1
|
Serrano M, Martins D, Henriques AO. Clostridioides difficile Sporulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:273-314. [PMID: 38175480 DOI: 10.1007/978-3-031-42108-2_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Some members of the Firmicutes phylum, including many members of the human gut microbiota, are able to differentiate a dormant and highly resistant cell type, the endospore (hereinafter spore for simplicity). Spore-formers can colonize virtually any habitat and, because of their resistance to a wide variety of physical and chemical insults, spores can remain viable in the environment for long periods of time. In the anaerobic enteric pathogen Clostridioides difficile the aetiologic agent is the oxygen-resistant spore, while the toxins produced by actively growing cells are the main cause of the disease symptoms. Here, we review the regulatory circuits that govern entry into sporulation. We also cover the role of spores in the infectious cycle of C. difficile in relation to spore structure and function and the main control points along spore morphogenesis.
Collapse
Affiliation(s)
- Mónica Serrano
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal.
| | - Diogo Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| |
Collapse
|
2
|
To Feed or to Stick? Genomic Analysis Offers Clues for the Role of a Molecular Machine in Endospore Formers. J Bacteriol 2022; 204:e0018722. [PMID: 35913150 PMCID: PMC9487464 DOI: 10.1128/jb.00187-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Sporulation in Firmicutes starts with the formation of two adjacent cells and proceeds with the engulfment of the smaller one, the forespore, by the larger one, the mother cell. This critical step involves a core set of conserved genes, some transcribed in the forespore, such as spoIIQ, and others transcribed in the mother cell, such as the eight-gene spoIIIA operon. A model has been proposed in which the SpoIIIA and the SpoIIQ proteins form a channel connecting the mother cell and the forespore, playing the role of a secretion apparatus allowing the mother cell to nurture the fully engulfed forespore. Exploration of the genomes of Caryophanaceae and Erysipelotrichales has provided informations that are not fully congruent with data from Bacillaceae or Clostridia. The differences observed are correlated with specific physiological features, and alternate, not mutually exclusive views of the function of the SpoIIIA-SpoIIQ complex are presented.
Collapse
|
3
|
Riley EP, Schwarz C, Derman AI, Lopez-Garrido J. Milestones in Bacillus subtilis sporulation research. MICROBIAL CELL (GRAZ, AUSTRIA) 2020; 8:1-16. [PMID: 33490228 PMCID: PMC7780723 DOI: 10.15698/mic2021.01.739] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/21/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022]
Abstract
Endospore formation has been a rich field of research for more than a century, and has benefited from the powerful genetic tools available in Bacillus subtilis. In this review, we highlight foundational discoveries that shaped the sporulation field, from its origins to the present day, tracing a chronology that spans more than one hundred eighty years. We detail how cell-specific gene expression has been harnessed to investigate the existence and function of intercellular proteinaceous channels in sporulating cells, and we illustrate the rapid progress in our understanding of the cell biology of sporulation in recent years using the process of chromosome translocation as a storyline. Finally, we sketch general aspects of sporulation that remain largely unexplored, and that we envision will be fruitful areas of future research.
Collapse
Affiliation(s)
- Eammon P. Riley
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Corinna Schwarz
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Alan I. Derman
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | | |
Collapse
|
4
|
Mearls EB, Jackter J, Colquhoun JM, Farmer V, Matthews AJ, Murphy LS, Fenton C, Camp AH. Transcription and translation of the sigG gene is tuned for proper execution of the switch from early to late gene expression in the developing Bacillus subtilis spore. PLoS Genet 2018; 14:e1007350. [PMID: 29702640 PMCID: PMC5942855 DOI: 10.1371/journal.pgen.1007350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/09/2018] [Accepted: 04/03/2018] [Indexed: 12/01/2022] Open
Abstract
A cascade of alternative sigma factors directs developmental gene expression during spore formation by the bacterium Bacillus subtilis. As the spore develops, a tightly regulated switch occurs in which the early-acting sigma factor σF is replaced by the late-acting sigma factor σG. The gene encoding σG (sigG) is transcribed by σF and by σG itself in an autoregulatory loop; yet σG activity is not detected until σF-dependent gene expression is complete. This separation in σF and σG activities has been suggested to be due at least in part to a poorly understood intercellular checkpoint pathway that delays sigG expression by σF. Here we report the results of a careful examination of sigG expression during sporulation. Unexpectedly, our findings argue against the existence of a regulatory mechanism to delay sigG transcription by σF and instead support a model in which sigG is transcribed by σF with normal timing, but at levels that are very low. This low-level expression of sigG is the consequence of several intrinsic features of the sigG regulatory and coding sequence—promoter spacing, secondary structure potential of the mRNA, and start codon identity—that dampen its transcription and translation. Especially notable is the presence of a conserved hairpin in the 5’ leader sequence of the sigG mRNA that occludes the ribosome-binding site, reducing translation by up to 4-fold. Finally, we demonstrate that misexpression of sigG from regulatory and coding sequences lacking these features triggers premature σG activity in the forespore during sporulation, as well as inappropriate σG activity during vegetative growth. Altogether, these data indicate that transcription and translation of the sigG gene is tuned to prevent vegetative expression of σG and to ensure the precise timing of the switch from σF to σG in the developing spore. Global changes in gene expression occur during normal cellular growth and development, as well as during cancer cell transformation and bacterial pathogenesis. In this study we have investigated the molecular mechanisms that drive the switch from early to late developmental gene expression during spore formation by the model bacterium Bacillus subtilis. At early times, gene expression in the developing spore is directed by the transcription factor σF; at later times σF is replaced by σG. An important, yet poorly understood aspect of this σF-to-σG transition is how σG activation is delayed until the early, σF-directed phase of gene expression is complete. Here we have carefully examined expression of the gene encoding σG, sigG, and found that its transcription and translation are ordinarily dampened by several features of its regulatory and coding sequences. Moreover, we have found that this “tuning” of sigG expression is required for proper timing of the switch to σG. These results reframe our understanding of how sigG is regulated during B. subtilis sporulation and, more broadly, advance our understanding of how global changes in gene expression can be precisely executed at the molecular/genetic level.
Collapse
MESH Headings
- Bacillus subtilis/genetics
- Bacillus subtilis/physiology
- Bacterial Proteins/biosynthesis
- Bacterial Proteins/genetics
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Inverted Repeat Sequences
- Models, Genetic
- Nucleic Acid Conformation
- Promoter Regions, Genetic
- Protein Biosynthesis
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sigma Factor/biosynthesis
- Sigma Factor/genetics
- Signal Transduction
- Spores, Bacterial/genetics
- Spores, Bacterial/physiology
- Transcription, Genetic
Collapse
Affiliation(s)
- Elizabeth B. Mearls
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
| | - Jacquelin Jackter
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
| | | | - Veronica Farmer
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
| | - Allison J. Matthews
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
| | - Laura S. Murphy
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
| | - Colleen Fenton
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
| | - Amy H. Camp
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
- * E-mail:
| |
Collapse
|
5
|
|
6
|
Dalton KA, Thibessard A, Hunter JIB, Kelemen GH. A novel compartment, the 'subapical stem' of the aerial hyphae, is the location of a sigN-dependent, developmentally distinct transcription in Streptomyces coelicolor. Mol Microbiol 2007; 64:719-37. [PMID: 17462019 DOI: 10.1111/j.1365-2958.2007.05684.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Streptomyces coelicolor has nine SigB-like RNA polymerase sigma factors, several of them implicated in morphological differentiation and/or responses to different stresses. One of the nine, SigN, is the focus of this article. A constructed sigN null mutant was delayed in development and exhibited a bald phenotype when grown on minimal medium containing glucose as carbon source. One of two distinct sigN promoters, sigNP1, was active only during growth on solid medium, when its activation coincided with aerial hyphae formation. Transcription from sigNP1 was readily detected in several whi mutants (interrupted in morphogenesis of aerial mycelium into spores), but was absent from all bld mutants tested, suggesting that sigNP1 activity was restricted to the aerial hyphae. It also depended on sigN, thus sigN was autoregulated. Mutational and transcription studies revealed no functional significance to the location of sigN next to sigF, encoding another SigB-like sigma factor. We identified another potential SigN target, nepA, encoding a putative small secreted protein. Transcription of nepA originated from a single, aerial hyphae-specific and sigN-dependent promoter. While in vitro run-off transcription using purified SigN on the Bacillus subtilis ctc promoter confirmed that SigN is an RNA polymerase sigma factor, SigN failed to initiate transcription from sigNP1 and from the nepA promoter in vitro. Additional in vivo data indicated that further nepA upstream sequences, which are likely to bind a potential activator, are required for successful transcription. Using a nepA-egfp transcriptional fusion we located nepA transcription to a novel compartment, the 'subapical stem' of the aerial hyphae. We suggest that this newly recognized compartment defines an interface between the aerial and vegetative parts of the Streptomyces colony and might also be involved in communication between these two compartments.
