1
|
Abstract
Ribonuclease P (RNase P) is the endoribonuclease that generates the mature 5'-ends of tRNA by removal of the 5'-leader elements of precursor-tRNAs. This enzyme has been characterized from representatives of all three domains of life (Archaea, Bacteria, and Eucarya) (1) as well as from mitochondria and chloroplasts. The cellular and mitochondrial RNase Ps are ribonucleoproteins, whereas the most extensively studied chloroplast RNase P (from spinach) is composed solely of protein. Remarkably, the RNA subunit of bacterial RNase P is catalytically active in vitro in the absence of the protein subunit (2). Although RNA-only activity has not been demonstrated for the archael, eucaryal, or mitochondrial RNAs, comparative sequence analysis has established that these RNAs are homologous (of common ancestry) to bacterial RNA. RNase P holoenzymes vary greatly in organizational complexity across the phylogenetic domains, primarily because of differences in the RNase P protein subunits: Mitochondrial, archaeal, and eucaryal holoenzymes contain larger, and perhaps more numerous, protein subunits than do the bacterial holoenzymes. However, that the nonbacterial RNase P RNAs retain significant structural similarity to their catalytically active bacterial counterparts indicates that the RNA remains the catalytic center of the enzyme.
Collapse
Affiliation(s)
- D N Frank
- Department of Plant and Microbial Biology, University of California, Berkeley 94720-3102, USA.
| | | |
Collapse
|
2
|
Hartmann RK, Krupp G, Hardt WD. Towards a new concept of gene inactivation: specific RNA cleavage by endogenous ribonuclease P. BIOTECHNOLOGY ANNUAL REVIEW 1998; 1:215-65. [PMID: 9704090 DOI: 10.1016/s1387-2656(08)70053-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the first part of this chapter, general concepts for gene inactivation, antisense techniques and catalytic RNAs (ribozymes) are presented. The requirements for modified oligonucleotides are discussed with their effects on the stability of base-paired hybrids and on resistance against nuclease attack. This also includes the problems in the choice of an optimal target sequence within the inactivated RNA and the options of cellular delivery systems. The second part describes the recently introduced antisense concept based on the ubiquitous cellular enzyme ribonuclease P. This system is unique, since the substrate recognition requires the proper tertiary structure of the cleaved RNA. General properties and possible advantages of this approach are discussed.
Collapse
Affiliation(s)
- R K Hartmann
- Institut für Biochemie, Freie Universität Berlin, Germany
| | | | | |
Collapse
|
3
|
Jacobson MR, Pederson T. Localization of signal recognition particle RNA in the nucleolus of mammalian cells. Proc Natl Acad Sci U S A 1998; 95:7981-6. [PMID: 9653126 PMCID: PMC20915 DOI: 10.1073/pnas.95.14.7981] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The signal recognition particle (SRP) of eukaryotic cells is a cytoplasmic ribonucleoprotein machine that arrests the translational elongation of nascent secretory and membrane proteins and facilitates their transport into the endoplasmic reticulum. The spatial pathway of SRP RNA processing and ribonucleoprotein assembly in the cell is not known. In the present investigation, microinjection of fluorescently tagged SRP RNA into the nucleus of mammalian cells was used to examine its intranuclear sites of localization. Microinjection of SRP RNA into the nuclei of normal rat kidney (NRK) epithelial cells maintained at 37 degreesC on the microscope stage resulted in a very rapid initial localization in nucleoli, followed by a progressive decline of nucleolar signal and an increase of fluorescence at discrete sites in the cytoplasm. Nuclear microinjection of a molecule corresponding to a major portion of the Alu domain of SRP RNA revealed a pattern of rapid nucleolar localization followed by cytoplasmic appearance of signal that was similar to the results obtained with full-length SRP RNA. In contrast, a molecule corresponding to the S domain of SRP RNA did not display nucleolar localization to the extent observed with full-length SRP RNA. An SRP RNA molecule lacking helix 6 of the S domain displayed normal nucleolar localization, whereas one lacking helix 8 of the S domain did not. These results, obtained by direct, real-time observation of fluorescent RNA molecules inside the nucleus of living mammalian cells, suggest that the processing of SRP RNA or its ribonucleoprotein assembly into the SRP involves a nucleolar phase.
