1
|
Cooper DG, Fassler JS. Med15: Glutamine-Rich Mediator Subunit with Potential for Plasticity. Trends Biochem Sci 2019; 44:737-751. [PMID: 31036407 DOI: 10.1016/j.tibs.2019.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/16/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023]
Abstract
The Mediator complex is required for basal activity of the RNA polymerase (Pol) II transcriptional apparatus and for responsiveness to some activator proteins. Med15, situated in the Mediator tail, plays a role in transmitting regulatory information from distant DNA-bound transcription factors to the transcriptional apparatus poised at promoters. Yeast Med15 and its orthologs share an unusual, glutamine-rich amino acid composition. Here, we discuss this sequence feature and the tendency of polyglutamine tracts to vary in length among strains of Saccharomyces cerevisiae, and we propose that different polyglutamine tract lengths may be adaptive within certain domestication habitats.
Collapse
Affiliation(s)
- David G Cooper
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Jan S Fassler
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
2
|
Efficient production of ethanol from raw starch by a mated diploid Saccharomyces cerevisiae with integrated α-amylase and glucoamylase genes. Enzyme Microb Technol 2009. [DOI: 10.1016/j.enzmictec.2009.01.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Functional conservation of the glutamine-rich domains of yeast Gal11 and human SRC-1 in the transactivation of glucocorticoid receptor Tau 1 in Saccharomyces cerevisiae. Mol Cell Biol 2007; 28:913-25. [PMID: 18070925 DOI: 10.1128/mcb.01140-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast Gal11 protein, a component of the Mediator complex, is required for the transcriptional activation of many class II genes as a physiological target of various activator proteins in vivo. In this study, we identified the yeast (Saccharomyces cerevisiae) Mediator complex as a novel coactivator of the transcriptional activity of the glucocorticoid receptor (GR) tau 1 (tau1), the major transcriptional activation domain of the GR. GR tau1 directly interacted with the Mediator complex in vivo and in vitro in a Gal11 module-dependent manner, and the Gal11p subunit interacted directly with GR tau1. Specific amino acid residues within the glutamine-rich (Qr) domain of Gal11p (residues 116 to 277) were essential for its interaction with GR tau1 and GR tau1 transactivity in yeast, as demonstrated by mutational analysis of the Gal11 Qr domain, which is highly conserved among human steroid receptor coactivator (SRC) proteins. A Gal11p variant, mini-Gal11p, comprised of the Mediator association and Qr domains of Gal11p or chimeric mini-Gal11p containing the Qr domain of SRC-1 could potentiate the GR tau1 transactivity in a gal11Delta yeast strain. These results suggest that there is functional conservation between Qr domains of yeast Gal11p and mammalian SRC proteins as direct targets of activator proteins in yeast.
Collapse
|
4
|
Ono BI, Futase T, Honda W, Yoshida R, Nakano K, Yamamoto T, Nakajima E, Noskov VN, Negishi K, Chen B, Chernoff YO. The Saccharomyces cerevisiae ESU1 gene, which is responsible for enhancement of termination suppression, corresponds to the 3'-terminal half of GAL11. Yeast 2005; 22:895-906. [PMID: 16134092 DOI: 10.1002/yea.1281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A DNA fragment enhancing efficiency of [PSI+]-dependent termination suppressor, sup111, was isolated from a genomic library of Saccharomyces cerevisiae and its function was attributed to an ORF of 1272 bp. This ORF, designated ESU1 (enhancer of termination suppression), corresponded to the 3'-terminal portion of GAL11. Contrasting to ESU1, GAL11 lowered the suppression efficiency of [PSI+] sup111. ESU1 possesses a TATA-like sequence of its own and three ATG codons following it within a distance of about 70 bp and all in the same reading frame as GAL11. A 52.7 kDa protein corresponding in size to the predicted Esu1 protein is detected by western blot analysis using anti-Gal11 antiserum. We therefore conclude that ESU1 is the gene that encodes a polypeptide corresponding to the C-terminal 424 amino acids of Gal11. It was further found that ESU1 increases the level of GAL11 mRNA and probably also of its own mRNA. Moreover, ESU1 increased the cellular level of mRNA transcribed from the leu2-1(UAA) mutant gene, while GAL11 did not. Based on these findings, we propose the following scheme for the events taking place in the [PSI+] sup111 cell that is transformed with an ESU1-bearing plasmid: (a) ESU1 stimulates transcription of leu2-1; (b) leu2-1 mRNA is not effectively degraded because of the possession of sup111, which belongs to the upf group; (c) [PSI+] causes increased mis-termination due to depletion of eRF3; (d) functional Leu2 product is made using leu2-1 mRNA; and (d) suppression of leu2-1 is eventually accomplished.
Collapse
Affiliation(s)
- Bun-ichiro Ono
- Department of Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu 525-8577, Shiga, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Nishizawa M. Negative regulation of transcription by the yeast global transcription factors, Gal11 and Sin4. Yeast 2001; 18:1099-110. [PMID: 11536332 DOI: 10.1002/yea.754] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Gal11 and Sin4 proteins are yeast global transcription factors that regulate transcription of a variety of genes, both positively and negatively. Gal11, in a major part, functions in the activation of transcription, whereas Sin4 has an opposite role, yet they are reported to be present as a complex in the so-called RNA polymerase II holoenzyme. To reveal howthese auxiliary factors participate in switching transcription on and off, a complex formation between Gal11 and Sin4 and its effect on the negative regulation of transcription were studied. Using an artificial promoter that is negatively regulated by Gal11, it was shown that the presence of Sin4 or Pgd1/Hrs1/Med3 was required for Gal11 to repress both basal and activated transcription. Genetic and biochemical studies using a temperature-sensitive Gal11 mutant showed that the amino acid region 866-910 essential for Gal11 function was also important for repression of transcription and a complex formation with Sin4. Analysis with dam methylase accessibility to the promoter region suggested that nucleosome structure may be involved in negative regulation. Based on these results, possible mechanisms by which a mediator subcomplex regulates transcription is discussed.
Collapse
Affiliation(s)
- M Nishizawa
- Department of Microbiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| |
Collapse
|
6
|
Spåhr H, Bève J, Larsson T, Bergström J, Karlsson KA, Gustafsson CM. Purification and characterization of RNA polymerase II holoenzyme from Schizosaccharomyces pombe. J Biol Chem 2000; 275:1351-6. [PMID: 10625684 DOI: 10.1074/jbc.275.2.1351] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have purified the RNA polymerase II holoenzyme from Schizosaccharomyces pombe to near homogeneity. The Mediator complex is considerably smaller than its counterpart in Saccharomyces cerevisiae, containing only nine polypeptides larger than 19 kDa. Five of these Mediator subunits have been identified as the S. pombe homologs to Rgr1, Srb4, Med7, and Nut2 found in S. cerevisiae and the gene product of a previously uncharacterized open reading frame, PMC2, with no clear homologies to any described protein. The presence of Mediator in a S. pombe RNA polymerase II holoenzyme stimulated phosphorylation of the C-terminal domain by TFIIH purified from S. pombe. This stimulation was species-specific, because S. pombe Mediator could not stimulate TFIIH purified from S. cerevisiae. We suggest that the overall structure and mechanism of the Mediator is evolutionary conserved. The subunit composition, however, has evolved to respond properly to physiological signals.
Collapse
Affiliation(s)
- H Spåhr
- Institute of Medical Biochemistry, Göteborg University, P. O. Box 440, 405 30 Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
7
|
Han SJ, Lee YC, Gim BS, Ryu GH, Park SJ, Lane WS, Kim YJ. Activator-specific requirement of yeast mediator proteins for RNA polymerase II transcriptional activation. Mol Cell Biol 1999; 19:979-88. [PMID: 9891034 PMCID: PMC116029 DOI: 10.1128/mcb.19.2.979] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The multisubunit Mediator complex of Saccharomyces cerevisiae is required for most RNA polymerase II (Pol II) transcription. The Mediator complex is composed of two subcomplexes, the Rgr1 and Srb4 subcomplexes, which appear to function in the reception of activator signals and the subsequent modulation of Pol II activity, respectively. In order to determine the precise composition of the Mediator complex and to explore the specific role of each Mediator protein, our goal was to identify all of the Mediator components. To this end, we cloned three previously unidentified Mediator subunits, Med9/Cse2, Med10/Nut2, and Med11, and isolated mutant forms of each of them to analyze their transcriptional defects. Differential display and Northern analyses of mRNAs from wild-type and Mediator mutant cells demonstrated an activator-specific requirement for each Mediator subunit. Med9/Cse2 and Med10/Nut2 were required, respectively, for Bas1/Bas2- and Gcn4-mediated transcription of amino acid biosynthetic genes. Gal11 was required for Gal4- and Rap1-mediated transcriptional activation. Med11 was also required specifically for MFalpha1 transcription. On the other hand, Med6 was required for all of these transcriptional activation processes. These results suggest that distinct Mediator proteins in the Rgr1 subcomplex are required for activator-specific transcriptional activation and that the activation signals mediated by these Mediator proteins converge on Med6 (or the Srb4 subcomplex) to modulate Pol II activity.