Collapse
Affiliation(s)
- Kate A Dalton
- University of East Anglia, School of Biological Sciences, Norwich NR47TJ, UK
| | | | | | | |
Collapse
|
7
|
Chary VK, Xenopoulos P, Piggot PJ. Blocking chromosome translocation during sporulation of Bacillus subtilis can result in prespore-specific activation of sigmaG that is independent of sigmaE and of engulfment. J Bacteriol 2006; 188:7267-73. [PMID: 17015665 PMCID: PMC1636243 DOI: 10.1128/jb.00744-06] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Formation of spores by Bacillus subtilis is characterized by cell compartment-specific gene expression directed by four RNA polymerase sigma factors, which are activated in the order sigma(F)-sigma(E)-sigma(G)-sigma(K). Of these, sigma(G) becomes active in the prespore upon completion of engulfment of the prespore by the mother cell. Transcription of the gene encoding sigma(G), spoIIIG, is directed in the prespore by RNA polymerase containing sigma(F) but also requires the activity of sigma(E) in the mother cell. When first formed, sigma(G) is not active. Its activation requires expression of additional sigma(E)-directed genes, including the genes required for completion of engulfment. Here we report conditions in which sigma(G) becomes active in the prespore in the absence of sigma(E) activity and of completion of engulfment. The conditions are (i) having an spoIIIE mutation, so that only the origin-proximal 30% of the chromosome is translocated into the prespore, and (ii) placing spoIIIG in an origin-proximal location on the chromosome. The main function of the sigma(E)-directed regulation appears to be to coordinate sigma(G) activation with the completion of engulfment, not to control the level of sigma(G) activity. It seems plausible that the role of sigma(E) in sigma(G) activation is to reverse some inhibitory signal (or signals) in the engulfed prespore, a signal that is not present in the spoIIIE mutant background. It is not clear what the direct activator of sigma(G) in the prespore is. Competition for core RNA polymerase between sigma(F) and sigma(G) is unlikely to be of major importance.
Collapse
Affiliation(s)
- Vasant K Chary
- Department of Microbiology and Immunology, 3400 North Broad Street, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
8
|
Chary VK, Meloni M, Hilbert DW, Piggot PJ. Control of the expression and compartmentalization of (sigma)G activity during sporulation of Bacillus subtilis by regulators of (sigma)F and (sigma)E. J Bacteriol 2005; 187:6832-40. [PMID: 16166546 PMCID: PMC1251595 DOI: 10.1128/jb.187.19.6832-6840.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During formation of spores by Bacillus subtilis the RNA polymerase factor sigma(G) ordinarily becomes active during spore formation exclusively in the prespore upon completion of engulfment of the prespore by the mother cell. Formation and activation of sigma(G) ordinarily requires prior activity of sigma(F) in the prespore and sigma(E) in the mother cell. Here we report that in spoIIA mutants lacking both sigma(F) and the anti-sigma factor SpoIIAB and in which sigma(E) is not active, sigma(G) nevertheless becomes active. Further, its activity is largely confined to the mother cell. Thus, there is a switch in the location of sigma(G) activity from prespore to mother cell. Factors contributing to the mother cell location are inferred to be read-through of spoIIIG, the structural gene for sigma(G), from the upstream spoIIG locus and the absence of SpoIIAB, which can act in the mother cell as an anti-sigma factor to sigma(G). When the spoIIIG locus was moved away from spoIIG to the distal amyE locus, sigma(G) became active earlier in sporulation in spoIIA deletion mutants, and the sporulation septum was not formed, suggesting that premature sigma(G) activation can block septum formation. We report a previously unrecognized control in which SpoIIGA can prevent the appearance of sigma(G) activity, and pro-sigma(E) (but not sigma(E)) can counteract this effect of SpoIIGA. We find that in strains lacking sigma(F) and SpoIIAB and engineered to produce active sigma(E) in the mother cell without the need for SpoIIGA, sigma(G) also becomes active in the mother cell.
Collapse
Affiliation(s)
- Vasant K Chary
- Department of Microbiology and Immunology, 3400 North Broad Street, Philadelphia, PA 19140, USA
| | | | | | | |
Collapse
|
9
|
Evans L, Feucht A, Errington J. Genetic analysis of the Bacillus subtilis sigG promoter, which controls the sporulation-specific transcription factor sigma G. MICROBIOLOGY-SGM 2004; 150:2277-2287. [PMID: 15256570 DOI: 10.1099/mic.0.26914-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
At the onset of sporulation in Bacillus subtilis, an asymmetric cell division gives rise to two unequal-sized compartments with distinct developmental fates. The smaller compartment, or prespore, becomes the spore, whilst the larger compartment, or mother cell, eventually lyses after contributing to spore maturation. The fate of each compartment is determined by differential gene expression, controlled by the activation of four compartment-specific sigma-factors. The expression and activity of all four sigma-factors are tightly regulated to ensure the correct sequence of morphological events. Prespore-specific genes are transcribed by two sigma-factors, sigma(F) followed by sigma(G). The gene encoding sigma(G) (sigG) is transcribed by sigma(F), but also requires the activity of one of the mother-cell-specific sigma-factors, sigma(E), for its expression. The minimal promoter required for dependence on sigma(E) was found to stretch to just upstream of the -35 site. Analysis of mutant sigG promoters generated by site-directed mutagenesis and sigG promoters from other species suggests the presence of a binding site for a transcriptional repressor within the sigG promoter region. Replacement of the wild-type promoter with sigma(E)-independent promoters resulted in impairment of sporulation. These data support the idea that sigma(E) activity is required for the transcription of sigG.
