1
|
Kandpal RP, Sandhu AK, Kaur G, Kaur GP, Athwal RS. Monochromosomal Hybrids and Chromosome Transfer: A Functional Approach for Gene Identification. Cancer Genomics Proteomics 2017; 14:93-101. [PMID: 28387649 PMCID: PMC5369314 DOI: 10.21873/cgp.20022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/19/2017] [Accepted: 02/22/2017] [Indexed: 11/10/2022] Open
Abstract
Functional complementation of cellular defects has been a valuable approach for localizing causative genes to specific chromosomes. The complementation strategy was followed by positional cloning and characterization of genes for their biological relevance. We herein describe strategies used for the construction of monochromosomal hybrids and their applications for cloning and characterization of genes related to cell growth, cell senescence and DNA repair. We have cloned RNaseT2, GluR6 (glutamate ionotropic receptor kainate type subunit 2-GRIK2) and protein tyrosine phosphatase, receptor type K (PTPRK) genes using these strategies.
Collapse
Affiliation(s)
- Raj P Kandpal
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA, U.S.A.
| | - Arbans K Sandhu
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA, U.S.A
| | - Gurpreet Kaur
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA, U.S.A
| | - Gursurinder P Kaur
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA, U.S.A
| | - Raghbir S Athwal
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA, U.S.A.
| |
Collapse
|
2
|
Francis MA, Bagga P, Athwal R, Rainbow AJ. Partial Complementation of the DNA Repair Defects in Cells from Xeroderma Pigmentosum Groups A, C, D and F but not G by the denV Gene from Bacteriophage T4 ¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2000)0720365pcotdr2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Meaburn KJ, Parris CN, Bridger JM. The manipulation of chromosomes by mankind: the uses of microcell-mediated chromosome transfer. Chromosoma 2005; 114:263-74. [PMID: 16133353 DOI: 10.1007/s00412-005-0014-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 05/29/2005] [Accepted: 06/21/2005] [Indexed: 12/20/2022]
Abstract
Microcell-mediated chromosome transfer (MMCT) was a technique originally developed in the 1970s to transfer exogenous chromosome material into host cells. Although, the methodology has not changed considerably since this time it is being used to great success in progressing several different fields in modern day biology. MMCT is being employed by groups all over the world to hunt for tumour suppressor genes associated with specific cancers, DNA repair genes, senescence-inducing genes and telomerase suppression genes. Some of these genomic discoveries are being investigated as potential treatments for cancer. Other fields have taken advantage of MMCT, and these include assessing genomic stability, genomic imprinting, chromatin modification and structure and spatial genome organisation. MMCT has also been a very useful method in construction and manipulation of artificial chromosomes for potential gene therapies. Indeed, MMCT is used to transfer mainly fragmented mini-chromosome between cell types and into embryonic stem cells for the construction of transgenic animals. This review briefly discusses these various uses and some of the consequences and advancements made by different fields utilising MMCT technology.
Collapse
Affiliation(s)
- Karen J Meaburn
- Cell and Chromosome Biology Group, Division of Biosciences, School of Health Sciences and Social Care, Brunel University, Uxbridge UB8 3PH, UK
| | | | | |
Collapse
|
4
|
Francis MA, Bagga P, Athwal R, Rainbow AJ. Partial complementation of the DNA repair defects in cells from xeroderma pigmentosum groups A, C, D and F but not G by the denV gene from bacteriophage T4. Photochem Photobiol 2000; 72:365-73. [PMID: 10989608 DOI: 10.1562/0031-8655(2000)072<0365:pcotdr>2.0.co;2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Endonuclease V (denV) from bacteriophage T4 was examined for its ability to complement the DNA repair defect in xeroderma pigmentosum (XP) cells from complementation groups A, C, D, F and G. The denV gene was introduced into SV40-transformed normal and XP cells using a retroviral vector. Expression of denV resulted in partial correction of UV sensitivity and increased host cell reactivation (HCR) of a UV-damaged reporter gene for XP cells from groups A, C and D, but not those from group G. Expression of denV in XP-F cells resulted in enhanced HCR of a UV-damaged reporter but did not affect UV sensitivity. The observed partial complementation is thought to reflect denV-mediated repair of cyclobutane-pyrimidine dimers (CPD), and is incomplete as denV does not recognize other UV-induced lesions, and may not even efficiently remove all CPD. As XP-F cells are believed to retain near-normal levels of CPD repair in the bulk of the genome, we believe that the disparity in the ability of denV to complement the repair deficiency in these cells results from an increased rate, but not level, of CPD repair. Furthermore, we suggest that the lack of correction in the XP-G cells examined results from an inability to process denV-incised CPD by the base excision repair pathway, as has been suggested for cells from the related genetic disorder, Cockayne syndrome. Expression of denV in repair proficient normal cells also resulted in increased HCR of the UV-damaged reporter construct, possibly arising from an increased rate of CPD repair in these cells.
