1
|
Hermanto U, Zong CS, Li W, Wang LH. RACK1, an insulin-like growth factor I (IGF-I) receptor-interacting protein, modulates IGF-I-dependent integrin signaling and promotes cell spreading and contact with extracellular matrix. Mol Cell Biol 2002; 22:2345-65. [PMID: 11884618 PMCID: PMC133698 DOI: 10.1128/mcb.22.7.2345-2365.2002] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The insulin-like growth factor I (IGF-I) receptor (IGF-IR) is known to regulate a variety of cellular processes including cell proliferation, cell survival, cell differentiation, and cell transformation. IRS-1 and Shc, substrates of the IGF-IR, are known to mediate IGF-IR signaling pathways such as those of mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K), which are believed to play important roles in some of the IGF-IR-dependent biological functions. We used the cytoplasmic domain of IGF-IR in a yeast two-hybrid interaction trap to identify IGF-IR-interacting molecules that may potentially mediate IGF-IR-regulated functions. We identified RACK1, a WD repeat family member and a Gbeta homologue, and demonstrated that RACK1 interacts with the IGF-IR but not with the closely related insulin receptor (IR). In several types of mammalian cells, RACK1 interacted with IGF-IR, protein kinase C, and beta1 integrin in response to IGF-I and phorbol 12-myristate 13-acetate stimulation. Whereas most of RACK1 resides in the cytoskeletal compartment of the cytoplasm, transformation of fibroblasts and epithelial cells by v-Src, oncogenic IR or oncogenic IGF-IR, but not by Ros or Ras, resulted in a significantly increased association of RACK1 with the membrane. We examined the role of RACK1 in IGF-IR-mediated functions by stably overexpressing RACK1 in NIH 3T3 cells that expressed an elevated level of IGF-IR. RACK1 overexpression resulted in reduced IGF-I-induced cell growth in both anchorage-dependent and anchorage-independent conditions. Overexpression of RACK1 also led to enhanced cell spreading, increased stress fibers, and increased focal adhesions, which were accompanied by increased tyrosine phosphorylation of focal adhesion kinase and paxillin. While IGF-I-induced activation of IRS-1, Shc, PI3K, and MAPK pathways was unaffected, IGF-I-inducible beta1 integrin-associated kinase activity and association of Crk with p130(CAS) were significantly inhibited by RACK1 overexpression. In RACK1-overexpressing cells, delayed cell cycle progression in G(1) or G(1)/S was correlated with retinoblastoma protein hypophophorylation, increased levels of p21(Cip1/WAF1) and p27(Kip1), and reduced IGF-I-inducible Cdk2 activity. Reduction of RACK1 protein expression by antisense oligonucleotides prevented cell spreading and suppressed IGF-I-dependent monolayer growth. Our data suggest that RACK1 is a novel IGF-IR signaling molecule that functions as a positive mediator of cell spreading and contact with extracellular matrix, possibly through a novel IGF-IR signaling pathway involving integrin and focal adhesion signaling molecules.
