1
|
Shin SW, Lee JS. CHO Cell Line Development and Engineering via Site-specific Integration: Challenges and Opportunities. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-020-0093-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
2
|
Effects of varying gene targeting parameters on processing of recombination intermediates by ERCC1-XPF. DNA Repair (Amst) 2010; 10:188-98. [PMID: 21123118 DOI: 10.1016/j.dnarep.2010.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 10/28/2010] [Accepted: 10/29/2010] [Indexed: 11/20/2022]
Abstract
The ERCC1-XPF structure-specific endonuclease is necessary for correct processing of homologous recombination intermediates requiring the removal of end-blocking nonhomologies. We previously showed that targeting the endogenous CHO APRT locus with plasmids designed to generate such intermediates revealed defective recombination phenotypes in ERCC1 deficient cells, including suppression of targeted insertion and vector correction recombinants and the generation of a novel class of aberrant recombinants through a deletogenic mechanism. In the present study, we examined some of the mechanistic features of ERCC1-XPF in processing recombination intermediates by varying gene targeting parameters. These included altering the distance between the double-strand break (DSB) in the targeting vector and the inactivating mutation in the APRT target gene, and changing the position of the target gene mutation relative to the DSB to result in target mutations that were either upstream or downstream from the DSB. Increasing the distance from the DSB in the targeting vector to the chromosomal target gene mutation resulted in an ERCC1 dependent decrease in the efficiency of gene targeting from intermediates presenting lengthy end-blocking nonhomologies. This decrease was accompanied by a shift in the distribution of recombinant classes away from target gene conversions to targeted insertions in both wild-type and ERCC1 deficient cells, and a dramatic increase in the proportion of aberrant recombinants in ERCC1 deficient cells. Changing the position of the target gene mutation relative to the DSB in the plasmid also altered the distribution of targeted insertion subclasses recovered in wild-type cells, consistent with two-ended strand invasion followed by resolution into crossover-type products and vector integration. Our results confirm expectations from studies of Rad10-Rad1 in budding yeast that ERCC1-XPF activity affects conversion tract length, and provide evidence for the mechanism of generation of the novel, aberrant recombinant class first described in our previous study.
Collapse
|
3
|
Abstract
Chinese hamster ovary (CHO) cells are the most common host cells and are widely used in the manufacture of approved recombinant therapeutics. They represent a major new class of universal hosts in biopharmaceutical production. However, there remains room for improvement to create more ideal host cells that can add greater value to therapeutic recombinant proteins at reduced production cost. A promising approach to this goal is biallelic gene knockout in CHO cells, as it is the most reliable and effective means to permanent phenotypic change, owing to the complete removal of gene function. In this chapter, we describe a biallelic gene knockout process in CHO cells, as exemplified by the successful targeted disruption of both FUT8 alleles encoding alpha-1,6-fucosyltransferase gene in CHO/DG44 cells. Wild-type alleles are sequentially disrupted by homologous recombination using two targeting vectors to generate homozygous disruptants, and the drug-resistance gene cassettes remaining on the alleles are removed by a Cre/loxP recombination system so as not to leave the extraphenotype except for the functional loss of the gene of interest.
Collapse
|
4
|
Yamane-Ohnuki N, Kinoshita S, Inoue-Urakubo M, Kusunoki M, Iida S, Nakano R, Wakitani M, Niwa R, Sakurada M, Uchida K, Shitara K, Satoh M. Establishment ofFUT8 knockout Chinese hamster ovary cells: An ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol Bioeng 2004; 87:614-22. [PMID: 15352059 DOI: 10.1002/bit.20151] [Citation(s) in RCA: 403] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To generate industrially applicable new host cell lines for antibody production with optimizing antibody-dependent cellular cytotoxicity (ADCC) we disrupted both FUT8 alleles in a Chinese hamster ovary (CHO)/DG44 cell line by sequential homologous recombination. FUT8 encodes an alpha-1,6-fucosyltransferase that catalyzes the transfer of fucose from GDP-fucose to N-acetylglucosamine (GlcNAc) in an alpha-1,6 linkage. FUT8(-/-) cell lines have morphology and growth kinetics similar to those of the parent, and produce completely defucosylated recombinant antibodies. FUT8(-/-)-produced chimeric anti-CD20 IgG1 shows the same level of antigen-binding activity and complement-dependent cytotoxicity (CDC) as the FUT8(+/+)-produced, comparable antibody, Rituxan. In contrast, FUT8(-/-)-produced anti-CD20 IgG1 strongly binds to human Fcgamma-receptor IIIa (FcgammaRIIIa) and dramatically enhances ADCC to approximately 100-fold that of Rituxan. Our results demonstrate that FUT8(-/-) cells are ideal host cell lines to stably produce completely defucosylated high-ADCC antibodies with fixed quality and efficacy for therapeutic use.
Collapse
Affiliation(s)
- Naoko Yamane-Ohnuki
- Tokyo Research Laboratories, Kyowa Hakko Kogyo Co., Ltd., 3-6-6 Asahi-machi, Machida-shi, Tokyo 194-8533, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
McCulloch RD, Read LR, Baker MD. Strand invasion and DNA synthesis from the two 3' ends of a double-strand break in Mammalian cells. Genetics 2003; 163:1439-47. [PMID: 12702687 PMCID: PMC1462519 DOI: 10.1093/genetics/163.4.1439] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Analysis of the crossover products recovered following transformation of mammalian cells with a sequence insertion ("ends-in") gene-targeting vector revealed a novel class of recombinant. In this class of recombinants, a single vector copy has integrated into an ectopic genomic position, leaving the structure of the cognate chromosomal locus unaltered. Thus, in this respect, the recombinants resemble simple cases of random vector integration. However, the important difference is that the two paired 3' vector ends have acquired endogenous, chromosomal sequences flanking both sides of the vector-borne double-strand break (DSB). In some cases, copying was extensive, extending >16 kb into nonhomologous flanking DNA. The results suggest that mammalian homologous recombination events can involve strand invasion and DNA synthesis by both 3' ends of the DSB. These DNA interactions are a central, predicted feature of the DSBR model of recombination.