Collapse
Affiliation(s)
- M A Francis
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
5
|
Francis MA, Bagga PS, Athwal RS, Rainbow AJ. Incomplete complementation of the DNA repair defect in cockayne syndrome cells by the denV gene from bacteriophage T4 suggests a deficiency in base excision repair. Mutat Res 1997; 385:59-74. [PMID: 9372849 DOI: 10.1016/s0921-8777(97)00039-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Endonuclease V (denV) from bacteriophage T4 has been examined for its ability to complement the repair defect in Cockayne syndrome (CS) cells of complementation groups A and B. CS is an autosomal recessive disorder characterized by hypersensitivity to UV light and a defect in the preferential repair of UV-induced lesions in transcriptionally active DNA by the nucleotide excision repair (NER) pathway. The denV gene was introduced into non-transformed normal and CS fibroblasts transiently via a recombinant adenovirus (Ad) vector and into SV40-transformed normal and CS cells via a retroviral vector. Expression of denV in CS-A cells resulted in partial correction of the UV-sensitive phenotype in assays of gene-specific repair and cell viability, while correction of CS-B cells by expression of denV in the same assays was minimal or non-existent. In contrast, denV expression led to enhanced host cell reactivation (HCR) of viral DNA synthesis in both CS complementation groups to near normal levels. DenV is a glycosylase which is specific for cyclobutane-pyrimidine dimers (CPDs) but does not recognize other UV-induced lesions. Previous work has indicated that CS cells can efficiently repair all non-CPD UV-induced transcription blocking lesions (S.F. Barrett et al.. Mutation Res. 255 (1991) 281-291 [1]) and that denV incised lesions are believed to be processed via the base excision repair (BER) pathway. The inability of denV to complement the NER defect in CS cells to normal levels implies an impaired ability to process denV incised lesions by the BER pathway, and suggests a role for the CS genes, particularly the CS-B gene, in BER.
Collapse
Affiliation(s)
- M A Francis
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
6
|
Jongmans W, Wiegant J, Oshimura M, James MR, Lohman PH, Zdzienicka MZ. Human chromosome 11 complements ataxia-telangiectasia cells but does not complement the defect in AT-like Chinese hamster cell mutants. Hum Genet 1993; 92:259-64. [PMID: 8406433 DOI: 10.1007/bf00244469] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
It has been shown that the X-ray-sensitive Chinese hamster V79 mutants (V-E5, V-C4 and V-G8) are similar to ataxia-telangiectasia (A-T) cells. To determine whether the AT-like rodent cell mutants are defective in the gene homologous to A-T (group A, C or D), human chromosome 11 was introduced to the V-E5 and V-G8 mutant cells by microcell-mediated chromosome transfer. Forty independent hybrid clones were obtained in which the presence of chromosome 11 was determined by in situ hybridization. The presence of the region of chromosome 11q22-23 was shown by molecular analysis using polymorphic DNA markers specific for the ATA, ATC and ATD loci. Seventeen of the obtained monochromosomal Chinese hamster hybrids contained a cytogenetically normal human chromosome 11, but only twelve hybrid cell lines were shown to contain an intact 11q22-23 region. Despite the complementation of the X-ray sensitivity by a normal chromosome 11 introduced to A-T cells (complementation group D), these twelve Chinese hamster hybrid clones showed lack of complementation of X-ray and streptonigrin hypersensitivity. The observed lack of complementation does not seem to be attributable to hypermethylation of the human chromosome 11 in the rodent cell background, since 5-azacytidine treatment had no effect on the streptonigrin hypersensitivity of the hybrid cell lines. These results indicate that the gene defective in the AT-like rodent cell mutants is not homologous to the ATA, ATC or ATD genes and that the human gene complementing the defect in the AT-like mutants seems not to be located on human chromosome 11.