Collapse
Affiliation(s)
- Louise Evans
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Andrea Feucht
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Jeff Errington
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
10
|
Hilbert DW, Piggot PJ. Compartmentalization of gene expression during Bacillus subtilis spore formation. Microbiol Mol Biol Rev 2004; 68:234-62. [PMID: 15187183 PMCID: PMC419919 DOI: 10.1128/mmbr.68.2.234-262.2004] [Citation(s) in RCA: 252] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene expression in members of the family Bacillaceae becomes compartmentalized after the distinctive, asymmetrically located sporulation division. It involves complete compartmentalization of the activities of sporulation-specific sigma factors, sigma(F) in the prespore and then sigma(E) in the mother cell, and then later, following engulfment, sigma(G) in the prespore and then sigma(K) in the mother cell. The coupling of the activation of sigma(F) to septation and sigma(G) to engulfment is clear; the mechanisms are not. The sigma factors provide the bare framework of compartment-specific gene expression. Within each sigma regulon are several temporal classes of genes, and for key regulators, timing is critical. There are also complex intercompartmental regulatory signals. The determinants for sigma(F) regulation are assembled before septation, but activation follows septation. Reversal of the anti-sigma(F) activity of SpoIIAB is critical. Only the origin-proximal 30% of a chromosome is present in the prespore when first formed; it takes approximately 15 min for the rest to be transferred. This transient genetic asymmetry is important for prespore-specific sigma(F) activation. Activation of sigma(E) requires sigma(F) activity and occurs by cleavage of a prosequence. It must occur rapidly to prevent the formation of a second septum. sigma(G) is formed only in the prespore. SpoIIAB can block sigma(G) activity, but SpoIIAB control does not explain why sigma(G) is activated only after engulfment. There is mother cell-specific excision of an insertion element in sigK and sigma(E)-directed transcription of sigK, which encodes pro-sigma(K). Activation requires removal of the prosequence following a sigma(G)-directed signal from the prespore.
Collapse
Affiliation(s)
- David W Hilbert
- Department of Microbiology and Immunology, Temple University School of Medicine, 3400 N. Broad St., Philadelphia, PA 19140, USA
| | | |
Collapse
|
11
|
Moriyama R, Fukuoka H, Miyata S, Kudoh S, Hattori A, Kozuka S, Yasuda Y, Tochikubo K, Makino S. Expression of a germination-specific amidase, SleB, of Bacilli in the forespore compartment of sporulating cells and its localization on the exterior side of the cortex in dormant spores. J Bacteriol 1999; 181:2373-8. [PMID: 10197998 PMCID: PMC93660 DOI: 10.1128/jb.181.8.2373-2378.1999] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A germination-specific amidase of bacilli is a major spore-lytic enzyme that is synthesized with a putative signal sequence and hydrolyses spore cortex in situ. The sleB gene encoding this amidase in Bacillus subtilis and Bacillus cereus was expressed in the forespore compartment of sporulating cells under the control of sigmaG, as shown by Northern blot and primer extension analyses. The forespore-specific expression of B. subtilis sleB was further indicated by the forespore-specific accumulation of a SleB-green fluorescent protein fusion protein from which a putative secretion signal of SleB was deleted. Immunoelectron microscopy with anti-SleB antiserum and a colloidal gold-immunoglobulin G complex showed that the enzymes from both Bacillus species are located just inside the spore coat layer in the dormant spore, and in the dormant spore, the amidases appear exist in a mature form lacking a signal sequence. These results indicate that SleB is translocated across the forespore's inner membrane by a secretion signal peptide and is deposited in cortex layer synthesized between the forespore inner and outer membranes. The peripheral location of the spore-lytic enzymes in the dormant spore suggests that spore germination is initiated at the exterior of the cortex.
Collapse
Affiliation(s)
- R Moriyama
- Department of Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Asayama M, Saito KI, Kobayashi Y. Translational attenuation of the Bacillus subtilis spo0B cistron by an RNA structure encompassing the initiation region. Nucleic Acids Res 1998; 26:824-30. [PMID: 9443976 PMCID: PMC147310 DOI: 10.1093/nar/26.3.824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The spo0B gene, which exists as an operon with the obg gene, is required to initiate sporulation (stage 0) of Bacillus subtilis . This gene encodes a phosphotransferase in the multicomponent phosphorelay system. We here report the novel finding that a spo0B 5'-terminal SLR (stem-loop structure sequestering ribosome binding sequence; ACUCCUAA-X16-UUG GGAG U, Delta G = -8.71 kcal/mol) attenuated spo0B translation. The spo0B gene was efficiently transcribed but Spo0B protein was not overproduced in Escherichia coli when spo0B was induced using expression vectors carrying the SLR- spo0B region under control of the tac promoter. Deletion of the SLR from the vectors resulted in overexpression of spo0B . Therefore, to characterize expression of spo0B with a SLR in B.subtilis we constructed transcriptional and translational lacZ fusions combined with the spo0B 5'-terminal region with a deleted or mutagenized SLR. These constructs were subsequently introduced into B.subtilis as multiple and single copies, then beta-galactosidase activities were measured. The possible SLR also functioned as a negative cis element in B.subtilis. Furthermore, B.subtilis strain 1S16 (spo0B136) lysogenized straight phiCD0B-S and -W, harboring spo0B with mutagenized SLRs that were more (Delta G = -14.0 kcal/mol) and less-stable (Delta G = -1.31 kcal/mol) compared with the wild-type, exhibited null and wild-type sporulation respectively. These results indicate that the spo0B 5'-SLR affects spo0B gene expression for sporulation but that low expression of spo0B through the wild-type SLR was sufficient to initiate sporulation in B.subtilis.
Collapse
Affiliation(s)
- M Asayama
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu 183, Tokyo, Japan
| | | | | |
Collapse
|
13
|
Henriques AO, Bryan EM, Beall BW, Moran CP. cse15, cse60, and csk22 are new members of mother-cell-specific sporulation regulons in Bacillus subtilis. J Bacteriol 1997; 179:389-98. [PMID: 8990290 PMCID: PMC178708 DOI: 10.1128/jb.179.2.389-398.1997] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We report on the characterization of three new transcription units expressed during sporulation in Bacillus subtilis. Two of the units, cse15 and cse60, were mapped at about 123 degrees and 62 degrees on the genetic map, respectively. Their transcription commenced around h 2 of sporulation and showed an absolute requirement for sigmaE. Maximal expression of both cse15 and cse60 further depended on the DNA-binding protein SpoIIID. Primer extension results revealed -10 and -35 sequences upstream of the cse15 and cse60 coding sequences very similar to those utilized by sigmaE-containing RNA polymerase. Alignment of these and other regulatory regions led to a revised consensus sequence for sigmaE-dependent promoters. A third transcriptional unit, designated csk22, was localized at approximately 173 degrees on the chromosome. Transcription of csk22 was activated at h 4 of sporulation, required the late mother-cell regulator sigmaK, and was repressed by the GerE protein. Sequences in the csk22 promoter region were similar to those of other sigmaK-dependent promoters. The cse60 locus was deduced to encode an acidic product of only 60 residues. A 37.6-kDa protein apparently encoded by cse15 was weakly related to the heavy chain of myosins, as well as to other myosin-like proteins, and is predicted to contain a central, 100 residue-long coiled-coil domain. Finally, csk22 is inferred to encode a 18.2-kDa hydrophobic product with five possible membrane-spanning helices, which could function as a transporter.
Collapse
Affiliation(s)
- A O Henriques
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
14
|
Sauer U, Santangelo JD, Treuner A, Buchholz M, Dürre P. Sigma factor and sporulation genes in Clostridium. FEMS Microbiol Rev 1995; 17:331-40. [PMID: 7576771 DOI: 10.1111/j.1574-6976.1995.tb00216.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The genus Clostridium, represented by Gram-positive, anaerobic, spore-forming bacteria, is well known for its clinical importance and considerable biotechnological potential. Recently, evidence for a functional role of the transcription factors sigma A, sigma E, sigma G, and sigma K in this genus was provided by cloning and sequencing these genes from C. acetobutylicum. In C. kluyveri, a partially sequenced open reading frame was found to encode the N terminus of the putative sigma factor L with significant similarity to members of the sigma 54 family. The identification of sequences with high similarity to the Bacillus sigma F (C. acetobutylicum), sigma H (several clostridial species), and sigma D (C. thermocellum)-controlled consensus promoters renders the existence of these transcription factors in clostridia very likely. These data are in agreement with information obtained by RNA transcript mapping (sigma A, sigma H), heterologous DNA hybridization (sigma D, sigma H), and immuno characterization of purified proteins (sigma A) from various clostridial species. Thus, the picture emerges that a fundamental similarity exists at the genetic level between the regulation of various cellular responses, in particular sporulation, in the genera Bacillus and Clostridium. The different induction patterns of sporulation in Bacillus spp. (nutrient starvation) and many clostridial species (cessation of growth or exposure to oxygen in the presence of excess nutrients) are most interestingly not reflected in the general regulatory features of this developmental process.