Collapse
Affiliation(s)
- Richard D McCulloch
- Department of Molecular Biology and Genetics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | |
Collapse
|
6
|
Yáñez RJ, Porter ACG. Differential effects of Rad52p overexpression on gene targeting and extrachromosomal homologous recombination in a human cell line. Nucleic Acids Res 2002; 30:740-8. [PMID: 11809887 PMCID: PMC100286 DOI: 10.1093/nar/30.3.740] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Overexpression of the RAD52 epistasis group of gene products is a convenient way to investigate their in vivo roles in homologous recombination (HR) and DNA repair. Overexpression has the further attraction that any associated stimulation of HR may facilitate gene-targeting applications. Rad51p or Rad52p overexpression in mammalian cells have previously been shown to enhance some forms of HR and resistance to ionising radiation, but the effects of Rad52p overexpression on gene targeting have not been tested. Here we show that Rad52p overexpression inhibits gene targeting while stimulating extrachromosomal HR. We also find that Rad52p overexpression affects cell-cycle distribution, impairs cell survival and is lost during extensive passaging. Therefore, we suggest that excess Rad52p can inhibit the essential RAD51-dependent pathways of HR most likely to be responsible for gene targeting, while at the same time stimulating the RAD51-independent pathway thought to be responsible for extrachromosomal HR. The data also argue against Rad52p overexpression as a means of promoting gene targeting, and highlight the limitations of using a single HR assay to assess the overall status of HR.
Collapse
Affiliation(s)
- Rafael J Yáñez
- Gene Targeting Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | | |
Collapse
|
7
|
Vasquez KM, Marburger K, Intody Z, Wilson JH. Manipulating the mammalian genome by homologous recombination. Proc Natl Acad Sci U S A 2001; 98:8403-10. [PMID: 11459982 PMCID: PMC37450 DOI: 10.1073/pnas.111009698] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Gene targeting in mammalian cells has proven invaluable in biotechnology, in studies of gene structure and function, and in understanding chromosome dynamics. It also offers a potential tool for gene-therapeutic applications. Two limitations constrain the current technology: the low rate of homologous recombination in mammalian cells and the high rate of random (nontargeted) integration of the vector DNA. Here we consider possible ways to overcome these limitations within the framework of our present understanding of recombination mechanisms and machinery. Several studies suggest that transient alteration of the levels of recombination proteins, by overexpression or interference with expression, may be able to increase homologous recombination or decrease random integration, and we present a list of candidate genes. We consider potentially beneficial modifications to the vector DNA and discuss the effects of methods of DNA delivery on targeting efficiency. Finally, we present work showing that gene-specific DNA damage can stimulate local homologous recombination, and we discuss recent results with two general methodologies--chimeric nucleases and triplex-forming oligonucleotides--for stimulating recombination in cells.
Collapse
Affiliation(s)
- K M Vasquez
- Science Park Research Division, M. D. Anderson Cancer Center, Smithville, TX 78957, USA
| | | | | | | |
Collapse
|
8
|
Tamar S, Papadopoulou B. A telomere-mediated chromosome fragmentation approach to assess mitotic stability and ploidy alterations of Leishmania chromosomes. J Biol Chem 2001; 276:11662-73. [PMID: 11152684 DOI: 10.1074/jbc.m009006200] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have used a telomere-associated chromosome fragmentation strategy to induce internal chromosome-specific breakage of Leishmania chromosomes. The integration of telomeric repeats from the kinetoplastid Trypanosoma brucei into defined positions of the Leishmania genome by homologous recombination can induce chromosome breakage accompanied by the deletion of the chromosomal part that is distal to the site of the break. The cloned telomeric DNA at the end of the truncated chromosomes is functional and it can seed the formation of new telomeric repeats. We found that genome ploidy is often altered upon telomere-mediated chromosome fragmentation events resulting in large chromosomal deletions. In most cases diploidy is either preserved, or partial trisomic cells are observed, but interestingly we report here the generation of partial haploid mutants in this diploid organism. Partial haploid Leishmania mutants should facilitate studies on the function of chromosome-assigned genes. We also present several lines of evidence for the presence of sequences involved in chromosome mitotic stability and segregation during cell cycle in this parasitic protozoan. Telomere-directed chromosome fragmentation studies in Leishmania may constitute a useful tool to assay for centromere function.
Collapse
Affiliation(s)
- S Tamar
- Centre de Recherche en Infectiologie, Centre de Recherche du CHUL et Département de Biologie Médicale, Faculté de Médecine, Université Laval, Québec G1V 4G2, Canada
| | | |
Collapse
|
9
|
Adair GM, Rolig RL, Moore-Faver D, Zabelshansky M, Wilson JH, Nairn RS. Role of ERCC1 in removal of long non-homologous tails during targeted homologous recombination. EMBO J 2000; 19:5552-61. [PMID: 11032822 PMCID: PMC313999 DOI: 10.1093/emboj/19.20.5552] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The XpF/Ercc1 structure-specific endonuclease performs the 5' incision in nucleotide excision repair and is the apparent mammalian counterpart of the Rad1/Rad10 endonuclease from Saccharomyces cerevisiae. In yeast, Rad1/Rad10 endonuclease also functions in mitotic recombination. To determine whether XpF/Ercc1 endonuclease has a similar role in mitotic recombination, we targeted the APRT locus in Chinese hamster ovary ERCC1(+) and ERCC1(-) cell lines with insertion vectors having long or short terminal non-homologies flanking each side of a double-strand break. No substantial differences were evident in overall recombination frequencies, in contrast to results from targeting experiments in yeast. However, profound differences were observed in types of APRT(+) recombinants recovered from ERCC1(-) cells using targeting vectors with long terminal non-homologies-almost complete ablation of gap repair and single-reciprocal exchange events, and generation of a new class of aberrant insertion/deletion recombinants absent in ERCC1(+) cells. These results represent the first demonstration of a requirement for ERCC1 in targeted homologous recombination in mammalian cells, specifically in removal of long non-homologous tails from invading homologous strands.