Collapse
Affiliation(s)
- W Jongmans
- MGC-Department of Radiation Genetics and Chemical Mutagenesis, State University of Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
7
|
McDaniel LD, Schultz RA. Elevation of sister chromatid exchange frequency in transformed human fibroblasts following exposure to widely used aminoglycosides. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1993; 21:67-72. [PMID: 8419155 DOI: 10.1002/em.2850210109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Aminoglycosides are a class of antibiotics that interfere with protein translation. Geneticin and hygromycin are two such agents, which have been shown to exhibit highly toxic effects in mammalian cells. Cloned bacterial genes, which inactivate these antibiotics, have facilitated the establishment of dominant selection systems, which are widely used in eukaryotic molecular genetics. We have examined the effect of aminoglycosides on the sister chromatid exchange (SCE) frequency in transformed human fibroblast cell lines. Geneticin and hygromycin were both found to increase SCE frequency in all cell lines examined, including a cell line derived from a patient with Bloom syndrome, a disorder exhibiting an elevated spontaneous SCE frequency. Induction was seen to occur in a dose-responsive manner and was also observed in cells expressing the resistance genes that inactivate the cellular toxicity of these antibiotics. The implications of these findings for somatic cell genetics and for human gene therapy protocols are discussed.
Collapse
Affiliation(s)
- L D McDaniel
- Medical Biotechnology Center, University of Maryland, Baltimore 21201
| | | |
Collapse
|
8
|
Jeggo PA, Hafezparast M, Thompson AF, Kaur GP, Sandhu AK, Athwal RS. A hamster-human subchromosomal hybrid cell panel for chromosome 2. SOMATIC CELL AND MOLECULAR GENETICS 1993; 19:39-49. [PMID: 8460397 DOI: 10.1007/bf01233953] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have constructed hamster-human hybrid cell lines containing fragments of human chromosome 2 as their only source of human DNA. Microcell-mediated chromosome transfer was used to transfer human chromosome 2 from a monochromosomal mouse-human hybrid line to a radiation-sensitive hamster mutant (XR-V15B) defective in double-strand break rejoining. The human chromosome 2 carried the Ecogpt gene and hybrids were selected using this marker. The transferred human chromosome was frequently broken, and the resulting microcell hybrids contained different sized segments of the q arm of chromosome 2. Two microcell hybrids were irradiated and fused to XR-V15B to generate additional hybrids bearing reduced amounts of human DNA. All hybrids were analyzed by PCR using primers specific for 27 human genes located on chromosome 2. From these data we have localized the integrated gpt gene on the human chromosome 2 to the region q36-37 and present a gene order for chromosome 2 markers.
Collapse
Affiliation(s)
- P A Jeggo
- MRC Cell Mutation Unit, Sussex University, Falmer, Brighton, U.K
| | | | | | | | | | | |
Collapse
|
9
|
Kaur GP, Athwal RS. Complementation of DNA repair defect in xeroderma pigmentosum cells of group C by the transfer of human chromosome 5. SOMATIC CELL AND MOLECULAR GENETICS 1993; 19:83-93. [PMID: 8460401 DOI: 10.1007/bf01233957] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Complementation of DNA excision repair defect in xeroderma pigmentosum cells of group C (XP-C) has been achieved by the transfer of human chromosome 5. Individual human chromosomes tagged with a selectable marker were transferred to XP-C cells by microcell fusion from mouse-human hybrid cell lines each bearing a single different human chromosome. Analysis of the chromosome transfer clones revealed that introduction of chromosome 5 into XP-C cells corrected the DNA repair defect as well as UV-sensitive phenotypes, while chromosomes 2, 6, 7, 9, 13, 15, 17, and 21 failed to complement. The introduced chromosome 5 in complemented UVr clones was distinguished from the parental XP-C chromosomes by polymorphism for dinucleotide (CA)n repeats at two loci, D5S117 and D5S209. In addition, an intact marked chromosome 5 was rescued into mouse cells from a complemented UVr clone by microcell fusion. Five subclones of a complemented clone that had lost the marked chromosome 5 exhibited UV-sensitive and repair-deficient phenotypes identical to parental XP-C cells. Concordant loss of the transferred chromosome and reappearance of XP-C phenotype further confirmed the presence of a DNA repair gene on human chromosome 5.
