1
|
Bechhofer DH. Messenger RNA decay and maturation in Bacillus subtilis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:231-73. [PMID: 19215774 DOI: 10.1016/s0079-6603(08)00806-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Our understanding of the ribonucleases that act to process and turn over RNA in Bacillus subtilis, a model Gram-positive organism, has increased greatly in recent years. This chapter discusses characteristics of B. subtilis ribonucleases that have been shown to participate in messenger RNA maturation and decay. Distinct features of a recently discovered ribonuclease, RNase J1, are reviewed, and are put in the context of a mechanism for the mRNA decay process in B. subtilis that differs greatly from the classical model developed for E. coli. This chapter is divided according to three parts of an mRNA-5' end, body, and 3' end-that could theoretically serve as sites for initiation of decay. How 5'-proximal elements affect mRNA half-life, and especially how these elements interface with RNase J1, forms the basis for a set of "rules" that may be useful in predicting mRNA stability.
Collapse
Affiliation(s)
- David H Bechhofer
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine of New York University, New York, NY 10029, USA
| |
Collapse
|
2
|
Chiang CJ, Chen PT, Chao YP. Secreted production ofRenillaluciferase inBacillus subtilis. Biotechnol Prog 2009; 26:589-94. [DOI: 10.1002/btpr.351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
3
|
Régnier P, Hajnsdorf E. Poly(A)-assisted RNA decay and modulators of RNA stability. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:137-85. [PMID: 19215772 DOI: 10.1016/s0079-6603(08)00804-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In Escherichia coli, RNA degradation is orchestrated by the degradosome with the assistance of complementary pathways and regulatory cofactors described in this chapter. They control the stability of each transcript and regulate the expression of many genes involved in environmental adaptation. The poly(A)-dependent degradation machinery has diverse functions such as the degradation of decay intermediates generated by endoribonucleases, the control of the stability of regulatory non coding RNAs (ncRNAs) and the quality control of stable RNA. The metabolism of poly(A) and mechanism of poly(A)-assisted degradation are beginning to be understood. Regulatory factors, exemplified by RraA and RraB, control the decay rates of subsets of transcripts by binding to RNase E, in contrast to regulatory ncRNAs which, assisted by Hfq, target RNase E to specific transcripts. Destabilization is often consecutive to the translational inactivation of mRNA. However, there are examples where RNA degradation is the primary regulatory step.
Collapse
Affiliation(s)
- Philippe Régnier
- CNRS UPR9073, Institut de Biologie Physico-Chimique, Paris, France
| | | |
Collapse
|
4
|
Schumann W. Production of Recombinant Proteins in Bacillus subtilis. ADVANCES IN APPLIED MICROBIOLOGY 2007; 62:137-89. [PMID: 17869605 DOI: 10.1016/s0065-2164(07)62006-1] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wolfgang Schumann
- Institute of Genetics, University of Bayreuth, Bayreuth D-95440, Germany
| |
Collapse
|
5
|
SHENE C, MIR N, ANDREWS BA, ASENJO JA. Mathematical Modeling of the Synthesis of a Cloned Lytic β-1,4-Endoglucanase in Bacillus subtilisa. Ann N Y Acad Sci 2006. [DOI: 10.1111/j.1749-6632.1996.tb40573.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Kemmer C, Neubauer P. Antisense RNA based down-regulation of RNaseE in E. coli. Microb Cell Fact 2006; 5:38. [PMID: 17164000 PMCID: PMC1716169 DOI: 10.1186/1475-2859-5-38] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2006] [Accepted: 12/12/2006] [Indexed: 11/10/2022] Open
Abstract
Background Messenger RNA decay is an important mechanism for controlling gene expression in all organisms. The rate of the mRNA degradation directly affects the steady state concentration of mRNAs and therefore influences the protein synthesis. RNaseE has a key importance for the general mRNA decay in E.coli. While RNaseE initiates the degradation of most mRNAs in E.coli, it is likely that the enzyme is also responsible for the degradation of recombinant RNAs. As RNaseE is essential for cell viability and knockout mutants cannot be cultured, we investigated the possibility for a down-regulation of the intracellular level of RNaseE by antisense RNAs. During this study, an antisense RNA based approach could be established which revealed a strong reduction of the intracellular level of RNaseE in E.coli. Results Despite the autoregulation of rne mRNA by its gene product, significant antisense downregulation of RNaseE is possible. The expression of antisense RNAs did not effect the cell growth negatively. The amount of antisense RNA was monitored quantitatively by a fluorescence based sandwich hybridisation assay. Induction by anhydrotetracycline was followed by a 25-fold increase of the detectable antisense RNA molecules per cell. The antisense RNA level was maintained above 400 molecules per cell until the stationary phase, which caused the level of expressed antisense RNAs to decrease markedly. Western blot experiments revealed the strongest reduction in the RNaseE protein level 90 min after antisense RNA induction. The cellular level of RNaseE could be decreased to 35% of the wild type level. When the growth entered the stationary phase, the RNaseE level was maintained still at 50 to 60% of the wild type level. Conclusion In difference to eukaryotic cells, where the RNAi technology is widely used, this technology is rather unexplored in bacteria, although different natural systems use antisense RNA-based silencing, and a few studies have earlier indicated the potential of this technology also in prokaryotes. Our results show that even complicated self-regulatory systems such as RNaseE may be controlled by antisense RNA technology, indicating that systems based on antisense RNA expression may have a potential for controlling detrimental factors with plasmid-based constructs in arbitrary strains while maintaining their beneficial characteristics. The study also proved that the RNA sandwich hybridisation technique is directly applicable to quantify small RNA molecules in crude cell extracts, which may have a broader application potential as a monitoring tool in RNA inhibition applications.