Collapse
Affiliation(s)
- M R Jacobson
- Worcester Foundation for Biomedical Research and Department of Biochemistry and Molecular Biology, University of Massachusetts Medical Center, Worcester Foundation Campus, Shrewsbury, MA 01545, USA
| | | |
Collapse
|
4
|
Jacobson MR, Cao LG, Taneja K, Singer RH, Wang YL, Pederson T. Nuclear domains of the RNA subunit of RNase P. J Cell Sci 1997; 110 ( Pt 7):829-37. [PMID: 9133670 DOI: 10.1242/jcs.110.7.829] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The ribonucleoprotein enzyme RNase P catalyzes the 5′ processing of pre-transfer RNA, and has also recently been implicated in pre-ribosomal RNA processing. In the present investigation, in situ hybridization revealed that RNase P RNA is present throughout the nucleus of mammalian cells. However, rhodamine-labeled human RNase P RNA microinjected into the nucleus of rat kidney (NRK) epithelial cells or human (HeLa) cells initially localized in nucleoli, and subsequently became more evenly distributed throughout the nucleus, similar to the steadystate distribution of endogenous RNase P RNA. Parallel microinjection and immunocytochemical experiments revealed that initially nucleus-microinjected RNase P RNA localized specifically in the dense fibrillar component of the nucleolus, the site of pre-rRNA processing. A mutant RNase P RNA lacking the To antigen binding domain (nucleotides 25–75) did not localize in nucleoli after nuclear microinjection. In contrast, a truncated RNase P RNA containing the To binding domain but lacking nucleotides 89–341 became rapidly localized in nucleoli following nuclear microinjection. However, unlike the full-length RNase P RNA, this 3′ truncated RNA remained stably associated with the nucleoli and did not translocate to the nucleoplasm. These results suggest a nucleolar phase in the maturation, ribonucleoprotein assembly or function of RNase P RNA, mediated at least in part by the nucleolar To antigen. These and other recent findings raise the intriguing possibility of a bifunctional role of RNase P in the nucleus: catalyzing pre-ribosomal RNA processing in the nucleolus and pre-transfer RNA processing in the nucleoplasm.
Collapse
Affiliation(s)
- M R Jacobson
- Cell Biology Group, Worcester Foundation for Biomedical Research, Shrewsbury, MA 01545, USA
| | | | | | | | | | | |
Collapse
|
5
|
Lygerou Z, Pluk H, van Venrooij WJ, Séraphin B. hPop1: an autoantigenic protein subunit shared by the human RNase P and RNase MRP ribonucleoproteins. EMBO J 1996; 15:5936-48. [PMID: 8918471 PMCID: PMC452370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The eukaryotic endonucleases RNase P and RNase MRP require both RNA and protein subunits for function. Even though the human RNase P and MRP RNAs were previously characterized, the protein composition of the particles remains unknown. We have identified a human a Caenorhabditis elegans sequence showing homology to yPop1, a protein subunit of the yeast RNase P and MRP particles. A cDNA containing the complete coding sequence for the human protein, hPop1, was cloned. Sequence analysis identifies three novel sequence motifs, conserved between the human, C. elegans and yeast proteins. Affinity-purified anti-hPop1 antibodies recognize a single 115 kDa protein in HeLa cell nuclear extracts. Immunoprecipitations with different anti-hPop1 antibodies demonstrate an association of hPop1 with the vast majority of the RNase P and MRP RNAs in HeLa cell nuclear extracts. Additionally, anti-hPop1 immunoprecipitates possess RNase P enzymatic activity. These results establish hPop1 as the first identified RNase P and MRP protein subunit from humans. Anti-hPop1 antibodies generate a strong nucleolar and a weaker homogeneous nuclear staining in HeLa cells. A certain class of autoimmune patient serum precipitates in vitro-translated hPop1. hPop1 is therefore an autoantigen in patients suffering from connective tissue diseases.