Collapse
Affiliation(s)
- Ulrich Hermanto
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
2
|
Nguyen KT, Wang WJ, Chan JL, Wang LH. Differential requirements of the MAP kinase and PI3 kinase signaling pathways in Src- versus insulin and IGF-1 receptors-induced growth and transformation of rat intestinal epithelial cells. Oncogene 2000; 19:5385-97. [PMID: 11103940 DOI: 10.1038/sj.onc.1203911] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There have been few studies on the specific signaling pathways involved in the transformation of epithelial cells by oncogenic protein tyrosine kinases. Here we investigate the requirement of MAP (MAPK) and phosphatidylinositol 3- (PI3K) kinases in the transformation of rat intestinal epithelial (RIE) cells by oncogenic forms of insulin receptor (gag-IR), insulin-like growth factor-1 receptor (gag-IGFR), and v-Src. MAPK is not significantly activated in cells transformed by gag-IR and gag-IGFR but is activated in v-Src transformed cells. Treatment with PD98059, a MEK inhibitor, at concentrations where MAPK activity was reduced below the basal level showed that MAPK is partially required for the monolayer growth of parental and transformed RIE cells. However, MAPK is not essential for the focus forming ability of the three oncogene-transformed cells. It is also not necessary for the colony forming ability of gag-IR- and gag-IGFR-, but is partially required for v-Src-transformed cells. PI3K is significantly activated in all three oncogene transformed RIE cells. LY294002, a PI3K inhibitor, potently inhibited monolayer growth of all three oncogene-transformed cells. However, at concentrations of LY294002 where activated forms of Akt, a downstream component of the PI3K pathway, were undetectable, colony and focus forming abilities of the v-Src-RIE cells were only slightly affected whereas those of gag-IR/IGFR-RIE cells were greatly inhibited. These results were confirmed using a different pharmacological inhibitor, wortmannin, and a dominant negative form of PI3K, Ap85. Similarly, rapamycin, known to inhibit p70S6 kinase, a downstream component of the PI3K-Akt pathway, also inhibited gag-IR/IGFR-induced, but not v-Src-induced, focus and colony formation. We conclude that the MAPK and PI3K signaling pathways are differentially required for transformation of RIE cells by oncogenic IR and IGFR versus Src and the pattern of requirements is different from that of fibroblast transformation.
Collapse
Affiliation(s)
- K T Nguyen
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
3
|
Li W, Jiang YX, Zhang J, Soon L, Flechner L, Kapoor V, Pierce JH, Wang LH. Protein kinase C-delta is an important signaling molecule in insulin-like growth factor I receptor-mediated cell transformation. Mol Cell Biol 1998; 18:5888-98. [PMID: 9742106 PMCID: PMC109175 DOI: 10.1128/mcb.18.10.5888] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/1998] [Accepted: 07/20/1998] [Indexed: 11/20/2022] Open
Abstract
To investigate the potential role of protein kinase C-delta (PKC-delta) in insulin-like growth factor I receptor (IGF-IR)-mediated cell transformation, an oncogenic gag-IGF-IR beta-fusion receptor lacking the entire extracellular domain, which was designated NM1, and a full-length IGF-IR were coexpressed with either wild-type PKC-delta (PKC-deltaWT) or an ATP-binding mutant of PKC-delta (PKC-deltaK376R) in NIH 3T3 fibroblasts. While overexpression of PKC-deltaWT did not affect NM1- and IGF-IR-induced focus and colony formation of NIH 3T3 cells, expression of PKC-deltaK376R severely impaired these events. In contrast, NM1-mediated cell growth in monolayer was not affected by coexpressing PKC-deltaK376R. PKC-deltaWT and PKC-deltaK376R were constitutively phosphorylated on a tyrosine residue(s) in the NM1- and IGF-IR-expressing cells and were associated with them in an IGF-I-independent manner. Activated IGF-IR was able to phosphorylate purified PKC-delta in vitro and stimulated its kinase activity. Furthermore, the level of endogenous PKC-delta protein was up-regulated through transcriptional activation in response to long-term IGF-IR activation. Taken together, our results demonstrate that PKC-delta plays an important role in IGF-IR-mediated cell transformation, probably via association of the receptor with PKC-delta and its activation through protein up-regulation and tyrosine phosphorylation. Competition with endogenous PKC-delta for NM1 and IGF-IR association by PKC-deltaK376R is probably an important mechanism underlying the PKC-deltaK376R-mediated inhibition of cell transformation by NM1 and IGF-IR.