Collapse
Affiliation(s)
- S J Han
- Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University College of Medicine, Seoul 135-230, Korea
| | | | | | | | | | | | | |
Collapse
|
8
|
Myers LC, Gustafsson CM, Hayashibara KC, Brown PO, Kornberg RD. Mediator protein mutations that selectively abolish activated transcription. Proc Natl Acad Sci U S A 1999; 96:67-72. [PMID: 9874773 PMCID: PMC15094 DOI: 10.1073/pnas.96.1.67] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/1998] [Indexed: 11/18/2022] Open
Abstract
Deletion of any one of three subunits of the yeast Mediator of transcriptional regulation, Med2, Pgd1 (Hrs1), and Sin4, abolished activation by Gal4-VP16 in vitro. By contrast, other Mediator functions, stimulation of basal transcription and of TFIIH kinase activity, were unaffected. A different but overlapping Mediator subunit dependence was found for activation by Gcn4. The genetic requirements for activation in vivo were closely coincident with those in vitro. A whole genome expression profile of a Deltamed2 strain showed diminished transcription of a subset of inducible genes but only minor effects on "basal" transcription. These findings make an important connection between transcriptional activation in vitro and in vivo, and identify Mediator as a "global" transcriptional coactivator.
Collapse
Affiliation(s)
- L C Myers
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
9
|
Lee YC, Kim YJ. Requirement for a functional interaction between mediator components Med6 and Srb4 in RNA polymerase II transcription. Mol Cell Biol 1998; 18:5364-70. [PMID: 9710620 PMCID: PMC109121 DOI: 10.1128/mcb.18.9.5364] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulated transcription of class II genes of the yeast Saccharomyces cerevisiae requires the diverse functions of mediator complex. In particular, MED6 is essential for activated transcription from many class II promoters, suggesting that it functions as a key player in the relay of activator signals to the basal transcription machinery. To identify the functional relationship between MED6 and other transcriptional regulators, we conducted a genetic screen to isolate a suppressor of a temperature-sensitive (ts) med6 mutation. We identified an SRB4 allele as a dominant and allele-specific suppressor of med6-ts. A single missense mutation in SRB4 can specifically suppress transcriptional defects caused by the med6 ts mutation, indicating a functional interaction between these two mediator subunits in the activation of transcription. Biochemical analysis of mediator subassembly revealed that mediator can be dissociated into two tightly associated subcomplexes. The Med6 and Srb4 proteins are contained in the same subcomplex together with other dominant Srb proteins, consistent with their functional relationship revealed by the genetic study. Our results suggest not only the existence of a specific interaction between Med6 and Srb4 but also the requirement of this interaction in transcriptional regulation of RNA polymerase II holoenzyme.
Collapse
Affiliation(s)
- Y C Lee
- Laboratory of Molecular Genetics, Center for Molecular Medicine, Samsung Biomedical Research Institute, Kangnam-ku, Seoul 135-230, Korea
| | | |
Collapse
|
10
|
Abstract
Transcription initiation by RNA polymerase II (RNA pol II) requires interaction between cis-acting promoter elements and trans-acting factors. The eukaryotic promoter consists of core elements, which include the TATA box and other DNA sequences that define transcription start sites, and regulatory elements, which either enhance or repress transcription in a gene-specific manner. The core promoter is the site for assembly of the transcription preinitiation complex, which includes RNA pol II and the general transcription fctors TBP, TFIIB, TFIIE, TFIIF, and TFIIH. Regulatory elements bind gene-specific factors, which affect the rate of transcription by interacting, either directly or indirectly, with components of the general transcriptional machinery. A third class of transcription factors, termed coactivators, is not required for basal transcription in vitro but often mediates activation by a broad spectrum of activators. Accordingly, coactivators are neither gene-specific nor general transcription factors, although gene-specific coactivators have been described in metazoan systems. Transcriptional repressors include both gene-specific and general factors. Similar to coactivators, general transcriptional repressors affect the expression of a broad spectrum of genes yet do not repress all genes. General repressors either act through the core transcriptional machinery or are histone related and presumably affect chromatin function. This review focuses on the global effectors of RNA polymerase II transcription in yeast, including the general transcription factors, the coactivators, and the general repressors. Emphasis is placed on the role that yeast genetics has played in identifying these factors and their associated functions.
Collapse
Affiliation(s)
- M Hampsey
- Department of Biochemistry, Division of Nucleic Acids Enzymology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854-5635, USA.
| |
Collapse
|
11
|
Carlson M. Genetics of transcriptional regulation in yeast: connections to the RNA polymerase II CTD. Annu Rev Cell Dev Biol 1998; 13:1-23. [PMID: 9442866 DOI: 10.1146/annurev.cellbio.13.1.1] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transcriptional regulation is important in all eukaryotic organisms for cell growth, development, and responses to environmental change. Saccharomyces cerevisiae, or bakers' yeast, has provided a powerful system for genetic analysis of transcriptional regulation, and findings from the study of this model system have proven broadly applicable to higher organisms. Transcriptional regulation requires the interactions of regulatory proteins with various components of the transcription machinery. Recently, genetic analysis of a diverse set of transcriptional regulatory responses has converged with studies of the function of the RNA polymerase II carboxy-terminal domain (CTD) to reveal regulatory roles for proteins associated with the CTD. These proteins, designated Srb/mediator proteins, are broadly involved in both positive and negative regulatory responses in vivo. This review focuses on the connections between genetic analysis of transcriptional regulation and the functions of the Srb/mediator proteins associated with the RNA polymerase II CTD.
Collapse
Affiliation(s)
- M Carlson
- Department of Genetics, Columbia University, New York, New York 10032, USA.
| |
Collapse
|
12
|
Lee YC, Min S, Gim BS, Kim YJ. A transcriptional mediator protein that is required for activation of many RNA polymerase II promoters and is conserved from yeast to humans. Mol Cell Biol 1997; 17:4622-32. [PMID: 9234719 PMCID: PMC232315 DOI: 10.1128/mcb.17.8.4622] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A temperature-sensitive mutation was obtained in Med6p, a component of the mediator complex from the yeast Saccharomyces cerevisiae. The mediator complex has been shown to enable transcriptional activation in vitro. This mutation in Med6p abolished activation of transcription from four of five inducible promoters tested in vivo. There was no effect, however, on uninduced transcription, transcription of constitutively expressed genes, or transcription by RNA polymerases I and III. Mediator-RNA polymerase II complex isolated from the mutant yeast strain was temperature sensitive for transcriptional activation in a reconstituted in vitro system due to a defect in initiation complex formation. A database search revealed the existence of MED6-related genes in humans and Caenorhabditis elegans, suggesting that the role of mediator in transcriptional activation is conserved throughout the evolution.
Collapse
Affiliation(s)
- Y C Lee
- Center for Basic Research, Samsung Biomedical Research Institute, Kangnam-ku, Seoul, Korea
| | | | | | | |
Collapse
|
13
|
Abstract
Transcription of Saccharomyces cerevisiae Ty2-917 retrotransposon depends on regulatory elements both upstream and downstream of the transcription initiation site. An upstream activation sequence (UAS) and a downstream enhancer stimulate transcription synergistically. Here we show that activation by both of these sites depends on the GCR1 product, a transcription factor which also regulates the genes encoding yeast glycolytic enzymes. Eliminating GCR1 causes a 100-fold decrease in transcription of Ty2-917. Activation by the isolated Ty2-917 UAS also strongly depends on GCR1. Unexpectedly, GCR1-dependent activation by the Ty2-917 enhancer is strongly position-dependent. Activation by the enhancer in its normal position within the transcription unit depended strongly on GCR1, but eliminating GCR1 reduced activation only three-fold when the enhancer was moved upstream of the transcribed region. Gel mobility shift and DNaseI protection assays indicated that GCR1 binds specifically to multiple sites within the Ty2-917 UAS and enhancer regions.