Collapse
Affiliation(s)
- G M Adair
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, TX 78957, USA
| | | | | | | | | | | |
Collapse
|
10
|
Li J, Baker MD. Formation and repair of heteroduplex DNA on both sides of the double-strand break during mammalian gene targeting. J Mol Biol 2000; 295:505-16. [PMID: 10623542 DOI: 10.1006/jmbi.1999.3400] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we examined homologous recombination in mammalian cells using a gene targeting assay in which the introduction of a double-strand-break (DSB) in the vector-borne region of homology to the chromosome resulted in targeted vector integration. The vector-borne DSB was flanked with small palindromic insertions that, when encompassed within heteroduplex DNA (hDNA) formed during targeted vector integration, were capable of avoiding the activity of the mismatch repair (MMR) system. When used in conjunction with an isolation procedure in which the product(s) of each targeted vector integration event were retained for molecular analysis, information about recombination mechanisms was obtained. The examination of marker segregation patterns in independent recombinants revealed the following, (i) hDNA tracts could form simultaneously on each side of the DSB and in both participating homologous regions. Clonal analysis of sectored recombinants revealed that, in the homologous repeats generated by the recombination event, vector-borne palindrome and chromosomal markers were linked in the expected way in each strand of the hDNA intermediate, (ii) hDNA tracts were subject to MMR processing that occurred on opposite sides of the DSB, and (iii) in the majority of recombinants, the vector-borne marker was replaced with the corresponding marker from the chromosome. Bidirectional hDNA formation and MMR processing of both sides of the DSB are consistent with the double-strand-break repair (DSBR) model of recombination.
Collapse
Affiliation(s)
- J Li
- Department of Molecular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | |
Collapse
|
11
|
Abstract
The ideal therapy for single gene disorders would be repair of the mutated disease genes. Homologous recombination is one of several cellular mechanisms for the repair of DNA damage. Recombination between exogenous DNA and homologous chromosomal loci (gene targeting) can be used to repair an endogenous gene, but the low efficiency of this process is a serious barrier to its therapeutic potential. Recent progress in the isolation and characterisation of mammalian genes and proteins involved in DNA recombination has raised the possibility that the cellular biochemistry of recombination can be manipulated to improve the efficiency of gene targeting. As an initial test of this approach, we have overexpressed the gene encoding hRAD51, a protein with homologous DNA pairing and strand exchange activities, in human cells and measured its effect on gene targeting. We report a two- to three-fold increase in gene targeting, and enhanced resistance to ionising radiation in hRAD51-overexpressing cells with no obvious detrimental effects. These observations provide valuable genetic evidence for the involvement of hRAD51 in both gene targeting and DNA repair in human cells. Our data also establish overexpression of recombination genes as a viable approach to improving gene targeting efficiencies.
Collapse
Affiliation(s)
- R J Yáñez
- Gene Targeting Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, DuCane Road, London W12 0NN, UK
| | | |
Collapse
|
12
|
Abstract
In the present study, the mechanism of double-strand-break (DSB) repair during gene targeting at the chromosomal immunoglobulin mu-locus in a murine hybridoma was examined. The gene-targeting assay utilized specially designed insertion vectors genetically marked in the region of homology to the chromosomal mu-locus by six diagnostic restriction enzyme site markers. The restriction enzyme markers permitted the contribution of vector-borne and chromosomal mu-sequences in the recombinant product to be determined. The use of the insertion vectors in conjunction with a plating procedure in which individual integrative homologous recombination events were retained for analysis revealed several important features about the mammalian DSB repair process:The presence of the markers within the region of shared homology did not affect the efficiency of gene targeting. In the majority of recombinants, the vector-borne marker proximal to the DSB was absent, being replaced with the corresponding chromosomal restriction enzyme site. This result is consistent with either formation and repair of a vector-borne gap or an "end" bias in mismatch repair of heteroduplex DNA (hDNA) that favored the chromosomal sequence. Formation of hDNA was frequently associated with gene targeting and, in most cases, began approximately 645 bp from the DSB and could encompass a distance of at least 1469 bp. The hDNA was efficiently repaired prior to DNA replication. The repair of adjacent mismatches in hDNA occurred predominantly on the same strand, suggesting the involvement of a long-patch repair mechanism.
Collapse
Affiliation(s)
- P Ng
- Department of Molecular Biology and Genetics, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|
13
|
|
14
|
Richard M, Gusew N, Belmaaza A, Chartrand P. Homologous junctions formed between a vector and human genomic repetitive LINE-1 elements as a result of one-sided invasion. SOMATIC CELL AND MOLECULAR GENETICS 1997; 23:75-81. [PMID: 9218003 DOI: 10.1007/bf02679957] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Studies on homologous recombination in mammalian cells between an exogenous DNA molecule containing a double-strand break and a homologous genomic sequence have indicated that there were at least two distinct types of homologous recombination processes, one that involved the formation of two homologous junctions and another that involved the formation of one homologous junction and one illegitimate junction. Both types of events are produced in gene targeting experiments. We have proposed a model to account for the later process called one-sided invasion. One-sided invasion has now been reported in numerous species belonging to different phyla and appears to be a universal mechanism. It has also been observed in normal human germ cells. The role of one-sided invasion is still unknown. Using a recombination assay between LINE-1 elements from the human genome and exogenous LINE-1 sequences, we have characterized the process of homologous junction formation in one-sided invasion. We found that at each of the homologous junctions, variable lengths of the vector L1 sequences had been replaced by genomic L1 sequences. We also found a homologous junction that involved three partners, suggesting that the homologous end could be released and become available for a second round of interaction.
