)
- Mayte Bonilla-Quintana
- Mechanical Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093-0021, UNITED STATES
| | - Padmini Rangamani
- Mechanical Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093-0021, UNITED STATES
| |
Collapse
|
11
|
Tao W, Lee J, Chen X, Díaz-Alonso J, Zhou J, Pleasure S, Nicoll RA. Synaptic memory requires CaMKII. eLife 2021; 10:e60360. [PMID: 34908526 PMCID: PMC8798046 DOI: 10.7554/elife.60360] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/14/2021] [Indexed: 01/28/2023] Open
Abstract
Long-term potentiation (LTP) is arguably the most compelling cellular model for learning and memory. While the mechanisms underlying the induction of LTP ('learning') are well understood, the maintenance of LTP ('memory') has remained contentious over the last 20 years. Here, we find that Ca2+-calmodulin-dependent kinase II (CaMKII) contributes to synaptic transmission and is required LTP maintenance. Acute inhibition of CaMKII erases LTP and transient inhibition of CaMKII enhances subsequent LTP. These findings strongly support the role of CaMKII as a molecular storage device.
Collapse
Affiliation(s)
- Wucheng Tao
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical UniversityFuzhouChina
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
| | - Joel Lee
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
| | - Xiumin Chen
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
| | - Javier Díaz-Alonso
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
| | - Jing Zhou
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Samuel Pleasure
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Roger A Nicoll
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Physiology, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
12
|
Vignoli B, Sansevero G, Sasi M, Rimondini R, Blum R, Bonaldo V, Biasini E, Santi S, Berardi N, Lu B, Canossa M. Astrocytic microdomains from mouse cortex gain molecular control over long-term information storage and memory retention. Commun Biol 2021; 4:1152. [PMID: 34611268 PMCID: PMC8492720 DOI: 10.1038/s42003-021-02678-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 09/15/2021] [Indexed: 12/23/2022] Open
Abstract
Memory consolidation requires astrocytic microdomains for protein recycling; but whether this lays a mechanistic foundation for long-term information storage remains enigmatic. Here we demonstrate that persistent synaptic strengthening invited astrocytic microdomains to convert initially internalized (pro)-brain-derived neurotrophic factor (proBDNF) into active prodomain (BDNFpro) and mature BDNF (mBDNF) for synaptic re-use. While mBDNF activates TrkB, we uncovered a previously unsuspected function for the cleaved BDNFpro, which increases TrkB/SorCS2 receptor complex at post-synaptic sites. Astrocytic BDNFpro release reinforced TrkB phosphorylation to sustain long-term synaptic potentiation and to retain memory in the novel object recognition behavioral test. Thus, the switch from one inactive state to a multi-functional one of the proBDNF provides post-synaptic changes that survive the initial activation. This molecular asset confines local information storage in astrocytic microdomains to selectively support memory circuits. Beatrice Vignoli et al. examine potential molecular mechanisms of long-term storage information in mice. Their results suggest that astrocytes may help convert neuronal BDNF precursor into active prodomain and mature forms to enhance post-synaptic signaling and memory, providing further insight into the development of memory circuits.
Collapse
Affiliation(s)
- Beatrice Vignoli
- Department of Physics, University of Trento, 38123, Povo (TN), Italy. .,Department of Cellular Computational and Integrative Biology (CIBIO), University of Trento, 38123, Povo (TN), Italy.
| | - Gabriele Sansevero
- Neuroscience Institute, National Research Council (IN-CNR), 56100, Pisa, Italy
| | - Manju Sasi
- Institute of Clinical Neurobiology and Department of Neurology, University Hospital Würzburg, 97078, Würzburg, Germany
| | - Roberto Rimondini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126, Bologna, Italy
| | - Robert Blum
- Institute of Clinical Neurobiology and Department of Neurology, University Hospital Würzburg, 97078, Würzburg, Germany
| | - Valerio Bonaldo
- Department of Cellular Computational and Integrative Biology (CIBIO), University of Trento, 38123, Povo (TN), Italy
| | - Emiliano Biasini
- Department of Cellular Computational and Integrative Biology (CIBIO), University of Trento, 38123, Povo (TN), Italy
| | - Spartaco Santi
- Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", National Research Council of Italy, 40136, Bologna, Italy.,IRCCS, Istituto Ortopedico Rizzoli, 40136, Bologna, Italy
| | - Nicoletta Berardi
- Department of Neuroscience, Psychology, Drug Research, Child Health (NEUROFARBA), University of Florence, 50100, Florence, Italy
| | - Bai Lu
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
| | - Marco Canossa
- Department of Cellular Computational and Integrative Biology (CIBIO), University of Trento, 38123, Povo (TN), Italy.
| |
Collapse
|
13
|
Desch K, Langer JD, Schuman EM. Dynamic bi-directional phosphorylation events associated with the reciprocal regulation of synapses during homeostatic up- and down-scaling. Cell Rep 2021; 36:109583. [PMID: 34433048 PMCID: PMC8411114 DOI: 10.1016/j.celrep.2021.109583] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/15/2021] [Accepted: 07/29/2021] [Indexed: 01/17/2023] Open
Abstract
Homeostatic synaptic scaling allows for bi-directional adjustment of the strength of synaptic connections in response to changes in their input. Protein phosphorylation modulates many neuronal processes, but it has not been studied on a global scale during synaptic scaling. Here, we use liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses to measure changes in the phosphoproteome in response to up- or down-scaling in cultured cortical neurons over minutes to 24 h. Of ~45,000 phosphorylation events, ~3,300 (associated with 1,285 phosphoproteins) are regulated by homeostatic scaling. Activity-sensitive phosphoproteins are predominantly located at synapses and involved in cytoskeletal reorganization. We identify many early phosphorylation events that could serve as sensors for the activity offset as well as late and/or persistent phosphoregulation that could represent effector mechanisms driving the homeostatic response. Much of the persistent phosphorylation is reciprocally regulated by up- or down-scaling, suggesting that mechanisms underlying these two poles of synaptic regulation make use of a common signaling axis. Global proteome and phosphoproteome dynamics following homeostatic synaptic scaling Approximately 3,300 activity-sensitive, synapse-associated phospho-events Persistent signaling of ~25% of initial phospho-events (min to 24 h) Persistent and reciprocal phosphoregulation links synaptic up- and down-scaling
Collapse
Affiliation(s)
- Kristina Desch
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany
| | - Julian D Langer
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany.
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany.
| |
Collapse
|
14
|
The role of CaMKII autophosphorylation for NMDA receptor-dependent synaptic potentiation. Neuropharmacology 2021; 193:108616. [PMID: 34051268 DOI: 10.1016/j.neuropharm.2021.108616] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/01/2021] [Accepted: 05/13/2021] [Indexed: 11/24/2022]
Abstract
Potentiation of glutamatergic synaptic transmission is thought to underlie memory. The induction of this synaptic potentiation relies on activation of NMDA receptors which allows for calcium influx into the post-synapse. A key mechanistic question for the understanding of synaptic potentiation is what signaling is activated by the calcium influx. Here, I review evidences that at mature synapses the elevated calcium levels activate primarily calcium/calmodulin-dependent kinase II (CaMKII) and cause its autophophorylation. CaMKII autophosphorylation leads to calcium-independent activity of the kinase, so that kinase signaling can outlast NMDA receptor-dependent calcium influx. Prolonged CaMKII signaling induces downstream signaling for AMPA receptor trafficking into the post-synaptic density and causes structural enlargement of the synapse. Interestingly, however, CaMKII autophosphorylation does not have such an essential role in NMDA receptor-dependent synaptic potentiation in early postnatal development and in adult dentate gyrus, where neurogenesis occurs. Additionally, in old age memory-relevant NMDA receptor-dependent synaptic plasticity appears to be due to generation of multi-innervated dendritic spines, which does not require CaMKII autophosphorylation. In conclusion, CaMKII autophosphorylation has a conditional role in the induction of NMDA receptor-dependent synaptic potentiation.