Collapse
Affiliation(s)
- S Türkel
- Department of Biology, Faculty of Arts & Sciences, Abant izzet Baysal University, Bolu, Turkey
| | | | | |
Collapse
|
14
|
Pemberton LF, Blobel G. Characterization of the Wtm proteins, a novel family of Saccharomyces cerevisiae transcriptional modulators with roles in meiotic regulation and silencing. Mol Cell Biol 1997; 17:4830-41. [PMID: 9234739 PMCID: PMC232335 DOI: 10.1128/mcb.17.8.4830] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Transcription is regulated by the complex interplay of repressors and activators. Much of this regulation is carried out by, in addition to gene-specific factors, complexes of more general transcriptional modulators. Here we present the characterization of a novel family of transcriptional regulators in yeast. Wtm1p (WD repeat-containing transcriptional modulator) was identified as a protein present in a large nuclear complex. This protein has two homologs, Wtm2p and Wtm3p, which probably arose by gene duplications. Deletion of these genes affects transcriptional repression at several loci, including derepression of IME2, a meiotic gene normally repressed in haploid cells. Targeting of these proteins to DNA resulted in a dramatic repression of activated transcription. In common with a mutation in the histone deacetylase RPD3, wtm mutants showed increased repression at the silent mating-type locus, HMR, and at telomeres. Although all three Wtm proteins could act as transcriptional repressors, Wtm3p, which is the least homologous, appeared to have functions separate from those of the other two. Wtm3p did not appear to be complexed with the other two proteins, was essential for IME2 repression, and could not efficiently repress transcription in the absence of the other Wtm proteins. These data suggested that Wtm1p and Wtm2p are repressors and that Wtm3p has different effects on transcription at different loci.
Collapse
Affiliation(s)
- L F Pemberton
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021, USA.
| | | |
Collapse
|
15
|
Ding WV, Johnston SA. The DNA binding and activation domains of Gal4p are sufficient for conveying its regulatory signals. Mol Cell Biol 1997; 17:2538-49. [PMID: 9111323 PMCID: PMC232103 DOI: 10.1128/mcb.17.5.2538] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The transcriptional activation function of the Saccharomyces cerevisiae activator Gal4p is known to rely on a DNA binding activity at its amino terminus and an activation domain at its carboxy terminus. Although both domains are required for activation, truncated forms of Gal4p containing only these domains activate poorly in vivo. Also, mutations in an internal conserved region of Gal4p inactivate the protein, suggesting that this internal region has some function critical to the activity of Gal4p. We have addressed the question of what is the minimal form of Gal4 protein that can perform all of its known functions. A form with an internal deletion of the internal conserved domain of Gal4p is transcriptionally inactive, allowing selection for suppressors. All suppressors isolated were intragenic alterations that had further amino acid deletions (miniGAL4s). Characterization of the most active miniGal4 proteins demonstrated that they possess all of the known functions of full-length Gal4p, including glucose repression, galactose induction, response to deletions of gal11 or gal6, and interactions with other proteins such as Ga180p, Sug1p, and TATA binding protein. Analysis of the transcriptional activities, protein levels, and DNA binding abilities of these miniGal4ps and a series of defined internal mutants compared to those of the full-length Gal4p indicates that the DNA binding and activation domains are necessary and sufficient qualitatively for all of these known functions of Gal4p. Our observations imply that the internal region of Gal4 protein may serve as a spacer to augment transcription and/or may be involved in intramolecular or Gal4p-Gal4p interactions.
Collapse
Affiliation(s)
- W V Ding
- Department of Internal Medicine, University of Texas-Southwestern Medical Center, Dallas 75235-8573, USA
| | | |
Collapse
|
16
|
Künzler M, Springer C, Braus GH. The transcriptional apparatus required for mRNA encoding genes in the yeast Saccharomyces cerevisiae emerges from a jigsaw puzzle of transcription factors. FEMS Microbiol Rev 1996; 19:117-36. [PMID: 8988567 DOI: 10.1111/j.1574-6976.1996.tb00256.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The number of identified yeast factors involved in transcription has dramatically increased in recent years and the understanding of the interplay between the different factors has become more and more puzzling. Transcription initiation at the core promoter of mRNA encoding genes consisting of upstream, TATA and initiator elements requires an approximately ribosome-sized complex of more than 50 polypeptides. The recent identification and isolation of an RNA polymerase holoenzyme which seems to be preassembled before interacting with a promoter allowed a better understanding of the roles, assignments and interplays of the various constituents of the basal transcription machinery. Recruitment of this complex to the promoter is achieved by numerous interactions with a variety of DNA-bound proteins. These interactions can be direct or mediated by additional adaptor proteins. Other proteins negatively affect transcription by interrupting the recruitment process through protein-protein or protein-DNA interactions. Some basic features of cis-acting elements, the transcriptional apparatus and various trans-acting factors involved in the initiation of mRNA synthesis in yeast are summarized.
Collapse
Affiliation(s)
- M Künzler
- Institute of Microbiology, Biochemistry and Genetics, Friedrich-Alexander-University, Erlangen, Germany
| | | | | |
Collapse
|
17
|
Sadowski I, Costa C, Dhanawansa R. Phosphorylation of Ga14p at a single C-terminal residue is necessary for galactose-inducible transcription. Mol Cell Biol 1996; 16:4879-87. [PMID: 8756647 PMCID: PMC231490 DOI: 10.1128/mcb.16.9.4879] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Gal4p regulates expression of genes necessary for galactose catabolism in Saccharomyces cerevisiae. We have previously shown that phosphorylation of Gal4p requires both its DNA binding and transcriptional-activation functions and have suggested that phosphorylation occurs as a consequence of interaction with general transcription factors. In this study, we show that phosphorylation occurs rapidly on a limited fraction of overexpressed Gal4p present in a sodium dodecyl sulfate-extractable subcellular fraction while a significant fraction remains stably unphosphorylated. Taken together with our previous observations, we conclude that Gal4p is phosphorylated only if it becomes localized to the nucleus and is capable of both DNA binding and transcriptional activation. We demonstrate that Gal4p is multiply phosphorylated at both the C and N termini, and we identify the precise locations of three sites of phosphorylation at serines 691, 696, and 699. Of these sites, only serine 699 must be phosphorylated for galactose-inducible transcription to occur. Mutation of S-699 to alanine significantly impairs GAL induction by galactose in GAL80+ cells but does not affect transcriptional activation by Gal4p in gal80- cells. In gal80- cells, Gal4p phosphorylation, including that of serine 699, is stimulated by the presence of both galactose and glucose, indicating that phosphorylation at this site is not specifically activated by galactose. Serine 699 phosphorylation requires Gal4p's DNA binding function and is influenced by the function of the RNA polymerase II holoenzyme component Gal11p. These results suggest that a phosphorylation on Gal4p, likely resulting from interaction with the holoenzyme, modulates the induction process by regulating interaction between Gal4p and Gal80p.
Collapse
Affiliation(s)
- I Sadowski
- Department of Biochemistry, University of British Columbia, Vancover, Canada
| | | | | |
Collapse
|
18
|
Shi X, Finkelstein A, Wolf AJ, Wade PA, Burton ZF, Jaehning JA. Paf1p, an RNA polymerase II-associated factor in Saccharomyces cerevisiae, may have both positive and negative roles in transcription. Mol Cell Biol 1996; 16:669-76. [PMID: 8552095 PMCID: PMC231046 DOI: 10.1128/mcb.16.2.669] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Regulated transcription initiation requires, in addition to RNA polymerase II and the general transcription factors, accessory factors termed mediators or adapters. We have used affinity chromatography to identify a collection of factors that associate with Saccharomyces cerevisiae RNA polymerase II (P. A. Wade, W. Werel, R. C. Fentzke, N. E. Thompson, J. F. Leykam, R. R. Burgess, J. A. Jaehning, and Z. F. Burton, submitted for publication). Here we report identification and characterization of a gene encoding one of these factors, PAF1 (for RNA polymerase-associated factor 1). PAF1 encodes a novel, highly charged protein of 445 amino acids. Disruption of PAF1 in S. cerevisiae leads to pleiotropic phenotypic traits, including slow growth, temperature sensitivity, and abnormal cell morphology. Consistent with a possible role in transcription, Paf1p is localized to the nucleus. By comparing the abundances of many yeast transcripts in isogenic wild-type and paf1 mutant strains, we have identified genes whose expression is affected by PAF1. In particular, disruption of PAF1 decreases the induction of the galactose-regulated genes three- to fivefold. In contrast, the transcript level of MAK16, an essential gene involved in cell cycle regulation, is greatly increased in the paf1 mutant strain. Paf1p may therefore be required for both positive and negative regulation of subsets of yeast genes. Like Paf1p, the GAL11 gene product is found associated with RNA polymerase II and is required for regulated expression of many yeast genes including those controlled by galactose. We have found that a gal11 paf1 double mutant has a much more severe growth defect than either of the single mutants, indicating that these two proteins may function in parallel pathways to communicate signals from regulatory factors to RNA polymerase II.