Collapse
Affiliation(s)
- M Richard
- Institut du cancer de Montréal, Quebec, Canada
| | | | | | | |
Collapse
|
15
|
Sargent RG, Merrihew RV, Nairn R, Adair G, Meuth M, Wilson JH. The influence of a (GT)29 microsatellite sequence on homologous recombination in the hamster adenine phosphoribosyltransferase gene. Nucleic Acids Res 1996; 24:746-53. [PMID: 8604319 PMCID: PMC145700 DOI: 10.1093/nar/24.4.746] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Several DNA sequence elements are thought to stimulate homologous recombination, illegitimate recombination, or both in mammalian cells. Some are implicated by their recurrence around rearrangement breakpoints, others by their effects on recombination of extrachromosomal plasmids. None of these sequences, however, has been tested on the chromosome in a defined context. In this paper we show how the adenine phosphoribosyltransferase locus in CHO cells can be used to study the recombinogenic potential of defined DNA sequences. As an example we have measured the effect on homologous recombination of a dinucleotide repeat, (GT)29, which has been shown to stimulate homologous recombination in extrachromosomal vectors 3-20 fold. On the chromosome at the adenine phosphoribosyltransferase locus, however, this sequence shows no capacity to stimulate recombination or to influence the distribution of recombination events.
Collapse
Affiliation(s)
- R G Sargent
- Verna and Mars McLean Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
16
|
Carroll D. Homologous genetic recombination in Xenopus: mechanism and implications for gene manipulation. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 54:101-25. [PMID: 8768073 DOI: 10.1016/s0079-6603(08)60361-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Appropriately designed DNA substrates undergo very efficient homologous recombination after injection into the nuclei of Xenopus laevis oocytes. The requirements for this process are that the substrate be linear, that it have direct repeats to support recombination, and that these repeats be at or very near the molecular ends. Taking advantage of direct nuclear injection, the large amounts of DNA processed in a single oocyte, and the accessibility of recombination intermediates, we were able to analyze the mechanism of recombination in detail. Molecular ends are resected by a 5'-->3' exonuclease activity. When complementary sequences are exposed from two ends, they anneal. Continued 5'-->3' degradation removes the redundant strands; the 3' ends pair with their complements and can be extended by DNA polymerase to fill any gap left by the exonuclease. Joining of strands by DNA ligase completes the process. This mechanism is nonconservative, in that only one of the two original repeats is retained, and it has been dubbed single-strand annealing, or SSA. The capability for SSA accumulates during the later phases of oogenesis and persists into the egg. This pattern suggests that, like many activities of full-grown oocytes, SSA is stored for use during embryogenesis. The same or a very similar mechanism is prevalent in many other species, including bacteria, yeast, plants, and mammals, where it often provides the predominant mode of recombination of extrachromosomal DNA. Lessons learned about SSA are applicable to methods of gene manipulation. It is plausible that SSA has a normal function in the repair of double-strand breaks, but proof of this awaits identification of genes and enzymes uniquely involved in this style of recombination.
Collapse
Affiliation(s)
- D Carroll
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City 84132, USA
| |
Collapse
|
17
|
Merrihew RV, Sargent RG, Wilson JH. Efficient modification of the APRT gene by FLP/FRT site-specific targeting. SOMATIC CELL AND MOLECULAR GENETICS 1995; 21:299-307. [PMID: 8619127 DOI: 10.1007/bf02257465] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The FLP/FRT site-specific recombination system was established and characterized at the APRT gene in CHO cells. Targeting frequencies with FLP-stimulation were about 1 to 5 X 10(-5), which were 6-22-fold above gene targeting frequencies in the absence of FLP. Fifty two APRT+ cell lines were analyzed by Southern blotting: 56% were FLP-targeted integrants; 33% were APRT target convertants; 11% gave undefined patterns. In separate experiments we first enriched for integrants by screening for two additional markers carried on the targeting vector; 18 of 19 (95%) of the resulting cell lines were integrants. Intrachromosomal site-specific recombination was tested by reexposing integrants to FLP. Intrachromosomal popouts were stimulated over 200-fold, while homologous recombination in an adjacent interval was unchanged. The utility of this system was demonstrated by one-step FLP targeting to generate chromosomal substrates for homologous recombination, and by a two-step, FLP-and-run procedure to construct a chromosomal substrate for illegitimate recombination.
Collapse
Affiliation(s)
- R V Merrihew
- The Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
18
|
Hasty P, Rivera-Pérez J, Bradley A. Gene conversion during vector insertion in embryonic stem cells. Nucleic Acids Res 1995; 23:2058-64. [PMID: 7596837 PMCID: PMC306984 DOI: 10.1093/nar/23.11.2058] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Recombination of an insertion vector into its chromosomal homologue is a conservative event in that both the chromosomal and the vector sequences are preserved. However, gene conversion may accompany homologous recombination of an insertion vector. To examine gene conversion in more detail we have determined the targeting frequencies and the structure of the recombinant alleles generated with a series of vectors which target the hprt gene in embryonic stem cells. We demonstrate that gene conversion of the introduced mutation does not significantly limit homologous recombination and that gene conversion occurs without a sequence specific bias for five different mutations. The frequency of the loss of a vector mutation and the gain of a chromosomal sequence is inversely proportional to the distance between the vector mutation and the double-strand break. The loss of a chromosomal sequence and the gain of a vector mutation occurs at a low frequency.