Collapse
Affiliation(s)
- W Li
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Li S, Zhang H, Hoff H, Sell C. Activation of the insulin-like growth factor type 1 receptor by deletion of amino acids 870-905. Exp Cell Res 1998; 243:326-33. [PMID: 9743592 DOI: 10.1006/excr.1998.4167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have created a deletion mutant of the insulin-like growth factor type 1 receptor (IGF-1 R) which lacks the 36 amino acids (aa) immediately N-terminal to the transmembrane domain (Delta870-905 IGF-1 R). This region has been reported to have a negative effect on the transforming potential of an avian sarcoma virus gag-IGF-1 R fusion protein. We have sought to determine whether this region plays a similar role in the intact IGF-1 R. Analysis of the tyrosine kinase activity of the Delta870-905 IGF-1 R shows that the mutant receptor is autophosphorylated without IGF-1 stimulation, indicating that the tyrosine kinase domain is constitutively active. In addition, processing of the receptor is decreased, resulting in accumulation of a high molecular weight proreceptor containing both alpha and beta-subunits. A well-characterized substrate of the IGF-1 R, IRS-1, is constitutively phosphorylated by the Delta870-905 IGF-1 R and phosphoinositide (PI) 3-kinase activity, which is normally activated by the phosphorylation of IRS-1 following IGF-1 stimulation, is increased even in the absence of IGF-1. A second intracellular signal pathway normally activated by IGF-1, the MAP kinase pathway, showed no increase in activity in the absence of IGF-1. The Delta870-905 IGF-1 R promoted cell proliferation only in the presence of IGF-1. We conclude that this deletion increases the basal activity of the IGF-1 receptor tyrosine kinase and activates PI 3-kinase, but is unable to stimulate MAP kinase in the absence of ligand. These results confirm those seen in the gag-IGF-1 R fusion protein and indicate that aa 870-905 exert a negative effect on the tyrosine kinase domain of the beta-subunit of the IGF-1 R.
Collapse
Affiliation(s)
- S Li
- Department of Pathology and Laboratory Medicine, MCP-Hahnemann School of Medicine, Allegheny University, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, USA
| | | | | | | |
Collapse
|
5
|
Abstract
It is commonly believed that the insulin receptor mainly mediates the metabolic effects of insulin, whereas the closely related IGF-I receptor is considered a major factor for the regulation of cell proliferation. Experimental and epidemiological evidence indicates, however, that insulin and insulin receptors may play an important role in breast cancer. This article reviews evidence indicating that (a) insulin receptors are overexpressed in human breast cancer, (b) insulin stimulates growth in breast cancer cells, (c) cells transfected with human insulin receptor may acquire a ligand-dependent transformed phenotype, and (d) breast cancer is associated with insulin resistance and hyperinsulinemia. These findings may open new possibilities in breast cancer prevention, prognosis assessment, and therapy. (Trends Endocrinol Metab 1997; 8:306-312). (c) 1997, Elsevier Science Inc.
Collapse
Affiliation(s)
- V Papa
- Medical Department, SIFI SpA, Lavinaio (Catania), 95020, Italy
| | | | | |
Collapse
|
6
|
Chan JL, Lai M, Wang LH. Effect of dimerization on signal transduction and biological function of oncogenic Ros, insulin, and insulin-like growth factor I receptors. J Biol Chem 1997; 272:146-53. [PMID: 8995240 DOI: 10.1074/jbc.272.1.146] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The avian sarcoma virus UR2 codes for an oncogenic Gag-Ros fusion protein-tyrosine kinase (PTK). We have previously derived two retroviruses, T6 and NM1, coding for oncogenic Gag-insulin receptor and Gag-insulin-like growth factor I receptor (IGFR) fusion proteins, respectively. The Gag-IGFR fusion protein dimerizes, whereas Gag-Ros does not. To identify sequences affecting dimerization and the effect of dimerization on signaling and biological functions, we generated recombinants exchanging the extracellular and transmembrane sequences among the three fusion receptors. The presence of multiple cysteines in the Gag sequence appears to preclude dimerization, since deletion of the 3' cysteine residue allows for dimerization. Most of the chimeric receptors retain high PTK activity and induce transformation regardless of their configuration on the cell surface. UT, a UR2/T6 chimera, retained mitogenic activity but has a markedly reduced transforming ability, while UN7, a UR2/NM1 recombinant, which also harbors Y950F and F951S mutations in IGFR, exhibits dramatic reductions in both activities. All of the fusion receptors can phosphorylate insulin receptor substrate 1 and activate PI 3-kinase. UT protein induces Shc phosphorylation, whereas UN7 protein does not, but both are unable to activate mitogen-activated protein kinase. Our results show that overexpressed oncogenic Gag-fusion receptors do not require dimerization for their signaling and transforming functions and that the extracellular and transmembrane sequences of a receptor PTK can affect its specific substrate interactions.