Collapse
Affiliation(s)
- G P Kaur
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Newark 07103
| | | |
Collapse
|
10
|
Flejter WL, McDaniel LD, Askari M, Friedberg EC, Schultz RA. Characterization of a complex chromosomal rearrangement maps the locus for in vitro complementation of xeroderma pigmentosum group D to human chromosome band 19q13. Genes Chromosomes Cancer 1992; 5:335-42. [PMID: 1283322 DOI: 10.1002/gcc.2870050409] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Microcell-mediated chromosome transfer (MMCT) is a powerful genetic technique that permits the transfer of a single chromosome from one mammalian cell to another. The utility of MMCT for gene mapping strategies is critically dependent on the careful characterization of the chromosomes being transferred. We have recently reported the identification of a single rearranged human chromosome, designated Tneo, which corrects the UV sensitivity and excision repair defect of cells of xeroderma pigmentosum genetic complementation group D (XP-D) in culture (Flejter WL et al., Proc Natl Acad Sci USA 89:261-265, 1992). Additionally, those studies demonstrated a role for the excision repair cross-complementing 2 (ERCC2) gene in the observed phenotypic correction. We now report the results of detailed conventional and molecular cytogenetic characterization of the complementing Tneo chromosome. This analysis revealed a complex rearrangement involving material from human chromosomes 16, 17, and 19. Characterization of deletions of Tneo which retained or lost XP-D complementing ability mapped the gene responsible for phenotypic correction to a small region of the terminal q-arm of this chromosome. This region includes the previously described human DNA repair gene cluster located in the region 19q13.2-q13.3, a result consistent with the notion that the in vitro correction of XP-D cells by the Tneo chromosome is rendered by the ERCC2 locus. The data illustrate the potential value of detailed cytogenetic characterization of a human chromosome present in a somatic cell hybrid, even when that material involves complex rearrangements.
Collapse
Affiliation(s)
- W L Flejter
- Division of Human Genetics, University of Maryland, Baltimore 21201
| | | | | | | | | |
Collapse
|
11
|
Ishizaki K, Matsunaga T, Kato M, Nikaido O, Ikenaga M. Repair of thymine dimers and (6-4) photoproducts in group A xeroderma pigmentosum cell lines harboring a transferred normal chromosome 9. Photochem Photobiol 1992; 56:365-9. [PMID: 1438571 DOI: 10.1111/j.1751-1097.1992.tb02172.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transfer of a normal chromosome 9 into a xeroderma pigmentosum (XP)-A cell line partially restored its DNA repair activity. XP-A cell lines harboring a transferred chromosome were much more UV-resistant than parental XP-A cells but still more UV-sensitive than normal cells. The amount of UV-induced unscheduled DNA synthesis was only one-third of that in normal cells. The repair of thymine dimers and (6-4) photoproducts in these cell lines was analyzed by using monoclonal antibodies raised against them. Although these XP-A cell lines carrying a normal chromosome 9 could repair (6-4) photoproduct with a little lower efficiency than normal cells, the repair of thymine dimers was completely absent in these cells. The present results suggest a gene-dosage effect in DNA excision repair mechanisms in human cells or a rather complicated mechanism which involves two or more pathways.
Collapse
Affiliation(s)
- K Ishizaki
- Radiation Biology Center, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
12
|
Jeggo PA, Hafezparast M, Thompson AF, Broughton BC, Kaur GP, Zdzienicka MZ, Athwal RS. Localization of a DNA repair gene (XRCC5) involved in double-strand-break rejoining to human chromosome 2. Proc Natl Acad Sci U S A 1992; 89:6423-7. [PMID: 1631138 PMCID: PMC49513 DOI: 10.1073/pnas.89.14.6423] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Complementation of the repair defect in hamster xrs mutants has been achieved by transfer of human chromosome 2 using the method of microcell-mediated chromosome transfer. The xrs mutants belong to ionizing radiation complementation group 5, are highly sensitive to ionizing radiation, and have an impaired ability to rejoin radiation-induced DNA double-strand breaks. Both phenotypes were corrected by chromosome 2, although the correction of radiation sensitivity was only partial. Complementation was achieved in two members of this complementation group, xrs6 and XR-V15B, derived independently from the CHO and V79 cell lines, respectively. The presence of human chromosome 2 in complemented clones was examined cytogenetically and by PCR analysis with primers directed at a human-specific long interspersed repetitive sequence or chromosome 2-specific genes. Complementation was observed in 25/27 hybrids, one of which contained only the q arm of chromosome 2. The two noncomplementing hybrids were missing segments of chromosome 2. The use of a back-selection system enabled the isolation of clones that had lost the human chromosome and these regained radiation sensitivity. Transfer of several other human chromosomes did not result in complementation of the repair defect in XR-V15B. These data show that the gene defective in xrs cells, XRCC5, which is involved in double-strand break rejoining, is located on human chromosome 2q.
