1
|
Li N, Wei Y, Li R, Meng Y, Zhao J, Bai Q, Wang G, Zhao Y. Modulation of the human GlyT1 by clinical drugs and cholesterol. Nat Commun 2025; 16:2412. [PMID: 40069141 PMCID: PMC11897355 DOI: 10.1038/s41467-025-57613-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/21/2025] [Indexed: 03/15/2025] Open
Abstract
Glycine transporter 1 (GlyT1) is a key player in shaping extracellular glutamatergic signaling processes and holds promise for treating cognitive impairments associated with schizophrenia by inhibiting its activity and thus enhancing the function of NMDA receptors. Despite its significant role in physiological and pharmacology, its modulation mechanism by clinical drugs and internal lipids remains elusive. Here, we determine cryo-EM structures of GlyT1 in its apo state and in complex with clinical trial drugs iclepertin and sarcosine. The GlyT1 in its apo state is determined in three distinct conformations, exhibiting a conformational equilibrium of the transport cycle. The complex structures with inhibitor iclepertin and sarcosine elucidate their unique binding poses with GlyT1. Three binding sites of cholesterol are determined in GlyT1, two of which are conformation-dependent. Transport kinetics studies reveal that a delicate binding equilibrium for cholesterol is crucial for the conformational transition of GlyT1. This study significantly enhances our understanding of the physiological and pharmacological aspects of GlyT1.
Collapse
Affiliation(s)
- Na Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yiqing Wei
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Renjie Li
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yufei Meng
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jun Zhao
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Qinru Bai
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gang Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
| | - Yan Zhao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Cavalcante DP, Nunes AÍDS, da Silva ER, de Carvalho GA, Chiareli RA, Oliveira-Lima OC, Ortiz-Leoncini G, Ulrich H, Gomez RS, Pinto MCX. GlyT1 inhibition promotes neuroprotection in the middle cerebral artery occlusion model through the activation of GluN2A-containing NMDAR. Exp Neurol 2024; 383:115006. [PMID: 39424040 DOI: 10.1016/j.expneurol.2024.115006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Glycine Transporter Type 1 (GlyT1) inhibition confers neuroprotection against different forms of cerebral damage. This effect occurs through the elevation of synaptic glycine concentrations, which enhances N-methyl-d-aspartate receptor (NMDAR) activation by glutamate. To investigate the neuroprotective mechanism of GlyT1 inhibition, we used the Middle Cerebral Artery Occlusion (MCAO) model in male C57BL/6 mice, aged 10-12 weeks. We administered N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl] sarcosine (NFPS), a GlyT1 inhibitor, 24 h prior to ischemia induction. NFPS pretreatment provided significant neuroprotection in the MCAO model, associated with modulation of pathways related to long-term potentiation. Specifically, GluN2A subunit expression was upregulated, while GluN2B subunit expression was downregulated in cortical areas, correlating with enhanced phosphorylation of CaMKIV and CREB proteins. Coadministration with the GluN2B antagonist Eliprodil or the CREB inhibitor C646 did not affect the neuroprotective effects of NFPS pretreatment, but TCN-201, a specific GluN2A antagonist, disrupted these effects. These findings suggest that GlyT1 inhibition mediates neuroprotection through activation of GluN2A-containing NMDARs and the GluN2A/CaMKIV/CREB signaling cascade, thereby modulating the balance between GluN2A and GluN2B subunits.
Collapse
Affiliation(s)
- Daniel Pereira Cavalcante
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goias, Goiânia, GO, Brazil
| | | | - Eduardo Rosa da Silva
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goias, Goiânia, GO, Brazil
| | - Gustavo Almeida de Carvalho
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goias, Goiânia, GO, Brazil
| | - Raphaela Almeida Chiareli
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goias, Goiânia, GO, Brazil
| | | | - Giovanni Ortiz-Leoncini
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goias, Goiânia, GO, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Renato Santiago Gomez
- Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro Cunha Xavier Pinto
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goias, Goiânia, GO, Brazil.
| |
Collapse
|
3
|
Wei Y, Li R, Meng Y, Hu T, Zhao J, Gao Y, Bai Q, Li N, Zhao Y. Transport mechanism and pharmacology of the human GlyT1. Cell 2024; 187:1719-1732.e14. [PMID: 38513663 DOI: 10.1016/j.cell.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/09/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024]
Abstract
The glycine transporter 1 (GlyT1) plays a crucial role in the regulation of both inhibitory and excitatory neurotransmission by removing glycine from the synaptic cleft. Given its close association with glutamate/glycine co-activated NMDA receptors (NMDARs), GlyT1 has emerged as a central target for the treatment of schizophrenia, which is often linked to hypofunctional NMDARs. Here, we report the cryo-EM structures of GlyT1 bound with substrate glycine and drugs ALX-5407, SSR504734, and PF-03463275. These structures, captured at three fundamental states of the transport cycle-outward-facing, occluded, and inward-facing-enable us to illustrate a comprehensive blueprint of the conformational change associated with glycine reuptake. Additionally, we identified three specific pockets accommodating drugs, providing clear insights into the structural basis of their inhibitory mechanism and selectivity. Collectively, these structures offer significant insights into the transport mechanism and recognition of substrate and anti-schizophrenia drugs, thus providing a platform to design small molecules to treat schizophrenia.
Collapse
Affiliation(s)
- Yiqing Wei
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renjie Li
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yufei Meng
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tuo Hu
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Zhao
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China
| | - Yiwei Gao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinru Bai
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Yan Zhao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.
| |
Collapse
|
4
|
Bian X, Zhu J, Jia X, Liang W, Yu S, Li Z, Zhang W, Rao Y. Suggestion of creatine as a new neurotransmitter by approaches ranging from chemical analysis and biochemistry to electrophysiology. eLife 2023; 12:RP89317. [PMID: 38126335 PMCID: PMC10735228 DOI: 10.7554/elife.89317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
The discovery of a new neurotransmitter, especially one in the central nervous system, is both important and difficult. We have been searching for new neurotransmitters for 12 y. We detected creatine (Cr) in synaptic vesicles (SVs) at a level lower than glutamate and gamma-aminobutyric acid but higher than acetylcholine and 5-hydroxytryptamine. SV Cr was reduced in mice lacking either arginine:glycine amidinotransferase (a Cr synthetase) or SLC6A8, a Cr transporter with mutations among the most common causes of intellectual disability in men. Calcium-dependent release of Cr was detected after stimulation in brain slices. Cr release was reduced in Slc6a8 and Agat mutants. Cr inhibited neocortical pyramidal neurons. SLC6A8 was necessary for Cr uptake into synaptosomes. Cr was found by us to be taken up into SVs in an ATP-dependent manner. Our biochemical, chemical, genetic, and electrophysiological results are consistent with the possibility of Cr as a neurotransmitter, though not yet reaching the level of proof for the now classic transmitters. Our novel approach to discover neurotransmitters is to begin with analysis of contents in SVs before defining their function and physiology.
Collapse
Affiliation(s)
- Xiling Bian
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institute for Brain Research (CIBR)BeijingChina
| | - Jiemin Zhu
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institute for Brain Research (CIBR)BeijingChina
| | - Xiaobo Jia
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institute for Brain Research (CIBR)BeijingChina
| | - Wenjun Liang
- Chinese Institutes of Medical Research, Capital Medical UniversityBeijingChina
- Changping Laboratory, Yard 28, Science Park Road, Changping DistrictBeijingChina
| | - Sihan Yu
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Changping Laboratory, Yard 28, Science Park Road, Changping DistrictBeijingChina
| | - Zhiqiang Li
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
| | - Wenxia Zhang
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institutes of Medical Research, Capital Medical UniversityBeijingChina
- Institute of Molecular Physiology, Shenzhen Bay LaboratoryShenzhenChina
| | - Yi Rao
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institute for Brain Research (CIBR)BeijingChina
- Chinese Institutes of Medical Research, Capital Medical UniversityBeijingChina
- Changping Laboratory, Yard 28, Science Park Road, Changping DistrictBeijingChina
- Institute of Molecular Physiology, Shenzhen Bay LaboratoryShenzhenChina
- Research Unit of Medical Neurobiology, Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
5
|
Tscherner AK, McClatchie T, Kaboba G, Boison D, Baltz JM. Oocyte-Specific Deletion of Slc6a9 Encoding the GLYT1 Glycine Transporter Eliminates Glycine Transport in Mouse Preimplantation Embryos and Their Ability to Counter Hypertonic Stress. Cells 2023; 12:2500. [PMID: 37887344 PMCID: PMC10604916 DOI: 10.3390/cells12202500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
Early preimplantation mouse embryos are sensitive to increased osmolarity, which can block their development. To overcome this, they accumulate organic osmolytes to maintain cell volume. The main organic osmolyte used by early mouse embryos is glycine. Glycine is transported during the mature egg and 1-cell to 4-cell embryo stages by a transporter identified as GLYT1, encoded by the Slc6a9 gene. Here, we have produced an oocyte-specific knockout of Slc6a9 by crossing mice that have a segment of the gene flanked by LoxP elements with transgenic mice expressing iCre driven by the oocyte-specific Gdf9 promoter. Slc6a9 null oocytes failed to develop glycine transport activity during meiotic maturation. However, females with these oocytes were fertile. When enclosed in their cumulus-oocyte complex, Slc6a9 null oocytes could accumulate glycine via GLYT1 transport in their coupled cumulus cells, which may support female fertility in vivo. In vitro, embryos derived from Slc6a9 null oocytes displayed a clear phenotype. While glycine rescued complete preimplantation development of wild type embryos from increased osmolarity, embryos derived from null oocytes failed to develop past the 2-cell stage even with glycine. Thus, Slc6a9 is required for glycine transport and protection against increased osmolarity in mouse eggs and early embryos.