Collapse
Affiliation(s)
- X Shi
- Department of Biochemistry, Biophysics and Genetics, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | | | |
Collapse
|
19
|
Meisels E, Gileadi O, Corden JL. Partial truncation of the yeast RNA polymerase II carboxyl-terminal domain preferentially reduces expression of glycolytic genes. J Biol Chem 1995; 270:31255-61. [PMID: 8537392 DOI: 10.1074/jbc.270.52.31255] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The largest subunit of RNA polymerase II contains an essential carboxyl-terminal domain (CTD) that consists of highly conserved heptapeptide repeats with the consensus sequence Tyr-Ser-Pro-Thr-Ser-Pro-Ser. Yeast cells with a partially truncated CTD grow slowly, are temperature- and cold-sensitive, and are unable to fully activate transcription of some genes. Screening a yeast wild-type cDNA library by means of comparative hybridization we find that CTD truncation preferentially reduces transcription of genes encoding glycolytic enzymes. Using a newly developed dual reporter assay we demonstrate that sensitivity to CTD truncation is conferred by the glycolytic gene promoters. Expression driven by glycolytic gene promoters is reduced, on average, about 3-fold in strains with the shortest CTD growing on either fermentable or nonfermentable carbon sources. Sensitivity to CTD truncation is particularly acute for the constitutively expressed ENO1 gene, which is reduced 10-fold in a strain with only eight CTD repeats. The sensitivity of constitutive ENO1 expression argues that CTD truncation can cause defects in uninduced as well as induced transcription.
Collapse
Affiliation(s)
- E Meisels
- Howard Hughes Medical Institute, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
20
|
Affiliation(s)
- A J Berk
- Department of Microbiology and Molecular Genetics, University of California, Los Angeles 90095-1570, USA
| |
Collapse
|
21
|
Svetlov VV, Cooper TG. Review: compilation and characteristics of dedicated transcription factors in Saccharomyces cerevisiae. Yeast 1995; 11:1439-84. [PMID: 8750235 DOI: 10.1002/yea.320111502] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- V V Svetlov
- Department of Microbiology and Immunology, University of Tennessee, Memphis 36163, USA
| | | |
Collapse
|
22
|
Sussel L, Vannier D, Shore D. Suppressors of defective silencing in yeast: effects on transcriptional repression at the HMR locus, cell growth and telomere structure. Genetics 1995; 141:873-88. [PMID: 8582633 PMCID: PMC1206851 DOI: 10.1093/genetics/141.3.873] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
To identify factors that affect transcriptional silencing at the HMR mating-type locus in yeast, we characterized a set of extragenic suppressor mutations that restore metastable repression in cells containing both a mutant silencer-binding protein (rap1s) and a mutated silencer element (hmr delta A). A total of 57 suppressors comprising 21 different complementation groups was identified. This report describes a detailed genetic analysis of these suppressors of defective silencing (sds) mutants. The sds mutants fall into several distinct categories based on secondary phenotypes, such as their ability to suppress the rap1s telomere lengthening phenotype, general effects on telomere length, temperature-dependent growth defects, and the ability to bypass the requirement for cis regulatory elements at the HMR-E silencer. One particular mutant, sds4-1, strongly suppresses the rap1s silencing defect, restores telomeres to nearly wild-type length, and displays a severe growth defect at all temperatures. SDS4 mutations also suppress the silencing defect caused by mutations in the RAP1-interacting factor RIF1. We cloned the SDS4 gene and show that it is identical to GAL11(SPT13), which encodes a component of a protein complex that mediates transcriptional activation. Possible mechanism(s) of suppression by sds4 and the other sds mutations is discussed.
Collapse
Affiliation(s)
- L Sussel
- Department of Microbiology, College of Physicians & Surgeons of Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
23
|
Abstract
A major goal in understanding eukaryotic gene regulation is to identify the target(s) of transcriptional activators. Efforts to date have pointed to various candidates. Here we show that a 34-amino-acid peptide from the carboxy terminus of GAL4 is a strong activation domain (AD) and retains at least four proteins from a crude extract: the negative regulator GAL80, the TATA-binding protein (TBP), and the putative coactivators SUG1 and ADA2. TFIIB was not retained. Concentrating on TBP, we demonstrate in in vitro binding assays that its interaction with the AD is specific, direct, and salt stable up to at least 1.6 M NaCl. The effects of mutations in the GAL4 AD on transcriptional activation in vivo correlate with their affinities to TBP. A point mutation (L114K) in yeast TBP, which has been shown to compromise the mutant protein in both binding to the VP16 AD domain and activated transcription in vitro, reduces the affinity to the GAL4 AD to the same degree as to the VP16 AD. This suggests that these two prototypic activators make similar contacts with TBP.
Collapse
Affiliation(s)
- K Melcher
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas 75235-8573, USA
| | | |
Collapse
|
24
|
Hengartner CJ, Thompson CM, Zhang J, Chao DM, Liao SM, Koleske AJ, Okamura S, Young RA. Association of an activator with an RNA polymerase II holoenzyme. Genes Dev 1995; 9:897-910. [PMID: 7774808 DOI: 10.1101/gad.9.8.897] [Citation(s) in RCA: 192] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
RNA polymerase II holoenzymes have been described that consist of RNA polymerase II, a subset of general transcription factors, and four SRB proteins. The SRB proteins, which were identified through a selection for genes involved in transcription initiation by RNA polymerase II in vivo, are a hallmark of the holoenzyme. We report here the isolation and characterization of additional SRB genes. We show that the products of all nine SRB genes identified thus far are components of the RNA polymerase II holoenzyme and are associated with a holoenzyme subcomplex termed the mediator of activation. The holoenzyme is capable of responding to a transcriptional activator, suggesting a model in which activators function, in part, through direct interactions with the holoenzyme. Immunoprecipitation experiments with anti-SRB5 antibodies demonstrate that the acidic activating domain of VP16 specifically binds to the holoenzyme. Furthermore, the holoenzyme and the mediator subcomplex bind to a VP16 affinity column. These results provide a more complete description of the RNA polymerase II holoenzyme and suggest that this form of the transcription apparatus can be recruited to promoters via direct interactions with activators.
Collapse
Affiliation(s)
- C J Hengartner
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Georgakopoulos T, Gounalaki N, Thireos G. Genetic evidence for the interaction of the yeast transcriptional co-activator proteins GCN5 and ADA2. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:723-8. [PMID: 7898440 DOI: 10.1007/bf00290718] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The GCN5 and ADA2 proteins are required for the activation function of a number of transcriptional activators in the yeast Saccharomyces cerevisiae. By using appropriate LexA fusion proteins we demonstrated that both proteins are required for part of the function of the GCN4, GAL4 and the VP16 transcriptional activation domains. Analysis of a gcn5 ada2 double disruption mutant did not reveal any additive effects, suggesting that the two proteins act in the same pathway. The GCN5 and ADA2 proteins can each activate transcription when directed to the promoter region of a reporter gene, but only in the presence of a wild-type ADA2 or GCN5 gene, respectively. The activation capacity is enhanced when the corresponding endogenous gene copy is disrupted. Taken together, these genetic data suggest that the two proteins interact and define one complex that mediates transcriptional activation. The function of this complex requires the bromodomain region of the GCN5 protein.