Collapse
Affiliation(s)
- U Sauer
- Institut für Mikrobiologie, Georg-August-Universität Göttingen, Germany
| | | | | | | | | |
Collapse
|
15
|
Henriques AO, Beall BW, Roland K, Moran CP. Characterization of cotJ, a sigma E-controlled operon affecting the polypeptide composition of the coat of Bacillus subtilis spores. J Bacteriol 1995; 177:3394-406. [PMID: 7768848 PMCID: PMC177041 DOI: 10.1128/jb.177.12.3394-3406.1995] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The outermost protective structure found in endospores of Bacillus subtilis is a thick protein shell known as the coat, which makes a key contribution to the resistance properties of the mature spore and also plays a role in its interaction with compounds able to trigger germination. The coat is organized as a lamellar inner layer and an electron-dense outer layer and has a complex polypeptide composition. Here we report the cloning and characterization of an operon, cotJ, located at about 62 degrees on the B. subtilis genetic map, whose inactivation results in the production of spores with an altered pattern of coat polypeptides. The cotJ operon was identified by screening a random library of lacZ transcriptional fusions for a conditional (inducer-dependent) Lac+ phenotype in cells of a strain in which the structural gene (spoIIGB) for the early-acting, mother-cell-specific transcriptional factor sigma E was placed under the control of the IPTG (isopropyl-beta-D-thiogalactopyranoside)-inducible Pspac promoter. Sequence analysis of cloned DNA from the cotJ region complemented by genetic experiments revealed a tricistronic operon preceded by a strong sigma E-like promoter. Expression of an SP beta-borne cotJ-lacZ fusion commences at around h 2 of sporulation, as does expression of other sigma E-dependent genes, and shows an absolute requirement for sigma E. Studies with double-reporter strains bearing a cotJ-gusA fusion and lacZ fusions to other cot genes confirmed that expression of cotJ is initiated during sporulation prior to activation of genes known to encode coat structural proteins (with the sole exception of cotE). An in vitro-constructed insertion-deletion mutation in cotJ resulted in the formation of spores with no detectable morphological or resistance deficiency. However, examination of the profile of electrophoretically separated spore coat proteins from the null mutant revealed a pattern that was essentially identical to that of a wild-type strain in the range of 12 to 65 kDa, except for polypeptides of 17 and 24 kDa, the putative products of the second (cotJB) and third (cotJC) cistrons of the operon, that were missing or reduced in amount in the coat of the mutant. Polypeptides of the same apparent sizes are detected in spores of a cotE null mutant, on which basis we infer that the products of the cotJ operon are required for the normal formation of the inner layers of the coat or are themselves structural components of the coat. Because the onset of cotJ transcription is temporally coincident with the appearance of active sigma E, we speculate that the cotJ-encoded products may be involved in an early state of coat assembly.
Collapse
Affiliation(s)
- A O Henriques
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
16
|
Kato F, Hino T, Nakaji A, Tanaka M, Koyama Y. Carotenoid synthesis in Streptomyces setonii ISP5395 is induced by the gene crtS, whose product is similar to a sigma factor. MOLECULAR & GENERAL GENETICS : MGG 1995; 247:387-90. [PMID: 7770044 DOI: 10.1007/bf00293207] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In many species of actinomycetes, carotenogenesis can be photoinduced. The capacity to respond to photoinduction is, however unstable and, in various strains of Streptomyces, is lost at a relatively high frequency. In Streptomyces setonii ISP5395, which normally produces no carotenoids, carotenoid-producing mutants can be obtained following protoplast regeneration. We report here the characterization of a gene, crtS, which was isolated from one such mutant and can confer on wild-type S. setonii ISP5395 cells the capacity to synthesize carotenoids. Sequence analysis of crtS reveals an open reading frame, which shows homology to genes that encode alternative sigma factors in Bacillus subtilis. We propose that crtS encodes a sigma factor which is necessary for the expression of a cryptic gene(s) for carotenoid biosynthesis in S. setonii ISP5395.
Collapse
Affiliation(s)
- F Kato
- Department of Microbiology, School of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | | | | | | | | |
Collapse
|
17
|
Abstract
The specificity of DNA-dependent RNA polymerase for target promotes is largely due to the replaceable sigma subunit that it carries. Multiple sigma proteins, each conferring a unique promoter preference on RNA polymerase, are likely to be present in all bacteria; however, their abundance and diversity have been best characterized in Bacillus subtilis, the bacterium in which multiple sigma factors were first discovered. The 10 sigma factors thus far identified in B. subtilis directly contribute to the bacterium's ability to control gene expression. These proteins are not merely necessary for the expression of those operons whose promoters they recognize; in many instances, their appearance within the cell is sufficient to activate these operons. This review describes the discovery of each of the known B. subtilis sigma factors, their characteristics, the regulons they direct, and the complex restrictions placed on their synthesis and activities. These controls include the anticipated transcriptional regulation that modulates the expression of the sigma factor structural genes but, in the case of several of the B. subtilis sigma factors, go beyond this, adding novel posttranslational restraints on sigma factor activity. Two of the sigma factors (sigma E and sigma K) are, for example, synthesized as inactive precursor proteins. Their activities are kept in check by "pro-protein" sequences which are cleaved from the precursor molecules in response to intercellular cues. Other sigma factors (sigma B, sigma F, and sigma G) are inhibited by "anti-sigma factor" proteins that sequester them into complexes which block their ability to form RNA polymerase holoenzymes. The anti-sigma factors are, in turn, opposed by additional proteins which participate in the sigma factors' release. The devices used to control sigma factor activity in B, subtilis may prove to be as widespread as multiple sigma factors themselves, providing ways of coupling sigma factor activation to environmental or physiological signals that cannot be readily joined to other regulatory mechanisms.
Collapse
Affiliation(s)
- W G Haldenwang
- Department of Microbiology, University of Texas Health Science Center, San Antonio 78284-7758
| |
Collapse
|
18
|
Sauer U, Treuner A, Buchholz M, Santangelo JD, Dürre P. Sporulation and primary sigma factor homologous genes in Clostridium acetobutylicum. J Bacteriol 1994; 176:6572-82. [PMID: 7961408 PMCID: PMC197012 DOI: 10.1128/jb.176.21.6572-6582.1994] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Using a PCR-based approach, we have cloned various sigma factor homologous genes from Clostridium acetobutylicum DSM 792. The nucleotide sequence of the dnaE-sigA operon has been determined and predicts two genes encoding 69- and 43-kDa proteins. The deduced DnaE amino acid sequence has approximately 30% amino acid identity with protein sequences of other primases. The putative sigA gene product shows high homology to primary sigma factors of various bacteria, most significantly to Bacillus subtilis and Staphylococcus aureus. Northern (RNA) blot analysis revealed that both genes from an operon, which is clearly expressed under conditions that allow for cell division. A promoter sequence with significant homology to the sigma H-dependent Bacillus promoters preceded the determined transcriptional start point, 182 bp upstream of the GUG start codon of dnaE. The homologous genes to Bacillus spp. sporulation sigma factors G, E, and K have been cloned and sequenced. Indirect evidence for the existence of sigma F was obtained by identification of a DNA sequence homologous to the respective Bacillus consensus promoter. Southern hybridization analysis indicated the presence of sigma D and sigma H homologous genes in C. acetobutylicum. A new gene group conserved within the eubacteria, but with yet unspecified functions, is described. The data presented here provide strong evidence that at least some of the complex regulation features of sporulation in B. subtilis are conserved in C. acetobutylicum and possibly Clostridium spp.