Collapse
Affiliation(s)
- J L Chan
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
7
|
Zhang QK, Boast S, de los Santos K, Begemann M, Goff SP. Transforming activity of retroviral genomes encoding Gag-Axl fusion proteins. J Virol 1996; 70:8089-97. [PMID: 8892934 PMCID: PMC190883 DOI: 10.1128/jvi.70.11.8089-8097.1996] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Retroviral genomes encoding a portion of the Moloney murine leukemia virus Gag protein fused to portions of the murine axl cDNA were constructed so as to mimic naturally occurring transforming viruses. Virus MA1 retained 5 amino acids of the extracellular domain and the complete transmembrane and intracellular domains of Axl; virus MA2 retained only the intracellular Axl sequences beginning 33 amino acids downstream of the transmembrane region. Although both viruses could transform NIH 3T3 cells, they induced different morphological changes. MA1 transformants became elongated and assumed a cross-hatched pattern, while MA2 transformants were round and very refractile and grew to high density. Gag-Axl and Glyco-Gag-Axl proteins were detected in both types of transformed cells and were predominantly localized to the cytoplasmic compartment. When cell-free v-axl virus supernatants were introduced into wild-type BALB/c neonates, Rag-2-deficient mice, or c-myc transgenic mice, they did not cause tumors in a 3-month period. However, MA2-transformed NIH 3T3 cells, but not MA1 or control cells, could establish sarcomas by subcutaneous or intraperitoneal injection into BALB/c neonates. These results show that the transforming potential of the axl gene can be activated by truncation of the extracellular domain of the receptor and fusion of the remaining sequence to the gag gene.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Carcinogenicity Tests
- DNA, Viral
- Gene Products, gag/chemistry
- Gene Products, gag/genetics
- Gene Products, gag/metabolism
- Genome, Viral
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Moloney murine leukemia virus/genetics
- Moloney murine leukemia virus/metabolism
- Oncogene Proteins/chemistry
- Oncogene Proteins/genetics
- Oncogene Proteins/metabolism
- Phosphorylation
- Proto-Oncogene Proteins
- Receptor Protein-Tyrosine Kinases/chemistry
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Retroviridae
- Subcellular Fractions/metabolism
- Transformation, Genetic
- Tyrosine/metabolism
- Axl Receptor Tyrosine Kinase
Collapse
Affiliation(s)
- Q K Zhang
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
8
|
Affiliation(s)
- J M Blechman
- Department of Chemical Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
9
|
Prager D, Li HL, Asa S, Melmed S. Dominant negative inhibition of tumorigenesis in vivo by human insulin-like growth factor I receptor mutant. Proc Natl Acad Sci U S A 1994; 91:2181-5. [PMID: 8134369 PMCID: PMC43334 DOI: 10.1073/pnas.91.6.2181] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Although insulin-like growth factor I (IGF-I) is a mitogenic growth factor, its role in tumorigenesis is unclear. We therefore transfected wild-type and truncated beta-subunit mutant (952STOP) human IGF-I receptor cDNAs into Rat-1 fibroblasts. Rat-1 transfectants expressed 2.5- to 7-fold increased IGF-I receptor mass, while the Kd for IGF-I binding was unchanged. The Rat-1 cells transfected with wild-type receptor cDNA responded to in vitro IGF-I treatment by increased proliferation and DNA synthesis. Cells overexpressing wild-type receptors were also transformed as evidenced by ligand-dependent colony proliferation in soft agar. After injection into athymic nude mice, all wild-type transfectants formed solid sarcomas within 3 weeks, and ex vivo tumor cell assays confirmed continued overexpression of human IGF-I receptors. In contrast, both DNA synthesis and proliferation of 952STOP-transfected cells were attenuated below that of untransfected cells. 952STOP cells were nonresponsive to IGF-I in vitro and were unable to sustain anchorage-independent growth. No tumors were induced for up to 8 weeks after injection of 952STOP transfectants into athymic mice, despite the presence of demonstrable endogenous IGF-I receptors on the 952STOP-transfected cells. Therefore, 952STOP behaves as a dominant negative inhibitor of endogenous IGF-I receptor function, probably by assembling nonfunctional hybrid rat/mutant human receptor tetramers.