Collapse
Affiliation(s)
- T Georgakopoulos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | | | | |
Collapse
|
26
|
Swaffield JC, Melcher K, Johnston SA. A highly conserved ATPase protein as a mediator between acidic activation domains and the TATA-binding protein. Nature 1995; 374:88-91. [PMID: 7870180 DOI: 10.1038/374088a0] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Biochemical and genetic studies suggest the existence of mediators that work between the activation domains (ADs) of regulatory proteins and the basic transcriptional machinery. We have previously shown genetically that Sug1 interacts with the AD of the yeast activator Ga14. Here we provide evidence that the Sug1 protein of yeast binds directly to the ADs of Ga14 and the viral activator, VP16. Sug1 protein is associated with the TATA-binding protein in vivo and binds to it in vitro, consistent with a mediator function. We also demonstrate that Sug1 is not a component of the 26S proteasome, contrary to previous reports. Sug1 is a member of a large, highly conserved family of ATPases, implying a role for ATP hydrolysis in the activation of transcription.
Collapse
Affiliation(s)
- J C Swaffield
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas 75325-8573
| | | | | |
Collapse
|
27
|
|
28
|
Nishizawa M, Taga S, Matsubara A. Positive and negative transcriptional regulation by the yeast GAL11 protein depends on the structure of the promoter and a combination of cis elements. MOLECULAR & GENERAL GENETICS : MGG 1994; 245:301-12. [PMID: 7816040 DOI: 10.1007/bf00290110] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
GAL11 was first identified as a gene required for full expression of some galactose-inducible genes that are activated by GAL4, and it was subsequently shown to be necessary for full expression of another set of genes activated by RAP1/GRF1/TUF. Genetic analysis suggests that GAL11 functions as a coactivator, mediating the interaction of sequence-specific activators with basal transcription factors. To test this hypothesis, we first tried to identify functional domains by deletion analysis and found that the 866-910 region is indispensable for function. Using reporters bearing various upstream activating sequences (UAS) and different core promoter structures, we show that the involvement of GAL11 in transcriptional activation varies with the target promoter and the particular combination of cis elements. Gel electrophoresis in the presence of chloroquine shows that GAL11 affects the chromatin structure of a circular plasmid. Based on these findings, the role of GAL11 in regulation of transcription, including an alteration in chromatin structure, is discussed.
Collapse
Affiliation(s)
- M Nishizawa
- Department of Microbiology, Keio University School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|
29
|
Moretti P, Freeman K, Coodly L, Shore D. Evidence that a complex of SIR proteins interacts with the silencer and telomere-binding protein RAP1. Genes Dev 1994; 8:2257-69. [PMID: 7958893 DOI: 10.1101/gad.8.19.2257] [Citation(s) in RCA: 435] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The maintenance of transcriptional silencing at HM mating-type loci and telomeres in yeast requires the SIR2, SIR3, and SIR4 proteins, none of which appear to be DNA-binding proteins. Here we show that SIR3 and SIR4 interact with a carboxy-terminal domain of the silencer, telomere, and UAS-binding protein RAP1. We identified SIR3 and SIR4 in a two-hybrid screen for RAP1-interacting factors and showed that SIR3 interacts both with itself and with SIR4. The interaction between RAP1 and SIR3 can be observed in vitro in the absence of other yeast proteins. Consistent with the notion that native SIR proteins interact with the RAP1 carboxyl terminus, we show that mutation of the endogenous SIR3 and SIR4 genes increases transcriptional activation by LexA/RAP1 hybrids. To test the importance of the RAP1-SIR3 interaction for silencing, we identified mutations in the RAP1 carboxyl terminus that either diminish or abolish this interaction. When introduced into the native RAP1 protein, these mutations cause corresponding defects in silencing at both HMR and telomeres. We propose that RAP1 acts in the initiation of transcriptional silencing by recruiting a complex of SIR proteins to the chromosome via protein-protein interactions. These data are consistent with a model in which SIR3 and SIR4 play a structural role in the maintenance of silent chromatin and indicate that their action is initiated at the silencer itself.
Collapse
Affiliation(s)
- P Moretti
- Department of Microbiology, Columbia University College of Physicians & Surgeons, New York, New York 10032
| | | | | | | |
Collapse
|
30
|
Sakurai H, Ohishi T, Amakasu H, Fukasawa T. Yeast GAL11 protein stimulates basal transcription in a gene-specific manner by a mechanism distinct from that by DNA-bound activators. FEBS Lett 1994; 351:176-80. [PMID: 8082760 DOI: 10.1016/0014-5793(94)80098-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The GAL11 gene encodes an auxiliary transcription factor required for full expression of many, if not all, genes of the yeast Saccharomyces cerevisiae. We have recently shown that GAL11-encoded protein (Gal11p) enhances basal transcription from the CYC1 promoter in a cell-free transcription system [(1993) Proc. Natl. Acad. Sci. USA 90, 8382-8386]. Here we indicate that Gal11p stimulates basal transcription in a gene-specific manner in vitro. We further suggest that the mechanism underlying the transcriptional stimulation by Gal11p is distinct from that by DNA-bound activators, since Gal11p stimulated transcription in a reaction system where activators were unable to enhance transcription due to the lack of intermediary factors.
Collapse
Affiliation(s)
- H Sakurai
- Laboratory of Molecular Genetics, Keio University School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|
31
|
Ehrenhofer-Murray AE, Würgler FE, Sengstag C. The Saccharomyces cerevisiae SGE1 gene product: a novel drug-resistance protein within the major facilitator superfamily. MOLECULAR & GENERAL GENETICS : MGG 1994; 244:287-94. [PMID: 8058039 DOI: 10.1007/bf00285456] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Several pleiotropic drug sensitivities have been described in yeast. Some involve the loss of putative drug efflux pumps analogous to mammalian P-glycoproteins, others are caused by defects in sterol synthesis resulting in higher plasma membrane permeability. We have constructed a Saccharomyces cerevisiae strain that exhibits a strong crystal violet-sensitive phenotype. By selecting cells of the supersensitive strain for normal sensitivity after transformation with a wild-type yeast genomic library, a complementing 10-kb DNA fragment was isolated, a 3.4-kb subfragment of which was sufficient for complementation. DNA sequence analysis revealed that the complementing fragment comprised the recently sequenced SGE1 gene, a partial multicopy suppressor of gal11 mutations. The supersensitive strain was found to be a sge1 null mutant. Overexpression of SGE1 on a high-copy-number plasmid increased the resistance of the supersensitive strain. Disruption of SGE1 in a wild-type strain increased the sensitivity of the strain. These features of the SGE1 phenotype, as well as sequence homologies of SGE1 at the amino acid level, confirm that the Sge1 protein is a member of the drug-resistance protein family within the major facilitator superfamily (MFS).
Collapse
|
32
|
The yeast GAL11 protein is involved in regulation of the structure and the position effect of telomeres. Mol Cell Biol 1994. [PMID: 8196622 DOI: 10.1128/mcb.14.6.3791] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GAL11 is an auxiliary transcription factor that functions either positively or negatively, depending on the structure of the target promoters and the combination of DNA-bound activators. In this report, we demonstrate that a gal11 delta mutation caused a decrease in the length of the telomere C1-3A tract, a derepression of URA3 when it is placed next to telomere, and an increase in accessibility of the telomeric region to dam methylase, indicating that GAL11 is involved in the regulation of the structure and the position effect of telomeres. The defective position effect in a gal11 delta strain was suppressed by overproduction of SIR3, whereas overexpression of GAL11 failed to restore the telomere position effect in a sir3 delta strain. Hyperproduced GAL11 could partially suppress the defect in silencing at HMR in a sir1 delta mutant but not that in a sir3 delta mutant, suggesting that GAL11 can replace SIR1 function partly in the silencing of HMR. Overproduced SIR3 also could restore silencing at HMR in sir1 delta cells. In contrast, SIR1 in a multicopy plasmid relieved the telomere position effect, especially in a gal11 delta mutant. Since chromatin structure is thought to play a major role in the silencing at both the HM loci and telomeres, GAL11 is likely to participate in the regional regulation of transcription by the HM loci and telomeres, GAL11 is likely to participate in the regional regulation of transcription by modulating the chromatin structure.