Collapse
Affiliation(s)
- Christian Kemmer
- Bioprocess Engineering Laboratory, Department of Process and Environmental Engineering and Biocenter Oulu, P. O. Box 4300, University of Oulu, FIN-90014 Oulu, Finland
| | - Peter Neubauer
- Bioprocess Engineering Laboratory, Department of Process and Environmental Engineering and Biocenter Oulu, P. O. Box 4300, University of Oulu, FIN-90014 Oulu, Finland
| |
Collapse
|
7
|
Barken KB, Gabig-Ciminska M, Holmgren A, Molin S. Effect of unlabeled helper probes on detection of an RNA target by bead-based sandwich hybridization. Biotechniques 2004; 36:124-32. [PMID: 14740494 DOI: 10.2144/04361rr03] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Unlabeled helper oligonucleotides assisting a bead-based sandwich hybridization assay were tested for the optimal placement of the capture and detection probes. The target used was a full-length in vitro synthesized mRNA molecule. Helper probes complementary to regions adjacent to the binding site of the 5′ end attached capture probe were found much more effective than helper probes targeting positions adjacent to the detection probe binding site. The difference is believed to be caused by a disruption of the RNA secondary structure in the area where the capture probe binds, thereby reducing structural interference from the bead. The use of additional helpers showed an additive effect. Using helpers at both sides of the capture and detection probes showed a 15- to 40-fold increase in hybridization efficiency depending on the target, thereby increasing the sensitivity of the hybridization assays. Using an electrical chip linked to the detection probe for the detection of p-aminophenol, which is produced by alkaline phosphatase, a detection limit of 2 × 10−13 M mRNA molecules was reached without the use of a nucleic acid amplification step.
Collapse
|
8
|
Hambraeus G, von Wachenfeldt C, Hederstedt L. Genome-wide survey of mRNA half-lives in Bacillus subtilis identifies extremely stable mRNAs. Mol Genet Genomics 2003; 269:706-14. [PMID: 12884008 DOI: 10.1007/s00438-003-0883-6] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2003] [Accepted: 06/08/2003] [Indexed: 10/26/2022]
Abstract
We have used DNA microarrays to survey rates of mRNA decay on a genomic scale in early stationary-phase cultures of Bacillus subtilis. The decay rates for mRNAs corresponding to about 1500 genes could be estimated. About 80% of these mRNAs had a half-life of less than 7 min. More than 30 mRNAs, including both mono- and polycistronic transcripts, were found to be extremely stable, i.e. to have a half-life of > or =15 min. Only two such transcripts were known previously in B. subtilis. The results provide the first overview of mRNA decay rates in a gram-positive bacterium and help to identify polycistronic operons. We could find no obvious correlation between the stability of an mRNA and the function of the encoded protein. We have also not found any general features in the 5' regions of mRNAs that distinguish stable from unstable transcripts. The identified set of extremely stable mRNAs may be useful in the construction of stable recombinant genes for the overproduction of biomolecules in Bacillus species.
Collapse
Affiliation(s)
- G Hambraeus
- Department of Cell and Organism Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | | | | |
Collapse
|
9
|
Abstract
This review focuses on the enzymes and pathways of RNA processing and degradation in Bacillus subtilis, and compares them to those of its gram-negative counterpart, Escherichia coli. A comparison of the genomes from the two organisms reveals that B. subtilis has a very different selection of RNases available for RNA maturation. Of 17 characterized ribonuclease activities thus far identified in E. coli and B. subtilis, only 6 are shared, 3 exoribonucleases and 3 endoribonucleases. Some enzymes essential for cell viability in E. coli, such as RNase E and oligoribonuclease, do not have homologs in B. subtilis, and of those enzymes in common, some combinations are essential in one organism but not in the other. The degradation pathways and transcript half-lives have been examined to various degrees for a dozen or so B. subtilis mRNAs. The determinants of mRNA stability have been characterized for a number of these and point to a fundamentally different process in the initiation of mRNA decay. While RNase E binds to the 5' end and catalyzes the rate-limiting cleavage of the majority of E. coli RNAs by looping to internal sites, the equivalent nuclease in B. subtilis, although not yet identified, is predicted to scan or track from the 5' end. RNase E can also access cleavage sites directly, albeit less efficiently, while the enzyme responsible for initiating the decay of B. subtilis mRNAs appears incapable of direct entry. Thus, unlike E. coli, RNAs possessing stable secondary structures or sites for protein or ribosome binding near the 5' end can have very long half-lives even if the RNA is not protected by translation.
Collapse
Affiliation(s)
- Ciarán Condon
- UPR 9073, Institut de Biologie Physico-Chimique, 75005 Paris, France.
| |
Collapse
|
10
|
Diwa AA, Belasco JG. Critical features of a conserved RNA stem-loop important for feedback regulation of RNase E synthesis. J Biol Chem 2002; 277:20415-22. [PMID: 11919204 DOI: 10.1074/jbc.m202313200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNase E is an important regulatory enzyme that governs the principal pathway for mRNA degradation in Escherichia coli. This endonuclease controls its own synthesis via a feedback mechanism in which the longevity of rne (RNase E) mRNA is modulated by a cis-acting sensory element that responds to changes in cellular RNase E activity. Previous research has shown that this element is an RNA stem-loop (hp2) within the 5'-untranslated region of the rne transcript. Here we report studies involving mutational analysis and phylogenetic comparison that have identified the features of rne hp2 important for its function. These comprise an internal loop flanked on one side by a 2-bp stem and a hairpin loop and on the other side by a longer stem whose sequence is inconsequential. A search of bacterial genome sequences suggests that regulation by an hp2-like element may be a unique evolutionary adaptation of the rne transcript that is not shared by other mRNAs.
Collapse
Affiliation(s)
- Alexis A Diwa
- Skirball Institute of Biomolecular Medicine and Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
11
|
Hambraeus G, Karhumaa K, Rutberg B. A 5' stem-loop and ribosome binding but not translation are important for the stability of Bacillus subtilis aprE leader mRNA. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1795-1803. [PMID: 12055299 DOI: 10.1099/00221287-148-6-1795] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Bacillus subtilis aprE leader is a determinant of extreme mRNA stability. The authors examined what properties of the aprE leader confer stability on an mRNA. The secondary structure of the aprE leader mRNA was analysed in vitro and in vivo, and mutations were introduced into different domains of an aprE leader-lacZ fusion. The half-lives of the corresponding transcripts were determined and beta-galactosidase activities were measured. Removal of a stem-loop structure at the 5' end or diminishing the strength of the RBS reduced the half-lives from more than 25 min to about 5 min. Interfering with translation by abolishing the start codon or creating an early stop codon had no or little effect on mRNA stability. The authors conclude that a 5' stem-loop and binding of ribosomes are necessary for the stability of aprE leader mRNA. The present results, together with a number of other data, suggest that translation of a B. subtilis mRNA is generally not important for its stability; the situation seems different in Escherichia coli. It is further concluded that the calculated strength of a B. subtilis RBS cannot be used to predict the stability of the corresponding transcript.