Collapse
Affiliation(s)
- P A Jeggo
- Medical Research Council Cell Mutation Unit, Sussex University, Brighton, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
13
|
Kaur GP, Rinaldy A, Lloyd RS, Athwal RS. A gene that partially complements xeroderma pigmentosum group A cells maps to human chromosome 8. SOMATIC CELL AND MOLECULAR GENETICS 1992; 18:371-9. [PMID: 1440057 DOI: 10.1007/bf01235760] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A gene that partially complements sensitivity of xeroderma pigmentosum cells of group A to UV irradiation has been mapped to human chromosome 8. Isolation of this gene has previously been described. A cDNA clone pEMKR that represents part of this gene was used for mapping. Based upon the nucleotide sequence of pEMKR, a set of oligonucleotide primers were designed for PCR amplification of DNAs from hybrid cell lines. A panel of rodent-human hybrid cell lines representing the total human genome was screened by PCR and Southern blot analysis for chromosomal assignment of this gene. PCR amplification and hybridization occurred only in the case of human and hybrid cell lines that contained human chromosome 8. The pEMKR thus represents a different gene than a DNA repair gene XPAC that has been mapped to human chromosome 9.
Collapse
Affiliation(s)
- G P Kaur
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark 07103-2757
| | | | | | | |
Collapse
|
14
|
Flejter WL, McDaniel LD, Johns D, Friedberg EC, Schultz RA. Correction of xeroderma pigmentosum complementation group D mutant cell phenotypes by chromosome and gene transfer: involvement of the human ERCC2 DNA repair gene. Proc Natl Acad Sci U S A 1992; 89:261-5. [PMID: 1729695 PMCID: PMC48216 DOI: 10.1073/pnas.89.1.261] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cultured cells from individuals afflicted with the genetically heterogeneous autosomal recessive disorder xeroderma pigmentosum (XP) exhibit sensitivity to UV radiation and defective nucleotide excision repair. Complementation of these mutant phenotypes after the introduction of single human chromosomes from repair-proficient cells into XP cells has provided a means of mapping the genes involved in this disease. We now report the phenotypic correction of XP cells from genetic complementation group D (XP-D) by a single human chromosome designated Tneo. Detailed molecular characterization of Tneo revealed a rearranged structure involving human chromosomes 16 and 19, including the excision repair cross-complementing 2 (ERCC2) gene from the previously described human DNA repair gene cluster at 19q13.2-q13.3. Direct transfer of a cosmid bearing the ERCC2 gene conferred UV resistance to XP-D cells.
Collapse
Affiliation(s)
- W L Flejter
- Division of Human Genetics, University of Maryland, Baltimore 21201
| | | | | | | | | |
Collapse
|
15
|
Lambert C, Schultz RA, Smith M, Wagner-McPherson C, McDaniel LD, Donlon T, Stanbridge EJ, Friedberg EC. Functional complementation of ataxia-telangiectasia group D (AT-D) cells by microcell-mediated chromosome transfer and mapping of the AT-D locus to the region 11q22-23. Proc Natl Acad Sci U S A 1991; 88:5907-11. [PMID: 2062869 PMCID: PMC51987 DOI: 10.1073/pnas.88.13.5907] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The hereditary human disease ataxia-telangiectasia (AT) is characterized by phenotypic complexity at the cellular level. We show that multiple mutant phenotypes of immortalized AT cells from genetic complementation group D (AT-D) are corrected after the introduction of a single human chromosome from a human-mouse hybrid line by microcell-mediated chromosome transfer. This chromosome is cytogenetically abnormal. It consists primarily of human chromosome 18, but it carries translocated material from the region 11q22-23, where one or more AT genes have been previously mapped by linkage analysis. A cytogenetically normal human chromosome 18 does not complement AT-D cells after microcell-mediated transfer, whereas a normal human chromosome 11 does. We conclude that the AT-D gene is located on chromosome 11q22-23.