Collapse
|
6
|
Pascual A, Vioque A. Cloning, purification and characterization of the protein subunit of ribonuclease P from the cyanobacterium Synechocystis sp. PCC 6803. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 241:17-24. [PMID: 8898883 DOI: 10.1111/j.1432-1033.1996.0017t.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The rnpA gene from the cyanobacterium Synechocystis sp. PCC 6803, which codes for the protein subunit of ribonuclease P (RNase P), has been cloned by functional complementation of an Escherichia coli mutant. This protein had previously been characterized only in proteobacteria and gram-positive bacteria. rnpA and the closely linked rpmH gene, which code for the large subunit ribosomal protein L34, have been sequenced. The Synechocystis 6803 L34 protein is more similar to the homologous protein from some non-green chloroplasts than to the L34 protein from other bacteria. The protein subunit of RNase P from Synechocystis 6803 has been overexpressed in E. coli and purified to homogeneity. Antibodies raised against the Synechocystis 6803 RNase P protein did not recognize the homologous protein from E. coli (C5 protein). Similarly, antibodies raised against the E. coli C5 protein did not recognize significantly the Synechocystis 6803 protein. In spite of the lack of immunological cross-reactivity and the low level of sequence identity, the E. coli and Synechocystis 6803 proteins are functionally interchangeable. In enzymatic assays using either an E. coli precursor tRNA(Tyr) or a Synechocystis 6803 precursor tRNA(Gln) as substrates, we have detected RNase P activity with holoenzymes reconstituted with the RNA subunit from E. coli and the protein subunit from Synechocystis 6803 or with the RNA subunit from Synechocystis 6803 and the protein subunit from E. coli. The relative efficiency of cleavage of the different substrates is dependent on the origin of the protein subunit used to reconstitute the holoenzyme.
Collapse
MESH Headings
- Amino Acid Sequence
- Antibodies/immunology
- Antibodies/metabolism
- Bacterial Proteins/chemistry
- Bacterial Proteins/metabolism
- Base Sequence
- Blotting, Western
- Cloning, Molecular
- Conserved Sequence/genetics
- Cyanobacteria/chemistry
- Cyanobacteria/enzymology
- Electrophoresis, Polyacrylamide Gel
- Endoribonucleases/chemistry
- Endoribonucleases/isolation & purification
- Endoribonucleases/metabolism
- Escherichia coli/chemistry
- Escherichia coli/genetics
- Escherichia coli Proteins
- Genes, Bacterial/genetics
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA Precursors/genetics
- RNA, Catalytic/chemistry
- RNA, Catalytic/isolation & purification
- RNA, Catalytic/metabolism
- RNA, Transfer, Gln/genetics
- RNA, Transfer, Tyr/genetics
- Ribonuclease P
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Sequence Alignment
- Sequence Analysis
Collapse
Affiliation(s)
- A Pascual
- Instituto de Bioquímica Vegetal y Fotosíntesis, Facultad de Biología, Universidad de Sevilla-CSIC, Spain
| | | |
Collapse
|
7
|
Lee YC, Lee BJ, Hwang DS, Kang HS. Purification and characterization of mitochondrial ribonuclease P from Aspergillus nidulans. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 235:289-96. [PMID: 8631344 DOI: 10.1111/j.1432-1033.1996.00289.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mitochondrial ribonuclease (RNase) P from Aspergillus nidulans was purified to near homogeneity using whole-cell extract as the starting material. A 4400-fold purification with a yield of 5.2% was achieved by ammonium sulfate fractionation, heat treatment, and five types of column chromatography, including tRNA-affinity column chromatography. This enzyme, which has a molecular mass of 232 kDa determined by glycerol gradient sedimentation analysis, appears to be composed of seven polypeptides and an RNA moiety. These seven polypeptides consistently copurified with the RNase P activity through two ion-exchange chromatography columns and in a glycerol gradient. As judged by nuclease sensitivity, the enzyme requires an RNA component for its activity. The 3'-end-labeled RNAs that copurified with the enzyme displayed identical sequences but had variable lengths for the 5' end, indicating that they originated from a common RNA molecule, the putative RNA component of RNase P. The purified enzyme cleaved mitochondrial precursor tRNAHis, resulting in an 8-bp acceptor stem. This implies that the purified RNase P is a mitochondrial enzyme and that an additional guanylate residue (at position -1) of tRNAHis in A. nidulans mitochondria is generated by a mode that is analogous to the generation of their counterparts in prokaryotes and chloroplasts.