Collapse
Affiliation(s)
- U Sauer
- Institut für Mikrobiologie, Georg-August-Universität Göttingen, Germany
| | | | | | | | | |
Collapse
|
19
|
Sato T, Harada K, Ohta Y, Kobayashi Y. Expression of the Bacillus subtilis spoIVCA gene, which encodes a site-specific recombinase, depends on the spoIIGB product. J Bacteriol 1994; 176:935-7. [PMID: 8300549 PMCID: PMC205134 DOI: 10.1128/jb.176.3.935-937.1994] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Bacillus subtilis spoIVCA gene encodes a site-specific recombinase which creates a sigK gene by DNA rearrangement. We have determined the transcription initiation point of the spoIVCA gene and found that (i) the spoIVCA promoter contains sequences which are similar to -10 and -35 regions of promoters recognized by sigma E and (ii) mutation of spoIIGB, which encodes pro-sigma E, blocked the expression of spoIVCA.
Collapse
Affiliation(s)
- T Sato
- Department of Applied Biological Science, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | | | | | | |
Collapse
|
20
|
Challoner-Courtney IJ, Yudkin MD. Molecular and phenotypic characterization of promoter-proximal mutations in the spoIIA locus of Bacillus subtilis. J Bacteriol 1993; 175:5636-41. [PMID: 8366048 PMCID: PMC206621 DOI: 10.1128/jb.175.17.5636-5641.1993] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Eight mutations lying within the promoter-proximal one-fifth of the spoIIA locus of Bacillus subtilis were studied. Two of these mutations (spoIIAA42 and spoIIAA69) were previously characterized at the DNA level, five more (spo-562, spo-565, spo-567, spo-568, and spo-569) were isolated in our laboratory several years ago but not fully characterized, and the eight (an in-frame deletion confined to spoIIAA, the first gene in the spoIIA operon) was constructed for this study. DNA sequencing showed that spo-569 was a transitions in the -35 region of the spoIIA promoter; the remaining point mutations were all G:C to A:T transitions in spoIIAA, with spo-565 having two transitions, one of which was identical to that in spo-562. All the spoIIAA mutations except spo-562 led to the replacement of Gly residues. The incidence of sporulation, the rate of synthesis of sporulation-associated alkaline phosphatase, and the rate of expression of the forespore-specific genes gpr and spoIIIG were determined for isogenic strains carrying the eight mutations. All the mutations except spoIIAA42 and spo-569 (which were slightly leaky) made the strains asporogenous, and all except spo-562 and spo-569 abolished the synthesis of alkaline phosphatase and the expression of gpr and spoIIIG. spo-562 allowed alkaline phosphatase synthesis and gpr and spoIIIG expression to occur at about 15% of the wild-type rates but with normal kinetics. spo-59 allowed appreciable gpr and spoIIIG expression during exponential growth; we attribute this expression to transcription by RNA polymerase containing sigma G and suggest that a spo-569 strain makes insufficient SpoIIAB to inhibit sigma G in growing cells.
Collapse
|
21
|
Abstract
The sigB operon of Bacillus subtilis encodes sigma B plus three additional proteins (RsbV, RsbW, and RsbX) that regulate sigma B activity. Using an anti-sigma B monoclonal antibody to monitor the levels of sigma B protein, PSPAC to control the expression of the sigB operon, and a ctc-lacZ reporter system to monitor sigma B activity, we observed that the rsbV and rsbW products control sigma B activity at the ctc promoter independently of their effects on sigma B levels. In contrast, RsbX was found to have no effect on expression of ctc when the sigB operon was controlled by PSPAC. The data are consistent with RsbV and RsbW being regulators of sigma B activity and RsbX acting primarily as a negative regulator of sigB operon expression. Evidence that stationary-phase induction of the sigma B-dependent ctc promoter is accomplished by a reduction in RsbW-dependent inhibition of sigma B activity is also presented. In addition, Western blot (immunoblot) analyses of sigB operon expression demonstrated that sigma B accumulation is coupled to the synthesis of its primary inhibitor (RsbW). This finding is consistent with RsbW and sigma B being present within the cell in equivalent amounts, a circumstance that would permit RsbW to directly influence sigma B activity by a direct protein-protein interaction.
Collapse
Affiliation(s)
- A K Benson
- Department of Microbiology, University of Texas Health Science Center, San Antonio 78284-7758
| | | |
Collapse
|
22
|
Errington J. Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis. Microbiol Rev 1993; 57:1-33. [PMID: 8464402 PMCID: PMC372899 DOI: 10.1128/mr.57.1.1-33.1993] [Citation(s) in RCA: 335] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Bacillus subtilis sporulation is an adaptive response to nutritional stress and involves the differential development of two cells. In the last 10 years or so, virtually all of the regulatory genes controlling sporulation, and many genes directing the structural and morphological changes that accompany sporulation, have been cloned and characterized. This review describes our current knowledge of the program of gene expression during sporulation and summarizes what is known about the functions of the genes that determine the specialized biochemical and morphological properties of sporulating cells. Most steps in the genetic program are controlled by transcription factors that have been characterized in vitro. Two sporulation-specific sigma factors, sigma E and sigma F, appear to segregate at septation, effectively determining the differential development of the mother cell and prespore. Later, each sigma is replaced by a second cell-specific sigma factor, sigma K in the mother cell and sigma G in the prespore. The synthesis of each sigma factor is tightly regulated at both the transcriptional and posttranslational levels. Usually this regulation involves an intercellular interaction that coordinates the developmental programmes of the two cells. At least two other transcription factors fine tune the timing and levels of expression of genes in the sigma E and sigma K regulons. The controlled synthesis of the sigma factors and other transcription factors leads to a spatially and temporally ordered program of gene expression. The gene products made during each successive stage of sporulation help to bring about a sequence of gross morphological changes and biochemical adaptations. The formation of the asymmetric spore septum, engulfment of the prespore by the mother cell, and formation of the spore core, cortex, and coat are described. The importance of these structures in the development of the resistance, dormancy, and germination properties of the spore is assessed.
Collapse
Affiliation(s)
- J Errington
- Sir William Dunn School of Pathology, University of Oxford, United Kingdom
| |
Collapse
|
23
|
Benson AK, Haldenwang WG. Characterization of a regulatory network that controls sigma B expression in Bacillus subtilis. J Bacteriol 1992; 174:749-57. [PMID: 1732211 PMCID: PMC206151 DOI: 10.1128/jb.174.3.749-757.1992] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The sigB operon of Bacillus subtilis encodes sigma B and three additional open reading frames (orfV, orfW, and orfX). Having previously mapped several mutations that alter the induction pattern of a sigma B-dependent promoter (ctc) to regions of cloned B. subtilis DNA which contain these three open reading frames, we directly tested the regulatory potential of orfV, orfW, and orfX by creating null alleles of each of these genes and examining the effects of the mutations, either singly or in pairs, on transcription of ctc and the sigB operon. Using lacZ reporter gene fusions and Northern (RNA) blot analyses, we have determined that all three genes modulate the activation of the sigma B-dependent promoters at both the sigB operon and ctc. Our data are consistent with the three gene products participating in a single pathway of negative control. orfW and orfX single-mutant strains have high levels of sigB and ctc transcription. sigB and ctc transcription in an orfV strain is similar to that found in mutant strains which lack sigma B itself. The orfV mutation is dominant to orfX but recessive to orfW. These results suggest that OrfW is the primary inhibitor of sigma B-dependent transcription and that OrfV is capable of counteracting the negative control of OrfW but is prevented from doing this by the orfX gene product.