Collapse
Affiliation(s)
- D Prager
- Department of Medicine, Cedars-Sinai Medical Center-University of California, Los Angeles School of Medicine, Endocrinology 90048
| | | | | | | |
Collapse
|
10
|
Abstract
Many oncogenes encode protein tyrosine kinases (PTKs). Oncogenic mutations of these genes invariably result in constitutive activation of these PTKs. Autophosphorylation of the PTKs and tyrosine phosphorylation of their cellular substrates are essential events for transmission of the mitogenic signal into cells. The recent discovery of the characteristic amino acid sequences, of the src homology domains 2 and 3 (SH2 and SH3), and extensive studies on proteins containing the SH2 and SH3 domains have revealed that protein tyrosine-phosphorylation of PTKs provides phosphotyrosine sites for SH2 binding and allows extracellular signals to be relayed into the nucleus through a chain of protein-protein interactions mediated by the SH2 and SH3 domains. Studies on oncogenes, PTKs and SH2/SH3-containing proteins have made a tremendous contribution to our understanding of the mechanisms for the control of cell growth, oncogenesis, and signal transduction. This review is intended to provide an outline of the most recent progress in the study of signal transduction by PTKs. Copyright 1994 S. Karger AG, Basel
Collapse
Affiliation(s)
- D. Liu
- Department of Microbiology, The Mount Sinai School of Medicine, New York, N.Y., USA
| | | |
Collapse
|
11
|
Chen J, Hanafusa T, Wang LH. Ala-->Gly mutation in the putative catalytic loop confers temperature sensitivity on Ros, insulin receptor, and insulin-like growth factor I receptor protein-tyrosine kinases. Proc Natl Acad Sci U S A 1994; 91:321-5. [PMID: 8278385 PMCID: PMC42939 DOI: 10.1073/pnas.91.1.321] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Temperature-sensitive mutations in the avian sarcoma virus UR2 oncogene ros, encoding a receptor protein-tyrosine kinase (PTK), were identified. The Ala385-->Gly change mapping within the highly conserved RDLAARN motif in the Ros kinase domain was responsible for the temperature-sensitive phenotype. Based on the sequence homology of all known protein kinases and the crystalline structure of the cAMP-dependent protein kinase, this conserved region probably represents the PTK catalytic loop. The same mutation when introduced into the human insulin and insulin-like growth factor I receptors made these PTKs temperature sensitive in both biological function and kinase activity. Our results support the presumed catalytic role of this highly conserved sequence in PTKs. Due to its highly conserved nature, we predict that the same mutation would probably confer temperature sensitivity on other PTKs.
Collapse
Affiliation(s)
- J Chen
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029
| | | | | |
Collapse
|
12
|
Liu D, Zong CS, Wang LH. Distinctive effects of the carboxyl-terminal sequence of the insulin-like growth factor I receptor on its signaling functions. J Virol 1993; 67:6835-40. [PMID: 7692086 PMCID: PMC238128 DOI: 10.1128/jvi.67.11.6835-6840.1993] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have shown previously that the extracellular sequences of the human insulin receptor (IR) and the insulin-like growth factor I receptor (IGFR) have an inhibitory effect on protein tyrosine kinase (PTK) activity and on the biological functions of their respective Gag-receptor fusion proteins. To study the role of IGFR carboxyl sequence in modulation of the Gag-IGFR PTK and biological activities, five mutants, CM1, CM2, CM3, CM4, and CM5, containing carboxyl deletions of 17, 27, 47, 67, and 88 amino acids (aa), respectively, were constructed from the parental virus UIGFR encoding the Gag-IGFR. Deletion of up to 27 aa had little effect on the cell-transforming and PTK activities of UIGFR. Deletions of 47 aa in CM3 abolished PTK and transforming activities. Surprisingly, a further deletion of 20 aa in CM4 beyond that in CM3 reactivated the kinase and transforming activities. CM5, containing a deletion of 20 aa beyond that in CM4, had only marginal transforming and PTK activities. We conclude that deletion of the carboxyl region of the Gag-IGFR inactivates, instead of activating as in the case with Gag-IR, its transforming activity and the amino acid sequence 1250 to 1310 is essential for PTK and transforming activities. Analysis of the ability of the full-length IGFR and its mutant receptors described above to associate with phosphatidylinositol 3 kinase indicated that the association required PTK activity and tyrosine phosphorylation of the receptors and correlated well with their transforming activities. The carboxyl 88 aa are not essential for the association.