Collapse
Affiliation(s)
- P Hasty
- Department of Human and Molecular Genetics, Baylor College of Medicine, TX 77030, USA
| | | | | |
Collapse
|
19
|
Segal DJ, Carroll D. Endonuclease-induced, targeted homologous extrachromosomal recombination in Xenopus oocytes. Proc Natl Acad Sci U S A 1995; 92:806-10. [PMID: 7846056 PMCID: PMC42709 DOI: 10.1073/pnas.92.3.806] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Homologous recombination in gene targeting in most organisms occurs by an inefficient mechanism. Inducing a double-strand break in the chromosomal target may increase this efficiency by allowing recombination to proceed by the highly efficient single-strand annealing mechanism. A gene targeting experiment was modeled in Xenopus oocytes by using a circular plasmid to mimic the chromosomal target site and a homologous linear molecule (pick-up fragment or PUF) as an analogue of the vector DNA. When those two molecules were simply injected together, no recombination was observed. In contrast, when the circular plasmid was cleaved in vivo by injection of the site-specific endonuclease, I-Sce I, relatively efficient intermolecular recombination occurred, involving up to 17% of the cleaved molecules. Recombination was dependent on the stability of the PUF; product yield was increased by using longer fragments and by injecting larger amounts of linear DNA, both of which increased the lifetime of the PUF in the oocytes. These results demonstrate that in vivo double-strand breaks can induce homologous recombination of reluctant substrates and may be useful in augmenting the efficiency of gene targeting.
Collapse
Affiliation(s)
- D J Segal
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City 84132
| | | |
Collapse
|
20
|
Lukacsovich T, Yang D, Waldman AS. Repair of a specific double-strand break generated within a mammalian chromosome by yeast endonuclease I-SceI. Nucleic Acids Res 1994; 22:5649-57. [PMID: 7838718 PMCID: PMC310129 DOI: 10.1093/nar/22.25.5649] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We established a mouse Ltk- cell line that contains within its genome a herpes simplex virus thymidine kinase gene (tk) that had been disrupted by the insertion of the recognition sequence for yeast endonuclease I-SceI. The artificially introduced 18 bp I-SceI recognition sequence was likely a unique sequence in the genome of the mouse cell line. To assess whether an induced double-strand break (DSB) in the genomic tk gene would be repaired preferentially by gene targeting or non-homologous recombination, we electroporated the mouse cell line with endonuclease I-SceI alone, one of two different gene targeting constructs alone, or with I-SceI in conjunction with each of the two targeting constructs. Each targeting construct was, in principle, capable of correcting the defective genomic tk sequence via homologous recombination. tk+ colonies were recovered following electroporation of cells with I-SceI in the presence or absence of a targeting construct. Through the detection of small deletions at the I-SceI recognition sequence in the mouse genome, we present evidence that a specific DSB can be introduced into the genome of a living mammalian cell by yeast endonuclease I-SceI. We further report that a DSB in the genome of a mouse Ltk- cell is repaired preferentially by non-homologous end-joining rather than by targeted homologous recombination with an exogenous donor sequence. The potential utility of this system is discussed.
Collapse
Affiliation(s)
- T Lukacsovich
- Department of Biological Sciences, University of South Carolina, Columbia 29208
| | | | | |
Collapse
|
21
|
Efficiency of insertion versus replacement vector targeting varies at different chromosomal loci. Mol Cell Biol 1994. [PMID: 7969173 DOI: 10.1128/mcb.14.12.8385] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have analyzed the targeting frequencies and recombination products generated with isogenic vectors at the fah and fgr loci in embryonic stem cells. A single vector which could be linearized at different sites to generate either a replacement or an insertion vector was constructed for each locus. A replacement event predominated when the vectors were linearized at the edge of the homologous sequences, while an insertion event predominated when the vectors were linearized within the homologous sequences. However, the ratio of the targeting frequencies exhibited by the different vector configurations differed for the two loci. When the fgr vector was linearized as an insertion vector, the ratio of targeted to random integrations was four- to eightfold greater than when the vector was linearized as a replacement vector. By contrast, the ratio of targeted to random integrations at the fah locus did not vary with the linearization site of the vector. The different relationships between the targeting frequency and the vector configuration at the fgr and fah loci may indicate a DNA sequence or chromatin structure preference for different targeting pathways.
Collapse
|
22
|
Hasty P, Crist M, Grompe M, Bradley A. Efficiency of insertion versus replacement vector targeting varies at different chromosomal loci. Mol Cell Biol 1994; 14:8385-90. [PMID: 7969173 PMCID: PMC359377 DOI: 10.1128/mcb.14.12.8385-8390.1994] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have analyzed the targeting frequencies and recombination products generated with isogenic vectors at the fah and fgr loci in embryonic stem cells. A single vector which could be linearized at different sites to generate either a replacement or an insertion vector was constructed for each locus. A replacement event predominated when the vectors were linearized at the edge of the homologous sequences, while an insertion event predominated when the vectors were linearized within the homologous sequences. However, the ratio of the targeting frequencies exhibited by the different vector configurations differed for the two loci. When the fgr vector was linearized as an insertion vector, the ratio of targeted to random integrations was four- to eightfold greater than when the vector was linearized as a replacement vector. By contrast, the ratio of targeted to random integrations at the fah locus did not vary with the linearization site of the vector. The different relationships between the targeting frequency and the vector configuration at the fgr and fah loci may indicate a DNA sequence or chromatin structure preference for different targeting pathways.
Collapse
Affiliation(s)
- P Hasty
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | | | | | | |
Collapse
|
23
|
Abstract
Using simple linear fragments of the Chinese hamster adenine phosphoribosyltransferase (APRT) gene as targeting vectors, we have investigated the homology dependence of targeted recombination at the endogenous APRT locus in Chinese hamster ovary (CHO) cells. We have examined the effects of varying either the overall length of targeting sequence homology or the length of 5' or 3' flanking homology on both the frequency of targeted homologous recombination and the types of recombination events that are obtained. We find an exponential (logarithmic) relationship between length of APRT targeting homology and the frequency of targeted recombination at the CHO APRT locus, with the frequency of targeted recombination dependent upon both the overall length of targeting homology and the length of homology flanking each side of the target gene deletion. Although most of the APRT+ recombinants analyzed reflect simple targeted replacement or conversion of the target gene deletion, a significant fraction appear to have arisen by target gene-templated extension and correction of the targeting fragment sequences. APRT fragments with limited targeting homology flanking one side of the target gene deletion yield proportionately fewer target gene conversion events and proportionately more templated extension and vector correction events than do fragments with more substantial flanking homology.