Collapse
Affiliation(s)
- A K Benson
- Department of Microbiology, University of Texas Health Science Center, San Antonio 78284-7758
| | | |
Collapse
|
24
|
Coppolecchia R, DeGrazia H, Moran CP. Deletion of spoIIAB blocks endospore formation in Bacillus subtilis at an early stage. J Bacteriol 1991; 173:6678-85. [PMID: 1938874 PMCID: PMC209015 DOI: 10.1128/jb.173.21.6678-6685.1991] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
During an early stage of endospore formation in Bacillus subtilis, the cell divides asymmetrically into two compartments that follow different developmental paths. The differential expression of genes in these two compartments is controlled in part by the production of compartment-specific transcription factors, sigma G and sigma K. It is not known how sigma G accumulation is restricted to one of the two compartments, the forespore. However, the observations that sigma F directs transcription of the structural gene for sigma G and that sigma F activity can be modified by the product of a gene, spoIIAB, has led us to investigate the role of spoIIAB during sporulation. We have isolated mutants that carry deletion alleles of spoIIAB. Electron microscopic examination of these mutants revealed that these mutations blocked endospore formation at an early stage before septation and caused extensive cell lysis. The spoIIAB deletion alleles caused hyperexpression of genes that are normally expressed exclusively in the forespore compartments of sporulating wild-type cells, whereas these alleles reduced expression of other genes, including spoIIE, which is expressed before septation in wild-type cells. These observations confirm that spoIIAB is essential for sporulation and are consistent with models in which the product of spoIIAB plays a role in regulating the timing and/or compartment specificity of sigma F- and sigma G-directed transcription.
Collapse
Affiliation(s)
- R Coppolecchia
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322
| | | | | |
Collapse
|
25
|
Illing N, Errington J. The spoIIIA operon of Bacillus subtilis defines a new temporal class of mother-cell-specific sporulation genes under the control of the sigma E form of RNA polymerase. Mol Microbiol 1991; 5:1927-40. [PMID: 1766372 DOI: 10.1111/j.1365-2958.1991.tb00816.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have cloned and characterized a 5 kbp region of the Bacillus subtilis chromosome and show that it contains the promoter-proximal part of the spoIIIA locus. The locus consists of a polycistronic operon containing at least three genes. We show that the operon is regulated at the transcriptional level, from a promoter that is first activated about 80 minutes after the induction of sporulation, immediately after septation. Expression of spoIIIA in different spo mutant backgrounds correlates with the ability of each strain to synthesize the sporulation-specific sigma factor, sigma E. Moreover, synthesis of sigma E in vegetative cells by use of an inducible promoter causes expression of mother-cell-specific genes spoIID, spoIIIA, and spoIIID, but not the prespore-specific genes, spoIIIG and spoVA. We suggest that sigma E may be the primary determinant of mother-cell-specific gene expression and that the SpoIIID protein exerts an additional level of regulation on spoIIIA, apparently by acting as a transcriptional repressor. Since the onset of spoIIID expression occurs about 10 minutes after that of spoIIIA, spoIIIA expression is transient. Thus spoIIIA defines a third temporal class of gene controlled by the sigma E form of RNA polymerase.
Collapse
Affiliation(s)
- N Illing
- Sir William Dunn School of Pathology, University of Oxford, UK
| | | |
Collapse
|
26
|
Adams LF, Brown KL, Whiteley HR. Molecular cloning and characterization of two genes encoding sigma factors that direct transcription from a Bacillus thuringiensis crystal protein gene promoter. J Bacteriol 1991; 173:3846-54. [PMID: 1904859 PMCID: PMC208016 DOI: 10.1128/jb.173.12.3846-3854.1991] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Two sigma factors, sigma 35 and sigma 28, direct transcription from the Bt I and Bt II promoters of the cryIA(a) gene of Bacillus thuringiensis; this gene encodes a lepidopteran-specific crystal protoxin. These sigma factors were biochemically characterized in previous work (K. L. Brown and H. R. Whiteley, Proc. Natl. Acad. Sci. USA 85:4166-4170, 1988; K. L. Brown and H. R. Whiteley, J. Bacteriol. 172:6682-6688, 1990). In this paper, we describe the cloning of the genes encoding these two sigma factors, as well as their nucleotide and deduced amino acid sequences. The deduced amino acid sequences of the sigma 35 and sigma 28 genes show 88 and 85% identity, respectively, to the sporulation-specific sigma E and sigma K polypeptides of Bacillus subtilis. Transformation of the sigma 35 and sigma 28 genes into B. subtilis shows that the respective B. thuringiensis sigma factor genes can complement spoIIG55 (sigma E) and spoIIIC94 (sigma K) defects. Further, B. thuringiensis core polymerase reconstituted with either the sigma 35 or sigma 28 polypeptide directs transcription from B. subtilis promoters recognized by B. subtilis RNA polymerase containing sigma E and sigma K, respectively. Thus, sigma 35 and sigma 28 of B. thuringiensis appear to be functionally equivalent to sigma E and sigma K of B. subtilis. However, unlike the situation for sigma K in B. subtilis, the homologous sigma 28 gene in B. thuringiensis does not result from a late-sporulation-phase chromosomal rearrangement of two separate, partial genes.
Collapse
Affiliation(s)
- L F Adams
- Department of Microbiology, University of Washington, Seattle 98195
| | | | | |
Collapse
|
27
|
Sun DX, Cabrera-Martinez RM, Setlow P. Control of transcription of the Bacillus subtilis spoIIIG gene, which codes for the forespore-specific transcription factor sigma G. J Bacteriol 1991; 173:2977-84. [PMID: 1902213 PMCID: PMC207881 DOI: 10.1128/jb.173.9.2977-2984.1991] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Bacillus subtilis spoIIIG gene codes for a sigma factor termed sigma G which directs transcription of genes expressed only in the forespore compartment of the sporulating cell. Use of spoIIIG-lacZ transcriptional fusions showed that spoIIIG is cotranscribed with the spoIIG operon beginning at t0.5-1 of sporulation. However, this large mRNA produced little if any sigma G, and transferring the spoIIIG gene without the spoIIG promoter into the amyE locus resulted in a Spo+ phenotype. Significant translation of spoIIIG began at t2.5-3 with use of an mRNA whose 5' end is just upstream of the spoIIIG coding sequence. Synthesis of this spoIIIG-specific mRNA was not abolished by a deletion in spoIIIG itself. Similar results were obtained when a spoIIIG-lacZ translational fusion lacking the spoIIG promoter was integrated at the amyE locus. These data suggest that synthesis of sigma G is dependent neither on transcription from the spoIIG promoter nor on sigma G itself but can be due to another transcription factor. This transcription factor may be sigma F, the product of the spoIIAC locus, since a spoIIAC mutation blocked spoIIIG expression, and sequences upstream of the 5' end of the spoIIIG-specific mRNA agree well with the recognition sequence for sigma F. RNA polymerase containing sigma F (E sigma F) initiated transcription in vitro on a spoIIIG template at the 5' end found in vivo, as did E sigma G. However, E sigma F showed a greater than 20-fold preference for spoIIIG over a known sigma G-dependent gene compared with the activity of E sigma G.