Collapse
Affiliation(s)
- Allison K. Tscherner
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada (T.M.); (G.K.)
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1Y 8L6, Canada
| | - Taylor McClatchie
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada (T.M.); (G.K.)
| | - Gracia Kaboba
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada (T.M.); (G.K.)
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA;
| | - Jay M. Baltz
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada (T.M.); (G.K.)
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1Y 8L6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1Y 8L6, Canada
| |
Collapse
|
6
|
Jia X, Zhu J, Bian X, Liu S, Yu S, Liang W, Jiang L, Mao R, Zhang W, Rao Y. Importance of glutamine in synaptic vesicles revealed by functional studies of SLC6A17 and its mutations pathogenic for intellectual disability. eLife 2023; 12:RP86972. [PMID: 37440432 PMCID: PMC10393021 DOI: 10.7554/elife.86972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023] Open
Abstract
Human mutations in the gene encoding the solute carrier (SLC) 6A17 caused intellectual disability (ID). The physiological role of SLC6A17 and pathogenesis of SLC6A17-based-ID were both unclear. Here, we report learning deficits in Slc6a17 knockout and point mutant mice. Biochemistry, proteomic, and electron microscopy (EM) support SLC6A17 protein localization in synaptic vesicles (SVs). Chemical analysis of SVs by liquid chromatography coupled to mass spectrometry (LC-MS) revealed glutamine (Gln) in SVs containing SLC6A17. Virally mediated overexpression of SLC6A17 increased Gln in SVs. Either genetic or virally mediated targeting of Slc6a17 reduced Gln in SVs. One ID mutation caused SLC6A17 mislocalization while the other caused defective Gln transport. Multidisciplinary approaches with seven types of genetically modified mice have shown Gln as an endogenous substrate of SLC6A17, uncovered Gln as a new molecule in SVs, established the necessary and sufficient roles of SLC6A17 in Gln transport into SVs, and suggested SV Gln decrease as the key pathogenetic mechanism in human ID.
Collapse
Affiliation(s)
- Xiaobo Jia
- Chinese Institute for Brain ResearchBeijingChina
- Changping LaboratoryBeijingChina
- Research Unit of Medical Neurobiology, Chinese Academy of Medical SciencesBeijingChina
| | - Jiemin Zhu
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Peking UniversityBeijingChina
| | - Xiling Bian
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Peking UniversityBeijingChina
| | | | - Sihan Yu
- Chinese Institute for Brain ResearchBeijingChina
| | | | - Lifen Jiang
- Institute of Molecular Physiology, Shenzhen Bay LaboratoryShenzhenChina
| | - Renbo Mao
- Chinese Institute for Brain ResearchBeijingChina
| | - Wenxia Zhang
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Peking UniversityBeijingChina
| | - Yi Rao
- Chinese Institute for Brain ResearchBeijingChina
- Changping LaboratoryBeijingChina
- Research Unit of Medical Neurobiology, Chinese Academy of Medical SciencesBeijingChina
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Peking UniversityBeijingChina
- Institute of Molecular Physiology, Shenzhen Bay LaboratoryShenzhenChina
- Capital Medical UniversityBeijingChina
| |
Collapse
|
7
|
Piniella D, Zafra F. Functional crosstalk of the glycine transporter GlyT1 and NMDA receptors. Neuropharmacology 2023; 232:109514. [PMID: 37003571 DOI: 10.1016/j.neuropharm.2023.109514] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
NMDA-type glutamate receptors (NMDARs) constitute one of the main glutamate (Glu) targets in the central nervous system and are involved in synaptic plasticity, which is the molecular substrate of learning and memory. Hypofunction of NMDARs has been associated with schizophrenia, while overstimulation causes neuronal death in neurodegenerative diseases or in stroke. The function of NMDARs requires coincidental binding of Glu along with other cellular signals such as neuronal depolarization, and the presence of other endogenous ligands that modulate their activity by allosterism. Among these allosteric modulators are zinc, protons and Gly, which is an obligatory co-agonist. These characteristics differentiate NMDARs from other receptors, and their structural bases have begun to be established in recent years. In this review we focus on the crosstalk between Glu and glycine (Gly), whose concentration in the NMDAR microenvironment is maintained by various Gly transporters that remove or release it into the medium in a regulated manner. The GlyT1 transporter is particularly involved in this task, and has become a target of great interest for the treatment of schizophrenia since its inhibition leads to an increase in synaptic Gly levels that enhances the activity of NMDARs. However, the only drug that has completed phase III clinical trials did not yield the expected results. Notwithstanding, there are additional drugs that continue to be investigated, and it is hoped that knowledge gained from the recently published 3D structure of GlyT1 may allow the rational design of more effective new drugs.
Collapse
Affiliation(s)
- Dolores Piniella
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; IdiPAZ, Institute of Health Carlos III (ISCIII), Spain
| | - Francisco Zafra
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; IdiPAZ, Institute of Health Carlos III (ISCIII), Spain.
| |
Collapse
|
8
|
Stage-Specific L-Proline Uptake by Amino Acid Transporter Slc6a19/B 0AT1 Is Required for Optimal Preimplantation Embryo Development in Mice. Cells 2022; 12:cells12010018. [PMID: 36611813 PMCID: PMC9818994 DOI: 10.3390/cells12010018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
L-proline (Pro) has previously been shown to support normal development of mouse embryos. Recently we have shown that Pro improves subsequent embryo development when added to fertilisation medium during in vitro fertilisation of mouse oocytes. The mechanisms by which Pro improves embryo development are still being elucidated but likely involve signalling pathways that have been observed in Pro-mediated differentiation of mouse embryonic stem cells. In this study, we show that B0AT1, a neutral amino acid transporter that accepts Pro, is expressed in mouse preimplantation embryos, along with the accessory protein ACE2. B0AT1 knockout (Slc6a19-/-) mice have decreased fertility, in terms of litter size and preimplantation embryo development in vitro. In embryos from wild-type (WT) mice, excess unlabelled Pro inhibited radiolabelled Pro uptake in oocytes and 4-8-cell stage embryos. Radiolabelled Pro uptake was reduced in 4-8-cell stage embryos, but not in oocytes, from Slc6a19-/- mice compared to those from WT mice. Other B0AT1 substrates, such as alanine and leucine, reduced uptake of Pro in WT but not in B0AT1 knockout embryos. Addition of Pro to culture medium improved embryo development. In WT embryos, Pro increased development to the cavitation stage (on day 4); whereas in B0AT1 knockout embryos Pro improved development to the 5-8-cell (day 3) and blastocyst stages (day 6) but not at cavitation (day 4), suggesting B0AT1 is the main contributor to Pro uptake on day 4 of development. Our results highlight transporter redundancy in the preimplantation embryo.
Collapse
|
9
|
Morita A, Satouh Y, Sato K, Iwase A. Significance of the association between early embryonic development and endocytosis. Med Mol Morphol 2022; 55:167-173. [PMID: 35833996 DOI: 10.1007/s00795-022-00331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022]
Abstract
Fertilization triggers a process called maternal-to-zygotic transition, in which the oocyte undergoes oocyte-to-embryo transition, leading to massive intracellular remodeling toward early embryogenesis. This transition requires the degradation of oocyte-derived components; however, the significance and mechanism of degradation of cell surface components remain unknown. In this review, we focused on the dynamics of plasma membrane proteins and investigated the relationship between embryonic development and endocytosis. Our survey of the extant literature on the topic led to the conclusion that clathrin-mediated endocytosis is essential for the progression of early embryogenesis and selective degradation of oocyte-derived plasma membrane proteins in mouse embryos, as reported by studies analyzing maternal cellular surface proteins, including a glycine transporter, GlyT1a. Evaluation of such endocytic activity in individual embryos may allow the selection of embryos with higher viability in assisted reproductive technologies, and it is important to select viable embryos to increase the rates of successful pregnancy and live birth. Although the early embryonic developmental abnormalities are mainly accompanied with chromosomal aneuploidy, other causes and mechanisms remain unclear. This review summarizes molecular biological approaches to early embryonic developmental abnormalities and their future prospects.