Collapse
|
15
|
Saneyoshi T. Reciprocal activation within a kinase effector complex: A mechanism for the persistence of molecular memory. Brain Res Bull 2021; 170:58-64. [PMID: 33556559 DOI: 10.1016/j.brainresbull.2021.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/10/2021] [Accepted: 01/25/2021] [Indexed: 01/01/2023]
Abstract
Synaptic connections in neuronal circuits change in response to neuronal activity patterns. This can induce a persistent change in the efficacy of synaptic transmission, a phenomenon known as synaptic plasticity. One form of plasticity, long-term potentiation (LTP) has been extensively studied as the cellular basis of memory. In LTP, the potentiated synaptic transmission persists along with structural changes in the synapses. Many studies have sought to identify the "memory molecule" or the "molecular engram". Ca2+/calmodulin-dependent protein kinase II (CaMKII) is probably the most well-studied candidate for the memory molecule. However, consensus has not yet been reached on a very basic aspect: how CaMKII is regulated during LTP. Here, I propose a new model of CaMKII regulation: reciprocal activation within a kinase effector complex (RAKEC) that is made between CaMKII and its effector protein, which is mediated by a persistent interaction between CaMKII and a pseudosubstrate sequence on T-lymphoma invasion and metastasis protein 1 (Tiam1), resulting in reciprocal activation of these two molecules. Through the RAKEC mechanism, CaMKII can maintain memory as biochemical activity in a synapse-specific manner. In this review, the detailed mechanism of the RAKEC and its expansion for the maintenance of LTP is described.
Collapse
Affiliation(s)
- Takeo Saneyoshi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan.
| |
Collapse
|
16
|
Smolen P, Baxter DA, Byrne JH. Comparing Theories for the Maintenance of Late LTP and Long-Term Memory: Computational Analysis of the Roles of Kinase Feedback Pathways and Synaptic Reactivation. Front Comput Neurosci 2020; 14:569349. [PMID: 33390922 PMCID: PMC7772319 DOI: 10.3389/fncom.2020.569349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/16/2020] [Indexed: 11/26/2022] Open
Abstract
A fundamental neuroscience question is how memories are maintained from days to a lifetime, given turnover of proteins that underlie expression of long-term synaptic potentiation (LTP) or “tag” synapses as eligible for LTP. A likely solution relies on synaptic positive feedback loops, prominently including persistent activation of Ca2+/calmodulin kinase II (CaMKII) and self-activated synthesis of protein kinase M ζ (PKMζ). Data also suggest positive feedback based on recurrent synaptic reactivation within neuron assemblies, or engrams, is necessary to maintain memories. The relative importance of these mechanisms is controversial. To explore the likelihood that each mechanism is necessary or sufficient to maintain memory, we simulated maintenance of LTP with a simplified model incorporating persistent kinase activation, synaptic tagging, and preferential reactivation of strong synapses, and analyzed implications of recent data. We simulated three model variants, each maintaining LTP with one feedback loop: autonomous, self-activated PKMζ synthesis (model variant I); self-activated CamKII (model variant II); and recurrent reactivation of strengthened synapses (model variant III). Variant I predicts that, for successful maintenance of LTP, either 1) PKMζ contributes to synaptic tagging, or 2) a low constitutive tag level persists during maintenance independent of PKMζ, or 3) maintenance of LTP is independent of tagging. Variant II maintains LTP and suggests persistent CaMKII activation could maintain PKMζ activity, a feedforward interaction not previously considered. However, we note data challenging the CaMKII feedback loop. In Variant III synaptic reactivation drives, and thus predicts, recurrent or persistent activation of CamKII and other necessary kinases, plausibly contributing to persistent elevation of PKMζ levels. Reactivation is thus predicted to sustain recurrent rounds of synaptic tagging and incorporation of plasticity-related proteins. We also suggest (model variant IV) that synaptic reactivation and autonomous kinase activation could synergistically maintain LTP. We propose experiments that could discriminate these maintenance mechanisms.
Collapse
Affiliation(s)
- Paul Smolen
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Douglas A Baxter
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States.,Engineering and Medicine, Texas A&M Health Science Center, Houston, TX, United States
| | - John H Byrne
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
17
|
Astudillo D, Karmelic D, Casas BS, Otmakhov N, Palma V, Sanhueza M. CaMKII inhibitor 1 (CaMK2N1) mRNA is upregulated following LTP induction in hippocampal slices. Synapse 2020; 74:e22158. [PMID: 32320502 PMCID: PMC8108577 DOI: 10.1002/syn.22158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022]
Abstract
CaMK2N1 and CaMK2N2 (also known as CaMKIINα and β) are endogenous inhibitors of calcium/calmodulin-dependent kinase II (CaMKII), an enzyme critical for memory and long-term potentiation (LTP), a form of synaptic plasticity thought to underlie learning. CaMK2N1/2 mRNAs are rapidly and differentially upregulated in the hippocampus and amygdala after acquisition or retrieval of fear memory. Moreover, CaMK2N2 protein levels increase after contextual fear conditioning. Therefore, it was proposed that CaMK2N1/2 genes (Camk2n1/2) could be immediate-early genes transcribed promptly (30-60 min) after training. As a first approach to explore a role in synaptic plasticity, we assessed a possible regulation of Camk2n1/2 during the expression phase of LTP in hippocampal CA3-CA1 connections in rat brain slices. Quantitative PCR revealed that Camk2n1, but not Camk2n2, is upregulated 60 min after LTP induction by Schaffer collaterals high-frequency stimulation. We observed a graded, significant positive correlation between the magnitude of LTP and Camk2n1 change in individual slices, suggesting a coordinated regulation of these properties. If mRNA increment actually resulted in the protein upregulation in plasticity-relevant subcellular locations, CaMK2N1 may be involved in CaMKII fine-tuning during LTP maintenance or in the regulation of subsequent plasticity events (metaplasticity).
Collapse
Affiliation(s)
- Daniela Astudillo
- Cell Physiology Center, Department of Biology, Faculty of
Sciences, Universidad de Chile, Santiago, Chile
| | - Daniel Karmelic
- Cell Physiology Center, Department of Biology, Faculty of
Sciences, Universidad de Chile, Santiago, Chile
| | - Barbara S. Casas
- Laboratory of Stem Cells and Developmental Biology,
Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago,
Chile
| | | | - Veronica Palma
- Laboratory of Stem Cells and Developmental Biology,
Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago,
Chile
| | - Magdalena Sanhueza
- Cell Physiology Center, Department of Biology, Faculty of
Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
18
|
Glu 60 of α-Calcium/calmodulin dependent protein kinase II mediates crosstalk between the regulatory T-site and protein substrate binding region of the active site. Arch Biochem Biophys 2020; 685:108348. [PMID: 32198047 DOI: 10.1016/j.abb.2020.108348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 11/20/2022]
Abstract
Memory formation transpires to be by activation and persistent modification of synapses. A chain of biochemical events accompany synaptic activation and culminate in memory formation. These biochemical events are steered by interplay and modulation of various synaptic proteins, achieved by conformational changes and phosphorylation/dephosphorylation of these proteins. Calcium/calmodulin dependent protein kinase II (CaMKII) and N-methyl-d-aspartate receptors (NMDARs) are synaptic proteins whose interactions play a pivotal role in learning and memory process. Catalytic activity of CaMKII is modulated upon its interaction with the GluN2B subunit of NMDAR. The structural basis of this interaction is not clearly understood. We have investigated the role of Glu60 of α-CaMKII, a conserved residue present in the ATP binding region of kinases, in the regulation of catalysis of CaMKII by GluN2B. Mutation of Glu60 to Gly exerts different effects on the kinetic parameters of phosphorylation of GluN2B and GluN2A, of which only GluN2B binds to the T-site of CaMKII. GluN2B induced modulation of the kinetic parameters of peptide substrate was altered in the E60G mutant. The mutation almost abolished the modulation of the apparent Km value for protein substrate. However, although kinetic parameters for ATP were altered by mutating Glu60, modulation of the apparent Km value for ATP by GluN2B seen in WT was exhibited by the E60G mutant of α-CaMKII. Hence our results posit that the communication of the T-site of CaMKII with protein substrate binding region of active site is mediated through Glu60 while the communication of the T-site with the ATP binding region is not entirely dependent on Glu60.