Collapse
Affiliation(s)
- D Liu
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029-6574
| | | | | |
Collapse
|
13
|
Zong CS, Poon B, Chen J, Wang LH. Molecular and biochemical bases for activation of the transforming potential of the proto-oncogene c-ros. J Virol 1993; 67:6453-62. [PMID: 8411348 PMCID: PMC238081 DOI: 10.1128/jvi.67.11.6453-6462.1993] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The transforming gene of avian sarcoma virus UR2, v-ros, encodes a receptor-like protein tyrosine kinase and differs from its proto-oncogene, c-ros, in its 5' truncation and fusion to viral gag, a three-amino-acid (aa) insertion in the transmembrane (TM) domain, and changes in the carboxyl region. To explore the basis for activation of the c-ros transforming potential, various c-ros retroviral vectors containing those changes were constructed and studied for their biological and biochemical properties. Ufcros codes for the full-length c-ros protein of 2,311 aa, Uppcros has 1,661-aa internal deletion in the extracellular domain, CCros contains the 3' c-ros cDNA fused 150 aa upstream of the TM domain to the UR2 gag, CVros is the same as CCros except that the 3' region is replaced by that of v-ros, and VCros is the same as CCros except that the 5' region is replaced by that of v-ros. The Ufcros, Uppcros, CCros, and CVros are inactive in transforming chicken embryo fibroblasts, whereas VCros is as potent as UR2 in cell-transforming and tumorigenic activities. Upon passages of CCros and CVros viruses, the additional extracellular sequence in comparison with that of v-ros was delected; concurrently, both viruses (named CC5d and CV5d, respectively) attained moderate transforming activity, albeit significantly lower than that of UR2 or VCros. The native c-ros protein has a very low protein tyrosine kinase activity, whereas the ppcros protein is constitutively activated in kinase activity. The inability of CCros and CVros to transform chicken embryo fibroblasts is consistent with the inefficient membrane association, instability, and low kinase activity of their encoded proteins. The CC5d and CV5d proteins are indistinguishable in kinase activity, membrane association, and stability from the v-ros protein. The reduced transforming potency of CC5d and CV5d proteins can be attributed only to their differential substrate interaction, notably the failure to phosphorylate a 88-kDa protein. We conclude that the 5' rather than the 3' modification of c-ros is essential for its oncogenic activation; the sequence upstream of the TM domain has a negative effect on the transforming activity of CCros and CVros and needs to be deleted to activate their biological activity.