Collapse
Affiliation(s)
- Akihito Morita
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, 3-39-15 Showamachi, Maebashi, Gunma, 371-8511, Japan.
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan.
| | - Yuhkoh Satouh
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Akira Iwase
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, 3-39-15 Showamachi, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
10
|
Cappelli J, Khacho P, Wang B, Sokolovski A, Bakkar W, Raymond S, Ahlskog N, Pitney J, Wu J, Chudalayandi P, Wong AYC, Bergeron R. Glycine-induced NMDA receptor internalization provides neuroprotection and preserves vasculature following ischemic stroke. iScience 2022; 25:103539. [PMID: 34977503 PMCID: PMC8689229 DOI: 10.1016/j.isci.2021.103539] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/06/2021] [Accepted: 11/24/2021] [Indexed: 11/26/2022] Open
Abstract
Ischemic stroke is the second leading cause of death worldwide. Following an ischemic event, neuronal death is triggered by uncontrolled glutamate release leading to overactivation of glutamate sensitive N-methyl-d-aspartate receptor (NMDAR). For gating, NMDARs require not only the binding of glutamate, but also of glycine or a glycine-like compound as a co-agonist. Low glycine doses enhance NMDAR function, whereas high doses trigger glycine-induced NMDAR internalization (GINI) in vitro. Here, we report that following an ischemic event, in vivo, GINI also occurs and provides neuroprotection in the presence of a GlyT1 antagonist (GlyT1-A). Mice pretreated with a GlyT1-A, which increases synaptic glycine levels, exhibited smaller stroke volume, reduced cell death, and minimized behavioral deficits following stroke induction by either photothrombosis or endothelin-1. Moreover, we show evidence that in ischemic conditions, GlyT1-As preserve the vasculature in the peri-infarct area. Therefore, GlyT1 could be a new target for the treatment of ischemic stroke. GINI is a dynamic phenomenon which dampens NMDAR-mediated excitotoxicity during stroke GlyT1-antagonists (GlyT1-As) trigger GINI during stroke in vivo GlyT1-As mitigate post-stroke behavioral deficits and preserve peri-infarct vasculature GlyT1 could be a novel and viable therapeutic target for ischemic stroke
Collapse
Affiliation(s)
- Julia Cappelli
- Cellular and Molecular Medicine Department, University of Ottawa, 451 Smyth Road, Roger Guindon Building, Room 3501N, Ottawa, ON K1H 8M5, Canada
| | - Pamela Khacho
- Cellular and Molecular Medicine Department, University of Ottawa, 451 Smyth Road, Roger Guindon Building, Room 3501N, Ottawa, ON K1H 8M5, Canada
| | - Boyang Wang
- Cellular and Molecular Medicine Department, University of Ottawa, 451 Smyth Road, Roger Guindon Building, Room 3501N, Ottawa, ON K1H 8M5, Canada
| | - Alexandra Sokolovski
- Cellular and Molecular Medicine Department, University of Ottawa, 451 Smyth Road, Roger Guindon Building, Room 3501N, Ottawa, ON K1H 8M5, Canada
| | - Wafae Bakkar
- Ottawa Hospital Research Institute, 451 Smyth Road, Roger Guindon Building, Room 3501N, Ottawa, ON K1H 8M5, Canada
| | - Sophie Raymond
- Cellular and Molecular Medicine Department, University of Ottawa, 451 Smyth Road, Roger Guindon Building, Room 3501N, Ottawa, ON K1H 8M5, Canada
| | - Nina Ahlskog
- Cellular and Molecular Medicine Department, University of Ottawa, 451 Smyth Road, Roger Guindon Building, Room 3501N, Ottawa, ON K1H 8M5, Canada
| | - Julian Pitney
- Cellular and Molecular Medicine Department, University of Ottawa, 451 Smyth Road, Roger Guindon Building, Room 3501N, Ottawa, ON K1H 8M5, Canada
| | - Junzheng Wu
- Cellular and Molecular Medicine Department, University of Ottawa, 451 Smyth Road, Roger Guindon Building, Room 3501N, Ottawa, ON K1H 8M5, Canada
| | - Prakash Chudalayandi
- Cellular and Molecular Medicine Department, University of Ottawa, 451 Smyth Road, Roger Guindon Building, Room 3501N, Ottawa, ON K1H 8M5, Canada
| | - Adrian Y C Wong
- Cellular and Molecular Medicine Department, University of Ottawa, 451 Smyth Road, Roger Guindon Building, Room 3501N, Ottawa, ON K1H 8M5, Canada
| | - Richard Bergeron
- Cellular and Molecular Medicine Department, University of Ottawa, 451 Smyth Road, Roger Guindon Building, Room 3501N, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
11
|
SATO K. Multiple roles of endocytosis and autophagy in intracellular remodeling during oocyte-to-embryo transition. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:207-221. [PMID: 35545527 PMCID: PMC9130481 DOI: 10.2183/pjab.98.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/15/2022] [Indexed: 06/15/2023]
Abstract
Fertilization is the starting point for creating new progeny. At this time, the highly differentiated oocyte and sperm fuse to form one zygote, which is then converted into a pluripotent early embryo. Recent studies have shown that the lysosomal degradation system via autophagy and endocytosis plays important roles in the remodeling of intracellular components during oocyte-to-embryo transition. For example, in Caenorhabditis elegans, zygotes show high endocytic activity, and some populations of maternal membrane proteins are selectively internalized and delivered to lysosomes for degradation. Furthermore, fertilization triggers selective autophagy of sperm-derived paternal mitochondria, which establishes maternal inheritance of mitochondrial DNA. In addition, it has been shown that autophagy via liquid-liquid phase separation results in the selective degradation of some germ granule components, which are distributed to somatic cells of early embryos. This review outlines the physiological functions of the lysosomal degradation system and its molecular mechanisms in C. elegans and mouse embryos.
Collapse
Affiliation(s)
- Ken SATO
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| |
Collapse
|
12
|
Chloride-dependent conformational changes in the GlyT1 glycine transporter. Proc Natl Acad Sci U S A 2021; 118:2017431118. [PMID: 33658361 DOI: 10.1073/pnas.2017431118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The human GlyT1 glycine transporter requires chloride for its function. However, the mechanism by which Cl- exerts its influence is unknown. To examine the role that Cl- plays in the transport cycle, we measured the effect of Cl- on both glycine binding and conformational changes. The ability of glycine to displace the high-affinity radioligand [3H]CHIBA-3007 required Na+ and was potentiated over 1,000-fold by Cl- We generated GlyT1b mutants containing reactive cysteine residues in either the extracellular or cytoplasmic permeation pathways and measured changes in the reactivity of those cysteine residues as indicators of conformational changes in response to ions and substrate. Na+ increased accessibility in the extracellular pathway and decreased it in the cytoplasmic pathway, consistent with stabilizing an outward-open conformation as observed in other members of this transporter family. In the presence of Na+, both glycine and Cl- independently shifted the conformation of GlyT1b toward an outward-closed conformation. Together, Na+, glycine, and Cl- stabilized an inward-open conformation of GlyT1b. We then examined whether Cl- acts by interacting with a conserved glutamine to allow formation of an ion pair that stabilizes the closed state of the extracellular pathway. Molecular dynamics simulations of a GlyT1 homolog indicated that this ion pair is formed more frequently as that pathway closes. Mutation of the glutamine blocked the effect of Cl-, and substituting it with glutamate or lysine resulted in outward- or inward-facing transporter conformations, respectively. These results provide an unexpected insight into the role of Cl- in this family of transporters.
Collapse
|
13
|
Morita A, Satouh Y, Kosako H, Kobayashi H, Iwase A, Sato K. Clathrin-mediated endocytosis is essential for the selective degradation of maternal membrane proteins and preimplantation development. Development 2021; 148:dev199461. [PMID: 34269385 DOI: 10.1242/dev.199461] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/23/2021] [Indexed: 11/20/2022]
Abstract
Fertilization triggers significant cellular remodeling through the oocyte-to-embryo transition. In this transition, the ubiquitin-proteasome system and autophagy are essential for the degradation of maternal components; however, the significance of degradation of cell surface components remains unknown. In this study, we show that multiple maternal plasma membrane proteins, such as the glycine transporter GlyT1a, are selectively internalized from the plasma membrane to endosomes in mouse embryos by the late two-cell stage and then transported to lysosomes for degradation at the later stages. During this process, large amounts of ubiquitylated proteins accumulated on endosomes. Furthermore, the degradation of GlyT1a with mutations in potential ubiquitylation sites was delayed, suggesting that ubiquitylation may be involved in GlyT1a degradation. The clathrin inhibitor blocked GlyT1a internalization. Strikingly, the protein kinase C (PKC) activator triggered the heterochronic internalization of GlyT1a; the PKC inhibitor markedly blocked GlyT1a endocytosis. Lastly, clathrin inhibition completely blocked embryogenesis at the two-cell stage and inhibited cell division after the four-cell stage. These findings demonstrate that PKC-dependent clathrin-mediated endocytosis is essential for the selective degradation of maternal membrane proteins during oocyte-to-embryo transition and early embryogenesis.