Collapse
|
19
|
Li H, Xue X, Li L, Li Y, Wang Y, Huang T, Wang Y, Meng H, Pan B, Niu Q. Aluminum-Induced Synaptic Plasticity Impairment via PI3K-Akt-mTOR Signaling Pathway. Neurotox Res 2020; 37:996-1008. [PMID: 31970651 DOI: 10.1007/s12640-020-00165-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/17/2019] [Accepted: 01/15/2020] [Indexed: 12/20/2022]
Abstract
Aluminum (Al) is an environmental neurotoxin with extensive exposure by humans, but the molecular mechanism of its toxicity is still unclear. Several studies have indicated that exposure to aluminum can impair learning and memory function. The purpose of this study was to investigate the mechanism of LTP injury and the effect of aluminum exposure on related signal pathways. The results showed that the axonal dendrites of neurons in the hippocampal CA1 area of rats exposed to maltol aluminum showed neuritic beading and the dendritic spines were reduced. This resulted in dose-dependent LTP inhibition and led to impaired learning and memory function in rats. The PI3K-Akt-mTOR pathway may play a crucial role in this process.
Collapse
Affiliation(s)
- Huan Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Xinjian south Road, Taiyuan, Shanxi, People's Republic of China
- Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, China
- Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, Taiyuan, China
| | - Xingli Xue
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Xinjian south Road, Taiyuan, Shanxi, People's Republic of China
- Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, China
| | - Liang Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Xinjian south Road, Taiyuan, Shanxi, People's Republic of China
- Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, China
| | - Yaqin Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Xinjian south Road, Taiyuan, Shanxi, People's Republic of China
- Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, China
| | - Yanni Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Xinjian south Road, Taiyuan, Shanxi, People's Republic of China
- Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, China
| | - Tao Huang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Xinjian south Road, Taiyuan, Shanxi, People's Republic of China
- Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, China
| | - Yanhong Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Xinjian south Road, Taiyuan, Shanxi, People's Republic of China
- Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, China
| | - Huaxing Meng
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Xinjian south Road, Taiyuan, Shanxi, People's Republic of China
| | - Baolong Pan
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Xinjian south Road, Taiyuan, Shanxi, People's Republic of China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Xinjian south Road, Taiyuan, Shanxi, People's Republic of China.
- Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, China.
- Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
20
|
Smolen P, Baxter DA, Byrne JH. How can memories last for days, years, or a lifetime? Proposed mechanisms for maintaining synaptic potentiation and memory. ACTA ACUST UNITED AC 2019; 26:133-150. [PMID: 30992383 PMCID: PMC6478248 DOI: 10.1101/lm.049395.119] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/12/2019] [Indexed: 01/24/2023]
Abstract
With memory encoding reliant on persistent changes in the properties of synapses, a key question is how can memories be maintained from days to months or a lifetime given molecular turnover? It is likely that positive feedback loops are necessary to persistently maintain the strength of synapses that participate in encoding. Such feedback may occur within signal-transduction cascades and/or the regulation of translation, and it may occur within specific subcellular compartments or within neuronal networks. Not surprisingly, numerous positive feedback loops have been proposed. Some posited loops operate at the level of biochemical signal-transduction cascades, such as persistent activation of Ca2+/calmodulin kinase II (CaMKII) or protein kinase Mζ. Another level consists of feedback loops involving transcriptional, epigenetic and translational pathways, and autocrine actions of growth factors such as BDNF. Finally, at the neuronal network level, recurrent reactivation of cell assemblies encoding memories is likely to be essential for late maintenance of memory. These levels are not isolated, but linked by shared components of feedback loops. Here, we review characteristics of some commonly discussed feedback loops proposed to underlie the maintenance of memory and long-term synaptic plasticity, assess evidence for and against their necessity, and suggest experiments that could further delineate the dynamics of these feedback loops. We also discuss crosstalk between proposed loops, and ways in which such interaction can facilitate the rapidity and robustness of memory formation and storage.
Collapse
Affiliation(s)
- Paul Smolen
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Douglas A Baxter
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - John H Byrne
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| |
Collapse
|
21
|
Bear MF, Cooke SF, Giese KP, Kaang BK, Kennedy MB, Kim JI, Morris RGM, Park P. In memoriam: John Lisman - commentaries on CaMKII as a memory molecule. Mol Brain 2018; 11:76. [PMID: 30593282 PMCID: PMC6309094 DOI: 10.1186/s13041-018-0419-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/24/2018] [Indexed: 11/10/2022] Open
Abstract
Shortly before he died in October 2017, John Lisman submitted an invited review to Molecular Brain on 'Criteria for identifying the molecular basis of the engram (CaMKII, PKMζ)'. John had no opportunity to read the referees' comments, and as a mark of the regard in which he was held by the neuroscience community the Editors decided to publish his review as submitted. This obituary takes the form of a series of commentaries on Lisman's review. At the same time we are publishing as a separate article a longer response by Todd Sacktor and André Fenton entitled 'What does LTP tell us about the roles of CaMKII and PKMζ in memory?' which presents the case for a rival memory molecule, PKMζ.
Collapse
Affiliation(s)
- Mark F. Bear
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Sam F. Cooke
- King’s College London, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, De Crespigny Park, London, SE5 8AF UK
| | - Karl Peter Giese
- King’s College London, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, De Crespigny Park, London, SE5 8AF UK
| | - Bong-Kiun Kaang
- Department of Biological Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
| | - Mary B. Kennedy
- The Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125 USA
| | - Ji-il Kim
- Department of Biological Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
| | - Richard G. M. Morris
- Laboratory for Cognitive Neuroscience, Centre for Discovery Brain Sciences, Edinburgh Neuroscience, Edinburgh, EH8 9JZ UK
| | - Pojeong Park
- Department of Biological Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
| |
Collapse
|
22
|
What does LTP tell us about the roles of CaMKII and PKMζ in memory? Mol Brain 2018; 11:77. [PMID: 30593289 PMCID: PMC6309091 DOI: 10.1186/s13041-018-0420-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/24/2018] [Indexed: 11/18/2022] Open
Abstract
In “Criteria for identifying the molecular basis of the engram (CaMKII, PKMζ),” Lisman proposes that elucidating the mechanism of LTP maintenance is key to understanding memory storage. He suggests three criteria for a maintenance mechanism to evaluate data on CaMKII and PKMζ as memory storage molecules: necessity, occlusion, and erasure. Here we show that when the criteria are tested, the results reveal important differences between the molecules. Inhibiting PKMζ reverses established, protein synthesis-dependent late-LTP, without affecting early-LTP or baseline synaptic transmission. In contrast, blocking CaMKII has two effects: 1) inhibiting CaMKII activity blocks LTP induction but not maintenance, and 2) disrupting CaMKII interactions with NMDARs in the postsynaptic density (PSD) depresses both early-LTP and basal synaptic transmission equivalently. To identify a maintenance mechanism, we propose a fourth criterion — persistence. PKMζ increases for hours during LTP maintenance in hippocampal slices, and for over a month in specific brain regions during long-term memory storage in conditioned animals. In contrast, increased CaMKII activity lasts only minutes following LTP induction, and CaMKII translocation to the PSD in late-LTP or memory has not been reported. Lastly, do the PKMζ and CaMKII models integrate the many other signaling molecules important for LTP? Activity-dependent PKMζ synthesis is regulated by many of the signaling molecules that induce LTP, including CaMKII, providing a plausible mechanism for new gene expression in the persistent phosphorylation by PKMζ maintaining late-LTP and memory. In contrast, CaMKII autophosphorylation and translocation do not appear to require new protein synthesis. Therefore, the cumulative evidence supports a core role for PKMζ in late-LTP and long-term memory maintenance, and separate roles for CaMKII in LTP induction and for the maintenance of postsynaptic structure and synaptic transmission in a mechanism distinct from late-LTP.