Collapse
Affiliation(s)
- Gustav Hambraeus
- Department of Microbiology, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden1
| | - Kaisa Karhumaa
- Department of Microbiology, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden1
| | - Blanka Rutberg
- Department of Microbiology, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden1
| |
Collapse
|
12
|
Gulati A, Mahadevan S. The Escherichia coli antiterminator protein BglG stabilizes the 5'region of the bgl mRNA. J Biosci 2001; 26:193-203. [PMID: 11426055 DOI: 10.1007/bf02703643] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The beta-glucoside utilization (bgl) genes of Escherichia coli are positively regulated by the product of the bglG gene, which functions as an antiterminator by binding to specific sequences present within the bgl mRNA. BglG is inactivated by phosphorylation in the absence of beta-glucosides by BglF, the bgl-specific component of the phosphotransferase system (PTS). Here, we present evidence for an additional function for BglG, namely the stabilization of the 5' end of the bgl mRNA. Half-life measurements of the promoter-proximal region of the bgl mRNA indicate a five fold enhancement of stability in the presence of active (unphosphorylated) BglG. This enhancement is lost when the binding of BglG to mRNA is prevented by deletion of the binding site. Interestingly, stabilization by BglG does not extend to downstream sequences. The enhanced stability of the upstream sequences suggest that BglG remains bound to its target on the mRNA even after the downstream sequences have been degraded. Implications of these observations for the mechanism of positive regulation of the operon by BglG are discussed.
Collapse
Affiliation(s)
- A Gulati
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|
13
|
Hambraeus G, Persson M, Rutberg B. The aprE leader is a determinant of extreme mRNA stability in Bacillus subtilis. MICROBIOLOGY (READING, ENGLAND) 2000; 146 Pt 12:3051-3059. [PMID: 11101663 DOI: 10.1099/00221287-146-12-3051] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Bacillus subtilis aprE gene encodes subtilisin, an extracellular proteolytic enzyme produced in stationary phase. The authors examined the stability of aprE mRNA and aprE leader-lacZ fusion mRNA. Both mRNAs were found to be unusually stable, with half-lives longer than 25 min, demonstrating that the aprE leader contains a determinant for extreme mRNA stability. The half-lives were the same in growing and stationary-phase cells. This contrasts with the findings of O. Resnekov et al. (1990) [Proc Natl Acad Sci USA 87, 8355-8359], which suggested a growth-phase-dependent mechanism for decay of aprE mRNA. The discrepancy is explained by the techniques used. Substitution of two bases or deletion of 25 nucleotides in the aprE leader led to a major difference in its predicted secondary structure and resulted in a fivefold reduction of the half-life of aprE mRNA. The authors also determined the half-life of amyE mRNA, which encodes alpha-amylase, another stationary-phase, excreted enzyme and found it to be around 5 min. This shows that extreme stability is not a general property of stationary-phase mRNAs encoding excreted enzymes.
Collapse
Affiliation(s)
- Gustav Hambraeus
- Department of Microbiology, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden1
| | - Martin Persson
- Department of Microbiology, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden1
| | - Blanka Rutberg
- Department of Microbiology, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden1
| |
Collapse
|
14
|
Takayama K, Kjelleberg S. The role of RNA stability during bacterial stress responses and starvation. Environ Microbiol 2000; 2:355-65. [PMID: 11234923 DOI: 10.1046/j.1462-2920.2000.00119.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- K Takayama
- School of Microbiology and Immunology, University of New South Wales, Sydney, Australia. k.takayama@unsw
| | | |
Collapse
|
15
|
Persson M, Glatz E, Rutberg B. Different processing of an mRNA species in Bacillus subtilis and Escherichia coli. J Bacteriol 2000; 182:689-95. [PMID: 10633102 PMCID: PMC94331 DOI: 10.1128/jb.182.3.689-695.2000] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the Bacillus subtilis glpD gene, which encodes glycerol-3-phosphate (G3P) dehydrogenase, is controlled by termination or antitermination of transcription. The untranslated leader sequence of glpD contains an inverted repeat that gives rise to a transcription terminator. In the presence of G3P, the antiterminator protein GlpP binds to glpD leader mRNA and promotes readthrough of the terminator. Certain mutations in the inverted repeat of the glpD leader result in GlpP-independent, temperature-sensitive (TS) expression of glpD. The TS phenotype is due to temperature-dependent degradation of the glpD mRNA. In the presence of GlpP, the glpD mRNA is stabilized. glpD leader-lacZ fusions were integrated into the chromosomes of B. subtilis and Escherichia coli. Determination of steady-state levels of fusion mRNA in B. subtilis showed that the stability of the fusion mRNA is determined by the glpD leader part. Comparison of steady-state levels and half-lives of glpD leader-lacZ fusion mRNA in B. subtilis and E. coli revealed significant differences. A glpD leader-lacZ fusion transcript that was unstable in B. subtilis was considerably more stable in E. coli. GlpP, which stabilizes the transcript in B. subtilis, did not affect its stability in E. coli. Primer extension analysis showed that the glpD leader-lacZ fusion transcript is processed differently in B. subtilis and in E. coli. The dominating cleavage site in E. coli was barely detectable in B. subtilis. This site was shown to be a target of E. coli RNase III.