Collapse
Affiliation(s)
- Akihito Morita
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, 371-8512, Japan
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Yuhkoh Satouh
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, 371-8512, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Hisae Kobayashi
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, 371-8512, Japan
| | - Akira Iwase
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, 371-8512, Japan
| |
Collapse
|
14
|
In Vitro Fertilisation of Mouse Oocytes in L-Proline and L-Pipecolic Acid Improves Subsequent Development. Cells 2021; 10:cells10061352. [PMID: 34072568 PMCID: PMC8229504 DOI: 10.3390/cells10061352] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 01/29/2023] Open
Abstract
Exposure of oocytes to specific amino acids during in vitro fertilisation (IVF) improves preimplantation embryo development. Embryos fertilised in medium with proline and its homologue pipecolic acid showed increased blastocyst formation and inner cell mass cell numbers compared to embryos fertilised in medium containing no amino acids, betaine, glycine, or histidine. The beneficial effect of proline was prevented by the addition of excess betaine, glycine, and histidine, indicating competitive inhibition of transport-mediated uptake. Expression of transporters of proline in oocytes was investigated by measuring the rate of uptake of radiolabelled proline in the presence of unlabelled amino acids. Three transporters were identified, one that was sodium-dependent, PROT (SLC6A7), and two others that were sodium-independent, PAT1 (SLC36A1) and PAT2 (SLC36A2). Immunofluorescent staining showed localisation of PROT in intracellular vesicles and limited expression in the plasma membrane, while PAT1 and PAT2 were both expressed in the plasma membrane. Proline and pipecolic acid reduced mitochondrial activity and reactive oxygen species in oocytes, and this may be responsible for their beneficial effect. Overall, our results indicate the importance of inclusion of specific amino acids in IVF medium and that consideration should be given to whether the addition of multiple amino acids prevents the action of beneficial amino acids.
Collapse
|
15
|
Forty Four Years With Baruch Kanner and The Chloride Ion. Neurochem Res 2021; 47:3-8. [PMID: 33929682 DOI: 10.1007/s11064-021-03330-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
Baruch Kanner and this author have had parallel careers investigating neurotransmitter transporters. At multiple times during their careers, they have found themselves collaborating or competing, but always learning from each other. This commentary elaborates on the interactions between the Kanner and Rudnick laboratories, with a focus on transporters in the Neurotransmitter: Sodium Symporter (NSS) family of amino acid and amine transporters. A key focus of these interactions is the mechanism by which chloride ions activate and drive transport.
Collapse
|
16
|
Barsch L, Werdehausen R, Leffler A, Eulenburg V. Modulation of Glycinergic Neurotransmission may Contribute to the Analgesic Effects of Propacetamol. Biomolecules 2021; 11:biom11040493. [PMID: 33805979 PMCID: PMC8064320 DOI: 10.3390/biom11040493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 11/25/2022] Open
Abstract
Treating neuropathic pain remains challenging, and therefore new pharmacological strategies are urgently required. Here, the enhancement of glycinergic neurotransmission by either facilitating glycine receptors (GlyR) or inhibiting glycine transporter (GlyT) function to increase extracellular glycine concentration appears promising. Propacetamol is a N,N-diethylester of acetaminophen, a non-opioid analgesic used to treat mild pain conditions. In vivo, it is hydrolysed into N,N-diethylglycine (DEG) and acetaminophen. DEG has structural similarities to known alternative GlyT1 substrates. In this study, we analyzed possible effects of propacetamol, or its metabolite N,N-diethylglycine (DEG), on GlyRs or GlyTs function by using a two-electrode voltage clamp approach in Xenopus laevis oocytes. Our data demonstrate that, although propacetamol or acetaminophen had no effect on the function of the analysed glycine-responsive proteins, the propacetamol metabolite DEG acted as a low-affine substrate for both GlyT1 (EC50 > 7.6 mM) and GlyT2 (EC50 > 5.2 mM). It also acted as a mild positive allosteric modulator of GlyRα1 function at intermediate concentrations. Taken together, our data show that DEG influences both glycine transporter and receptor function, and therefore could facilitate glycinergic neurotransmission in a multimodal manner.
Collapse
Affiliation(s)
- Lukas Barsch
- Department of Anaesthesiology and Intensive Care, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (L.B.); (R.W.)
| | - Robert Werdehausen
- Department of Anaesthesiology and Intensive Care, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (L.B.); (R.W.)
| | - Andreas Leffler
- Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, 30625 Hannover, Germany;
| | - Volker Eulenburg
- Department of Anaesthesiology and Intensive Care, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (L.B.); (R.W.)
- Correspondence: ; Tel.: +49-341-9710598
| |
Collapse
|
17
|
Fairweather SJ, Shah N, Brӧer S. Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 21:13-127. [PMID: 33052588 DOI: 10.1007/5584_2020_584] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carriers form one of three major superfamilies of membrane transporters in humans, and include uniporters, exchangers and symporters. Following several decades of molecular characterisation, multiple solute carriers that form obligatory heteromers with unrelated subunits are emerging as a distinctive principle of membrane transporter assembly. Here we comprehensively review experimentally established heteromeric solute carriers: SLC3-SLC7 amino acid exchangers, SLC16 monocarboxylate/H+ symporters and basigin/embigin, SLC4A1 (AE1) and glycophorin A exchanger, SLC51 heteromer Ost α-Ost β uniporter, and SLC6 heteromeric symporters. The review covers the history of the heteromer discovery, transporter physiology, structure, disease associations and pharmacology - all with a focus on the heteromeric assembly. The cellular locations, requirements for complex formation, and the functional role of dimerization are extensively detailed, including analysis of the first complete heteromer structures, the SLC7-SLC3 family transporters LAT1-4F2hc, b0,+AT-rBAT and the SLC6 family heteromer B0AT1-ACE2. We present a systematic analysis of the structural and functional aspects of heteromeric solute carriers and conclude with common principles of their functional roles and structural architecture.
Collapse
Affiliation(s)
- Stephen J Fairweather
- Research School of Biology, Australian National University, Canberra, ACT, Australia. .,Resarch School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | - Nishank Shah
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Brӧer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
18
|
Tscherner AK, Macaulay AD, Ortman CS, Baltz JM. Initiation of cell volume regulation and unique cell volume regulatory mechanisms in mammalian oocytes and embryos. J Cell Physiol 2021; 236:7117-7133. [PMID: 33634482 DOI: 10.1002/jcp.30352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 11/07/2022]
Abstract
The period beginning with the signal for ovulation, when a fully-grown oocyte progresses through meiosis to become a mature egg that is fertilized and develops as a preimplantation embryo, is crucial for healthy development. The early preimplantation embryo is unusually sensitive to cell volume perturbations, with even moderate decreases in volume or dysregulation of volume-regulatory mechanisms resulting in developmental arrest. To prevent this, early embryos possess mechanisms of cell volume control that are apparently unique to them. These rely on the accumulation of glycine and betaine (N, N, N-trimethylglycine) as organic osmolytes-compounds that can provide intracellular osmotic support without the deleterious effects of inorganic ions. Preimplantation embryos also have the same mechanisms as somatic cells that mediate rapid responses to deviations in cell volume, which rely on inorganic ion transport. Both the unique, embryo-specific mechanisms that use glycine and betaine and the inorganic ion-dependent mechanisms undergo major changes during meiotic maturation and preimplantation development. The most profound changes occur immediately after ovulation is triggered. Before this, oocytes cannot regulate their volume, since they are strongly attached to their rigid extracellular matrix shell, the zona pellucida. After ovulation is triggered, the oocyte detaches from the zona pellucida and first becomes capable of independent volume regulation. A complex set of developmental changes in each cell volume-regulatory mechanism continues through egg maturation and preimplantation development. The unique cell volume-regulatory mechanisms in eggs and preimplantation embryos and the developmental changes they undergo appear critical for normal healthy embryo development.