Collapse
Affiliation(s)
- D X Sun
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06032
| | | | | |
Collapse
|
28
|
Partridge SR, Foulger D, Errington J. The role of sigma F in prespore-specific transcription in Bacillus subtilis. Mol Microbiol 1991; 5:757-67. [PMID: 1904527 DOI: 10.1111/j.1365-2958.1991.tb00746.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sporulation in Bacillus subtilis is a simple developmental system in which a single cell undergoes differentiation to two 'sister' cells, namely the prespore and the sporangium. Prespore-specific gene expression is largely dependent on the synthesis of a transcription factor, sigma G. Transcription of spolllG, the gene encoding sigma G, is under precise temporal and spatial control, requiring the products of at least eight genes that are expressed in the pre-divisional cell. Here we show that the product of one of these genes, another sigma factor, sigma F, is by itself sufficient to direct transcription of spolllG in non-sporulating cells. The results indicate that the cell-specificity of prespore gene expression is determined by a mechanism that exerts temporal and spatial control over the activity of sigma F.
Collapse
Affiliation(s)
- S R Partridge
- Sir William Dunn School of Pathology, University of Oxford, UK
| | | | | |
Collapse
|
29
|
Cutting S, Driks A, Schmidt R, Kunkel B, Losick R. Forespore-specific transcription of a gene in the signal transduction pathway that governs Pro-sigma K processing in Bacillus subtilis. Genes Dev 1991; 5:456-66. [PMID: 1900494 DOI: 10.1101/gad.5.3.456] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We present studies on the regulation of a developmental gene (spoIVB) whose product is required at a late stage of morphogenesis during the process of sporulation in Bacillus subtilis. Earlier work implicated the spoIVB gene product in a signal-transduction pathway that governs the conversion of pro-sigma K to the mature and active form of the mother cell sigma factor, sigma K, in response to a signal generated within the forespore chamber of the sporangium. We now show that (1) spoIVB is induced at the engulfment stage of sporulation, (2) this transcription is restricted to the forespore, and (3) spoIVB is under the direct control of the forespore sigma factor sigma G. The discovery that spoIVB is a forespore-expressed gene suggests that the spoIVB gene product, or a developmental event under its control, triggers the processing of pro-sigma K and thereby mediates the coupling of sigma K-directed gene expression in the mother cell to sigma G-directed gene expression in the forespore. We also show that spoIVB transcription is partially dependent on the action of the mother cell regulatory gene spoIIID, a finding that suggests that the transcription of certain forespore-expressed genes is influenced by events in the mother cell.
Collapse
Affiliation(s)
- S Cutting
- Department of Cellular and Developmental Biology, Harvard University, Cambridge, Massachusetts 02138
| | | | | | | | | |
Collapse
|
30
|
Lu S, Halberg R, Kroos L. Processing of the mother-cell sigma factor, sigma K, may depend on events occurring in the forespore during Bacillus subtilis development. Proc Natl Acad Sci U S A 1990; 87:9722-6. [PMID: 2124700 PMCID: PMC55245 DOI: 10.1073/pnas.87.24.9722] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
During sporulation of the Gram-positive bacterium Bacillus subtilis, transcription of genes encoding spore coat proteins in the mother-cell compartment of the sporangium is controlled by RNA polymerase containing the sigma subunit called sigma K. Based on comparison of the N-terminal amino acid sequence of sigma K with the nucleotide sequence of the gene encoding sigma K (sigK), the primary product of sigK was inferred to be a pro-protein (pro-sigma K) with 20 extra amino acids at the N terminus. Using antibodies generated against pro-sigma K, we have detected pro-sigma K beginning at the third hour of sporulation and sigma K beginning about 1 hr later. Even when pro-sigma K is expressed artificially during growth and throughout sporulation, sigma K appears at the normal time and expression of a sigma K-controlled gene occurs normally. These results suggest that pro-sigma K is an inactive precursor that is proteolytically processed to active sigma K in a developmentally regulated fashion. Mutations that block forespore gene expression block accumulation of sigma K but not accumulation of pro-sigma K, suggesting that pro-sigma K processing is a regulatory device that couples the programs of gene expression in the two compartments of the sporangium. We propose that this regulatory device ensures completion of forespore morphogenesis prior to the synthesis in the mother-cell of spore coat proteins that will encase the forespore.
Collapse
Affiliation(s)
- S Lu
- Department of Biochemistry, Michigan State University, East Lansing 48824
| | | | | |
Collapse
|
31
|
Schmidt R, Margolis P, Duncan L, Coppolecchia R, Moran CP, Losick R. Control of developmental transcription factor sigma F by sporulation regulatory proteins SpoIIAA and SpoIIAB in Bacillus subtilis. Proc Natl Acad Sci U S A 1990; 87:9221-5. [PMID: 2123551 PMCID: PMC55136 DOI: 10.1073/pnas.87.23.9221] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The sporulation operon spoIIA of Bacillus subtilis consists of three cistrons called spoIIAA, spoIIAB, and spoIIAC. Little is known about the function of spoIIAA and spoIIAB, but spoIIAC encodes a sigma factor called sigma F, which is capable of directing the transcription in vitro of genes that are expressed in the forespore chamber of the developing sporangium. We now report that the products of the spoIIA operon constitute a regulatory system in which SpoIIAA is an antagonist of SpoIIAB (or otherwise counteracts the effect of SpoIIAB) and SpoIIAB is, in turn, an antagonist of SpoIIAC (sigma F). This conclusion is based on the observations that (i) overexpression of spoIIAB inhibits sigma F-directed gene expression, (ii) a mutation in spoIIAB stimulates sigma F-directed gene expression, (iii) a mutation in spoIIAA blocks sigma F-directed gene expression, and (iv) a mutation in spoIIAB relieves the block in sigma F-directed gene expression caused by a mutation in spoIIAA. The SpoIIAA/SpoIIAB/SpoIIAC regulatory system could play a role in controlling the timing of sigma F-directed gene expression and/or could be responsible for restricting sigma F-directed gene expression to the forespore chamber of the sporangium.
Collapse
Affiliation(s)
- R Schmidt
- Department of Cellular and Developmental Biology, Harvard University, Cambridge, MA 02138
| | | | | | | | | | | |
Collapse
|
32
|
Illing N, Errington J. The spoIIIA locus is not a major determinant of prespore-specific gene expression during sporulation in Bacillus subtilis. J Bacteriol 1990; 172:6930-6. [PMID: 2123858 PMCID: PMC210812 DOI: 10.1128/jb.172.12.6930-6936.1990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
During sporulation in Bacillus subtilis, expression of several prespore-specific genes is strongly dependent on the spoIIIE and spoIIIG gene products. Previous reports have also indicated a requirement for the products of the spoIIIA locus. However, we have now systematically studied six different well-defined spoIIIA mutations and find that, relative to spoIIIE and spoIIIG mutations, they have only a minor effect on the expression of two different prespore-specific genes, spoVA and sspA. Moreover, we have shown that strain IS37, which has been used as a spoIIIA mutant in several previous studies, actually contains a lesion in the spo0A gene. We conclude that spoIIIA has a relatively minor or indirect role in the regulation of prespore-specific gene expression.