Collapse
Affiliation(s)
- M Persson
- Department of Microbiology, Lund University, Sölvegatan 12, S-223 62 Lund, Sweden.
| | | | | |
Collapse
|
16
|
Sudershana S, Du H, Mahalanabis M, Babitzke P. A 5' RNA stem-loop participates in the transcription attenuation mechanism that controls expression of the Bacillus subtilis trpEDCFBA operon. J Bacteriol 1999; 181:5742-9. [PMID: 10482516 PMCID: PMC94095 DOI: 10.1128/jb.181.18.5742-5749.1999] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The trp RNA-binding attenuation protein (TRAP) regulates expression of the Bacillus subtilis trpEDCFBA operon by transcription attenuation. Tryptophan-activated TRAP binds to the nascent trp leader transcript by interacting with 11 (G/U)AG repeats. TRAP binding prevents formation of an antiterminator structure, thereby promoting formation of an overlapping terminator, and hence transcription is terminated before RNA polymerase can reach the trp structural genes. In addition to the antiterminator and terminator, a stem-loop structure is predicted to form at the 5' end of the trp leader transcript. Deletion of this structure resulted in a dramatic increase in expression of a trpE'-'lacZ translational fusion and a reduced ability to regulate expression in response to tryptophan. By introducing a series of point mutations in the 5' stem-loop, we found that both the sequence and the structure of the hairpin are important for its regulatory function and that compensatory changes that restored base pairing partially restored wild-type-like expression levels. Our results indicate that the 5' stem-loop functions primarily through the TRAP-dependent regulatory pathway. Gel shift results demonstrate that the 5' stem-loop increases the affinity of TRAP for trp leader RNA four- to fivefold, suggesting that the 5' structure interacts with TRAP. In vitro transcription results indicate that this 5' structure functions in the attenuation mechanism, since deletion of the stem-loop caused an increase in transcription readthrough. An oligonucleotide complementary to a segment of the 5' stem-loop was used to demonstrate that formation of the 5' structure is required for proper attenuation control of this operon.
Collapse
Affiliation(s)
- S Sudershana
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
17
|
Hu Y, Coates AR. Transcription of the stationary-phase-associated hspX gene of Mycobacterium tuberculosis is inversely related to synthesis of the 16-kilodalton protein. J Bacteriol 1999; 181:1380-7. [PMID: 10049366 PMCID: PMC93524 DOI: 10.1128/jb.181.5.1380-1387.1999] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 16-kDa protein, an alpha-crystallin homologue, is one of the most abundant proteins in stationary-phase Mycobacterium tuberculosis. Here, transcription and translation of the hspX gene, which encodes the 16-kDa protein, have been investigated by Northern blotting analysis, primer extension, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a microaerophilic stationary-phase model. Two transcripts of about 2.5 and 1.1 kb were demonstrated by Northern blot analysis and hybridized to the hspX gene probe. Primer extension analysis revealed that the transcription start site is located 33 nucleotides upstream of the hspX gene start codon. The cellular level of the hspX mRNA was maximum in log-phase bacilli and was markedly reduced after 20 days in unagitated culture, when the organisms had entered the stationary phase. A third transcript of 0.5 kb was detected 0.6 kb downstream of the hspX gene; this transcript has a transcriptional pattern completely different from that of the 1.1- and 2.5-kb products, suggesting that there may be another gene in this region. In contrast to the high level of hspX mRNA in log-phase bacilli, 16-kDa protein synthesis was low in log-phase bacteria and rose to its maximum after 20 days. In both log-phase and stationary-phase bacteria the mRNA was unstable, with a half-life of 2 min, which indicated that the transcript stability was growth rate independent and not a general means for controlling the gene expression. However, the cellular content of 16-kDa protein, while low in log-phase bacteria, rose to a maximum at 10 days and remained at this high level for up to 50 days, which indicates that this protein is a stable molecule with a low turnover rate. These data suggest that the regulation of hspX expression during entry into and maintenance of stationary phase involves translation initiation efficiency and protein stability as potential mechanisms.
Collapse
Affiliation(s)
- Y Hu
- Department of Medical Microbiology, St. George's Hospital Medical School, London SW17 ORE, United Kingdom
| | | |
Collapse
|
18
|
Schiött T, von Wachenfeldt C, Hederstedt L. Identification and characterization of the ccdA gene, required for cytochrome c synthesis in Bacillus subtilis. J Bacteriol 1997; 179:1962-73. [PMID: 9068642 PMCID: PMC178920 DOI: 10.1128/jb.179.6.1962-1973.1997] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The gram-positive, endospore-forming bacterium Bacillus subtilis contains several membrane-bound c-type cytochromes. We have isolated a mutant pleiotropically deficient in cytochromes c. The responsible mutation resides in a gene which we have named ccdA (cytochrome c defective). This gene is located at 173 degrees on the B. subtilis chromosome. The ccdA gene was found to be specifically required for synthesis of cytochromes of the c type. CcdA is a predicted 26-kDa integral membrane protein with no clear similarity to any known cytochrome c biogenesis protein but seems to be related to a part of Escherichia coli DipZ/DsbD. The ccdA gene is cotranscribed with two other genes. These genes encode a putative 13.5-kDa single-domain response regulator, similar to B. subtilis CheY and Spo0F, and a predicted 18-kDa hydrophobic protein with no similarity to any protein in databases, respectively. Inactivation of the three genes showed that only ccdA is required for cytochrome c synthesis. The results also demonstrated that cytochromes of the c type are not needed for growth of B. subtilis.
Collapse
Affiliation(s)
- T Schiött
- Department of Microbiology, Lund University, Sweden
| | | | | |
Collapse
|
19
|
Franzetti B, Sohlberg B, Zaccai G, von Gabain A. Biochemical and serological evidence for an RNase E-like activity in halophilic Archaea. J Bacteriol 1997; 179:1180-5. [PMID: 9023200 PMCID: PMC178814 DOI: 10.1128/jb.179.4.1180-1185.1997] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Endoribonuclease RNase E appears to control the rate-limiting step that mediates the degradation of many mRNA species in bacteria. In this work, an RNase E-like activity in Archaea is described. An endoribonucleolytic activity from the extreme halophile Haloarcula marismortui showed the same RNA substrate specificity as the Escherichia coli RNase E and cross-reacted with a monoclonal antibody raised against E. coli RNase E. The archaeal RNase E activity was partially purified from the extreme halophilic cells and shown, contrary to the E. coli enzyme, to require a high salt concentration for cleavage specificity and stability. These data indicate that a halophilic RNA processing enzyme can specifically recognize and cleave mRNA from E. coli in an extremely salty environment (3 M KCI). Having recently been shown in mammalian cells (A. Wennborg, B. Sohlberg, D. Angerer, G. Klein, and A. von Gabain, Proc. Natl. Acad. Sci. USA 92:7322-7326, 1995), RNase E-like activity has now been identified in all three evolutionary domains: Archaea, Bacteria, and Eukarya. This strongly suggests that mRNA decay mechanisms are highly conserved despite quite different environmental conditions.