Collapse
|
33
|
Graham IR, Chambers A. A Reb1p-binding site is required for efficient activation of the yeast RAP1 gene, but multiple binding sites for Rap1p are not essential. Mol Microbiol 1994; 12:931-40. [PMID: 7934900 DOI: 10.1111/j.1365-2958.1994.tb01081.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Saccharomyces cerevisiae RAP1 protein (Rap1p) is a key multifunctional transcription factor. Using gel retardation analysis, four binding sites for Rap1p have been identified within the promoter of the RAP1 gene. These sites are located downstream of a binding site for the transcription factor Reb1p. The Reb1p site and an associated AT-rich region are important for transcriptional activation, but deletion of three of the Rap1p-binding sites had little effect on promoter activity. The activity of the RAP1 promoter has been analysed in a yeast strain (YDS410) that contains a temperature-sensitive mutation in the RAP1 gene. This mutation renders the DNA-binding activity of Rap1p temperature dependent. When YDS410 was grown at a semi-permissive temperature (30 degrees C), the activity of the RAP1 promoter increased by approximately 170%, compared with the same strain grown at the permissive temperature (25 degrees C). A RAP1 promoter in which three of the four Rap1p-binding sites had been deleted, showed only a small increase in activity in the same experiment. These data confirm that Rap1p is not required for activation of the RAP1 gene, and suggest a role for Rap1p in negative autoregulation.
Collapse
Affiliation(s)
- I R Graham
- Department of Genetics, University of Nottingham, Queen's Medical Centre, UK
| | | |
Collapse
|
34
|
Suzuki Y, Nishizawa M. The yeast GAL11 protein is involved in regulation of the structure and the position effect of telomeres. Mol Cell Biol 1994; 14:3791-9. [PMID: 8196622 PMCID: PMC358746 DOI: 10.1128/mcb.14.6.3791-3799.1994] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
GAL11 is an auxiliary transcription factor that functions either positively or negatively, depending on the structure of the target promoters and the combination of DNA-bound activators. In this report, we demonstrate that a gal11 delta mutation caused a decrease in the length of the telomere C1-3A tract, a derepression of URA3 when it is placed next to telomere, and an increase in accessibility of the telomeric region to dam methylase, indicating that GAL11 is involved in the regulation of the structure and the position effect of telomeres. The defective position effect in a gal11 delta strain was suppressed by overproduction of SIR3, whereas overexpression of GAL11 failed to restore the telomere position effect in a sir3 delta strain. Hyperproduced GAL11 could partially suppress the defect in silencing at HMR in a sir1 delta mutant but not that in a sir3 delta mutant, suggesting that GAL11 can replace SIR1 function partly in the silencing of HMR. Overproduced SIR3 also could restore silencing at HMR in sir1 delta cells. In contrast, SIR1 in a multicopy plasmid relieved the telomere position effect, especially in a gal11 delta mutant. Since chromatin structure is thought to play a major role in the silencing at both the HM loci and telomeres, GAL11 is likely to participate in the regional regulation of transcription by the HM loci and telomeres, GAL11 is likely to participate in the regional regulation of transcription by modulating the chromatin structure.
Collapse
Affiliation(s)
- Y Suzuki
- Department of Microbiology, Keio University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
35
|
Peterson CL, Dingwall A, Scott MP. Five SWI/SNF gene products are components of a large multisubunit complex required for transcriptional enhancement. Proc Natl Acad Sci U S A 1994; 91:2905-8. [PMID: 8159677 PMCID: PMC43482 DOI: 10.1073/pnas.91.8.2905] [Citation(s) in RCA: 316] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Saccharomyces cerevisiae SWI1, SWI2 (SNF2), SWI3, SNF5, and SNF6 gene products play a crucial role in the regulation of transcription. We provide here direct biochemical evidence that all five SWI/SNF polypeptides are components of a large multisubunit complex. These five polypeptides coelute from a gel-filtration column with an apparent molecular mass of approximately 2 MDa. The five SWI/SNF polypeptides do not copurify when extracts are prepared from swi- or snf- mutants. We show that SWI/SNF polypeptides also remain associated during an affinity-chromatography step followed by gel filtration. Assembly of the SWI/SNF complex is not disrupted by a mutation in the putative APT-binding site of SWI2, although this mutation eliminates SWI2 function.
Collapse
Affiliation(s)
- C L Peterson
- Program in Molecular Medicine, University of Massachussetts Medical Center, Worcester 01605
| | | | | |
Collapse
|
36
|
Stanway CA, Gibbs JM, Kearsey SE, López MC, Baker HV. The yeast co-activator GAL11 positively influences transcription of the phosphoglycerate kinase gene, but only when RAP1 is bound to its upstream activation sequence. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:207-14. [PMID: 8177217 DOI: 10.1007/bf00280318] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Transcription of the yeast phosphoglycerate kinase gene (PGK) is activated by an array of nuclear factors including the multifunctional protein RAP1. We have demonstrated that the transcriptional co-activator GAL11, which was identified as an auxiliary factor to GAL4 and which is believed to interact with the zinc finger of the trans-activator, positively influences the level of PGK transcription on both fermentable and non-fermentable carbon sources. This positive effect is only observed when the RAP1 site in the upstream activation sequence (UAS) is present, implying that GAL11 acts through RAP1. Expression of the RAP1 gene is not reduced in the gal11 background, and in vivo footprinting shows that GAL11 does not influence RAP1 DNA-binding activity. Therefore the effect of GAL11 on PGK transcription must be mediated at the PGK UAS, presumably as part of the activation complex. It has been proposed that RAP1 may act as a facilitator of GCR1 binding at the PGK UAS and therefore it is conceivable that the target for GAL11 may in fact be GCR1. A further implication of this study is that GAL11 can interact with proteins such as RAP1 or GCR1 that are apparently structurally dissimilar from GAL4 and other zinc finger DNA-binding proteins.
Collapse
Affiliation(s)
- C A Stanway
- Department of Plant Sciences, University of Oxford, UK
| | | | | | | | | |
Collapse
|
37
|
Hohmann S. Characterisation of PDC2, a gene necessary for high level expression of pyruvate decarboxylase structural genes in Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1993; 241:657-66. [PMID: 8264540 DOI: 10.1007/bf00279908] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The regulatory gene PDC2 was identified in a screen for mutations affecting pyruvate decarboxylase activity in yeast. I have cloned and sequenced this gene. The predicted protein of 925 amino acids has no homology to any sequence in the databases. However, the protein sequence is rich in asparagine and serine residues, as is often found for transcriptional regulators. The PDC2 deletion mutant exhibits a phenotype very similar to, but more severe than that of the point mutant: a strongly reduced pyruvate decarboxylase specific activity, slow, respiration-dependent growth on glucose, and accumulation of pyruvate. The activity of other glycolytic enzymes seems to be unaffected by the pdc2 delta mutation. Synthesis of pyruvate decarboxylase is regulated by PDC2 at the transcriptional level. Expression of the major structural gene for pyruvate decarboxylase, PDC1, is strongly reduced in pdc2 delta mutants. Transcription of the generally more weakly expressed PDC5 gene appears to be entirely abolished. However, glucose induction of pyruvate decarboxylase synthesis is unaffected. Thus, PDC2 is either important for a high basal level of PDC gene expression or it plays a positive role in the autoregulation that controls expression of PDC1 and PDC5.
Collapse
Affiliation(s)
- S Hohmann
- Laboratorium voor Moleculaire Celbiologie, Katholieke Universiteit Leuven, Flanders, Belgium
| |
Collapse
|
38
|
How do “Zn2 cys6” proteins distinguish between similar upstream activation sites? Comparison of the DNA-binding specificity of the GAL4 protein in vitro and in vivo. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74522-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
39
|
Sakurai H, Hiraoka Y, Fukasawa T. Yeast GAL11 protein is a distinctive type transcription factor that enhances basal transcription in vitro. Proc Natl Acad Sci U S A 1993; 90:8382-6. [PMID: 8378310 PMCID: PMC47360 DOI: 10.1073/pnas.90.18.8382] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The yeast auxiliary transcription factor GAL11, a candidate for the coactivator, was partially purified from yeast cells, and its function was characterized in a cell-free transcription system. The partially purified GAL11 protein stimulated basal transcription from the CYC1 core promoter by a factor of 4-5 at the step of preinitiation complex formation. GAL11 protein also enhanced transcription activated by general regulatory factor 1, GAL4-AH, or GAL4-VP16 to the same extent as the basal transcription. Therefore, the apparent potentiation of the activators by GAL11 was attributable to the stimulation of basal transcription. The wild-type GAL11 protein (but not a mutant-type protein) produced in bacteria stimulated transcription as effectively as GAL11 from yeast. These results suggest that GAL11 functions as a positive cofactor of basal and activator-induced transcription in a cell-free transcription system.