Collapse
MESH Headings
- Aspergillus nidulans/enzymology
- Aspergillus nidulans/genetics
- Aspergillus nidulans/metabolism
- Base Sequence
- Binding Sites
- DNA Primers/genetics
- Endoribonucleases/genetics
- Endoribonucleases/isolation & purification
- Endoribonucleases/metabolism
- Kinetics
- Mitochondria/enzymology
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Conformation
- RNA Precursors/chemistry
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Catalytic/genetics
- RNA, Catalytic/isolation & purification
- RNA, Catalytic/metabolism
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Transfer, Asp/chemistry
- RNA, Transfer, Asp/genetics
- RNA, Transfer, Asp/metabolism
- Ribonuclease P
Collapse
Affiliation(s)
- Y C Lee
- Department of Microbiology, College of Natural Sciences, Seoul National University, Korea
| | | | | | | |
Collapse
|
8
|
Abstract
RNase P, the enzyme response for 5'-end processing of tRNAs and 4.5S RNA, has been extensively characterized from E. coli. The RNA component of E. coli RNase P, without the protein, has the enzymatic activity and is the first true RNA enzyme to be characterized. RNase P and MRP are two distinct nuclear ribonucleoprotein (RNP) particles characterized in many eukaryotic cells including human, yeast and plant cells. There are many similarities between RNase P and MRP. These include: (1) sequence specific endonuclease activity; (2) homology at the primary and secondary structure levels; and (3) common proteins in both the RNPs. It is likely that RNase P and MRP originated from a common ancestor.
Collapse
Affiliation(s)
- R Reddy
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
9
|
Reilly TH, Schmitt ME. The yeast, Saccharomyces cerevisiae, RNase P/MRP ribonucleoprotein endoribonuclease family. Mol Biol Rep 1996; 22:87-93. [PMID: 8901493 DOI: 10.1007/bf00988711] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein responsible for the endonucleolytic cleavage of the 5'-termini of tRNAs. Ribonuclease MRP (RNase MRP) is a ribonucleoprotein that has the ability to cleave both mitochondrial RNA primers presumed to be involved in mitochondrial DNA replication and rRNA precursors for the production of mature rRNAs. Several lines of evidence suggest that these two ribonucleoproteins are related to each other, both functionally and evolutionarily. Both of these enzymes have activity in the nucleus and mitochondria. Each cleave their RNA substrates in a divalent cation dependent manner to generate 5'-phosphate and 3'-OH termini. In addition, the RNA subunits of both complexes can be folded into a similar secondary structure. Each can be immunoprecipitated from mammalian cells with Th antibodies. In yeast, both have been found to share at least one common protein. This review will discuss some of the recent advances in our understanding of the structure, function and evolutionary relationship of these two enzymes in the yeast, Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- T H Reilly
- Department of Biochemistry and Molecular Biology, SUNY Health Science Center at Syracuse, NY 13210, USA
| | | |
Collapse
|
10
|
Wennborg A, Sohlberg B, Angerer D, Klein G, von Gabain A. A human RNase E-like activity that cleaves RNA sequences involved in mRNA stability control. Proc Natl Acad Sci U S A 1995; 92:7322-6. [PMID: 7638189 PMCID: PMC41331 DOI: 10.1073/pnas.92.16.7322] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have detected an endoribonucleolytic activity in human cell extracts that processes the Escherichia coli 9S RNA and outer membrane protein A (ompA) mRNA with the same specificity as RNase E from E. coli. The human enzyme was partially purified by ion-exchange chromatography, and the active fractions contained a protein that was detected with antibodies shown to recognize E. coli RNase E. RNA containing four repeats of the destabilizing motif AUUUA and RNA from the 3' untranslated region of human c-myc mRNA were also found to be cleaved by E. coli RNase E and its human counterpart in a fashion that may suggest a role of this activity in mammalian mRNA decay. It was also found that RNA containing more than one AUUUA motif was cleaved more efficiently than RNA with only one or a mutated motif. This finding of a eukaryotic endoribonucleolytic activity corresponding to RNase E indicates an evolutionary conservation of the components of mRNA degradation systems.
Collapse
Affiliation(s)
- A Wennborg
- Microbiology and Tumorbiology Center, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
11
|
Lygerou Z, Mitchell P, Petfalski E, Séraphin B, Tollervey D. The POP1 gene encodes a protein component common to the RNase MRP and RNase P ribonucleoproteins. Genes Dev 1994; 8:1423-33. [PMID: 7926742 DOI: 10.1101/gad.8.12.1423] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two forms of the yeast 5.8S rRNA are generated from a large precursor by distinct processing pathways. Cleavage at site A3 is required for synthesis of the major, short form, designated 5.8S(S), but not for synthesis of the long form, 5.8S(L). To identify components required for A3 cleavage, a bank of temperature-sensitive lethal mutants was screened for those with a reduced ratio of 5.8S(S):5.8S(L). The pop1-1 mutation (for processing of precursor RNAs) shows this phenotype and also inhibits A3 cleavage. The pre-rRNA processing defect of pop1-1 strains is similar to that reported for mutations in the RNA component of RNase MRP; we show that a mutation in the RNase MRP RNA also inhibits cleavage at site A3. This is the first site shown to require RNase MRP for cleavage in vivo. The pop1-1 mutation also leads to a block in the processing of pre-tRNA that is identical to that reported for mutations in the RNA component of RNase P. The RNA components of both RNase MRP and RNase P are underaccumulated in pop1-1 strains at the nonpermissive temperature, and immunoprecipitation demonstrates that POP1p is a component of both ribonucleoproteins. The POP1 gene encodes a protein with a predicted molecular mass of 100.5 kD and is essential for viability. POP1p is the first protein component of the nuclear RNase P or RNase MRP for which the gene has been cloned.