Collapse
|
24
|
Scheerer JB, Adair GM. Homology dependence of targeted recombination at the Chinese hamster APRT locus. Mol Cell Biol 1994; 14:6663-73. [PMID: 7935385 PMCID: PMC359196 DOI: 10.1128/mcb.14.10.6663-6673.1994] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Using simple linear fragments of the Chinese hamster adenine phosphoribosyltransferase (APRT) gene as targeting vectors, we have investigated the homology dependence of targeted recombination at the endogenous APRT locus in Chinese hamster ovary (CHO) cells. We have examined the effects of varying either the overall length of targeting sequence homology or the length of 5' or 3' flanking homology on both the frequency of targeted homologous recombination and the types of recombination events that are obtained. We find an exponential (logarithmic) relationship between length of APRT targeting homology and the frequency of targeted recombination at the CHO APRT locus, with the frequency of targeted recombination dependent upon both the overall length of targeting homology and the length of homology flanking each side of the target gene deletion. Although most of the APRT+ recombinants analyzed reflect simple targeted replacement or conversion of the target gene deletion, a significant fraction appear to have arisen by target gene-templated extension and correction of the targeting fragment sequences. APRT fragments with limited targeting homology flanking one side of the target gene deletion yield proportionately fewer target gene conversion events and proportionately more templated extension and vector correction events than do fragments with more substantial flanking homology.
Collapse
Affiliation(s)
- J B Scheerer
- University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville 78957
| | | |
Collapse
|
25
|
Wilson JH, Leung WY, Bosco G, Dieu D, Haber JE. The frequency of gene targeting in yeast depends on the number of target copies. Proc Natl Acad Sci U S A 1994; 91:177-81. [PMID: 8278360 PMCID: PMC42909 DOI: 10.1073/pnas.91.1.177] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have compared the efficiency of transformation by linear DNA fragments in yeast strains carrying different numbers of homologous targets for recombination. In strains carrying dispersed copies of a target and in strains carrying tandem arrays, the frequency of transformation is proportional to the number of targets. This result is in contrast to previous studies of transformation in mammalian cells, where targeted integration was insensitive to the number of targets. We conclude that, in yeast, the search for a homologous partner is a rate-limiting step in the successful recombination of linearized DNA fragments. Furthermore, the fact that we obtain the same results with both dispersed and clustered targets argues against models of homology searching in which DNA becomes nonspecifically associated with a chromosome and then slides along the DNA until homology is encountered.
Collapse
Affiliation(s)
- J H Wilson
- Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030
| | | | | | | | | |
Collapse
|
26
|
Rudolph U, Brabet P, Hasty P, Bradley A, Birnbaumer L. Disruption of the G(i2) alpha locus in embryonic stem cells and mice: a modified hit and run strategy with detection by a PCR dependent on gap repair. Transgenic Res 1993; 2:345-55. [PMID: 8268981 DOI: 10.1007/bf01976176] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have used an insertion vector-based approach to target the G(i2) alpha gene in AB-1 embryonic stem cells. 105 bp located 0.8-0.9 kb upstream of a disrupting Neo marker in exon 3 were deleted and replaced with an engineered Not I site, that served to linearize the vector. The 105 bp deletion served as a primer annealing site in a polymerase chain reaction (PCR) designed to detect the gap repair associated with homologous recombination. Both target conversion and vector insertion events were obtained ('hit' step). Clones that had inserted the entire targeting vector were taken into FIAU (1-[2-deoxy,2-fluoro-beta-D-arabinofuranosyl]-5-ioduracil) counterselection to select against a thymidine kinase (TK) marker flanking the homologous genomic sequences and thus for cells that had excised the plasmid and the TK marker by intrachromosomal recombination ('run' step). Additional selection in G418 reduced the number of drug-resistant colonies at least five-fold. Thus, the Neo marker disrupting the homologous sequences allows for a more specific selection of the desired intrachromosomal recombination event in tissue culture. This modified 'hit and run' strategy represents a novel approach for vector design and the use of the polymerase chain reaction to detect targeting. It may be particularly useful for targeting genes that display a low frequency of homologous recombination. Germ line transmission of the mutated G(i2) alpha allele is also demonstrated.
Collapse
Affiliation(s)
- U Rudolph
- Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030
| | | | | | | | | |
Collapse
|
27
|
Nairn RS, Adair GM, Porter T, Pennington SL, Smith DG, Wilson JH, Seidman MM. Targeting vector configuration and method of gene transfer influence targeted correction of the APRT gene in Chinese hamster ovary cells. SOMATIC CELL AND MOLECULAR GENETICS 1993; 19:363-75. [PMID: 8105543 DOI: 10.1007/bf01232748] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A 21-bp deletion in the third exon of the APRT gene in Chinese hamster ovary (CHO) cells was corrected by transfection with a plasmid containing hamster APRT sequences. Targeted correction frequencies in the range of 0.3-3.0 x 10(-6) were obtained with a vector containing 3.2 kb of APRT sequence homology. To examine the influence of vector configuration on targeted gene correction, a double-strand break was introduced at one of two positions in the vector prior to transfection by calcium phosphate-DNA coprecipitation or electroporation. A double-strand break in the region of APRT homology contained in the vector produced an insertion-type vector, while placement of the break just outside the region of homology produced a replacement-type vector. Gene targeting with both linear vector configurations yielded equivalent ratios of targeted recombinants to nontargeted vector integrants; however, targeting with the two different vector configurations resulted in different distributions of targeted recombination products. Analysis of 66 independent APRT+ recombinant clones by Southern hybridization showed that targeting with the vector in a replacement-type configuration yielded fewer targeted integrants and more target gene convertants than did the integration vector configuration. Targeted recombination was about fivefold more efficient with electroporation than with calcium phosphate-DNA coprecipitation; however, both gene transfer methods produced similar distributions of targeted recombinants, which depended only on targeting vector configuration. Our results demonstrate that insertion-type and replacement-type gene targeting vectors produce similar overall targeting frequencies in gene correction experiments, but that vector configuration can significantly influence the yield of particular recombinant types.