Collapse
|
23
|
Basak R, Narayanan R. Active dendrites regulate the spatiotemporal spread of signaling microdomains. PLoS Comput Biol 2018; 14:e1006485. [PMID: 30383745 PMCID: PMC6233924 DOI: 10.1371/journal.pcbi.1006485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/13/2018] [Accepted: 09/03/2018] [Indexed: 12/24/2022] Open
Abstract
Microdomains that emerge from spatially constricted spread of biochemical signaling components play a central role in several neuronal computations. Although dendrites, endowed with several voltage-gated ion channels, form a prominent structural substrate for microdomain physiology, it is not known if these channels regulate the spatiotemporal spread of signaling microdomains. Here, we employed a multiscale, morphologically realistic, conductance-based model of the hippocampal pyramidal neuron that accounted for experimental details of electrical and calcium-dependent biochemical signaling. We activated synaptic N-Methyl-d-Aspartate receptors through theta-burst stimulation (TBS) or pairing (TBP) and assessed microdomain propagation along a signaling pathway that included calmodulin, calcium/calmodulin-dependent protein kinase II (CaMKII) and protein phosphatase 1. We found that the spatiotemporal spread of the TBS-evoked microdomain in phosphorylated CaMKII (pCaMKII) was amplified in comparison to that of the corresponding calcium microdomain. Next, we assessed the role of two dendritically expressed inactivating channels, one restorative (A-type potassium) and another regenerative (T-type calcium), by systematically varying their conductances. Whereas A-type potassium channels suppressed the spread of pCaMKII microdomains by altering the voltage response to TBS, T-type calcium channels enhanced this spread by modulating TBS-induced calcium influx without changing the voltage. Finally, we explored cross-dependencies of these channels with other model components, and demonstrated the heavy mutual interdependence of several biophysical and biochemical properties in regulating microdomains and their spread. Our conclusions unveil a pivotal role for dendritic voltage-gated ion channels in actively amplifying or suppressing biochemical signals and their spatiotemporal spread, with critical implications for clustered synaptic plasticity, robust information transfer and efficient neural coding. The spatiotemporal spread of biochemical signals in neurons and other cells regulate signaling specificity, tuning of signal propagation, along with specificity and clustering of adaptive plasticity. Theoretical and experimental studies have demonstrated a critical role for cellular morphology and the topology of signaling networks in regulating this spread. In this study, we add a significantly complex dimension to this narrative by demonstrating that voltage-gated ion channels on the plasma membrane could actively amplify or suppress the strength and spread of downstream signaling components. Given the expression of different ion channels with wide-ranging heterogeneity in gating kinetics, localization and density, our results point to an increase in complexity of and degeneracy in signaling spread, and unveil a powerful mechanism for regulating biochemical-signaling pathways across different cell types.
Collapse
Affiliation(s)
- Reshma Basak
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- * E-mail:
| |
Collapse
|
24
|
Identification of long-lived synaptic proteins by proteomic analysis of synaptosome protein turnover. Proc Natl Acad Sci U S A 2018; 115:E3827-E3836. [PMID: 29610302 DOI: 10.1073/pnas.1720956115] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Memory formation is believed to result from changes in synapse strength and structure. While memories may persist for the lifetime of an organism, the proteins and lipids that make up synapses undergo constant turnover with lifetimes from minutes to days. The molecular basis for memory maintenance may rely on a subset of long-lived proteins (LLPs). While it is known that LLPs exist, whether such proteins are present at synapses is unknown. We performed an unbiased screen using metabolic pulse-chase labeling in vivo in mice and in vitro in cultured neurons combined with quantitative proteomics. We identified synaptic LLPs with half-lives of several months or longer. Proteins in synaptic fractions generally exhibited longer lifetimes than proteins in cytosolic fractions. Protein turnover was sensitive to pharmacological manipulations of activity in neuronal cultures or in mice exposed to an enriched environment. We show that synapses contain LLPs that may underlie stabile long-lasting changes in synaptic structure and function.
Collapse
|
25
|
|
26
|
Jurado S. AMPA Receptor Trafficking in Natural and Pathological Aging. Front Mol Neurosci 2018; 10:446. [PMID: 29375307 PMCID: PMC5767248 DOI: 10.3389/fnmol.2017.00446] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/21/2017] [Indexed: 01/09/2023] Open
Abstract
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) enable most excitatory transmission in the brain and are crucial for mediating basal synaptic strength and plasticity. Because of the importance of their function, AMPAR dynamics, activity and subunit composition undergo a tight regulation which begins as early as prenatal development and continues through adulthood. Accumulating evidence suggests that the precise regulatory mechanisms involved in orchestrating AMPAR trafficking are challenged in the aging brain. In turn dysregulation of AMPARs can be linked to most neurological and neurodegenerative disorders. Understanding the mechanisms that govern AMPAR signaling during natural and pathological cognitive decline will guide the efforts to develop most effective ways to tackle neurodegenerative diseases which are one of the primary burdens afflicting an increasingly aging population. In this review, I provide a brief overview of the molecular mechanisms involved in AMPAR trafficking highlighting what is currently known about how these processes change with age and disease. As a particularly well-studied example of AMPAR dysfunction in pathological aging I focus in Alzheimer’s disease (AD) with special emphasis in how the production of neurofibrillary tangles (NFTs) and amyloid-β plaques may contribute to disruption in AMPAR function.
Collapse
Affiliation(s)
- Sandra Jurado
- Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, Spain
| |
Collapse
|
27
|
Criteria for identifying the molecular basis of the engram (CaMKII, PKMzeta). Mol Brain 2017; 10:55. [PMID: 29187215 PMCID: PMC5707903 DOI: 10.1186/s13041-017-0337-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/16/2017] [Indexed: 11/22/2022] Open
Abstract
The engram refers to the molecular changes by which a memory is stored in the brain. Substantial evidence suggests that memory involves learning-dependent changes at synapses, a process termed long-term potentiation (LTP). Thus, understanding the storages process that underlies LTP may provide insight into how the engram is stored. LTP involves induction, maintenance (storage), and expression sub-processes; special tests are required to specifically reveal properties of the storage process. The strongest of these is the Erasure test in which a transiently applied agent that attacks a putative storage molecule may lead to persistent erasure of previously induced LTP/memory. Two major hypotheses have been proposed for LTP/memory storage: the CaMKII and PKM-zeta hypotheses. After discussing the tests that can be used to identify the engram (Necessity test, Saturation/Occlusion test, Erasure test), the status of these hypotheses is evaluated, based on the literature on LTP and memory-guided behavior. Review of the literature indicates that all three tests noted above support the CaMKII hypothesis when done at both the LTP level and at the behavioral level. Taken together, the results strongly suggest that the engram is stored by an LTP process in which CaMKII is a critical memory storage molecule.
Collapse
|
28
|
Zylberberg J, Strowbridge BW. Mechanisms of Persistent Activity in Cortical Circuits: Possible Neural Substrates for Working Memory. Annu Rev Neurosci 2017; 40:603-627. [PMID: 28772102 PMCID: PMC5995341 DOI: 10.1146/annurev-neuro-070815-014006] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A commonly observed neural correlate of working memory is firing that persists after the triggering stimulus disappears. Substantial effort has been devoted to understanding the many potential mechanisms that may underlie memory-associated persistent activity. These rely either on the intrinsic properties of individual neurons or on the connectivity within neural circuits to maintain the persistent activity. Nevertheless, it remains unclear which mechanisms are at play in the many brain areas involved in working memory. Herein, we first summarize the palette of different mechanisms that can generate persistent activity. We then discuss recent work that asks which mechanisms underlie persistent activity in different brain areas. Finally, we discuss future studies that might tackle this question further. Our goal is to bridge between the communities of researchers who study either single-neuron biophysical, or neural circuit, mechanisms that can generate the persistent activity that underlies working memory.