Collapse
Affiliation(s)
- C Lambert
- Department of Pathology, Stanford University School of Medicine, CA 94305
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Diatloff-Zito C, Rosselli F, Heddle J, Moustacchi E. Partial complementation of the Fanconi anemia defect upon transfection by heterologous DNA. Phenotypic dissociation of chromosomal and cellular hypersensitivity to DNA cross-linking agents. Hum Genet 1990; 86:151-61. [PMID: 2265827 DOI: 10.1007/bf00197697] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transfectants obtained by mouse DNA-mediated gene transfer in Fanconi anemia (FA) primary fibroblasts from the genetic complementation groups A and B were examined for the frequencies of chromosomal aberrations and cytotoxicity following treatments by cross-linking agents. Cells from group A (FA 150), which is the most sensitive to such agents, are partially corrected for both the chromosomal and cellular hypersensitivity to 8-methoxypsoralen photoaddition. In contrast, after treatment with mitomycin C (MMC), only the chromosomal sensitivity is re-established to a near normal level. The opposite is true for FA group B cells (FA 145), i.e. cell survival to MMC is partially corrected, whereas the frequency of MMC-induced chromosomal aberration remains close to that of the untransfected cells. The partial phenotypic correction of the two end points examined is interpreted as indicating either a gene dosage effect or the necessity of introducing more than one gene type in order to achieve complete recovery of a normal phenotype. The phenotypic dissociation between the clastogenic and cellular hypersensitivity to cross-linking agents may offer the opportunity of isolating separately the responsible gene(s) by conventional rescue techniques.
Collapse
|
17
|
Tanaka K, Miura N, Satokata I, Miyamoto I, Yoshida MC, Satoh Y, Kondo S, Yasui A, Okayama H, Okada Y. Analysis of a human DNA excision repair gene involved in group A xeroderma pigmentosum and containing a zinc-finger domain. Nature 1990; 348:73-6. [PMID: 2234061 DOI: 10.1038/348073a0] [Citation(s) in RCA: 273] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Xeroderma pigmentosum (XP) is an autosomal recessive disease, characterized by a high incidence of sunlight-induced skin cancer. Cells from people with this condition are hypersensitive to ultraviolet because of a defect in DNA repair. There are nine genetic complementation groups of XP, groups A-H and a variant. We have cloned the mouse DNA repair gene that complements the defect of group A, the XPAC gene. Here we report molecular cloning of human and mouse XPAC complementary DNAs. Expression of XPAC cDNA confers ultraviolet-resistance on several group A cell lines, but not on lines of other XP groups. Almost all group A lines tested showed abnormality or absence of XPAC messenger RNAs. These results indicate that a defective XPAC gene causes group A XP. The human and mouse XPAC genes are located on chromosome 9q34.1 and chromosome 4C2, respectively. Human XPAC cDNA encodes a protein of 273 amino acids with a zinc-finger motif.
Collapse
Affiliation(s)
- K Tanaka
- Institute for Molecular and Cellular Biology, Osaka University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Henning KA, Schultz RA, Sekhon GS, Friedberg EC. Gene complementing xeroderma pigmentosum group A cells maps to distal human chromosome 9q. SOMATIC CELL AND MOLECULAR GENETICS 1990; 16:395-400. [PMID: 2218726 DOI: 10.1007/bf01232467] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Phenotypic complementation of xeroderma pigmentosum group A (XP-A) cells by microcell-mediated transfer of a single rearranged neo-tagged human chromosome from a human-mouse somatic cell hybrid designated K3SUB1A9-3 was reported previously. Extended growth of this human-mouse hybrid in culture led to deletion of the small arm of the human chromosome, with concomitant loss of complementing ability when introduced into XP-A cells by microcell-mediated chromosome transfer. Cytogenetic analysis of both hybrids suggests that the complementing locus is on chromosome 9q22.2-q34.3, and Southern blot analysis confirms the presence of distal chromosome 9q sequences.
Collapse
Affiliation(s)
- K A Henning
- Department of Genetics, Stanford University School of Medicine, California 94305
| | | | | | | |
Collapse
|