Collapse
Affiliation(s)
- R S Nairn
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville 78957
| | | | | | | | | | | | | |
Collapse
|
28
|
Ward MA, Abramow-Newerly W, Roder JC. Effect of vector topology on homologous recombination at the CHO aprt locus. SOMATIC CELL AND MOLECULAR GENETICS 1993; 19:257-64. [PMID: 8332933 DOI: 10.1007/bf01233073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The Chinese hamster ovary aprt gene was used as a model for studying the effect of vector topology on gene targeting frequency. A single recombination vector containing 2.7 kb of isogenic DNA homologous to the aprt gene was digested with eight separate restriction enzymes to generate a variety of both replacement- and insertion-type recombination substrates. The frequency of homologous recombination, normalized by cotransfection with a linearized neo' marker, was assayed by the correction of a mutant hemizygous aprt allele and was not found to reflect vector topology. Southern analysis of representative recombination products suggests that the gene targeting events occurred predominantly by double crossover/gene conversion.
Collapse
Affiliation(s)
- M A Ward
- Department of Molecular and Medical Genetics, University of Toronto, Samuel Lununfeld Research Institute, Mount Sinai Hospital, Ontario, Canada
| | | | | |
Collapse
|
29
|
Abstract
Gene targeting was used to introduce nonselectable genetic changes into chromosomal loci in mouse embryo-derived stem cells. The nonselectable markers were linked to a selectable marker in both insertion- and replacement-type vectors, and the transfer of the two elements to the Hprt locus was assayed. When insertion vectors were used as substrates, the frequency of transfer was highly dependent upon the distance between the nonselectable marker and the double-strand break in the vector. A marker located close to the vector ends was frequently lost, suggesting that a double-strand gap repair activity is involved in vector integration. When replacement vectors were used, cotransfer of a selectable marker and a nonselectable marker 3 kb apart was over 50%, suggesting that recombination between vector and target often occurs near the ends of the vector. To illustrate the use of replacement vectors to transfer specific mutations to the genome, we describe targeting of the delta F508 mutation to the CFTR gene in mouse embryo-derived stem cells.
Collapse
|
30
|
Kumar S, Simons JP. The effects of terminal heterologies on gene targeting by insertion vectors in embryonic stem cells. Nucleic Acids Res 1993; 21:1541-8. [PMID: 8386835 PMCID: PMC309360 DOI: 10.1093/nar/21.7.1541] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We have examined the effects of placing nonhomologous DNA on the ends of an insertion-type gene targeting vector. The presence of terminal heterologies was found to be compatible with insertion targeting, and the terminal heterologies were efficiently removed. Terminal heterologies reduced the frequency of gene targeting to variable extents. The degree of inhibition of targeting was dependent on the length and the position of the heterology: 2.1kb heterologous sequences were more inhibitory than shorter regions of heterology, and heterology placed on the end of the long (4.8kb) arm of homology was more inhibitory than heterology positioned on the end of the short (0.8kb) arm. When heterology was placed on both arms of the targeting vector the targeting efficiencies were similar to or higher than when heterology was present on the long arm only. These results suggest that terminal sequences are removed simultaneously from both ends of targeting vectors. The removal of terminal sequences probably occurs by exonucleolytic degradation of both strands at each end, and removal of at least one of the strands is intimately coupled with the process of homologous recombination. These findings have implications for the design of gene targeting vectors.
Collapse
Affiliation(s)
- S Kumar
- Department of Molecular Genetics, AFRC Institute of Animal Physiology and Genetics Research, Roslin, Midlothian, UK
| | | |
Collapse
|
31
|
Deng C, Thomas KR, Capecchi MR. Location of crossovers during gene targeting with insertion and replacement vectors. Mol Cell Biol 1993; 13:2134-40. [PMID: 8455602 PMCID: PMC359534 DOI: 10.1128/mcb.13.4.2134-2140.1993] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Gene targeting was used to introduce nonselectable genetic changes into chromosomal loci in mouse embryo-derived stem cells. The nonselectable markers were linked to a selectable marker in both insertion- and replacement-type vectors, and the transfer of the two elements to the Hprt locus was assayed. When insertion vectors were used as substrates, the frequency of transfer was highly dependent upon the distance between the nonselectable marker and the double-strand break in the vector. A marker located close to the vector ends was frequently lost, suggesting that a double-strand gap repair activity is involved in vector integration. When replacement vectors were used, cotransfer of a selectable marker and a nonselectable marker 3 kb apart was over 50%, suggesting that recombination between vector and target often occurs near the ends of the vector. To illustrate the use of replacement vectors to transfer specific mutations to the genome, we describe targeting of the delta F508 mutation to the CFTR gene in mouse embryo-derived stem cells.