Collapse
Affiliation(s)
- Joel Zylberberg
- Department of Physiology and Biophysics, Center for Neuroscience, and Computational Bioscience Program, University of Colorado School of Medicine, Aurora, Colorado 80045
- Department of Applied Mathematics, University of Colorado, Boulder, Colorado 80309
- Learning in Machines and Brains Program, Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
| | - Ben W Strowbridge
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106;
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| |
Collapse
|
29
|
Nicoll RA. A Brief History of Long-Term Potentiation. Neuron 2017; 93:281-290. [DOI: 10.1016/j.neuron.2016.12.015] [Citation(s) in RCA: 547] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 12/19/2022]
|
30
|
Hidalgo C, Arias-Cavieres A. Calcium, Reactive Oxygen Species, and Synaptic Plasticity. Physiology (Bethesda) 2016; 31:201-15. [DOI: 10.1152/physiol.00038.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In this review article, we address how activity-dependent Ca2+ signaling is crucial for hippocampal synaptic/structural plasticity and discuss how changes in neuronal oxidative state affect Ca2+ signaling and synaptic plasticity. We also analyze current evidence indicating that oxidative stress and abnormal Ca2+ signaling contribute to age-related synaptic plasticity deterioration.
Collapse
Affiliation(s)
- Cecilia Hidalgo
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile; and
- Center of Molecular Studies of the Cell and Physiology and Biophysics Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Alejandra Arias-Cavieres
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile; and
| |
Collapse
|
31
|
Bickle J. Revolutions in Neuroscience: Tool Development. Front Syst Neurosci 2016; 10:24. [PMID: 27013992 PMCID: PMC4782158 DOI: 10.3389/fnsys.2016.00024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/22/2016] [Indexed: 11/13/2022] Open
Abstract
Thomas Kuhn's famous model of the components and dynamics of scientific revolutions is still dominant to this day across science, philosophy, and history. The guiding philosophical theme of this article is that, concerning actual revolutions in neuroscience over the past 60 years, Kuhn's account is wrong. There have been revolutions, and new ones are brewing, but they do not turn on competing paradigms, anomalies, or the like. Instead, they turn exclusively on the development of new experimental tools. I adopt a metascientific approach and examine in detail the development of two recent neuroscience revolutions: the impact of engineered genetically mutated mammals in the search for causal mechanisms of "higher" cognitive functions; and the more recent impact of optogenetics and designer receptors exclusively activated by designer drugs (DREADDs). The two key metascientific concepts, I derive from these case studies are a revolutionary new tool's motivating problem, and its initial and second-phase hook experiments. These concepts hardly exhaust a detailed metascience of tool development experiments in neuroscience, but they get that project off to a useful start and distinguish the subsequent account of neuroscience revolutions clearly from Kuhn's famous model. I close with a brief remark about the general importance of molecular biology for a current philosophical understanding of science, as comparable to the place physics occupied when Kuhn formulated his famous theory of scientific revolutions.
Collapse
Affiliation(s)
- John Bickle
- Department of Philosophy and Religion, Mississippi State UniversityMississippi, MS, USA; Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical CenterJackson, MS, USA
| |
Collapse
|
32
|
Bhattacharyya M, Stratton MM, Going CC, McSpadden ED, Huang Y, Susa AC, Elleman A, Cao YM, Pappireddi N, Burkhardt P, Gee CL, Barros T, Schulman H, Williams ER, Kuriyan J. Molecular mechanism of activation-triggered subunit exchange in Ca(2+)/calmodulin-dependent protein kinase II. eLife 2016; 5. [PMID: 26949248 PMCID: PMC4859805 DOI: 10.7554/elife.13405] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/03/2016] [Indexed: 12/04/2022] Open
Abstract
Activation triggers the exchange of subunits in Ca2+/calmodulin-dependent protein kinase II (CaMKII), an oligomeric enzyme that is critical for learning, memory, and cardiac function. The mechanism by which subunit exchange occurs remains elusive. We show that the human CaMKII holoenzyme exists in dodecameric and tetradecameric forms, and that the calmodulin (CaM)-binding element of CaMKII can bind to the hub of the holoenzyme and destabilize it to release dimers. The structures of CaMKII from two distantly diverged organisms suggest that the CaM-binding element of activated CaMKII acts as a wedge by docking at intersubunit interfaces in the hub. This converts the hub into a spiral form that can release or gain CaMKII dimers. Our data reveal a three-way competition for the CaM-binding element, whereby phosphorylation biases it towards the hub interface, away from the kinase domain and calmodulin, thus unlocking the ability of activated CaMKII holoenzymes to exchange dimers with unactivated ones. DOI:http://dx.doi.org/10.7554/eLife.13405.001 How does memory outlast the lifetime of the molecules that encode it? One enzyme that is found in neurons and has been suggested to help long-term memories to form is called CaMKII. Each CaMKII assembly is typically composed of 12 to 14 protein subunits associated in a ring and can exist in either an “unactivated” or “activated” state. In 2014, researchers showed that CaMKII assemblies can exchange subunits with each other. Importantly, an active CaMKII can mix with an unactivated CaMKII and share its activation state. CaMKII may use this mechanism to spread information to the next generation of proteins – thereby allowing activation to outlast the lifespan of the initially activated proteins. However the molecular mechanism that underlies this process was not clear. Now, Bhattacharyya et al. – including some of the researchers involved in the 2014 work – address two questions about this mechanism. How do subunits exchange between CaMKII assemblies? And how does the activation of CaMKII initiate subunit exchange? A closed-ring hub ties the subunits of CaMKII together, similar to the organization of the segments in an orange. To undergo subunit exchange, the hub must open up to release and accept subunits. Bhattacharyya et al. have now uncovered an intrinsic flexibility in the hub that is triggered by a short peptide segment in CaMKII. This segment, which is exposed in activated CaMKII but not in the unactivated form, can crack open the hub ring by binding between the hub subunits, like a finger separating the segments of an orange. This allows the hub to flex and expand, and once open, the hub’s flexibility allows room for subunits to be released or accepted. Although this subunit exchange mechanism could be a powerful means for spreading the activated state throughout signaling pathways, the biological relevance of this phenomenon has not been clarified. However, the mechanistic framework provided by Bhattacharyya et al. may allow new experiments to be performed that test the consequences of subunit exchange in live cells and organisms. It could also enable investigations into the importance of subunit exchange in long-term memory. DOI:http://dx.doi.org/10.7554/eLife.13405.002
Collapse
Affiliation(s)
- Moitrayee Bhattacharyya
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Margaret M Stratton
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Catherine C Going
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Ethan D McSpadden
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Yongjian Huang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States.,Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States
| | - Anna C Susa
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Anna Elleman
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Yumeng Melody Cao
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Nishant Pappireddi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Pawel Burkhardt
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Christine L Gee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Tiago Barros
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | | | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - John Kuriyan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States.,Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States.,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
33
|
Bhatt K, Kumar A. Mechanism of morphine addiction by inhibiting the soluble Guanylate Cyclase–Nitric Oxide (sGC–NO) pathway. Math Biosci 2015; 266:85-92. [DOI: 10.1016/j.mbs.2015.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/06/2015] [Accepted: 06/08/2015] [Indexed: 10/23/2022]
|
34
|
Jalil SJ, Sacktor TC, Shouval HZ. Atypical PKCs in memory maintenance: the roles of feedback and redundancy. ACTA ACUST UNITED AC 2015; 22:344-53. [PMID: 26077687 PMCID: PMC4478332 DOI: 10.1101/lm.038844.115] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/05/2015] [Indexed: 11/24/2022]
Abstract
Memories that last a lifetime are thought to be stored, at least in part, as persistent enhancement of the strength of particular synapses. The synaptic mechanism of these persistent changes, late long-term potentiation (L-LTP), depends on the state and number of specific synaptic proteins. Synaptic proteins, however, have limited dwell times due to molecular turnover and diffusion, leading to a fundamental question: how can this transient molecular machinery store memories lasting a lifetime? Because the persistent changes in efficacy are synapse-specific, the underlying molecular mechanisms must to a degree reside locally in synapses. Extensive experimental evidence points to atypical protein kinase C (aPKC) isoforms as key components involved in memory maintenance. Furthermore, it is evident that establishing long-term memory requires new protein synthesis. However, a comprehensive model has not been developed describing how these components work to preserve synaptic efficacies over time. We propose a molecular model that can account for key empirical properties of L-LTP, including its protein synthesis dependence, dependence on aPKCs, and synapse-specificity. Simulations and empirical data suggest that either of the two aPKC subtypes in hippocampal neurons, PKMζ and PKCι/λ, can maintain L-LTP, making the system more robust. Given genetic compensation at the level of synthesis of these PKC subtypes as in knockout mice, this system is able to maintain L-LTP and memory when one of the pathways is eliminated.