Collapse
Affiliation(s)
- B Franzetti
- Laboratoire de Biophysique Moléculaire, Institut de Biologie Structurale, CEA-DSV-CNRS UPR 9015, Grenoble, France
| | | | | | | |
Collapse
|
20
|
Allmansberger R. Degradation of the Bacillus subtilis xynA transcript is accelerated in response to stress. MOLECULAR & GENERAL GENETICS : MGG 1996; 251:108-12. [PMID: 8628241 DOI: 10.1007/bf02174351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A popular method for the investigation of transcriptional regulation of gene expression is direct measurement of mRNA levels. As an internal control the level of a transcript from a constitutively expressed gene is often determined. To measure the induction rate of stress-responsive genes from Bacillus subtilis the transcript of the constitutively expressed xynA gene was used as a control. But the results presented in this communication prove that the degradation rate of the xynA transcript rises considerably in response to different kinds of stress. This response to stress is not dependent on protein biosynthesis.
Collapse
Affiliation(s)
- R Allmansberger
- Lehrstuhl für Mikrobiologie, Universität Erlangen-Nürnberg, Germany
| |
Collapse
|
21
|
Yuan G, Wong SL. Regulation of groE expression in Bacillus subtilis: the involvement of the sigma A-like promoter and the roles of the inverted repeat sequence (CIRCE). J Bacteriol 1995; 177:5427-33. [PMID: 7559325 PMCID: PMC177347 DOI: 10.1128/jb.177.19.5427-5433.1995] [Citation(s) in RCA: 146] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
To study the regulatory mechanism controlling the heat-inducible expression of Bacillus subtilis groE, two regulatory elements, the sigma A-like promoter and the inverted repeat (IR [CIRCE]) in the control region, were characterized. The groE promoter was shown to be transcribed by the major RNA polymerase under both heat shock and non-heat shock conditions. The IR was found to have two functions. (i) It ensures the fast turnover of the groE transcript, and (ii) it serves as an operator. This IR acts as a negative heat shock regulatory element, since deletion of this sequence resulted in high-level expression of groE even at 37 degrees C. Although this IR is present in the 5' untranslated region of the groE transcript, groE transcripts under heat shock and non-heat shock conditions showed similar in vivo half-lives of 5 min. This rapid turnover at 37 degrees C requires the presence of the IR. Without the IR, the groE transcript showed a longer half-life of 17 min. Increasing the distance between the groE transcription start site and the IR systematically by inserting nucleotide sequences from 5 to 21 bp in length resulted in a gradual abolition of the negative regulatory effect mediated by the IR. This effect was not due to a significant change in transcript stability or the transcription start site and is consistent with the model that this IR serves as an operator.
Collapse
Affiliation(s)
- G Yuan
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | |
Collapse
|
22
|
Resnekov O, Driks A, Losick R. Identification and characterization of sporulation gene spoVS from Bacillus subtilis. J Bacteriol 1995; 177:5628-35. [PMID: 7559352 PMCID: PMC177374 DOI: 10.1128/jb.177.19.5628-5635.1995] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We report the identification and characterization of an additional sporulation gene from Bacillus subtilis called spoVS, which is induced early in sporulation under the control of sigma H. We show that spoVS is an 86-codon-long open reading frame and is capable of encoding a protein of 8,796 Da which exhibits little similarity to other proteins in the databases. Null mutations in spoVS have two contrasting phenotypes. In otherwise wild-type cells they block sporulation at stage V, impairing the development of heat resistance and coat assembly. However, the presence of a spoVS mutation in a spoIIB spoVG double mutant (which is blocked at the stage [II] of polar septation) acts as a partial suppressor, allowing sporulation to advance to a late stage. The implications of the contrasting phenotypes are discussed in the context of the formation and maturation of the polar septum.
Collapse
Affiliation(s)
- O Resnekov
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
23
|
Georgellis D, Sohlberg B, Hartl FU, von Gabain A. Identification of GroEL as a constituent of an mRNA-protection complex in Escherichia coli. Mol Microbiol 1995; 16:1259-68. [PMID: 8577258 DOI: 10.1111/j.1365-2958.1995.tb02347.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
An RNA-binding activity has been identified in Escherichia coli that provides physical protection of RNA against ribonucleases in an ATP- and Mg(2+)-dependent manner. This binding activity is stimulated under growth conditions known to cause a decrease in the rate of mRNA decay. RNA protection is mediated by a protein complex that contains a modified form of the chaperonin GroEL as an indispensable constituent. These results suggest a new role for GroEL as an RNA chaperone.
Collapse
Affiliation(s)
- D Georgellis
- Institute of Microbiology and Genetics, Vienna Biocenter, Austria
| | | | | | | |
Collapse
|
24
|
Garmyn D, Ferain T, Bernard N, Hols P, Delplace B, Delcour J. Pediococcus acidilactici ldhD gene: cloning, nucleotide sequence, and transcriptional analysis. J Bacteriol 1995; 177:3427-37. [PMID: 7539419 PMCID: PMC177045 DOI: 10.1128/jb.177.12.3427-3437.1995] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The gene encoding D-lactate dehydrogenase was isolated on a 2.9-kb insert from a library of Pediococcus acidilactici DNA by complementation for growth under anaerobiosis of an Escherichia coli lactate dehydrogenase and pyruvate-formate lyase double mutant. The nucleotide sequence of ldhD encodes a protein of 331 amino acids (predicted molecular mass of 37,210 Da) which shows similarity to the family of D-2-hydroxyacid dehydrogenases. The enzyme encoded by the cloned fragment is equally active on pyruvate and hydroxypyruvate, indicating that the enzyme has both D-lactate and D-glycerate dehydrogenase activities. Three other open reading frames were found in the 2.9-kb insert, one of which (rpsB) is highly similar to bacterial genes coding for ribosomal protein S2. Northern (RNA) blotting analyses indicated the presence of a 2-kb dicistronic transcript of ldhD (a metabolic gene) and rpsB (a putative ribosomal protein gene) together with a 1-kb monocistronic rpsB mRNA. These transcripts are abundant in the early phase of exponential growth but steadily fade away to disappear in the stationary phase. Primer extension analysis identified two distinct promoters driving either cotranscription of ldhD and rpsB or transcription of rpsB alone.