Collapse
Affiliation(s)
- C Deng
- Howard Hughes Medical Institute, Eccles Institute of Human Genetics, University of Utah School of Medicine, Salt Lake City 84112
| | | | | |
Collapse
|
32
|
Extrachromosomal homologous DNA recombination in plant cells is fast and is not affected by CpG methylation. Mol Cell Biol 1992. [PMID: 1630452 DOI: 10.1128/mcb.12.8.3372] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using a sensitive transient assay, we investigated extrachromosomal homologous DNA recombination (ECR) in plant cells. As the plant genome is highly C methylated, we addressed the question of whether CpG methylation has an influence on DNA recombination efficiencies. Whereas the expression level of the fully CpG-methylated DNA molecules was reduced drastically, we found no significant changes in ECR efficiencies between two partly CpG-methylated plasmids or between one fully CpG-methylated and one nonmethylated plasmid. Using a modified polymerase chain reaction analysis, we were able to detect recombination between two fully CpG-methylated plasmids. Furthermore, we characterized the kinetics of the ECR reaction. Cotransfection of plasmids carrying truncated copies of the beta-glucuronidase (GUS) gene resulted in enzyme activity with a delay of only half an hour compared with that of the plasmid carrying the functional marker gene. This indicates that the ECR reaction itself requires no more than 30 min. By polymerase chain reaction, we were able to detect the recombined GUS gene as early as 2 h after transfection. This result and the time course of the transient GUS activity indicate that ECR occurs mainly early after transfection. The biological significance of this finding is discussed, and properties of ECR and intrachromosomal recombination are compared.
Collapse
|
33
|
Puchta H, Kocher S, Hohn B. Extrachromosomal homologous DNA recombination in plant cells is fast and is not affected by CpG methylation. Mol Cell Biol 1992; 12:3372-9. [PMID: 1630452 PMCID: PMC364585 DOI: 10.1128/mcb.12.8.3372-3379.1992] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Using a sensitive transient assay, we investigated extrachromosomal homologous DNA recombination (ECR) in plant cells. As the plant genome is highly C methylated, we addressed the question of whether CpG methylation has an influence on DNA recombination efficiencies. Whereas the expression level of the fully CpG-methylated DNA molecules was reduced drastically, we found no significant changes in ECR efficiencies between two partly CpG-methylated plasmids or between one fully CpG-methylated and one nonmethylated plasmid. Using a modified polymerase chain reaction analysis, we were able to detect recombination between two fully CpG-methylated plasmids. Furthermore, we characterized the kinetics of the ECR reaction. Cotransfection of plasmids carrying truncated copies of the beta-glucuronidase (GUS) gene resulted in enzyme activity with a delay of only half an hour compared with that of the plasmid carrying the functional marker gene. This indicates that the ECR reaction itself requires no more than 30 min. By polymerase chain reaction, we were able to detect the recombined GUS gene as early as 2 h after transfection. This result and the time course of the transient GUS activity indicate that ECR occurs mainly early after transfection. The biological significance of this finding is discussed, and properties of ECR and intrachromosomal recombination are compared.
Collapse
Affiliation(s)
- H Puchta
- Friedrich Miescher-Institut, Basel, Switzerland
| | | | | |
Collapse
|
34
|
Abstract
We have analyzed the gene-targeting frequencies and recombination products generated by a series of vectors which target the hprt locus in embryonic stem cells and found the existence of alternative pathways that depend on the location of the double-strand break within the vector. A double-strand break in the targeting homology was found to increase the targeting frequency compared with a double-strand break at the edge of or outside the target homology; this finding agrees with the double-strand break repair model proposed for Saccharomyces cerevisiae. Although a double-strand break in the homology is important for efficient targeting, observations reported here suggest that the terminal ends are not always directly involved in the initial recombination event. Short terminal heterologous sequences which block the homologous ends of the vector may be incorporated into the target locus. A modification of the double-strand break repair model is described to account for this observation.
Collapse
|
35
|
de Groot MJ, Offringa R, Does MP, Hooykaas PJ, van den Elzen PJ. Mechanisms of intermolecular homologous recombination in plants as studied with single- and double-stranded DNA molecules. Nucleic Acids Res 1992; 20:2785-94. [PMID: 1319574 PMCID: PMC336923 DOI: 10.1093/nar/20.11.2785] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To elucidate the mechanism for intermolecular homologous recombination in plants we cotransformed Nicotiana tabacum cv Petit Havana SR1 protoplasts with constructs carrying different defective derivatives of the NPTII gene. The resulting kanamycin resistant clones were screened for possible recombination products by PCR, which proved to be a valuable technique for this analysis. Our results show that the double-stranded circular DNA molecules used in this study recombine predominantly via a pathway consistent with the single-strand annealing (SSA) model as proposed for extrachromosomal recombination in mammalian cells. In the remaining cases recombination occurred via a single reciprocal recombination, gene conversion and possibly double reciprocal recombination. Since single-stranded DNA is considered to be an important intermediate in homologous recombination we also established the recombination ability of single-stranded DNA in intermolecular recombination. We found that single-stranded DNA enters in recombination processes more efficiently than the corresponding double-stranded DNA. This was also reflected in the recombination mechanisms that generated the functional NPTII gene. Recombination between a single-stranded DNA and the complementing DNA duplex occurred at similar rates via a single reciprocal recombination and the SSA pathway.
Collapse
|
36
|
Hasty P, Rivera-Pérez J, Bradley A. The role and fate of DNA ends for homologous recombination in embryonic stem cells. Mol Cell Biol 1992; 12:2464-74. [PMID: 1588950 PMCID: PMC364439 DOI: 10.1128/mcb.12.6.2464-2474.1992] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have analyzed the gene-targeting frequencies and recombination products generated by a series of vectors which target the hprt locus in embryonic stem cells and found the existence of alternative pathways that depend on the location of the double-strand break within the vector. A double-strand break in the targeting homology was found to increase the targeting frequency compared with a double-strand break at the edge of or outside the target homology; this finding agrees with the double-strand break repair model proposed for Saccharomyces cerevisiae. Although a double-strand break in the homology is important for efficient targeting, observations reported here suggest that the terminal ends are not always directly involved in the initial recombination event. Short terminal heterologous sequences which block the homologous ends of the vector may be incorporated into the target locus. A modification of the double-strand break repair model is described to account for this observation.
Collapse
Affiliation(s)
- P Hasty
- Institute for Molecular Genetics, Baylor College of Medicine, Houston, Texas 77030
| | | | | |
Collapse
|