Collapse
Affiliation(s)
- Sajiya J Jalil
- Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | - Todd Charlton Sacktor
- Department of Physiology, Pharmacology, Anesthesiology, and Neurology, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA
| | - Harel Z Shouval
- Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston, Houston, Texas 77030, USA
| |
Collapse
|
35
|
Modeling maintenance of long-term potentiation in clustered synapses: long-term memory without bistability. Neural Plast 2015; 2015:185410. [PMID: 25945261 PMCID: PMC4402204 DOI: 10.1155/2015/185410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 11/25/2022] Open
Abstract
Memories are stored, at least partly, as patterns of strong synapses. Given molecular turnover, how can synapses maintain strong for the years that memories can persist? Some models postulate that biochemical bistability maintains strong synapses. However, bistability should give a bimodal distribution of synaptic strength or weight, whereas current data show unimodal distributions for weights and for a correlated variable, dendritic spine volume. Thus it is important for models to simulate both unimodal distributions and long-term memory persistence. Here a model is developed that connects ongoing, competing processes of synaptic growth and weakening to stochastic processes of receptor insertion and removal in dendritic spines. The model simulates long-term (>1 yr) persistence of groups of strong synapses. A unimodal weight distribution results. For stability of this distribution it proved essential to incorporate resource competition between synapses organized into small clusters. With competition, these clusters are stable for years. These simulations concur with recent data to support the “clustered plasticity hypothesis” which suggests clusters, rather than single synaptic contacts, may be a fundamental unit for storage of long-term memory. The model makes empirical predictions and may provide a framework to investigate mechanisms maintaining the balance between synaptic plasticity and stability of memory.
Collapse
|
36
|
Hatakeyama TS, Kaneko K. Kinetic memory based on the enzyme-limited competition. PLoS Comput Biol 2014; 10:e1003784. [PMID: 25121967 PMCID: PMC4133053 DOI: 10.1371/journal.pcbi.1003784] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 07/01/2014] [Indexed: 11/18/2022] Open
Abstract
Cellular memory, which allows cells to retain information from their environment, is important for a variety of cellular functions, such as adaptation to external stimuli, cell differentiation, and synaptic plasticity. Although posttranslational modifications have received much attention as a source of cellular memory, the mechanisms directing such alterations have not been fully uncovered. It may be possible to embed memory in multiple stable states in dynamical systems governing modifications. However, several experiments on modifications of proteins suggest long-term relaxation depending on experienced external conditions, without explicit switches over multi-stable states. As an alternative to a multistability memory scheme, we propose "kinetic memory" for epigenetic cellular memory, in which memory is stored as a slow-relaxation process far from a stable fixed state. Information from previous environmental exposure is retained as the long-term maintenance of a cellular state, rather than switches over fixed states. To demonstrate this kinetic memory, we study several models in which multimeric proteins undergo catalytic modifications (e.g., phosphorylation and methylation), and find that a slow relaxation process of the modification state, logarithmic in time, appears when the concentration of a catalyst (enzyme) involved in the modification reactions is lower than that of the substrates. Sharp transitions from a normal fast-relaxation phase into this slow-relaxation phase are revealed, and explained by enzyme-limited competition among modification reactions. The slow-relaxation process is confirmed by simulations of several models of catalytic reactions of protein modifications, and it enables the memorization of external stimuli, as its time course depends crucially on the history of the stimuli. This kinetic memory provides novel insight into a broad class of cellular memory and functions. In particular, applications for long-term potentiation are discussed, including dynamic modifications of calcium-calmodulin kinase II and cAMP-response element-binding protein essential for synaptic plasticity.
Collapse
Affiliation(s)
- Tetsuhiro S. Hatakeyama
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
- * E-mail: (TSK); (KK)
| | - Kunihiko Kaneko
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
- * E-mail: (TSK); (KK)
| |
Collapse
|
37
|
Michalski PJ. The delicate bistability of CaMKII. Biophys J 2014; 105:794-806. [PMID: 23931327 DOI: 10.1016/j.bpj.2013.06.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/13/2013] [Accepted: 06/25/2013] [Indexed: 01/08/2023] Open
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) is a synaptic, autophosphorylating kinase that is essential for learning and memory. Previous models have suggested that CaMKII functions as a bistable switch that could be the molecular correlate of long-term memory, but experiments have failed to validate these predictions. These models involved significant approximations to overcome the combinatorial complexity inherent in a multisubunit, multistate system. Here, we develop a stochastic particle-based model of CaMKII activation and dynamics that overcomes combinatorial complexity without significant approximations. We report four major findings. First, the CaMKII model system is never bistable at resting calcium concentrations, which suggests that CaMKII activity does not function as the biochemical switch underlying long-term memory. Second, the steady-state activation curves are either laserlike or steplike. Both are characterized by a well-defined threshold for activation, which suggests that thresholding is a robust feature of this system. Third, transiently activated CaMKII can maintain its activity over the time course of many experiments, and such slow deactivation may account for the few reports of bistability in the literature. And fourth, under in vivo conditions, increases in phosphatase activity can increase CaMKII activity. This is a surprising and counterintuitive effect, as dephosphorylation is generally associated with CaMKII deactivation.
Collapse
Affiliation(s)
- P J Michalski
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut, USA.
| |
Collapse
|
38
|
Onal B, Unudurthi SD, Hund TJ. Modeling CaMKII in cardiac physiology: from molecule to tissue. Front Pharmacol 2014; 5:9. [PMID: 24550832 PMCID: PMC3912431 DOI: 10.3389/fphar.2014.00009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 01/16/2014] [Indexed: 12/02/2022] Open
Abstract
Post-translational modification of membrane proteins (e.g., ion channels, receptors) by protein kinases is an essential mechanism for control of excitable cell function. Importantly, loss of temporal and/or spatial control of ion channel post-translational modification is common in congenital and acquired forms of cardiac disease and arrhythmia. The multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) regulates a number of diverse cellular functions in heart, including excitation-contraction coupling, gene transcription, and apoptosis. Dysregulation of CaMKII signaling has been implicated in human and animal models of disease. Understanding of CaMKII function has been advanced by mathematical modeling approaches well-suited to the study of complex biological systems. Early kinetic models of CaMKII function in the brain characterized this holoenzyme as a bistable molecular switch capable of storing information over a long period of time. Models of CaMKII activity have been incorporated into models of the cell and tissue (particularly in the heart) to predict the role of CaMKII in regulating organ function. Disease models that incorporate CaMKII overexpression clearly demonstrate a link between its excessive activity and arrhythmias associated with congenital and acquired heart disease. This review aims at discussing systems biology approaches that have been applied to analyze CaMKII signaling from the single molecule to intact cardiac tissue. In particular, efforts to use computational biology to provide new insight into cardiac disease mechanisms are emphasized.
Collapse
Affiliation(s)
- Birce Onal
- The Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University Columbus, OH, USA ; Department of Biomedical Engineering, College of Engineering, The Ohio State University Columbus, OH, USA
| | - Sathya D Unudurthi
- The Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University Columbus, OH, USA
| | - Thomas J Hund
- The Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University Columbus, OH, USA ; Department of Biomedical Engineering, College of Engineering, The Ohio State University Columbus, OH, USA ; Department of Internal Medicine, Wexner Medical Center, The Ohio State University Columbus, OH, USA
| |
Collapse
|
39
|
Abstract
The exchange of CaMKII enzymes between larger structures called holoenzymes may provide the molecular mechanism underlying the long-term stability of memories.