Collapse
Affiliation(s)
- D Garmyn
- Laboratoire de Génétique Moléculaire, Université Catholique, Louvain-la-Neuve, Belgium
| | | | | | | | | | | |
Collapse
|
25
|
Garmyn D, Ferain T, Bernard N, Hols P, Delcour J. Cloning, nucleotide sequence, and transcriptional analysis of the Pediococcus acidilactici L-(+)-lactate dehydrogenase gene. Appl Environ Microbiol 1995; 61:266-72. [PMID: 7887607 PMCID: PMC167282 DOI: 10.1128/aem.61.1.266-272.1995] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Recombinant plasmids containing the Pediococcus acidilactici L-(+)-lactate dehydrogenase gene (ldhL) were isolated by complementing for growth under anaerobiosis of an Escherichia coli lactate dehydrogenase-pyruvate formate lyase double mutant. The nucleotide sequence of the ldhL gene predicted a protein of 323 amino acids showing significant similarity with other bacterial L-(+)-lactate dehydrogenases and especially with that of Lactobacillus plantarum. The ldhL transcription start points in P. acidilactici were defined by primer extension, and the promoter sequence was identified as TCAAT-(17 bp)-TATAAT. This sequence is closely related to the consensus sequence of vegetative promoters from gram-positive bacteria as well as from E. coli. Northern analysis of P. acidilactici RNA showed a 1.1-kb ldhL transcript whose abundance is growth rate regulated. These data, together with the presence of a putative rho-independent transcriptional terminator, suggest that ldhL is expressed as a monocistronic transcript in P. acidilactici.
Collapse
Affiliation(s)
- D Garmyn
- Laboratoire de Génétique Moléculaire, Université Catholique de Louvain, Belgium
| | | | | | | | | |
Collapse
|
26
|
Abstract
The Bacillus subtilis citrate synthase genes citA and citZ were repressed during early exponential growth phase in nutrient broth medium and were induced as cells reached the end of exponential phase. Both genes were also induced by treatment of cells with the drug decoyinine. After induction, the steady-state level of citZ mRNA was about five times higher than that of citA mRNA. At least some of the citZ transcripts read through into the isocitrate dehydrogenase (citC) gene. Transcription from an apparent promoter site located near the 3' end of the citZ gene also contributed to expression of citC. In minimal medium, citA transcription was about 6-fold lower when glucose was the sole carbon source than it was when succinate was the carbon source. Expression of the citZ gene was repressed 2-fold by glucose and 10-fold when glucose and glutamate were present simultaneously. This latter synergistic repression is similar to the effect of glucose and glutamate on steady-state citrate synthase enzyme activity. CitR, a protein of the LysR family, appeared to be a repressor of citA but not of citZ.
Collapse
Affiliation(s)
- S Jin
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | | |
Collapse
|
27
|
A+U content rather than a particular nucleotide order determines the specificity of RNase E cleavage. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)34129-7] [Citation(s) in RCA: 200] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
28
|
Azevedo V, Sorokin A, Ehrlich SD, Serror P. The transcriptional organization of the Bacillus subtilis 168 chromosome region between the spoVAF and serA genetic loci. Mol Microbiol 1993; 10:397-405. [PMID: 7934830 DOI: 10.1111/j.1365-2958.1993.tb02671.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The genetic organization of the spoVAF-serA area of the Bacillus subtilis chromosome and its putative transcription map have been derived from analysis of the nucleotide sequence. In order to confirm this transcription map as regards size of transcripts and to determine growth conditions for their appearance, we undertook Northern hybridization analysis of total RNA from vegetatively growing and sporulating cells. Twenty-three distinct transcripts were thus identified, 14 of which were predicted from sequence analysis and nine of which were not predicted. Eight of the latter are homologous to open reading frames identified by sequence analysis but were not expected, since no obvious promoter or terminator was found in the sequence. The last unexpected transcript does not correspond to an ORF and might identify a novel gene. Three predicted transcripts were not detected. The transcripts were classified in four groups as (i) constitutive, (ii) regulated by nutritional depletion, (iii) specific for sporulation, and (iv) possibly regulated temporally. These studies demonstrate that systematic Northern analysis of a bacterial chromosome region is a useful complement to sequence analysis.
Collapse
Affiliation(s)
- V Azevedo
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, Jouy en Josas, France
| | | | | | | |
Collapse
|
29
|
|
30
|
Hansson M, Hederstedt L. Cloning and characterization of the Bacillus subtilis hemEHY gene cluster, which encodes protoheme IX biosynthetic enzymes. J Bacteriol 1992; 174:8081-93. [PMID: 1459957 PMCID: PMC207547 DOI: 10.1128/jb.174.24.8081-8093.1992] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mutations that cause a block in a late step of the protoheme IX biosynthetic pathway, i.e., in a step after uroporphyrinogen III, map at 94 degrees on the Bacillus subtilis chromosomal genetic map. We have cloned and sequenced the hem genes at this location. The sequenced region contains six open reading frames: ponA, hemE, hemH, hemY, ORFA, and ORFB. The ponA gene product shows over 30% sequence identity to penicillin-binding proteins 1A of Escherichia coli, Streptococcus pneumoniae, and Streptococcus oralis and probably has a role in cell wall metabolism. The hemE gene was identified from amino acid sequence comparisons as encoding uroporphyrinogen III decarboxylase. The hemH gene was identified by enzyme activity analysis of the HemH protein expressed in E. coli. It encodes a water-soluble ferrochelatase which catalyzes the final step in protoheme IX synthesis, the insertion of ferrous iron into protoporphyrin IX. The function of the hemY gene product was not elucidated, but mutation analysis shows that it is required for a late step in protoheme IX synthesis. The hemY gene probably encodes an enzyme with coproporphyrinogen III oxidase or protoporphyrinogen IX oxidase activity or both of these activities. Inactivation of the ORFA and ORFB genes did not block protoheme IX synthesis. Preliminary evidence for a hemEHY mRNA was obtained, and a promoter region located in front of hemE was identified. From these combined results we conclude that the hemEHY gene cluster encodes enzymes for the synthesis of protoheme IX from uroporphyrinogen III and probably constitutes an operon.