Collapse
Affiliation(s)
- Allison K Tscherner
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Angus D Macaulay
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, Ontario, Canada
| | - Chyna S Ortman
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jay M Baltz
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
19
|
Sheipouri D, Gallagher CI, Shimmon S, Rawling T, Vandenberg RJ. A System for Assessing Dual Action Modulators of Glycine Transporters and Glycine Receptors. Biomolecules 2020; 10:E1618. [PMID: 33266066 PMCID: PMC7760315 DOI: 10.3390/biom10121618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
Reduced inhibitory glycinergic neurotransmission is implicated in a number of neurological conditions such as neuropathic pain, schizophrenia, epilepsy and hyperekplexia. Restoring glycinergic signalling may be an effective method of treating these pathologies. Glycine transporters (GlyTs) control synaptic and extra-synaptic glycine concentrations and slowing the reuptake of glycine using specific GlyT inhibitors will increase glycine extracellular concentrations and increase glycine receptor (GlyR) activation. Glycinergic neurotransmission can also be improved through positive allosteric modulation (PAM) of GlyRs. Despite efforts to manipulate this synapse, no therapeutics currently target it. We propose that dual action modulators of both GlyTs and GlyRs may show greater therapeutic potential than those targeting individual proteins. To show this, we have characterized a co-expression system in Xenopus laevis oocytes consisting of GlyT1 or GlyT2 co-expressed with GlyRα1. We use two electrode voltage clamp recording techniques to measure the impact of GlyTs on GlyRs and the effects of modulators of these proteins. We show that increases in GlyT density in close proximity to GlyRs diminish receptor currents. Reductions in GlyR mediated currents are not observed when non-transportable GlyR agonists are applied or when Na+ is not available. GlyTs reduce glycine concentrations across different concentration ranges, corresponding with their ion-coupling stoichiometry, and full receptor currents can be restored when GlyTs are blocked with selective inhibitors. We show that partial inhibition of GlyT2 and modest GlyRα1 potentiation using a dual action compound, is as useful in restoring GlyR currents as a full and potent single target GlyT2 inhibitor or single target GlyRα1 PAM. The co-expression system developed in this study will provide a robust means for assessing the likely impact of GlyR PAMs and GlyT inhibitors on glycine neurotransmission.
Collapse
Affiliation(s)
- Diba Sheipouri
- School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia; (D.S.); (C.I.G.)
| | - Casey I. Gallagher
- School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia; (D.S.); (C.I.G.)
| | - Susan Shimmon
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; (S.S.); (T.R.)
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; (S.S.); (T.R.)
| | - Robert J. Vandenberg
- School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia; (D.S.); (C.I.G.)
| |
Collapse
|
20
|
Marques BL, Oliveira-Lima OC, Carvalho GA, de Almeida Chiarelli R, Ribeiro RI, Parreira RC, da Madeira Freitas EM, Resende RR, Klempin F, Ulrich H, Gomez RS, Pinto MCX. Neurobiology of glycine transporters: From molecules to behavior. Neurosci Biobehav Rev 2020; 118:97-110. [PMID: 32712279 DOI: 10.1016/j.neubiorev.2020.07.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/07/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022]
Abstract
Glycine transporters (GlyTs) are Na+/Cl--dependent neurotransmitter transporters, responsible for l-glycine uptake into the central nervous system. GlyTs are members of the solute carrier family 6 (SLC6) and comprise glycine transporter type 1 (SLC6A9; GlyT1) and glycine transporter type 2 (SLC6A5; Glyt2). GlyT1 and GlyT2 are expressed on both astrocytes and neurons, but their expression pattern in brain tissue is foremost related to neurotransmission. GlyT2 is markedly expressed in brainstem, spinal cord and cerebellum, where it is responsible for glycine uptake into glycinergic and GABAergic terminals. GlyT1 is abundant in neocortex, thalamus and hippocampus, where it is expressed in astrocytes, and involved in glutamatergic neurotransmission. Consequently, inhibition of GlyT1 transporters can modulate glutamatergic neurotransmission through NMDA receptors, suggesting an alternative therapeutic strategy. In this review, we focus on recent progress in the understanding of GlyTs role in brain function and in various diseases, such as epilepsy, hyperekplexia, neuropathic pain, drug addiction, schizophrenia and stroke, as well as in neurodegenerative disorders.
Collapse
Affiliation(s)
- Bruno Lemes Marques
- Laboratório de Neuroquímica e Neurofarmacologia - Neurolab, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Onésia Cristina Oliveira-Lima
- Laboratório de Neuroquímica e Neurofarmacologia - Neurolab, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Gustavo Almeida Carvalho
- Laboratório de Neuroquímica e Neurofarmacologia - Neurolab, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Raphaela de Almeida Chiarelli
- Laboratório de Neuroquímica e Neurofarmacologia - Neurolab, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Raul Izidoro Ribeiro
- Laboratório de Neuroquímica e Neurofarmacologia - Neurolab, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Ricardo Cambraia Parreira
- Laboratório de Neuroquímica e Neurofarmacologia - Neurolab, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Elis Marra da Madeira Freitas
- Laboratório de Neuroquímica e Neurofarmacologia - Neurolab, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Rodrigo Ribeiro Resende
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Renato Santiago Gomez
- Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro Cunha Xavier Pinto
- Laboratório de Neuroquímica e Neurofarmacologia - Neurolab, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
21
|
Zhang H, McClatchie T, Baltz JM. l-Serine transport in growing and maturing mouse oocytes. J Cell Physiol 2020; 235:8585-8600. [PMID: 32329057 DOI: 10.1002/jcp.29702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 01/24/2023]
Abstract
Serine has roles in cell metabolism besides protein synthesis including providing one-carbon units to the folate cycle. Since growing mouse oocytes undergo a burst of folate accumulation as they near full size, we have investigated whether oocytes transport serine. Substantial serine transport appeared in oocytes near the end of their growth. Serine transport continued when oocytes resumed meiosis but ceased partway through first meiotic metaphase, remaining quiescent in mature eggs in second meiotic metaphase. The serine transporter was sodium dependent and inhibited by alanine, cysteine, leucine, or histidine, and had a Michaelis-Menten constant (Km ) for serine of 200 µM. Unexpectedly, exposing cumulus cell-enclosed oocytes to the physiological mediator of meiotic arrest, natriuretic peptide precursor Type C, substantially stimulated serine transport by the enclosed oocyte. Finally, in addition to transport by the oocyte itself, cumulus cells also supply serine to the enclosed oocyte via gap junctions within intact cumulus-oocyte complexes.
Collapse
Affiliation(s)
- Han Zhang
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Division of Reproductive Medicine, Department of Obstetrics and Gynecology, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada
| | - Taylor McClatchie
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Division of Reproductive Medicine, Department of Obstetrics and Gynecology, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada
| | - Jay M Baltz
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Division of Reproductive Medicine, Department of Obstetrics and Gynecology, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada
| |
Collapse
|
22
|
Erdem FA, Ilic M, Koppensteiner P, Gołacki J, Lubec G, Freissmuth M, Sandtner W. A comparison of the transport kinetics of glycine transporter 1 and glycine transporter 2. J Gen Physiol 2019; 151:1035-1050. [PMID: 31270129 PMCID: PMC6683666 DOI: 10.1085/jgp.201912318] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/16/2019] [Accepted: 06/17/2019] [Indexed: 12/20/2022] Open
Abstract
Transporters of the solute carrier 6 (SLC6) family translocate their cognate substrate together with Na+ and Cl- Detailed kinetic models exist for the transporters of GABA (GAT1/SLC6A1) and the monoamines dopamine (DAT/SLC6A3) and serotonin (SERT/SLC6A4). Here, we posited that the transport cycle of individual SLC6 transporters reflects the physiological requirements they operate under. We tested this hypothesis by analyzing the transport cycle of glycine transporter 1 (GlyT1/SLC6A9) and glycine transporter 2 (GlyT2/SLC6A5). GlyT2 is the only SLC6 family member known to translocate glycine, Na+, and Cl- in a 1:3:1 stoichiometry. We analyzed partial reactions in real time by electrophysiological recordings. Contrary to monoamine transporters, both GlyTs were found to have a high transport capacity driven by rapid return of the empty transporter after release of Cl- on the intracellular side. Rapid cycling of both GlyTs was further supported by highly cooperative binding of cosubstrate ions and substrate such that their forward transport mode was maintained even under conditions of elevated intracellular Na+ or Cl- The most important differences in the transport cycle of GlyT1 and GlyT2 arose from the kinetics of charge movement and the resulting voltage-dependent rate-limiting reactions: the kinetics of GlyT1 were governed by transition of the substrate-bound transporter from outward- to inward-facing conformations, whereas the kinetics of GlyT2 were governed by Na+ binding (or a related conformational change). Kinetic modeling showed that the kinetics of GlyT1 are ideally suited for supplying the extracellular glycine levels required for NMDA receptor activation.
Collapse
Affiliation(s)
- Fatma Asli Erdem
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Marija Ilic
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | | | - Jakub Gołacki
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Gert Lubec
- Neuroproteomics, Paracelsus Private Medical University, Salzburg, Austria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Walter Sandtner
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Glycine Metabolism and Its Alterations in Obesity and Metabolic Diseases. Nutrients 2019; 11:nu11061356. [PMID: 31208147 PMCID: PMC6627940 DOI: 10.3390/nu11061356] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022] Open
Abstract
Glycine is the proteinogenic amino-acid of lowest molecular weight, harboring a hydrogen atom as a side-chain. In addition to being a building-block for proteins, glycine is also required for multiple metabolic pathways, such as glutathione synthesis and regulation of one-carbon metabolism. Although generally viewed as a non-essential amino-acid, because it can be endogenously synthesized to a certain extent, glycine has also been suggested as a conditionally essential amino acid. In metabolic disorders associated with obesity, type 2 diabetes (T2DM), and non-alcoholic fatty liver disease (NAFLDs), lower circulating glycine levels have been consistently observed, and clinical studies suggest the existence of beneficial effects induced by glycine supplementation. The present review aims at synthesizing the recent advances in glycine metabolism, pinpointing its main metabolic pathways, identifying the causes leading to glycine deficiency-especially in obesity and associated metabolic disorders-and evaluating the potential benefits of increasing glycine availability to curb the progression of obesity and obesity-related metabolic disturbances. This study focuses on the importance of diet, gut microbiota, and liver metabolism in determining glycine availability in obesity and associated metabolic disorders.