Collapse
Affiliation(s)
- Z Lygerou
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | | | | | | | |
Collapse
|
12
|
Liu MH, Yuan Y, Reddy R. Human RNaseP RNA and nucleolar 7-2 RNA share conserved 'To' antigen-binding domains. Mol Cell Biochem 1994; 130:75-82. [PMID: 7514716 DOI: 10.1007/bf01084270] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
RNase P in both prokaryotes and eukaryotes is a ribonucleoprotein that cleaves tRNA precursors to generate the 5' termini of the mature tRNAs. Many patients with autoimmune diseases produce antibodies against a 40 kDa protein (designated To or Th antigen) which is an integral component of eukaryotic RNaseP as well as nucleolar 7-2 RNP which is identical to the mitochondrial RNA processing (MRP) RNP. Interestingly, the To antigen found in human cells and the C5 protein, the only protein component of E. coli RNaseP, are antigenically related. In this study, we show that a 56 nucleotide-long sequence, corresponding to nucleotides 20-75 near the 5' end of human RNaseP RNA, is sufficient to bind the To antigen. We previously showed that the human To antigen binds to a short distinct structural domain near the 5' end of human 7-2/MRP RNA. There is no obvious primary sequence homology between the To antigen binding sites in RNaseP RNA and 7-2/MRP RNA; however, these sequences are capable of assuming a similar secondary structure which corresponds to the recently proposed 'cage' structure for RNaseP RNAs and 7-2/MRP RNA (Forster and Altman (1989) Cell 62: 407-409). These data are supportive of the idea that these two RNAs may have evolved from a common progenitor molecule.
Collapse
Affiliation(s)
- M H Liu
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas 77030
| | | | | |
Collapse
|
13
|
Zimmerly S, Drainas D, Sylvers LA, Söll D. Identification of a 100-kDa protein associated with nuclear ribonuclease P activity in Schizosaccharomyces pombe. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 217:501-7. [PMID: 8223594 DOI: 10.1111/j.1432-1033.1993.tb18270.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ribonuclease P from the fission yeast Schizosaccharomyces pombe has been purified to apparent homogeneity. A purification of 23,000-fold was achieved by four fractionation steps with DEAE-cellulose chromatography, phosphocellulose chromatography, glycerol-gradient fractionation and finally tRNA-affinity chromatography. A 100-kDa protein was present in the most pure preparations in amounts approximately stoichiometric with the previously identified RNA components of the enzyme, K1-RNA and K2-RNA [Krupp, G., Cherayil, B., Frendeway, D., Nishikawa, S. & Söll, D. (1986) EMBO J. 5, 1697-1703]. A cross-linking experiment utilizing a 4-thiouridine-substituted precursor tRNA demonstrated that the 100-kDa protein interacts with the ribonuclease P substrate in a specific fashion. We therefore conclude that the protein component of S. pombe ribonuclease P is a 100-kDa protein.
Collapse
Affiliation(s)
- S Zimmerly
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114
| | | | | | | |
Collapse
|
14
|
Dang Y, Martin N. Yeast mitochondrial RNase P. Sequence of the RPM2 gene and demonstration that its product is a protein subunit of the enzyme. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36583-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
15
|
Rossmanith W, Karwan R. Definition of the Th/To ribonucleoprotein by RNase P and RNase MRP. Mol Biol Rep 1993; 18:29-35. [PMID: 8232291 DOI: 10.1007/bf01006892] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We show that the Th/To ribonucleoprotein is defined by (i) the co-immunoprecipitation of two RNAs, (ii) the co-immunoprecipitation of four major polypeptides and (iii) the quantitative immune recognition of both RNase P and RNase MRP. No serum was found that recognizes either one of these two enzymes exclusively. The specific co-immunoprecipitation of RNase MRP and RNase P by all Th/To ribonucleoprotein autoantibodies indicates that the anti-Th/To autoimmune response is directed against both enzymes in a quantitatively indistinguishable manner. Thus the Th/To ribonucleoprotein is defined by RNase P and RNase MRP.