Collapse
Affiliation(s)
- N Illing
- Sir William Dunn School of Pathology, University of Oxford, United Kingdom
| | | |
Collapse
|
33
|
Jonas RM, Holt SC, Haldenwang WG. Effects of antibiotics on synthesis and persistence of sigma E in sporulating Bacillus subtilis. J Bacteriol 1990; 172:4616-23. [PMID: 2115871 PMCID: PMC213296 DOI: 10.1128/jb.172.8.4616-4623.1990] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A potential regulatory link between the activation of a sporulation-specific sigma factor (sigma E) and forespore septum formation was investigated by treating Bacillus subtilis with inhibitors of protein or peptidoglycan synthesis and monitoring the consequences of these treatments on sigma E activation and septation. Western blot (immunoblot) and electron microscopic analyses revealed that both the formation of sigma E and septation were inhibited to a similar degree when either rifampin or chloramphenicol was added at different times before the second hour into sporulation but that penicillin preferentially blocked septation. We interpret these results as indicating that the syntheses of the gene products for both septation and sigma E activation occur at approximately the same time in development but that synthesis of an intact septum is unlikely to be a prerequisite for the formation of sigma E. We observed that penicillin could not only block septation but, depending on the time of its addition, could also inhibit both the activation of sigma E and the synthesis of its precursor. The basis of this effect is unknown, but it is not due to an overall disruption of protein synthesis. The incorporation of [35S] methionine by the sporulating cultures was unaffected by penicillin treatment. A time course study of the effects of rifampin and chloramphenicol treatments on sigma E levels revealed that both the synthesis of sigma E and its disappearance from sporulating cultures is inhibited by these antibiotics. This suggests that ongoing macromolecular synthesis is required for the turnover of sigma E.
Collapse
Affiliation(s)
- R M Jonas
- Department of Microbiology, University of Texas Health Science Center, San Antonio 78284-7758
| | | | | |
Collapse
|
34
|
Wang LF, Doi RH. Complex character of senS, a novel gene regulating expression of extracellular-protein genes of Bacillus subtilis. J Bacteriol 1990; 172:1939-47. [PMID: 2108127 PMCID: PMC208689 DOI: 10.1128/jb.172.4.1939-1947.1990] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The senS gene of Bacillus subtilis, which in high copy number stimulates the expression of several extracellular-protein genes, has been cloned, genetically mapped, and sequenced. The gene codes for a highly charged basic protein containing 65 amino acid residues. The gene is characterized by the presence of a transcription terminator (attenuator) located between the promoter and open reading frame, a strong ribosome-binding site, and a strong transcription terminator at the 3' end of this monocistronic gene. The amino acid sequence of SenS showed partial homology with the N-terminal core binding domain region of bacterial RNA polymerase sigma factors and a helix-turn-helix motif found in DNA-binding proteins. The gene can be deleted without any effect on growth or sporulation.
Collapse
Affiliation(s)
- L F Wang
- Department of Biochemistry and Biophysics, University of California, Davis 95616
| | | |
Collapse
|
35
|
Lesley SA, Burgess RR. Characterization of the Escherichia coli transcription factor sigma 70: localization of a region involved in the interaction with core RNA polymerase. Biochemistry 1989; 28:7728-34. [PMID: 2692703 DOI: 10.1021/bi00445a031] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A set of internal deletions and frame-shift mutations was made in the structural gene for the major sigma factor of Escherichia coli RNA polymerase (sigma 70). The truncated proteins from these various mutants were examined to determine if they retained the ability to bind core RNA polymerase. Two assays were used to determine core-binding activity. Gel filtration was used to separate free sigma 70 from sigma 70 bound to core polymerase. Immunoprecipitation of polymerase using an anti-alpha-subunit monoclonal antibody was also used to determine if the various truncated proteins were bound to core. Results from these experiments indicate core-binding activity is retained when large portions of the sigma 70 protein are deleted. Deletion of a region in the central portion of the protein caused a large decrease in core-binding activity. The results suggest that the region spanning amino acids 361-390 is important for efficient core-binding activity. Sequence comparison of various sigma factors shows highly conserved amino acids in this region. A synthetic peptide having the sequence of amino acids 361-390 was synthesized and examined for the ability to bind core RNA polymerase.
Collapse
Affiliation(s)
- S A Lesley
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison 53706
| | | |
Collapse
|
36
|
Foulger D, Errington J. The role of the sporulation gene spoIIIE in the regulation of prespore-specific gene expression in Bacillus subtilis. Mol Microbiol 1989; 3:1247-55. [PMID: 2507870 DOI: 10.1111/j.1365-2958.1989.tb00275.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The spoIIIG gene encodes a sigma factor that determines prespore-specific gene expression during sporulation in Bacillus subtilis. Correct spatial and temporal expression of the spoIIIG gene depends on a number of other sporulation (spo) genes, but only one of these genes, spoIIIE, has a specific effect on spoIIIG expression and not on gene expression in the other differentiating cell, the mother cell. However, the spoIIIE gene is expressed predominantly before differentiation begins. Thus, its product must play an important role in sensing or determining the spatial localization of prespore-specific gene expression in this system.
Collapse
Affiliation(s)
- D Foulger
- Department of Biochemistry, University of Oxford, UK
| | | |
Collapse
|
37
|
Nicholson WL, Sun DX, Setlow B, Setlow P. Promoter specificity of sigma G-containing RNA polymerase from sporulating cells of Bacillus subtilis: identification of a group of forespore-specific promoters. J Bacteriol 1989; 171:2708-18. [PMID: 2468649 PMCID: PMC209955 DOI: 10.1128/jb.171.5.2708-2718.1989] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
During sporulation in Bacillus subtilis, expression of the genes sspA, sspB, sspC, sspD, and sspE, which encode a family of small, acid-soluble spore proteins, as well as of the spoVA and gdh operons is transcriptionally activated at stage III of sporulation only in the forespore compartment. Transcription of these genes is mediated by RNA polymerase containing sigma G (E sigma G), the product of the sigG gene, which is itself expressed at stage III in the developing forespore. We have determined the 5' ends of transcripts generated both in vivo and in vitro by the action of E sigma G on various genes of B. subtilis and other bacilli. The 5' ends of the in vivo and in vitro mRNAs were found to coincide and were therefore considered to define the transcription initiation sites for the genes examined. We identified highly homologous DNA sequences centered at 35 and 10 base pairs preceding the transcriptional start sites of the genes examined. Consequently, we propose that these sequences define a class of promoters recognized only by E sigma G which allow transcription of genes expressed uniquely at stage III in the developing forespore.
Collapse
Affiliation(s)
- W L Nicholson
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06032
| | | | | | | |
Collapse
|
38
|
Stragier P, Kunkel B, Kroos L, Losick R. Chromosomal rearrangement generating a composite gene for a developmental transcription factor. Science 1989; 243:507-12. [PMID: 2536191 DOI: 10.1126/science.2536191] [Citation(s) in RCA: 198] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Differential gene expression in the mother cell chamber of sporulating cells of Bacillus subtilis is determined in part by an RNA polymerase sigma factor called sigma K (or sigma 27). The sigma K factor was assigned as the product of the sporulation gene spoIVCB on the basis of the partial aminoterminal amino acid sequence of the purified protein. The spoIVCB gene is now shown to be a truncated gene capable of specifying only the amino terminal half of sigma K. The carboxyl terminal half is specified by another sporulation gene, spoIIIC, to which spoIVCB becomes joined inframe at an intermediate stage of sporulation by site-specific recombination within a 5-base pair repeated sequence. Juxtaposition of spoIVCB and spoIIIC need not be reversible in that the mother cell and its chromosome are discarded at the end of the developmental cycle. The rearrangement of chromosomal DNA could account for the presence of sigma K selectively in the mother cell and may be a precedent for the generation of cell type-specific regulatory proteins in other developmental systems where cells undergo terminal differentiation.
Collapse
Affiliation(s)
- P Stragier
- Department of Cellular and Developmental Biology, Harvard University, Cambridge, MA 02138
| | | | | | | |
Collapse
|