Collapse
Affiliation(s)
- C S Zong
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029-6574
| | | | | | | |
Collapse
|
14
|
Liu D, Rutter WJ, Wang LH. Modulating effects of the extracellular sequence of the human insulinlike growth factor I receptor on its transforming and tumorigenic potential. J Virol 1993; 67:9-18. [PMID: 8380100 PMCID: PMC237332 DOI: 10.1128/jvi.67.1.9-18.1993] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We reported previously that an N-terminally truncated insulinlike growth factor I receptor (IGFR) fused to avian sarcoma virus UR2 gag p19 had a greater transforming potential than did the native IGFR, but it failed to cause tumors in vivo. To investigate whether the 36 amino acids (aa) of the IGFR extracellular (EC) sequence in the gag-IGFR fusion protein encoded by the retrovirus UIGFR have a modulatory effect on the biological and biochemical properties of the protein, four mutants, NM1, NM2, NM3, and NM4 of the EC sequence were constructed. NM1 lacks the entire 36 aa residues; NM2 lacks the N-terminal 16 aa residues (aa 870 to 885), including two potential N-linked glycosylation sites of the EC sequence; NM3 contains a deletion of the C-terminal 20 aa residues (aa 886 to 905) of the EC sequence; and NM4 contains N-to-Q substitutions at both N-linked glycosylation sites. NM1 was the strongest of the four mutants in promoting anchorage-independent growth of transfected chicken embryo fibroblasts, while NM2 and NM4 had weaker transforming potential than did the original UIGFR virus. Only NM1 and NM3 were able to induce sarcomas in chickens. The four NM mutant-transformed cells expressed the expected proteins with comparable steady-state levels. The in vitro tyrosine kinase activity of P53NM1 was about fourfold higher than that of the parental P57-75UIGFR, whereas NM2 and NM4 proteins exhibited four- to fivefold-lower kinase activities. Despite lacking the IGFR EC sequence, P53NM1 formed covalent dimers similar to those formed by the parental P57-75UIGFR. Increased phosphatidylinositol (PI) 3-kinase activity was found to be associated with the mutant IGFR proteins. Among NM4 proteins. Elevated tyrosine phosphorylation of cellular proteins of 35, 120, 140, 160, and 170 kDa was detected in all mutant IGFR-transformed cells. We conclude that the EC 36-aa sequence of IGFR in the gag-IGFR fusion protein exerts intricate modulatory effects on the protein's transforming and tumorigenic potential. The 20 aa residues immediately upstream of the transmembrane domain have an inhibitory effect on the tumorigenic potential of gag-IGFR, whereas N-linked glycosylation within the EC sequence appears to have a positive effect on the transforming potential of UIGFR. Increased in vitro kinase activity and, to a lesser extent, in vivo tyrosine phosphorylation as well as the elevated association of PI 3-kinase activity with IGFR proteins seem to be correlated with the transforming potential of IGFR mutant proteins.
Collapse
Affiliation(s)
- D Liu
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029-6574
| | | | | |
Collapse
|
15
|
Jong SM, Zong CS, Dorai T, Wang LH. Transforming properties and substrate specificities of the protein tyrosine kinase oncogenes ros and src and their recombinants. J Virol 1992; 66:4909-18. [PMID: 1321277 PMCID: PMC241332 DOI: 10.1128/jvi.66.8.4909-4918.1992] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To determine the sequences of the oncogenes src (encoded by Rous sarcoma virus [RSV]) and ros (encoded by UR2) that are responsible for causing different transformation phenotypes and to correlate those sequences with differences in substrate recognition, we constructed recombinants of the two transforming protein tyrosine kinases (PTKs) and studied their biological and biochemical properties. A recombinant with a 5' end from src and a 3' end from ros, called SRC x ROS, transformed chicken embryo fibroblasts (CEF) to a spindle shape morphology, mimicking that of UR2. Neither of the two reverse constructs, ROS x SRC I and ROS x SRC II, could transform CEF. However, a transforming variant of ROS x SRC II appeared during passages of the transfected cells and was called ROS x SRC (R). ROS x SRC (R) contains a 16-amino-acid deletion that includes the 3' half of the transmembrane domain of ros. Unlike RSV, ROS x SRC (R) also transformed CEF to an elongated shape similar to that of UR2. We conclude that distinct phenotypic changes of RSV- and UR2-infected cells do not depend solely on the kinase domains of their oncogenes. We next examined cellular proteins phosphorylated by the tyrosine kinases of UR2, RSV, and their recombinants as well as a number of other avian sarcoma viruses including Fujinami sarcoma virus Y73, and some ros-derived variants. Our results indicate that the UR2-encoded