Collapse
|
24
|
Affiliation(s)
- Christopher L. Cioffi
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences , Albany, NY, USA
| |
Collapse
|
25
|
Garcia-Santos D, Schranzhofer M, Bergeron R, Sheftel AD, Ponka P. Extracellular glycine is necessary for optimal hemoglobinization of erythroid cells. Haematologica 2017; 102:1314-1323. [PMID: 28495915 PMCID: PMC5541866 DOI: 10.3324/haematol.2016.155671] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 05/09/2017] [Indexed: 01/10/2023] Open
Abstract
Vertebrate heme synthesis requires three substrates: succinyl-CoA, which regenerates in the tricarboxylic acid cycle, iron and glycine. For each heme molecule synthesized, one atom of iron and eight molecules of glycine are needed. Inadequate delivery of iron to immature erythroid cells leads to a decreased production of heme, but virtually nothing is known about the consequence of an insufficient supply of extracellular glycine on the process of hemoglobinization. To address this issue, we exploited mice in which the gene encoding glycine transporter 1 (GlyT1) was disrupted. Primary erythroid cells isolated from fetal livers of GlyT1 knockout (GlyT1-/-) and GlyT1-haplodeficient (GlyT1+/-) embryos had decreased cellular uptake of [2-14C]glycine and heme synthesis as revealed by a considerable decrease in [2-14C]glycine and 59Fe incorporation into heme. Since GlyT1-/- mice die during the first postnatal day, we analyzed blood parameters of newborn pups and found that GlyT1-/- animals develop hypochromic microcytic anemia. Our finding that Glyt1-deficiency causes decreased heme synthesis in erythroblasts is unexpected, since glycine is a non-essential amino acid. It also suggests that GlyT1 represents a limiting step in heme and, consequently, hemoglobin production.
Collapse
Affiliation(s)
- Daniel Garcia-Santos
- Lady Davis Institute for Medical Research, Jewish General Hospital, and the Department of Physiology, McGill University, Montréal, Quebec, Canada
| | - Matthias Schranzhofer
- Lady Davis Institute for Medical Research, Jewish General Hospital, and the Department of Physiology, McGill University, Montréal, Quebec, Canada
| | - Richard Bergeron
- Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| | - Alex D Sheftel
- Spartan Bioscience Inc., Ottawa, Canada.,High Impact Editing, Ottawa, Ontario, Canada
| | - Prem Ponka
- Lady Davis Institute for Medical Research, Jewish General Hospital, and the Department of Physiology, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
26
|
Frenkel L, Muraro NI, Beltrán González AN, Marcora MS, Bernabó G, Hermann-Luibl C, Romero JI, Helfrich-Förster C, Castaño EM, Marino-Busjle C, Calvo DJ, Ceriani MF. Organization of Circadian Behavior Relies on Glycinergic Transmission. Cell Rep 2017; 19:72-85. [DOI: 10.1016/j.celrep.2017.03.034] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 09/30/2016] [Accepted: 03/09/2017] [Indexed: 11/25/2022] Open
|
27
|
Lee MY, Lin YR, Tu YS, Tseng YJ, Chan MH, Chen HH. Effects of sarcosine and N, N-dimethylglycine on NMDA receptor-mediated excitatory field potentials. J Biomed Sci 2017; 24:18. [PMID: 28245819 PMCID: PMC5331637 DOI: 10.1186/s12929-016-0314-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/25/2016] [Indexed: 11/22/2022] Open
Abstract
Background Sarcosine, a glycine transporter type 1 inhibitor and an N-methyl-D-aspartate (NMDA) receptor co-agonist at the glycine binding site, potentiates NMDA receptor function. Structurally similar to sarcosine, N,N-dimethylglycine (DMG) is also N-methyl glycine-derivative amino acid and commonly used as a dietary supplement. The present study compared the effects of sarcosine and DMG on NMDA receptor-mediated excitatory field potentials (EFPs) in mouse medial prefrontal cortex brain slices using a multi-electrode array system. Results Glycine, sarcosine and DMG alone did not alter the NMDA receptor-mediated EFPs, but in combination with glutamate, glycine and its N-methyl derivatives significantly increased the frequency and amplitude of EFPs. The enhancing effects of glycine analogs in combination with glutamate on EFPs were remarkably reduced by the glycine binding site antagonist 7-chlorokynurenate (7-CK). However, DMG, but not sarcosine, reduced the frequency and amplitude of EFPs elicited by co-application of glutamate plus glycine. D-cycloserine, a partial agonist at the glycine binding site on NMDA receptors, affected EFPs in a similar manner to DMG. Furthermore, DMG, but not sarcosine, reduced the frequencies and amplitudes of EFPs elicited by glutamate plus D-serine, another endogenous ligand for glycine binding site. Conclusions These findings suggest that sarcosine acts as a full agonist, yet DMG is a partial agonist at glycine binding site of NMDA receptors. The molecular docking analysis indicated that the interactions of glycine, sarcosine, and DMG to NMDA receptors are highly similar, supporting that the glycine binding site of NMDA receptors is a critical target site for sarcosine and DMG. Electronic supplementary material The online version of this article (doi:10.1186/s12929-016-0314-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mei-Yi Lee
- Master/PhD Program in Pharmacology and Toxicology, Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien, 97004, Taiwan
| | - Yi-Ruu Lin
- Master/PhD Program in Pharmacology and Toxicology, Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien, 97004, Taiwan
| | - Yi-Shu Tu
- Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Yufeng Jane Tseng
- Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan.,Department of Computer Science and Information Engineering, National Taiwan University, 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Ming-Huan Chan
- Institute of Neuroscience, National Chengchi University, 64, Sec. 2, ZhiNan Road, Wenshan District, Taipei City, 11605, Taiwan. .,Research Center for Mind, Brain, and Learning, National Chengchi University, 64, Sec. 2, ZhiNan Road, Wenshan District, Taipei City, 11605, Taiwan.
| | - Hwei-Hsien Chen
- Master/PhD Program in Pharmacology and Toxicology, Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien, 97004, Taiwan. .,Institute of Neuroscience, National Chengchi University, 64, Sec. 2, ZhiNan Road, Wenshan District, Taipei City, 11605, Taiwan. .,Center for Neuropsychiatric Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan.
| |
Collapse
|
28
|
Wellendorph P, Jacobsen J, Skovgaard-Petersen J, Jurik A, Vogensen SB, Ecker G, Schousboe A, Krogsgaard-Larsen P, Clausen RP. γ-Aminobutyric Acid and Glycine Neurotransmitter Transporters. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1002/9783527679430.ch4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Petrine Wellendorph
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Julie Jacobsen
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Jonas Skovgaard-Petersen
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Andreas Jurik
- University of Vienna; Department of Pharmaceutical Chemistry; Althanstrasse 14, A-1090 Vienna Austria
| | - Stine B. Vogensen
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Gerhard Ecker
- University of Vienna; Department of Pharmaceutical Chemistry; Althanstrasse 14, A-1090 Vienna Austria
| | - Arne Schousboe
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Povl Krogsgaard-Larsen
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Rasmus P. Clausen
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| |
Collapse
|
29
|
Hellsten SV, Lekholm E, Ahmad T, Fredriksson R. The gene expression of numerous SLC transporters is altered in the immortalized hypothalamic cell line N25/2 following amino acid starvation. FEBS Open Bio 2017; 7:249-264. [PMID: 28174690 PMCID: PMC5292668 DOI: 10.1002/2211-5463.12181] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/09/2016] [Accepted: 12/10/2016] [Indexed: 12/20/2022] Open
Abstract
Amino acids are known to play a key role in gene expression regulation, and in mammalian cells, amino acid signaling is mainly mediated via two pathways, the mammalian target of rapamycin complex 1 (mTORC1) pathway and the amino acid responsive (AAR) pathway. It is vital for cells to have a system to sense amino acid levels, in order to control protein and amino acid synthesis and catabolism. Amino acid transporters are crucial in these pathways, due to both their sensing and transport functions. In this large-scale study, an immortalized mouse hypothalamic cell line (N25/2) was used to study the gene expression changes following 1, 2, 3, 5 or 16 h of amino acid starvation. We focused on genes encoding solute carriers (SLCs) and putative SLCs, more specifically on amino acid transporters. The microarray contained 28 270 genes and 86.2% of the genes were expressed in the cell line. At 5 h of starvation, 1001 genes were upregulated and 848 genes were downregulated, and among these, 47 genes from the SLC superfamily or atypical SLCs were found. Of these, 15 were genes encoding amino acid transporters and 32 were genes encoding other SLCs or atypical SLCs. Increased expression was detected for genes encoding amino acid transporters from system A, ASC, L, N, T, xc-, and y+. Using GO annotations, genes involved in amino acid transport and amino acid transmembrane transporter activity were found to be most upregulated at 3 h and 5 h of starvation.