Collapse
Affiliation(s)
- W Rossmanith
- Institut für Tumorbiologie-Krebsforschung der Universität Wien, Austria
| | | |
Collapse
|
16
|
Morales MJ, Dang YL, Lou YC, Sulo P, Martin NC. A 105-kDa protein is required for yeast mitochondrial RNase P activity. Proc Natl Acad Sci U S A 1992; 89:9875-9. [PMID: 1409716 PMCID: PMC50236 DOI: 10.1073/pnas.89.20.9875] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
RNase P from the mitochondria of Saccharomyces cerevisiae was purified to near homogeneity > 1800-fold with a yield of 1.6% from mitochondrial extracts. The most abundant protein in the purified fractions is, at 105 kDa, considerably larger than the 14-kDa bacterial RNase P protein subunits. Oligonucleotides designed from the amino-terminal sequence of the 105-kDa protein were used to identify and isolate the 105-kDa protein-encoding gene. Strains carrying a disruption of the gene for the 105-kDa protein are viable but respiratory deficient and accumulate mitochondrial tRNA precursors with 5' extensions. As this is the second gene known to be necessary for yeast mitochondrial RNase P activity, we have named it RPM2 (for RNase P mitochondrial).
Collapse
Affiliation(s)
- M J Morales
- Department of Biochemistry, University of Louisville, KY 40292
| | | | | | | | | |
Collapse
|
17
|
Kiss T, Marshallsay C, Filipowicz W. 7-2/MRP RNAs in plant and mammalian cells: association with higher order structures in the nucleolus. EMBO J 1992; 11:3737-46. [PMID: 1382978 PMCID: PMC556834 DOI: 10.1002/j.1460-2075.1992.tb05459.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Mammalian MRP (for mitochondrial RNA processing) RNA, also known as 7-2 RNA, is a nuclear encoded small RNA which has been reported to function in two different cellular compartments: in the mitochondria and in the nucleus. The ribonucleoprotein particle which contains the 7-2/MRP RNA, called RNase MRP, has ribonucleolytic activity and shares some structural similarity with RNase P. It has been proposed that in mitochondria, the RNase MRP is responsible for endonucleolytic cleavage of primer RNA during DNA replication. We have characterized the gene and cDNAs encoding 7-2/MRP-like RNA in Arabidopsis and tobacco, and found that in plants this RNA is enriched in nucleoli but is undetectable in purified mitochondria isolated from tobacco leaves or cells grown in suspension. In glycerol gradients tobacco 7-2/MRP RNA cosediments with large approximately 80S structures possibly representing ribosomal precursors. Fractionation of HeLa cells has also revealed that 7-2/MRP resides in the nucleolus and that most of it is associated with complexes sedimenting at approximately 80S, similar to those containing the U3 nucleolar RNA which is known to participate in pre-rRNA processing. These results indicate that the 7-2/MRP ribonucleoparticle may be involved in ribosome biogenesis, in both plant and mammalian cells.
Collapse
Affiliation(s)
- T Kiss
- Friedrich Miescher-Institut, Basel, Switzerland
| | | | | |
Collapse
|
18
|
The 40-kilodalton to autoantigen associates with nucleotides 21 to 64 of human mitochondrial RNA processing/7-2 RNA in vitro. Mol Cell Biol 1991. [PMID: 1717826 DOI: 10.1128/mcb.11.10.5266] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 40-kDa To antigen recognized by sera from some patients with autoimmune diseases is an integral component of both human RNase P and mitochondrial RNA processing (MRP) RNase. Human MRP and RNase P RNAs, synthesized in vitro, readily associate with the To antigen present in the HeLa cell extract. Using this in vitro reconstitution system, the binding site of the To antigen is localized to a 44-nucleotide-long sequence corresponding to nucleotides 21 to 64 of the human MRP RNA. UV cross-linking experiments showed that the To antigen binds directly to MRP RNA and to RNase P (H1) RNA through RNA-protein interactions. Although the MRP RNA and RNAse P (H1) RNA show sequence homology in four conserved blocks (H. A. Gold, J. N. Topper, D. A. Clayton, and J. Craft, Science 245:1377-1380, 1989), the To antigen-binding site in MRP RNA does not show any obvious primary sequence homology with H1 RNA. These data suggest that the To antigen binds to a conserved and presumably a common secondary or tertiary structure in human MRP and RNase P RNAs.