receptorlike PTK P68gag-ros and its derivatives have a very restricted substrate specificity in comparison with the nonreceptor PTKs encoded by the rest of the avian sarcoma viruses. Data from ros and src recombinants indicate that sequences both inside and outside the catalytic domains of ros and src exert a significant effect on the substrate specificity of the two recombinant proteins. Phosphorylation of most of the proteins in the 100- to 200-kDa range correlated with the presence of the 5' src domain, including the SH2 region, but not with the kinase domain in the recombinants. This corroborates the conclusion given above that the kinase domain of src or ros per se is not sufficient to dictate the transforming morphology of these two oncogenes. High-level tyrosyl phosphorylation of most of the prominent substrates of src is not sufficient to cause a round-shape transformation morphology.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Avian Sarcoma Viruses/enzymology
- Avian Sarcoma Viruses/genetics
- Base Sequence
- Cell Transformation, Neoplastic
- Cells, Cultured
- Chick Embryo
- Cloning, Molecular
- DNA, Viral/genetics
- DNA, Viral/isolation & purification
- Fibroblasts
- Genes, src
- Molecular Sequence Data
- Oligodeoxyribonucleotides
- Oncogene Protein pp60(v-src)/genetics
- Oncogene Protein pp60(v-src)/isolation & purification
- Oncogene Protein pp60(v-src)/metabolism
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/isolation & purification
- Oncogene Proteins, Viral/metabolism
- Polymerase Chain Reaction/methods
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/isolation & purification
- Protein-Tyrosine Kinases/metabolism
- Receptor Protein-Tyrosine Kinases
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Recombination, Genetic
- Restriction Mapping
- Substrate Specificity
Collapse
Affiliation(s)
- S M Jong
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029-6574
| | | | | | | |
Collapse
|
16
|
Wilks AF. Protein tyrosine kinase growth factor receptors and their ligands in development, differentiation, and cancer. Adv Cancer Res 1992; 60:43-73. [PMID: 8417502 DOI: 10.1016/s0065-230x(08)60822-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- A F Wilks
- Melbourne Tumor Biology Branch, Ludwig Institute for Cancer Research, Victoria, Australia
| |
Collapse
|
17
|
Liu D, Rutter WJ, Wang LH. Enhancement of transforming potential of human insulinlike growth factor 1 receptor by N-terminal truncation and fusion to avian sarcoma virus UR2 gag sequence. J Virol 1992; 66:374-85. [PMID: 1309253 PMCID: PMC238297 DOI: 10.1128/jvi.66.1.374-385.1992] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The human insulinlike growth factor 1 (hIGF-1) receptor (hIGFR) is a transmembrane protein tyrosine kinase (PTK) molecule which shares high sequence homology in the PTK domain with the insulin receptor and, to a lesser degree, the ros transforming protein of avian sarcoma virus UR2. To assess the transforming potential of hIGFR, we introduced the intact and altered hIGFR into chicken embryo fibroblasts (CEF). The full-length hIGFR cDNA (fIGFR) was cloned into a UR2 retroviral vector, replacing the original oncogene v-ros. fIGFR was able to promote the growth of CEF in soft agar and cause morphological alteration in the absence of added hIGF-1 to medium containing 11% calf and 1% chicken serum. The transforming ability of hIGFR was not further increased in the presence of 10 nM exogenous hIGF-1. The 180-kDa protein precursor of hIGFR was synthesized and processed into alpha and beta subunits. The overexpressed hIGFR in CEF bound hIGF-1 with high affinity (Kd = 5.4 x 10(-9) M) and responded to ligand stimulation with increased tyrosine autophosphorylation. The cDNA sequence coding for part of the beta subunit of hIGFR, including 36 amino acids of the extracellular domain and the entire transmembrane and cytoplasmic domains, was fused to the 5' portion of the gag gene in the UR2 vector to form an avian retrovirus. The resulting virus, named UIGFR, was able to induce morphological transformation and promote colony formation of CEF with a stronger potency than did fIGFR. The UIGFR genome encodes a membrane-associated, glycosylated gag-IGFR fusion protein. The specific tyrosine phosphorylation of the mature form of the fusion protein, P75, is sixfold higher in vitro and threefold higher in vivo than that of the native IGFR beta subunit, P95. In conclusion, overexpression of the native or an altered hIGFR can induce transformation of CEF with the gag-IGFR fusion protein possessing enhanced transforming potential, which is consistent with its increased in vitro and in vivo tyrosine phosphorylation.
Collapse
Affiliation(s)
- D Liu
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029-6574
| | | | | |
Collapse
|