Collapse
Affiliation(s)
- Sofie V Hellsten
- Department of Pharmaceutical Bioscience, Molecular Neuropharmacology Uppsala University Sweden; Department of Neuroscience, Functional Pharmacology Uppsala University Sweden
| | - Emilia Lekholm
- Department of Pharmaceutical Bioscience, Molecular Neuropharmacology Uppsala University Sweden
| | - Tauseef Ahmad
- Department of Neuroscience, Functional Pharmacology Uppsala University Sweden
| | - Robert Fredriksson
- Department of Pharmaceutical Bioscience, Molecular Neuropharmacology Uppsala University Sweden
| |
Collapse
|
30
|
Cioffi CL, Liu S, Wolf MA, Guzzo PR, Sadalapure K, Parthasarathy V, Loong DTJ, Maeng JH, Carulli E, Fang X, Karunakaran K, Matta L, Choo SH, Panduga S, Buckle RN, Davis RN, Sakwa SA, Gupta P, Sargent BJ, Moore NA, Luche MM, Carr GJ, Khmelnitsky YL, Ismail J, Chung M, Bai M, Leong WY, Sachdev N, Swaminathan S, Mhyre AJ. Synthesis and Biological Evaluation of N-((1-(4-(Sulfonyl)piperazin-1-yl)cycloalkyl)methyl)benzamide Inhibitors of Glycine Transporter-1. J Med Chem 2016; 59:8473-94. [PMID: 27559615 DOI: 10.1021/acs.jmedchem.6b00914] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We previously disclosed the discovery of rationally designed N-((1-(4-(propylsulfonyl)piperazin-1-yl)cycloalkyl)methyl)benzamide inhibitors of glycine transporter-1 (GlyT-1), represented by analogues 10 and 11. We describe herein further structure-activity relationship exploration of this series via an optimization strategy that primarily focused on the sulfonamide and benzamide appendages of the scaffold. These efforts led to the identification of advanced leads possessing a desirable balance of excellent in vitro GlyT-1 potency and selectivity, favorable ADME and in vitro pharmacological profiles, and suitable pharmacokinetic and safety characteristics. Representative analogue (+)-67 exhibited robust in vivo activity in the cerebral spinal fluid glycine biomarker model in both rodents and nonhuman primates. Furthermore, rodent microdialysis experiments also demonstrated that oral administration of (+)-67 significantly elevated extracellular glycine levels within the medial prefrontal cortex (mPFC).
Collapse
Affiliation(s)
- Christopher L Cioffi
- Department of Medicinal Chemistry, AMRI , East Campus, 3 University Place, Rensselaer, New York 12144, United States
| | - Shuang Liu
- Department of Medicinal Chemistry, AMRI , East Campus, 3 University Place, Rensselaer, New York 12144, United States
| | - Mark A Wolf
- Department of Medicinal Chemistry, AMRI , East Campus, 3 University Place, Rensselaer, New York 12144, United States
| | - Peter R Guzzo
- Department of Medicinal Chemistry, AMRI , East Campus, 3 University Place, Rensselaer, New York 12144, United States
| | - Kashinath Sadalapure
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Visweswaran Parthasarathy
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - David T J Loong
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Jun-Ho Maeng
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Edmund Carulli
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Xiao Fang
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Kalesh Karunakaran
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Lakshman Matta
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Sok Hui Choo
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Shailijia Panduga
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Ronald N Buckle
- Department of Medicinal Chemistry, AMRI , East Campus, 3 University Place, Rensselaer, New York 12144, United States
| | - Randall N Davis
- Department of Medicinal Chemistry, AMRI , East Campus, 3 University Place, Rensselaer, New York 12144, United States
| | - Samuel A Sakwa
- Department of Medicinal Chemistry, AMRI , East Campus, 3 University Place, Rensselaer, New York 12144, United States
| | - Priya Gupta
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Bruce J Sargent
- Department of Medicinal Chemistry, AMRI , East Campus, 3 University Place, Rensselaer, New York 12144, United States
| | - Nicholas A Moore
- Department of Medicinal Chemistry, AMRI , East Campus, 3 University Place, Rensselaer, New York 12144, United States
| | - Michele M Luche
- Bothell Research Center, AMRI , 22215 26th Ave SE, Bothell, Washington 98021-4425, United States
| | - Grant J Carr
- Bothell Research Center, AMRI , 22215 26th Ave SE, Bothell, Washington 98021-4425, United States
| | - Yuri L Khmelnitsky
- Drug Metabolism and Pharmacokinetics, AMRI , East Campus, 17 University Place, Rensselaer, New York 12144, United States
| | - Jiffry Ismail
- Drug Metabolism and Pharmacokinetics, AMRI , East Campus, 17 University Place, Rensselaer, New York 12144, United States
| | - Mark Chung
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Mei Bai
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Wei Yee Leong
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Nidhi Sachdev
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Srividya Swaminathan
- Discovery Research and Development Chemistry, Singapore Research Center, AMRI , 61 Science Park Road, Science Park III, 117525, Singapore
| | - Andrew J Mhyre
- Bothell Research Center, AMRI , 22215 26th Ave SE, Bothell, Washington 98021-4425, United States
| |
Collapse
|
31
|
Aroeira RI, Vaz SH, Sebastião AM, Valente CA. BDNF modulates glycine uptake in hippocampal synaptosomes by decreasing membrane insertion of glycine transporter 2. Neurochem Int 2016; 99:94-102. [PMID: 27296115 DOI: 10.1016/j.neuint.2016.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 12/18/2022]
Abstract
Glycine transporter 2 (GlyT2) is localized in the nerve terminals of glycinergic neurons, promoting glycine uptake and ensuring the refilling of glycinergic vesicles. Brain-derived neurotrophic factor (BDNF) activates its high affinity TrkB receptors, which occur in two isoforms, full length (TrkB-FL) and truncated (TrkB-T1/T2). After BDNF binding to TrkB receptor, several intracellular cascades are triggered, specifically PLC, Akt and MAPK signalling pathways. We herein show that BDNF decreases [(3)H]glycine uptake mediated by GlyT2 in isolated nerve endings (synaptosomes) obtained from rat hippocampus, by reducing the maximum velocity (Vmax) of transport while not influencing the transporter affinity constant (Km) for glycine. Western Blot analysis detected both TrkB receptor isoforms in the synaptosomes but the BDNF effect seems to be mediated by TrkB-FL since: 1) the tyrosine kinase inhibitor, k252a, prevented the effect of BDNF, and 2) the effect of BDNF was lost in the presence of specific inhibitors of TrkB signalling pathways, namely U73122, LY294002 and U0126 (inhibitors of PLC, Akt and MAPK pathways, respectively). Monensin, a transporter recycling inhibitor, prevented the BDNF action upon glycine uptake, suggesting that BDNF reduces GlyT2 insertion in the plasma membrane. It is concluded that BDNF effect upon glycine uptake into glycinergic nerve terminals requires the activation of the TrkB-FL receptor and its canonical signalling pathways and occurs by inhibiting GlyT2 membrane incorporation.
Collapse
Affiliation(s)
- Rita I Aroeira
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Sandra H Vaz
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Ana M Sebastião
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Cláudia A Valente
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal.
| |
Collapse
|
32
|
Spinal glycine transporter-1 inhibition influences the micturition reflex in urethane-anesthetized rats. Int Urol Nephrol 2016; 48:349-54. [PMID: 26843416 DOI: 10.1007/s11255-015-1148-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/23/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE Glycine is an inhibitory neurotransmitter in the central nervous system. So far, two types of glycine transporters (GlyTs), GlyT-1 and GlyT-2, have been cloned. The aim of this study is to investigate the effects of a selective GlyT-1 inhibitor that can increase endogenous glycine concentration on the micturition reflex in urethane-anesthetized rats. METHODS Continuous cystometrograms (0.04 ml/min) were performed in female Sprague-Dawley rats (232-265 g) under urethane anesthesia. After stable micturition cycles were established, ALX5407, a selective GlyT-1 inhibitor, was administered intrathecally or intracerebroventricularly to evaluate changes in bladder activity. Cystometric parameters were recorded and compared before and after drug administration. RESULTS Intrathecal administration of ALX5407 (1, 3, 10 and 30 μg) increased intercontraction intervals at doses of 3 μg or higher in a dose-dependent fashion. Intrathecal administration of ALX5407 (1, 3, 10 and 30 μg) also increased pressure threshold at doses of 3 μg or higher in a dose-dependent fashion. However, when ALX5407 (1, 3, 10 and 30 μg) was administered intracerebroventricularly, there were no significant changes in intercontraction intervals, pressure threshold, maximum voiding pressure or baseline pressure or post-void residual urine volume at any doses tested. CONCLUSION The results of our study indicate that GlyT-1 plays an important role in the modulation of micturition. Furthermore, these findings indicate that in urethane-anesthetized rats suppression of GlyT-1 can inhibit the micturition reflex at the spinal cord level. Thus, GlyT-1 could be a potential target for the treatment of bladder dysfunction such as overactive bladder.