Collapse
Affiliation(s)
- M Hansson
- Department of Microbiology, University of Lund, Sweden
| | | |
Collapse
|
31
|
Clementz T. The gene coding for 3-deoxy-manno-octulosonic acid transferase and the rfaQ gene are transcribed from divergently arranged promoters in Escherichia coli. J Bacteriol 1992; 174:7750-6. [PMID: 1447141 PMCID: PMC207489 DOI: 10.1128/jb.174.23.7750-7756.1992] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The gene kdtA in Escherichia coli codes for 3-deoxy-D-manno-octulosonic acid transferase, the enzyme responsible for attachment of the two 3-deoxy-D-manno-octulosonic acid residues that constitute the link between lipid A and the core oligosaccharide of the lipopolysaccharide. Cloning and subsequent sequencing of the region upstream of kdtA revealed an open reading frame identified as the first gene (rfaQ) in an rfa gene cluster. The kdtA and rfaQ transcripts were identified, and the 5' ends of the transcripts were mapped by primer extension. Two main, divergently arranged promoters were found. These promoters generated transcripts with 5' ends separated by 289 bases. That the two divergent transcripts from the identified promoters represent the kdtA and rfaQ transcripts was confirmed by fusing different parts of the intergenic region between the promoterless lacZ and phoA genes in promoter-screening plasmid pCB267.
Collapse
Affiliation(s)
- T Clementz
- Department of Microbiology, University of Lund, Sweden
| |
Collapse
|
32
|
Holmberg C, Rutberg L. An inverted repeat preceding the Bacillus subtilis glpD gene is a conditional terminator of transcription. Mol Microbiol 1992; 6:2931-8. [PMID: 1479885 DOI: 10.1111/j.1365-2958.1992.tb01752.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Bacillus subtilis glpD gene, encoding glycerol-3-phosphate (G3P) dehydrogenase, is preceded by a promoter and an inverted repeat which is located between the promoter and the glpD coding region. The inverted repeat acts as a transcriptional terminator in vitro. Expression of glpD is induced by G3P in the presence of the glpP gene product. Full-length glpD transcripts can be detected only in glycerol-induced cells. The major glpD transcript is initiated from the glpD promoter but minor amounts of larger transcripts, possibly initiated at upstream glp promoters, can also be found. In uninduced cells short transcripts are present, corresponding to initiation at the glpD promoter and termination at the inverted repeat. Upon induction, these short transcripts disappear and are replaced by full-length glpD transcripts. The 3'-ends of full-length glpD transcripts were mapped to an inverted repeat located immediately downstream of glpD. These results show that glpD of B. subtilis is regulated by termination/antitermination of transcription.
Collapse
Affiliation(s)
- C Holmberg
- Department of Microbiology, University of Lund, Sweden
| | | |
Collapse
|
33
|
Georgellis D, Arvidson S, von Gabain A. Decay of ompA mRNA and processing of 9S RNA are immediately affected by shifts in growth rate, but in opposite manners. J Bacteriol 1992; 174:5382-90. [PMID: 1644765 PMCID: PMC206376 DOI: 10.1128/jb.174.16.5382-5390.1992] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
By growing Escherichia coli in continuous cultures at various growth rates, we provide definitive evidence that the stability of the ompA mRNA is growth rate dependent. Shifting fast-growing cells into physiological salt buffer led to an immediately increased rate of ompA mRNA decay and to an instantly decreased rate of 9S RNA conversion into 5S rRNA. Shifting slowly growing cells into fresh medium had the opposite effect for each of the two RNA species. The observed regulatory patterns underline the need of cells to adjust the output of ompA and 9S RNAs in response to growth rate changes. At all growth rates and throughout all shift experiments, the half-life of bla mRNA was constant. A stabilization of the ompA transcript was even observed when slowly growing cells were shifted into fresh medium already containing the transcriptional inhibitor rifampicin. A hybrid bla transcript with the 5' untranslated region from the ompA gene behaved similarly to the wild-type ompA messenger in response to a shift in growth rate. In agreement with this result, we found that the same type of 5' cleavages as have been previously shown to initiate the decay of the ompA transcript seem to be involved in stability regulation. In E. coli the degradation of mRNA has been shown to depend on the ams/rne gene. This gene controls the stability-related cleavages in the ompA transcript, catabolic processes, and the cleavages which process the 9S rRNA into 5S RNA, an anabolic process. We discuss these results with respect to the ams/rne gene and the related nuclease activities that control the ompA and 9S RNA cleavages.
Collapse
Affiliation(s)
- D Georgellis
- Karolinska Institute, Department of Bacteriology, Stockholm, Sweden
| | | | | |
Collapse
|
34
|
Resnekov O, Melin L, Carlsson P, Mannerlöv M, von Gabain A, Hederstedt L. Organization and regulation of the Bacillus subtilis odhAB operon, which encodes two of the subenzymes of the 2-oxoglutarate dehydrogenase complex. MOLECULAR & GENERAL GENETICS : MGG 1992; 234:285-96. [PMID: 1508153 DOI: 10.1007/bf00283849] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The primary structure of Bacillus subtilis 105 kDa 2-oxoglutarate dehydrogenase (E10) was deduced from the nucleotide sequence of the odhA gene and confirmed by N-terminal sequence analysis. The protein is highly homologous to E1o of Azotobacter vinelandii and Escherichia coli and of bakers' yeast cells. The 5' end of the odhAB mRNA was determined and the promoter region for the odhAB operon was localized to a 375 bp DNA fragment. The cellular concentration of the 4.5 kb odhAB transcript was found to be growth stage dependent; its concentration during growth in nutrient sporulation medium decreased abruptly at the end of the exponential growth phase and it was not detectable in early stationary phase. This decrease in the cellular concentration of the transcript is not the result of an increased rate of decay of the full-length odhAB mRNA, suggesting that transcription is down-regulated at the end of the exponential growth phase. The cellular concentration of the odhA and odhB gene products, E1o and dihydrolipoamide transsuccinylase (E2o), remains essentially constant throughout the growth curve in nutrient sporulation medium, indicating that both are rather stable proteins. In exponentially growing cells, glucose in nutrient sporulation medium repressed the cellular concentration of the odhAB mRNA, as well as that of E1o and E2o, about four-fold. This effect is most likely the result of a decreased rate of transcription from the odhAB promoter, since neither the stability nor the 5'-end of the transcript were affected by glucose in the medium. It is concluded that the cellular concentration of the 2-oxoglutarate dehydrogenase multienzyme complex (E1o and E2o) is regulated mainly at the transcriptional level.