Collapse
Affiliation(s)
- John E Lisman
- John E Lisman is in the Biology Department and Volen Center for Complex Systems, Brandeis University, Waltham, United States
| |
Collapse
|
40
|
Swaminathan PD, Purohit A, Hund TJ, Anderson ME. Calmodulin-dependent protein kinase II: linking heart failure and arrhythmias. Circ Res 2012; 110:1661-77. [PMID: 22679140 DOI: 10.1161/circresaha.111.243956] [Citation(s) in RCA: 232] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Understanding relationships between heart failure and arrhythmias, important causes of suffering and sudden death, remains an unmet goal for biomedical researchers and physicians. Evidence assembled over the past decade supports a view that activation of the multifunctional Ca(2+) and calmodulin-dependent protein kinase II (CaMKII) favors myocardial dysfunction and cell membrane electrical instability. CaMKII activation follows increases in intracellular Ca(2+) or oxidation, upstream signals with the capacity to transition CaMKII into a Ca(2+) and calmodulin-independent constitutively active enzyme. Constitutively active CaMKII appears poised to participate in disease pathways by catalyzing the phosphorylation of classes of protein targets important for excitation-contraction coupling and cell survival, including ion channels and Ca(2+) homeostatic proteins, and transcription factors that drive hypertrophic and inflammatory gene expression. This rich diversity of downstream targets helps to explain the potential for CaMKII to simultaneously affect mechanical and electrical properties of heart muscle cells. Proof-of-concept studies from a growing number of investigators show that CaMKII inhibition is beneficial for improving myocardial performance and for reducing arrhythmias. We review the molecular physiology of CaMKII and discuss CaMKII actions at key cellular targets and results of animal models of myocardial hypertrophy, dysfunction, and arrhythmias that suggest CaMKII inhibition may benefit myocardial function while reducing arrhythmias.
Collapse
Affiliation(s)
- Paari Dominic Swaminathan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
41
|
Pasch E, Muenz TS, Rössler W. CaMKII is differentially localized in synaptic regions of Kenyon cells within the mushroom bodies of the honeybee brain. J Comp Neurol 2012; 519:3700-12. [PMID: 21674485 DOI: 10.1002/cne.22683] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) has been linked to neuronal plasticity associated with long-term potentiation as well as structural synaptic plasticity. Previous work in adult honeybees has shown that a single CaMKII gene is strongly expressed in the mushroom bodies (MBs), brain centers associated with sensory integration, and learning and memory formation. To study a potential role of CaMKII in synaptic plasticity, the cellular and subcellular distribution of activated (phosphorylated) pCaMKII protein was investigated at various life stages of the honeybee using immunocytochemistry, confocal microscopy, and western blot analyses. Whereas at pupal stages 3-4 most parts of the brain showed high levels of pCaMKII immunoreactivity, the protein was predominantly concentrated in the MBs in the adult brain. The results show that pCaMKII is present in a specific subpopulation of Kenyon cells, the noncompact cells. Within the olfactory (lip) and visual (collar) subregion of the MB calyx neuropil pCaMKII was colocalized with f-actin in postsynaptic compartments of microglomeruli, indicating that it is enriched in Kenyon cell dendritic spines. This suggests a potential role of CaMKII in Kenyon cell dendritic plasticity. Interestingly, pCaMKII protein was absent in two other types of Kenyon cells, the inner compact cells associated with the multimodal basal ring and the outer compact cells. During adult behavioral maturation from nurse bees to foragers, pCaMKII distribution remained essentially similar at the qualitative level, suggesting a potential role in dendritic plasticity of Kenyon cells throughout the entire life span of a worker bee.
Collapse
Affiliation(s)
- Elisabeth Pasch
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Würzburg, 97074, Germany
| | | | | |
Collapse
|
42
|
Burlakov VM, Emptage N, Goriely A, Bressloff PC. Synaptic bistability due to nucleation and evaporation of receptor clusters. PHYSICAL REVIEW LETTERS 2012; 108:028101. [PMID: 22324711 DOI: 10.1103/physrevlett.108.028101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Indexed: 05/31/2023]
Abstract
We introduce a bistability mechanism for long-term synaptic plasticity based on switching between two metastable states that contain significantly different numbers of synaptic receptors. One state is characterized by a two-dimensional gas of mobile interacting receptors and is stabilized against clustering by a high nucleation barrier. The other state contains a receptor gas in equilibrium with a large cluster of immobile receptors, which is stabilized by the turnover rate of receptors into and out of the synapse. Transitions between the two states can be initiated by either an increase (potentiation) or a decrease (depotentiation) of the net receptor flux into the synapse. This changes the saturation level of the receptor gas and triggers nucleation or evaporation of receptor clusters.
Collapse
Affiliation(s)
- V M Burlakov
- Mathematical Institute, OCCAM, University of Oxford, Oxford, United Kingdom
| | | | | | | |
Collapse
|
43
|
Wanjerkhede SM, Bapi RS. Role of CAMKII in reinforcement learning: a computational model of glutamate and dopamine signaling pathways. BIOLOGICAL CYBERNETICS 2011; 104:397-424. [PMID: 21701878 DOI: 10.1007/s00422-011-0439-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2011] [Accepted: 05/30/2011] [Indexed: 05/31/2023]
Abstract
Timely release of dopamine (DA) at the striatum seems to be important for reinforcement learning (RL) mediated by the basal ganglia. Houk et al. (in: Houk et al (eds) Models of information processing in the basal ganglia, (1995) proposed a cellular signaling pathway model to characterize the interaction between DA and glutamate pathways that have a role in RL. The model simulation results, using GENESIS KINETIKIT simulator, point out that there is not only prolongation of duration as proposed by Houk et al. (1995), but also an enhancement in the amplitude of autophosphorylation of CaMKII. Further, the autophosphorylated form of CaMKII may form a basis for the "eligibility trace" condition required in RL. This simulation study is the first of its kind to support the comprehensive theoretical proposal of Houk et al. (1995).
Collapse
Affiliation(s)
- Shesharao M Wanjerkhede
- Department of Computer Science, Guru Nanak Dev Engineering College, Bidar, Karanataka, India.
| | | |
Collapse
|
44
|
Hameroff SR, Craddock TJA, Tuszynski JA. "Memory bytes" - molecular match for CaMKII phosphorylation encoding of microtubule lattices. J Integr Neurosci 2011; 9:253-67. [PMID: 21064217 DOI: 10.1142/s0219635210002482] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 09/02/2010] [Indexed: 11/18/2022] Open
Abstract
Learning, memory and long-term potentiation (LTP) are supported by factors including post-synaptic calcium ion flux activating and transforming the hexagonal calcium-calmodulin kinase II (CaMKII) holoenzyme. Upon calcium-induced activation, up to six kinase domains extend upward, and up to six kinase domains extend downward from the CaMKII association domain, the fully activated holoenzyme resembling a robotic insect 20 nanometers in length. Each extended kinase domain can be phosphorylated, and able to phosphorylate other proteins, thus potentially further encoding synaptic information at intraneuronal molecular sites for memory storage, processing and distribution. Candidate sites for phosphorylation-encoded molecular memory include microtubules, cylindrical lattice polymers of the protein tubulin. Using molecular modeling, we find spatial dimensions and geometry of the six extended CaMKII kinase domains can precisely match those of microtubule hexagonal lattice neighborhoods (both A- and B-lattices), and show two feasible phosphorylation mechanisms. In one, phosphorylation sites (e.g., valine 208) on a CaMKII extended kinase domain interact with serine 444 on a C-terminal "tail" of tubulin. In the second, the CaMKII kinase domain unfurls, enabling phosphorylation sites to contact threonine and serine sites on the tubulin surface. We suggest sets of six CaMKII kinase domains phosphorylate hexagonal microtubule lattice neighborhoods collectively, e.g., conveying synaptic information as ordered arrays of six "bits", and thus a "byte", with (minimally) 2⁶ (64) possible bit states per CaMKII-microtubule interaction. We model two levels of interaction between CaMKII and microtubules, suggesting a testable framework for molecular memory encoding.