Collapse
Affiliation(s)
- H Sakurai
- Laboratory of Molecular Genetics, Keio University School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|
40
|
Tu J, Vallier LG, Carlson M. Molecular and genetic analysis of the SNF7 gene in Saccharomyces cerevisiae. Genetics 1993; 135:17-23. [PMID: 8224817 PMCID: PMC1205616 DOI: 10.1093/genetics/135.1.17] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mutations in the SNF7 gene of Saccharomyces cerevisiae prevent full derepression of the SUC2 (invertase) gene in response to glucose limitation. We report the molecular cloning of the SNF7 gene by complementation. Sequence analysis predicts that the gene product is a 27-kDa acidic protein. Disruption of the chromosomal locus causes a fewfold decrease in invertase derepression, a growth defect on raffinose, temperature-sensitive growth on glucose, and a sporulation defect in homozygous diploids. Genetic analysis of the interactions of the snf7 null mutation with ssn6 and spt6/ssn20 suppressor mutations distinguished SNF7 from the SNF2, SNF5 and SNF6 genes. The snf7 mutation also behaved differently from mutations in SNF1 and SNF4 in that snf7 ssn6 double mutants displayed a synthetic phenotype of severe temperature sensitivity for growth. We also mapped SNF7 to the right arm of chromosome XII near the centromere.
Collapse
Affiliation(s)
- J Tu
- Institute of Cancer Research, Columbia University, New York, New York 10032
| | | | | |
Collapse
|
41
|
Chen S, West RW, Ma J, Johnson SL, Gans H, Woldehawariat G. TSF1 to TSF6, required for silencing the Saccharomyces cerevisiae GAL genes, are global regulatory genes. Genetics 1993; 134:701-16. [PMID: 8349104 PMCID: PMC1205509 DOI: 10.1093/genetics/134.3.701] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Saccharomyces cerevisiae GAL1 and GAL10 genes are controlled in response to the availability of galactose and glucose by multiple activating and repressing proteins bound at adjacent or overlapping sites in UASG. Negative control elements in UASG, designated GAL operators GALO1 to GALO6, are required to silence basal level transcription of GAL1 and GAL10 when galactose is absent. We isolated and characterized recessive mutations in six nuclear genes, TSF1 to TSF6, that impair silencing of GAL1 and GAL10 gene expression. Surprisingly, the results of several experiments suggest that the TSF genes encode global regulatory factors. tsf1 to tsf6 mutations derepressed expression from yeast CYC-GAL hybrid promoters (fused to lacZ) that harbor a variety of operator sequences, and caused pleiotropic defects in cell growth, mating, and sporulation. S1 mapping and Northern blot results for tsf3 suggest that the molecular defect is at the transcriptional level. Mutant phenotypes were additive in certain combinations of tsf double mutants, implying that more than one silencing pathway is involved in TSF1 to TSF6 function. Most significantly, mutations in all six TSF1 to TSF6 genes activated expression from GAL1 and CYC1 promoters (fused to lacZ) lacking upstream activating sequences. Combined, the simplest interpretation of these results is that TSF1 to TSF6 encode factors that control the function of the basic RNA polymerase II transcriptional machinery.
Collapse
Affiliation(s)
- S Chen
- Department of Biochemistry and Molecular Biology, SUNY Health Science Center, Syracuse 13210
| | | | | | | | | | | |
Collapse
|
42
|
Pollice A, Ciaramella M, Pulitzer JF. Saccharomyces cerevisiae multifunctional protein RAP1 binds to a conserved sequence in the Polyoma virus enhancer and is responsible for its transcriptional activity in yeast cells. FEBS Lett 1993; 323:77-82. [PMID: 8388336 DOI: 10.1016/0014-5793(93)81452-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The Polyoma virus enhancer (A + B domain) activates transcription in Saccharomyces cerevisiae when joined to appropriate yeast promoter elements. We demonstrate by DNase I footprints and inhibition of binding by specific antibody, that the yeast protein RAP1 binds to the B-domain of the Polyoma enhancer and, at least in some promoter contexts, is responsible for transcriptional activity of the enhancer B-domain in yeast. Close matches to a consensus RAP1-binding site are also present in other viral enhancers.
Collapse
Affiliation(s)
- A Pollice
- Dipartimento di Genetica e Biologia Generale e Molecolare, Facoltà di Scienze Università di Napoli Federico II, Italy
| | | | | |
Collapse
|
43
|
Function of the ste signal transduction pathway for mating pheromones sustains MAT alpha 1 transcription in Saccharomyces cerevisiae. Mol Cell Biol 1993. [PMID: 8455598 DOI: 10.1128/mcb.13.4.2050] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sterile mutants of Saccharomyces cerevisiae were isolated from alpha * cells having the a/alpha aar1-6 genotype (exhibiting alpha mating ability and weak a mating ability as a result of a defect in a1-alpha 2 repression). Among these sterile mutants, we found two ste5 mutants together with putative ste7, ste11, and ste12 mutants of the signal transduction pathway of mating pheromones. The amino acid sequence of the Ste5p protein predicted from the nucleotide sequence of a cloned STE5 DNA has a domain rich in acidic amino acids close to its C terminus, a cysteine-rich sequence, resembling part of a zinc finger structure, in its N-terminal half, and a possible target site of cyclic AMP-dependent protein kinase at its C terminus. Northern (RNA) blot analysis revealed that STE5 transcription is under a1-alpha 2-Aar1p repression. The MAT alpha 1 cistron has a single copy of the pheromone response element in its 5' upstream region, and its basal level of transcription was reduced in these ste mutant cells. However, expression of the MAT alpha 1 cistron was not enhanced appreciably by pheromone signals. One of the ste5 mutant alleles conferred a sterile phenotype to a/alpha aar1-6 cells but a mating ability to MATa cells.
Collapse
|
44
|
Ogawa N, Noguchi K, Yamashita Y, Yasuhara T, Hayashi N, Yoshida K, Oshima Y. Promoter analysis of the PHO81 gene encoding a 134 kDa protein bearing ankyrin repeats in the phosphatase regulon of Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1993; 238:444-54. [PMID: 8492812 DOI: 10.1007/bf00292004] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The PHO81 gene encoding one of the regulators of the phosphatase regulon in Saccharomyces cerevisiae was mapped 9.8 centimorgans distal from the ser2 locus on the right arm of chromosome VII. Determination of the nucleotide sequence of cloned PHO81 DNA revealed a 3537 bp open reading frame encoding a 134 kDa protein. This protein has six repeats of a 33-amino acid sequence homologous to the ankyrin repeat and an asparagine-rich region. Transcription of PHO81 is activated by Pho4 protein in cooperation with Pho2 (i.e., Bas2/Grf10) protein under the influence of the inorganic phosphate (Pi) concentration in the medium, through the PHO regulatory system. Major transcription initiation sites of PHO81, determined by primer extension analysis, are at nucleotide positions -66 and -65 relative to the ATG codon. Deletion analysis showed that a 95 bp region from nucleotide position -385 to -291 is essential for response to the Pi signals. Purified Pho4 protein protected a 19 bp region (positions -350 to -332) in the 95 bp fragment from DNase I digestion in vitro and the protected region includes the core sequence 5'-CACGTG-3', which is also observed in other genes of phosphate metabolism.
Collapse
Affiliation(s)
- N Ogawa
- Department of Biotechnology, Faculty of Engineering, Osaka University, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Mukai Y, Harashima S, Oshima Y. Function of the ste signal transduction pathway for mating pheromones sustains MAT alpha 1 transcription in Saccharomyces cerevisiae. Mol Cell Biol 1993; 13:2050-60. [PMID: 8455598 PMCID: PMC359526 DOI: 10.1128/mcb.13.4.2050-2060.1993] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Sterile mutants of Saccharomyces cerevisiae were isolated from alpha * cells having the a/alpha aar1-6 genotype (exhibiting alpha mating ability and weak a mating ability as a result of a defect in a1-alpha 2 repression). Among these sterile mutants, we found two ste5 mutants together with putative ste7, ste11, and ste12 mutants of the signal transduction pathway of mating pheromones. The amino acid sequence of the Ste5p protein predicted from the nucleotide sequence of a cloned STE5 DNA has a domain rich in acidic amino acids close to its C terminus, a cysteine-rich sequence, resembling part of a zinc finger structure, in its N-terminal half, and a possible target site of cyclic AMP-dependent protein kinase at its C terminus. Northern (RNA) blot analysis revealed that STE5 transcription is under a1-alpha 2-Aar1p repression. The MAT alpha 1 cistron has a single copy of the pheromone response element in its 5' upstream region, and its basal level of transcription was reduced in these ste mutant cells. However, expression of the MAT alpha 1 cistron was not enhanced appreciably by pheromone signals. One of the ste5 mutant alleles conferred a sterile phenotype to a/alpha aar1-6 cells but a mating ability to MATa cells.