Collapse
|
19
|
Yuan Y, Tan E, Reddy R. The 40-kilodalton to autoantigen associates with nucleotides 21 to 64 of human mitochondrial RNA processing/7-2 RNA in vitro. Mol Cell Biol 1991; 11:5266-74. [PMID: 1717826 PMCID: PMC361579 DOI: 10.1128/mcb.11.10.5266-5274.1991] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A 40-kDa To antigen recognized by sera from some patients with autoimmune diseases is an integral component of both human RNase P and mitochondrial RNA processing (MRP) RNase. Human MRP and RNase P RNAs, synthesized in vitro, readily associate with the To antigen present in the HeLa cell extract. Using this in vitro reconstitution system, the binding site of the To antigen is localized to a 44-nucleotide-long sequence corresponding to nucleotides 21 to 64 of the human MRP RNA. UV cross-linking experiments showed that the To antigen binds directly to MRP RNA and to RNase P (H1) RNA through RNA-protein interactions. Although the MRP RNA and RNAse P (H1) RNA show sequence homology in four conserved blocks (H. A. Gold, J. N. Topper, D. A. Clayton, and J. Craft, Science 245:1377-1380, 1989), the To antigen-binding site in MRP RNA does not show any obvious primary sequence homology with H1 RNA. These data suggest that the To antigen binds to a conserved and presumably a common secondary or tertiary structure in human MRP and RNase P RNAs.
Collapse
Affiliation(s)
- Y Yuan
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas 77030
| | | | | |
Collapse
|
20
|
Karwan R, Bennett JL, Clayton DA. Nuclear RNase MRP processes RNA at multiple discrete sites: interaction with an upstream G box is required for subsequent downstream cleavages. Genes Dev 1991; 5:1264-76. [PMID: 2065976 DOI: 10.1101/gad.5.7.1264] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
RNase MRP is a site-specific endoribonuclease that processes primer RNA from the leading-strand origin of mammalian mitochondrial DNA replication. It is present in active form as isolated from the nucleus, suggesting a bipartite cellular location and function. The relatively high abundance of nucleus-localized RNase MRP has permitted its purification to near homogeneity and, in turn, has led to the identification of protein components of this ribonucleoprotein. Analysis of the mode of RNA cleavage by nuclear RNase MRP revealed the surprising and unprecedented ability of the endonuclease to process RNA at multiple discrete locations. Substrate cleavage is dependent on the presence of a previously described G-rich sequence element adjacent to the primary site of RNA processing. Downstream cleavage occur in a distance- and sequence-specific manner.
Collapse
Affiliation(s)
- R Karwan
- Department of Developmental Biology, Stanford University School of Medicine, California 94305-5427
| | | | | |
Collapse
|
21
|
Zimmerly S, Gamulin V, Burkard U, Söll D. The RNA component of RNase P in Schizosaccharomyces species. FEBS Lett 1990; 271:189-93. [PMID: 2226803 DOI: 10.1016/0014-5793(90)80403-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the fission yeast Schizosaccharomyces pombe, the enzyme RNAse P copurifies with two RNAs, K1- and K2-RNA, which are identical except for their termini [1] and which are encoded by a single gene [2]. We have undertaken the cloning of the K-RNA genes in related organisms in order to gain comparative structural information. Because the K-RNA sequence is poorly conserved across species, we have cloned the K-RNA genes in the Schizosaccharomyces species S. malidevorans, S. japonicus, S. versatilis, and S. octosporus. Of the 4 species, only S. octosporus contains a K-RNA gene different from that in S. pombe; the gene diverges by 20%. Based on the two sequences, nuclease protection data and computer analysis, we have proposed a secondary structure model for the K-RNA. Northern analysis shows the K-RNA genes in all four Schizosaccharomyces species to be expressed as two RNAs, as in S. pombe.
Collapse
Affiliation(s)
- S Zimmerly
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511
| | | | | | | |
Collapse
|
22
|
|
23
|
Affiliation(s)
- J Craft
- Yale University School of Medicine, New Haven, Connecticut
| | | |
Collapse
|