Collapse
Affiliation(s)
- O Resnekov
- Department of Bacteriology, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
35
|
Kulkarni RD, Schaefer MR, Golden SS. Transcriptional and posttranscriptional components of psbA response to high light intensity in Synechococcus sp. strain PCC 7942. J Bacteriol 1992; 174:3775-81. [PMID: 1592828 PMCID: PMC206068 DOI: 10.1128/jb.174.11.3775-3781.1992] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The psbA genes, which encode the D1 protein of photosystem II, constitute a multigene family in the cyanobacterium Synechococcus sp. strain PCC 7942. Levels of messages from the three psbA genes change rapidly when cells are shifted from low-light to high-light conditions: the psbAI message level drops, whereas psbAII and psbAIII message levels increase dramatically. We examined the potential contributions of transcriptional and posttranscriptional processes in these high-light responses by subjecting cells that had been grown in a turbidostat at a standard light intensity (130 microeinsteins [microE] m-2 s-1) to either the same or a higher light intensity (500 microE m-2 s-1) in the presence or absence of rifampin. Northern (RNA blot) analysis of RNA isolated from cells subjected to high light showed that the increases in psbAII and psbAIII transcripts were blocked by rifampin. This suggests a transcriptional induction of these genes at high light intensities. Increased mRNA stability does not contribute to their accumulation in high-light conditions, since their half-life values did not increase relative to the half-lives measured at the standard light intensity. The rate of disappearance of the psbAI transcript in cells shifted to high light was diminished when either transcription or translation was blocked by rifampin or chloramphenicol, suggesting that accelerated degradation of the message requires de novo synthesis of a protein factor. When rifampin was added 10 min after the shift to high light intensity rather than before the shift, psbAI and psbAIII messages, but not the psbAII message, decayed at a faster rate. Susceptibility of the psbAIII transcript to the high-light-induced factor was also demonstrated by addition of chloramphenicol prior to the shaft to high light. psbAIII transcript levels went up more than twofold higher in chloramphenicol-treated cells than in untreated cells, whereas psbAII transcript levels were affected by the inhibitor. These experiments provide evidence that either new or increased synthesis of a degradation factor which affects a subset of Synechococcus transcripts occurs in cells subjected to high light intensity.
Collapse
Affiliation(s)
- R D Kulkarni
- Department of Biology, Texas A&M University, College Station 77843-3258
| | | | | |
Collapse
|
36
|
Effect of temperature on translation of mRNA coding for an extracellular proteinase and cell proteins inBacillus megaterium. Curr Microbiol 1992. [DOI: 10.1007/bf01571104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Chapter 7 Progress in succinate:quinone oxidoreductase research. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/s0167-7306(08)60175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
38
|
Abstract
The expression of the chloramphenicol-inducible chloramphenicol-acetyltransferase gene (cat), encoded on Staphylococcus aureus plasmid pUB112, is regulated via a translational attenuation mechanism. Ribosomes, which are arrested by chloramphenicol during synthesis of a short leader peptide, activate catmRNA translation by opening a 5'-located stem-loop structure, thus setting free the cat ribosome-binding site. We have determined the 5' and 3' ends of catmRNA and analysed its stability in Bacillus subtilis. In the absence of the antibiotic, the half-life of catmRNA is shorter than 0.5 min; it is enhanced to about 8 min by sub-inhibitory concentrations of the drug. No decay intermediates of catmRNA could be detected, indicating a very fast degradation after an initial rate-limiting step. ochre nonsense mutations in the 5' region of the cat structural gene, which eliminate catmRNA translation, did not affect its chloramphenicol-induced stabilization. Mutations in the leader-peptide coding region, which abolish ribosome stalling and, therefore, cat gene induction, also eliminate catmRNA stabilization. We conclude that catmRNA is stabilized on induction by a chloramphenicol-arrested ribosome, which physically protects a nuclease-sensitive target site in the 5' region of catmRNA against exo- or endonucleolytic initiation of degradation. This protection is analogous to ermA and ermC mRNA and seems to reflect a general mechanism for stabilization of mRNA derived from inducible antibiotic resistance genes in B. subtilis.
Collapse
Affiliation(s)
- J Dreher
- Molekulare Genetik der Universität, Heidelberg, Germany
| | | |
Collapse
|
39
|
Holmberg C, Rutberg B. Expression of the gene encoding glycerol-3-phosphate dehydrogenase (glpD) in Bacillus subtilis is controlled by antitermination. Mol Microbiol 1991; 5:2891-900. [PMID: 1809833 DOI: 10.1111/j.1365-2958.1991.tb01849.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Bacillus subtilis glpD gene encodes glycerol-3-phosphate (G3P) dehydrogenase. A sigma A type promoter and the transcriptional startpoint for glpD were identified. Between the transcriptional startpoint and glpD there is an inverted repeat followed by a run of T residues. The inverted repeat prevents expression of a reporter gene, xylE, when positioned between this gene and a constitutive promoter. Expression of xylE, like expression of glpD, is induced by G3P and repressed by glucose. Induction also requires the product of the glpP gene. Our results suggest that glpD expression is controlled by antitermination of transcription. The inverted repeat appears to be a target for induction by G3P and GlpP. We speculate that glucose repression is mediated via an inhibitory effect on synthesis or activity of GlpP.
Collapse
Affiliation(s)
- C Holmberg
- Department of Microbiology, University of Lund, Sweden
| | | |
Collapse
|