Collapse
Affiliation(s)
- Y Mukai
- Department of Biotechnology, Faculty of Engineering, Osaka University, Japan
| | | | | |
Collapse
|
46
|
Matsuura A, Anraku Y. Characterization of the MKS1 gene, a new negative regulator of the Ras-cyclic AMP pathway in Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1993; 238:6-16. [PMID: 8386801 DOI: 10.1007/bf00279524] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In order to isolate genes that function downstream of the Ras-cAMP pathway in Saccharomyces cerevisiae, a YEp13-based genomic library was screened for clones that inhibit growth of cells with diminished A-kinase activity. One such gene, MKS1, was found to encode a hydrophilic 52 kDa protein that shares weak homology with the yeast SPT2/SIN1 gene product. Three lines of evidence suggest that the MKS1 gene product is a negative regulator downstream of the Ras-cAMP pathway: (i) overexpression of MKS1 inhibits growth of cyr1 disruptant cells on YPD medium containing a low concentration of cAMP; (ii) overexpression of MKS1 does not affect TPK1 expression; and (iii) the temperature-sensitive cyr1-230 mutation is partially suppressed by mks1 disruption. The mks1 mutant shows similar phenotypes to gal11/spt13, i.e., it cannot grow on YPGal containing ethidium bromide at 25 degrees C, or on YPGly or SGal at 37 degrees C. The mks1 gal11 double mutant shows more marked phenotypic changes than the single mutants. These results suggest that MKS1 is involved in transcriptional regulation of several genes by cAMP.
Collapse
Affiliation(s)
- A Matsuura
- Department of Biology, Faculty of Science, University of Tokyo, Japan
| | | |
Collapse
|
47
|
TSF3, a global regulatory protein that silences transcription of yeast GAL genes, also mediates repression by alpha 2 repressor and is identical to SIN4. Mol Cell Biol 1993. [PMID: 8423805 DOI: 10.1128/mcb.13.2.831] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TSF3 encodes one of six (TSF1 to TSF6) recently identified global negative regulators of transcription in Saccharomyces cerevisiae. Mutant tsf3 strains exhibit defects in transcriptional silencing of the GAL1 promoter, allow expression from upstream activation sequence-less promoters, and exhibit pleiotropic defects in cell growth and development. Here we show that TSF3 is involved in transcriptional silencing mediated by the alpha 2 repressor and demonstrate that specific systems of transcriptional silencing may depend on the more global role of TSF3. Cloning and sequencing of TSF3 allowed us to predict a 974-amino-acid gene product identical to SIN4, a negative regulator of transcription of the HO (homothallism) mating type switching endonuclease. TSF3 disruptions are not lethal but result in phenotypes similar to those of the originally isolated alleles. Our results, together with those of Y. W. Jiang and D. J. Stillman (Mol. Cell. Biol. 12:4503-4514, 1992), suggest that TSF3 (SIN4) affects the function of the basal transcription apparatus, and this effect in turn alters the manner in which the latter responds to upstream regulatory proteins.
Collapse
|
48
|
Chen S, West RW, Johnson SL, Gans H, Kruger B, Ma J. TSF3, a global regulatory protein that silences transcription of yeast GAL genes, also mediates repression by alpha 2 repressor and is identical to SIN4. Mol Cell Biol 1993; 13:831-40. [PMID: 8423805 PMCID: PMC358966 DOI: 10.1128/mcb.13.2.831-840.1993] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
TSF3 encodes one of six (TSF1 to TSF6) recently identified global negative regulators of transcription in Saccharomyces cerevisiae. Mutant tsf3 strains exhibit defects in transcriptional silencing of the GAL1 promoter, allow expression from upstream activation sequence-less promoters, and exhibit pleiotropic defects in cell growth and development. Here we show that TSF3 is involved in transcriptional silencing mediated by the alpha 2 repressor and demonstrate that specific systems of transcriptional silencing may depend on the more global role of TSF3. Cloning and sequencing of TSF3 allowed us to predict a 974-amino-acid gene product identical to SIN4, a negative regulator of transcription of the HO (homothallism) mating type switching endonuclease. TSF3 disruptions are not lethal but result in phenotypes similar to those of the originally isolated alleles. Our results, together with those of Y. W. Jiang and D. J. Stillman (Mol. Cell. Biol. 12:4503-4514, 1992), suggest that TSF3 (SIN4) affects the function of the basal transcription apparatus, and this effect in turn alters the manner in which the latter responds to upstream regulatory proteins.
Collapse
Affiliation(s)
- S Chen
- Department of Biochemistry and Molecular Biology, State University of New York Health Science Center, Syracuse 13210
| | | | | | | | | | | |
Collapse
|
49
|
Concerted action of the transcriptional activators REB1, RAP1, and GCR1 in the high-level expression of the glycolytic gene TPI. Mol Cell Biol 1993. [PMID: 8417350 DOI: 10.1128/mcb.13.1.543] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, the TPI gene product, triosephosphate isomerase, makes up about 2% of the soluble cellular protein. Using in vitro and in vivo footprinting techniques, we have identified four binding sites for three factors in the 5' noncoding region of TPI: a REB1-binding site located at positions -401 to -392, two GCR1-binding sites located at positions -381 to -366 and -341 to -326, and a RAP1-binding site located at positions -358 to -346. We tested the effects of mutations at each of these binding sites on the expression of a TPI::lacZ gene fusion which carried 853 bp of the TPI 5' noncoding region integrated at the URA3 locus. The REB1-binding site is dispensable when material 5' to it is deleted; however, if the sequence 5' to the REB1-binding site is from the TPI locus, expression is reduced fivefold when the site is mutated. Because REB1 blocks nucleosome formation, the most likely function of its binding site in the TPI controlling region is to prevent the formation of nucleosomes over the TPI upstream activation sequence. Mutations in the RAP1-binding site resulted in a 10-fold reduction in expression of the reporter gene. Mutating either GCR1-binding site alone had a modest effect on expression of the fusion. However, mutating both GCR1-binding sites resulted in a 68-fold reduction in the level of expression of the reporter gene. A LexA-GCR1 fusion protein containing the DNA-binding domain of LexA fused to the amino terminus of GCR1 was able to activate expression of a lex operator::GAL1::lacZ reporter gene 116-fold over background levels. From this experiment, we conclude that GCR1 is able to activate gene expression in the absence of REB1 or RAP1 bound at adjacent binding sites. On the basis of these results, we suggest that GCR1 binding is required for activation of TPI and other GCR1-dependent genes and that the primary role of other factors which bind adjacent to GCR1-binding sites is to facilitate of modulate GCR1 binding in vivo.
Collapse
|
50
|
SPT13 (GAL11) of Saccharomyces cerevisiae negatively regulates activity of the MCM1 transcription factor in Ty1 elements. Mol Cell Biol 1993. [PMID: 8380229 DOI: 10.1128/mcb.13.1.63] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Ty transposable elements of Saccharomyces cerevisiae consist of a single large transcription unit whose expression is controlled by a combination of upstream and downstream regulatory sequences. Errede (B. Errede, Mol. Cell. Biol. 13:57-62, 1993) has shown that among the downstream control sequences is a binding site for the transcription factor, MCM1. A small restriction fragment containing the Ty1 MCM1-binding site exhibits very weak activation of heterologous gene expression. The absence of SPT13 (GAL11) causes a dramatic increase in activity directed by these sequences. This effect is mediated through the MCM1-binding site itself. MCM1 mRNA and protein levels, as well as its affinity for its binding site, are unchanged in the absence of SPT13. Our results suggest that SPT13 has a role in the negative control of MCM1 activity that is likely to be posttranslational. A role for SPT13 in the negative regulation of the activity of the Ty1 MCM1-binding site is consistent with our previous proposal that spt13-mediated suppression of Ty insertion mutations could be attributed to the loss of negative regulation of genes adjacent to Ty elements.
Collapse
|