Collapse
Affiliation(s)
- Stuart R Hameroff
- Department of Anesthesiology, Center for Consciousness Studies, The University of Arizona Health Sciences Center, Tucson, Arizona 85724, USA
| | | | | |
Collapse
|
45
|
Manninen T, Hituri K, Kotaleski JH, Blackwell KT, Linne ML. Postsynaptic signal transduction models for long-term potentiation and depression. Front Comput Neurosci 2010; 4:152. [PMID: 21188161 PMCID: PMC3006457 DOI: 10.3389/fncom.2010.00152] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 11/22/2010] [Indexed: 01/01/2023] Open
Abstract
More than a hundred biochemical species, activated by neurotransmitters binding to transmembrane receptors, are important in long-term potentiation (LTP) and long-term depression (LTD). To investigate which species and interactions are critical for synaptic plasticity, many computational postsynaptic signal transduction models have been developed. The models range from simple models with a single reversible reaction to detailed models with several hundred kinetic reactions. In this study, more than a hundred models are reviewed, and their features are compared and contrasted so that similarities and differences are more readily apparent. The models are classified according to the type of synaptic plasticity that is modeled (LTP or LTD) and whether they include diffusion or electrophysiological phenomena. Other characteristics that discriminate the models include the phase of synaptic plasticity modeled (induction, expression, or maintenance) and the simulation method used (deterministic or stochastic). We find that models are becoming increasingly sophisticated, by including stochastic properties, integrating with electrophysiological properties of entire neurons, or incorporating diffusion of signaling molecules. Simpler models continue to be developed because they are computationally efficient and allow theoretical analysis. The more complex models permit investigation of mechanisms underlying specific properties and experimental verification of model predictions. Nonetheless, it is difficult to fully comprehend the evolution of these models because (1) several models are not described in detail in the publications, (2) only a few models are provided in existing model databases, and (3) comparison to previous models is lacking. We conclude that the value of these models for understanding molecular mechanisms of synaptic plasticity is increasing and will be enhanced further with more complete descriptions and sharing of the published models.
Collapse
Affiliation(s)
- Tiina Manninen
- Department of Signal Processing, Tampere University of Technology Tampere, Finland
| | | | | | | | | |
Collapse
|
46
|
|
47
|
Graupner M, Brunel N. Mechanisms of induction and maintenance of spike-timing dependent plasticity in biophysical synapse models. Front Comput Neurosci 2010; 4. [PMID: 20948584 PMCID: PMC2953414 DOI: 10.3389/fncom.2010.00136] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 08/25/2010] [Indexed: 01/02/2023] Open
Abstract
We review biophysical models of synaptic plasticity, with a focus on spike-timing dependent plasticity (STDP). The common property of the discussed models is that synaptic changes depend on the dynamics of the intracellular calcium concentration, which itself depends on pre- and postsynaptic activity. We start by discussing simple models in which plasticity changes are based directly on calcium amplitude and dynamics. We then consider models in which dynamic intracellular signaling cascades form the link between the calcium dynamics and the plasticity changes. Both mechanisms of induction of STDP (through the ability of pre/postsynaptic spikes to evoke changes in the state of the synapse) and of maintenance of the evoked changes (through bistability) are discussed.
Collapse
Affiliation(s)
- Michael Graupner
- Center for Neural Science, New York University New York City, NY, USA
| | | |
Collapse
|
48
|
Redondo RL, Okuno H, Spooner PA, Frenguelli BG, Bito H, Morris RGM. Synaptic tagging and capture: differential role of distinct calcium/calmodulin kinases in protein synthesis-dependent long-term potentiation. J Neurosci 2010; 30:4981-9. [PMID: 20371818 PMCID: PMC6632790 DOI: 10.1523/jneurosci.3140-09.2010] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 12/15/2009] [Accepted: 01/06/2010] [Indexed: 11/21/2022] Open
Abstract
Weakly tetanized synapses in area CA1 of the hippocampus that ordinarily display long-term potentiation lasting approximately 3 h (called early-LTP) will maintain a longer-lasting change in efficacy (late-LTP) if the weak tetanization occurs shortly before or after strong tetanization of an independent, but convergent, set of synapses in CA1. The synaptic tagging and capture hypothesis explains this heterosynaptic influence on persistence in terms of a distinction between local mechanisms of synaptic tagging and cell-wide mechanisms responsible for the synthesis, distribution, and capture of plasticity-related proteins (PRPs). We now present evidence that distinct CaM kinase (CaMK) pathways serve a dissociable role in these mechanisms. Using a hippocampal brain-slice preparation that permits stable long-term recordings in vitro for >10 h and using hippocampal cultures to validate the differential drug effects on distinct CaMK pathways, we show that tag setting is blocked by the CaMK inhibitor KN-93 (2-[N-(2-hydroxyethyl)]-N-(4-methoxybenzenesulfonyl)amino-N-(4-chlorocinnamyl)-N-methylbenzylamine) that, at low concentration, is more selective for CaMKII. In contrast, the CaMK kinase inhibitor STO-609 [7H-benzimidazo(2,1-a)benz(de)isoquinoline-7-one-3-carboxylic acid] specifically limits the synthesis and/or availability of PRPs. Analytically powerful three-pathway protocols using sequential strong and weak tetanization in varying orders and test stimulation over long periods of time after LTP induction enable a pharmacological dissociation of these distinct roles of the CaMK pathways in late-LTP and so provide a novel framework for the molecular mechanisms by which synaptic potentiation, and possibly memories, become stabilized.
Collapse
Affiliation(s)
- Roger L Redondo
- Centre for Cognitive and Neural Systems, University of Edinburgh, EH8 9JZ, Edinburgh, United Kingdom
| | | | | | | | | | | |
Collapse
|
49
|
Aslam N, Kubota Y, Wells D, Shouval HZ. Translational switch for long-term maintenance of synaptic plasticity. Mol Syst Biol 2009; 5:284. [PMID: 19536207 PMCID: PMC2710869 DOI: 10.1038/msb.2009.38] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 05/13/2009] [Indexed: 01/14/2023] Open
Abstract
Memory can last a lifetime, yet synaptic contacts that contribute to the storage of memory are composed of proteins that have much shorter lifetimes. A physiological model of memory formation, long-term potentiation (LTP), has a late protein-synthesis-dependent phase (L-LTP) that can last for many hours in slices or even for days in vivo. Could the activity-dependent synthesis of new proteins account for the persistence of L-LTP and memory? Here, we examine the proposal that a self-sustaining regulation of translation can form a bistable switch that can persistently regulate the on-site synthesis of plasticity-related proteins. We show that an alpha CaMKII-CPEB1 molecular pair can operate as a bistable switch. Our results imply that L-LTP should produce an increase in the total amount of alpha CaMKII at potentiated synapses. This study also proposes an explanation for why the application of protein synthesis and alphaCaMKII inhibitors at the induction and maintenance phases of L-LTP result in very different outcomes.
Collapse
Affiliation(s)
- Naveed Aslam
- Department of Neurobiology and Anatomy, The University of Texas, Medical School at Houston, Houston, TX, USA
| | - Yoshi Kubota
- Department of Neurobiology and Anatomy, The University of Texas, Medical School at Houston, Houston, TX, USA
| | - David Wells
- Department of Cellular, Molecular and Developmental Biology at Yale University, New Haven, CT, USA
| | - Harel Z Shouval
- Department of Neurobiology and Anatomy, The University of Texas, Medical School at Houston, Houston, TX, USA
- Department of Biomedical Engineering the University of Texas, Austin, TX USA
| |
Collapse
|
50
|
Diamond B, Kowal C, Huerta PT, Aranow C, Mackay M, DeGiorgio LA, Lee J, Triantafyllopoulou A, Cohen-Solal J, Volpe BT. Immunity and acquired alterations in cognition and emotion: lessons from SLE. Adv Immunol 2009; 89:289-320. [PMID: 16682277 DOI: 10.1016/s0065-2776(05)89007-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Classic immunologic teaching describes the brain as an immunologically privileged site. Studies of neuroimmunology have focused for many years almost exclusively on multiple sclerosis, a disease in which inflammatory cells actually infiltrate brain tissue, and the rodent model of this disease, experimental allergic encephalitis. Over the past decade, however, increasingly, brain-reactive antibodies have been demonstrated in the serum of patients with numerous neurological diseases. The contribution these antibodies make to neuronal dysfunction has, in general, not been determined. Here, we describe recent studies showing that serum antibodies to the N-methyl-D-aspartate receptor occur frequently in patients with systemic lupus erythematosus and can cause alterations in cognition and behavior following a breach in the blood-brain barrier.
Collapse
Affiliation(s)
- Betty Diamond
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|