Collapse
|
33
|
Aroeira RI, Sebastião AM, Valente CA. BDNF, via truncated TrkB receptor, modulates GlyT1 and GlyT2 in astrocytes. Glia 2015. [DOI: 10.1002/glia.22884] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Rita I. Aroeira
- Faculty of Medicine, Institute of Pharmacology and Neurosciences, and Unit of Neurosciences, Institute of Molecular Medicine, University of Lisbon; Av. Prof. Egas Moniz Lisbon Portugal
| | - Ana M. Sebastião
- Faculty of Medicine, Institute of Pharmacology and Neurosciences, and Unit of Neurosciences, Institute of Molecular Medicine, University of Lisbon; Av. Prof. Egas Moniz Lisbon Portugal
| | - Cláudia A. Valente
- Faculty of Medicine, Institute of Pharmacology and Neurosciences, and Unit of Neurosciences, Institute of Molecular Medicine, University of Lisbon; Av. Prof. Egas Moniz Lisbon Portugal
| |
Collapse
|
34
|
Sun F, Cheng Y, Chen C. Regulation of heme biosynthesis and transport in metazoa. SCIENCE CHINA-LIFE SCIENCES 2015; 58:757-64. [PMID: 26100009 DOI: 10.1007/s11427-015-4885-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/22/2015] [Indexed: 02/08/2023]
Abstract
Heme is an iron-containing tetrapyrrole that plays a critical role in regulating a variety of biological processes including oxygen and electron transport, gas sensing, signal transduction, biological clock, and microRNA processing. Most metazoan cells synthesize heme via a conserved pathway comprised of eight enzyme-catalyzed reactions. Heme can also be acquired from food or extracellular environment. Cellular heme homeostasis is maintained through the coordinated regulation of synthesis, transport, and degradation. This review presents the current knowledge of the synthesis and transport of heme in metazoans and highlights recent advances in the regulation of these pathways.
Collapse
Affiliation(s)
- FengXiu Sun
- College of Life Sciences and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China
| | | | | |
Collapse
|
35
|
Glycine transporter-1 controls nonsynaptic inhibitory actions of glycine receptors in the neonatal rat hippocampus. J Neurosci 2014; 34:10003-9. [PMID: 25057202 DOI: 10.1523/jneurosci.0075-13.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although functional glycinergic synapses have not been identified in the hippocampus, neurons in this area express Cl(-) permeable extrasynaptic glycine receptors (GlyRs). In experiments on CA3 pyramidal neurons on postnatal day 0-6 rat hippocampal slices, we detected robust GlyR activity as a tonic current and as single-channel events. Glycine release was independent of neuronal activity or extracellular Ca(2+). The endogenous GlyR activity was strongly enhanced by inhibition of the glycine-transporter-1 (GlyT1). Blockade of GlyT1 also caused a profound increase in the baseline current induced by exogenous glycine. Inhibition of GlyT1 reduced the frequency of spontaneous network events known as field giant depolarizing potentials (fGDPs) and of the unit activity in the absence of synaptic transmission. This inhibitory action on fGDPs was mimicked by applying 2 μm glycine or 0.1 μm isoguvacine, a GABAA-receptor agonist. Furthermore, 2 μm glycine suppressed unit spiking in the absence of synaptic transmission. Hence, despite the well known depolarizing Cl(-) equilibrium potential of neonatal hippocampal neurons, physiologically relevant extracellular glycine concentrations can exert an inhibitory action. The present data show that, akin to GABA uptake, GlyT1 exerts a powerful modulatory action on network events in the newborn hippocampus.
Collapse
|
36
|
Long-term application of glycine transporter inhibitors acts antineuropathic and modulates spinal N-methyl-D-aspartate receptor subunit NR-1 expression in rats. Anesthesiology 2014; 121:160-9. [PMID: 24598217 DOI: 10.1097/aln.0000000000000203] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Dysfunction of spinal glycinergic neurotransmission is a major pathogenetic factor in neuropathic pain. The synaptic glycine concentration is controlled by the two glycine transporters (GlyT) 1 and 2. GlyT inhibitors act antinociceptive in various animal pain models when applied as bolus. Yet, in some studies, severe neuromotor side effects were reported. The aim of the current study was to elucidate whether continuous inhibition of GlyT ameliorates neuropathic pain without side effects and whether protein expression of GlyT1, GlyT2, or N-methyl-D-aspartate receptor subunit NR-1 in the spinal cord is affected. METHODS In the chronic constriction injury model of neuropathic pain, male Wistar rats received specific GlyT1 and GlyT2 inhibitors (ALX5407 and ALX1393; Sigma-Aldrich, St. Louis, MO) or vehicle for 14 days via subcutaneous osmotic infusion pumps (n = 6). Mechanical allodynia and thermal hyperalgesia were assessed before, after chronic constriction injury, and every 2 days during substance application. At the end of behavioral assessment, the expression of GlyT1, GlyT2, and NR-1 in the spinal cord was determined by Western blot analysis. RESULTS Both ALX5407 and ALX1393 ameliorated thermal hyperalgesia and mechanical allodynia in a time- and dose-dependent manner. Respiratory or neuromotor side effects were not observed. NR-1 expression in the ipsilateral spinal cord was significantly reduced by ALX5407, but not by ALX1393. The expression of GlyT1 and GlyT2 remained unchanged. CONCLUSIONS Continuous systemic inhibition of GlyT significantly ameliorates neuropathic pain in rats. Thus, GlyT represent promising targets in pain research. Modulation of N-methyl-D-aspartate receptor expression might represent a novel mechanism for the antinociceptive action of GyT1 inhibitors.
Collapse
|
37
|
Stephan J, Friauf E. Functional analysis of the inhibitory neurotransmitter transporters GlyT1, GAT-1, and GAT-3 in astrocytes of the lateral superior olive. Glia 2014; 62:1992-2003. [PMID: 25103283 DOI: 10.1002/glia.22720] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 01/03/2023]
Abstract
Neurotransmitter clearance from the synaptic cleft is a major function of astrocytes and requires neurotransmitter transporters. In the rodent lateral superior olive (LSO), a conspicuous auditory brainstem center, both glycine and GABA mediate synaptic inhibition. However, the main inhibitory input from the medial nucleus of the trapezoid body (MNTB) appears to be glycinergic by postnatal day (P) 14, when circuit maturation is almost accomplished. Using whole-cell patch-clamp recordings at P3-20, we analyzed glycine transporters (GlyT1) and GABA transporters (GAT-1, GAT-3) in mouse LSO astrocytes, emphasizing on their developmental regulation. Application of glycine or GABA induced a dose- and age-dependent inward current and a respective depolarization. The GlyT1-specific inhibitor sarcosine reduced the maximal glycine-induced current (IGly (max) ) by about 60%. The GAT-1 and GAT-3 antagonists NO711 and SNAP5114, respectively, reduced the maximal GABA-induced current (IGABA (max) ) by about 35%. Furthermore, [Cl(-) ]o reduction decreased IGly (max) and IGABA (max) by about 85 to 95%, showing the Cl(-) dependence of GlyT and GAT. IGABA (max) was stronger than IGly (max) , and the ratio increased developmentally from 1.6-fold to 3.7-fold. Together, our results demonstrate the functional presence of the three inhibitory neurotransmitter transporters GlyT1, GAT-1, and GAT-3 in LSO astrocytes. Furthermore, the uptake capability for GABA was higher than for glycine, pointing toward eminent GABAergic signaling in the LSO. GABA may originate from another source than the MNTB-LSO synapses, namely from another projection or from reversal of astrocytic GATs. Thus, neuronal signaling in the LSO appears to be more versatile than previously thought. GLIA 2014;62:1992-2003.
Collapse
Affiliation(s)
- Jonathan Stephan
- Department of Biology, Animal Physiology Group, University of Kaiserslautern, Kaiserslautern, Germany
| | | |
Collapse
|
38
|
Abstract
PURPOSE To review the history of experimental embryo culture and how culture media that permitted complete preimplantation development in vitro were first discovered, and the physiological insights gained. METHODS This article reviews the history of in vitro mammalian embryo culture, in particular the efforts that led to the current generation of successful culture media and how these reflect embryo physiology, highlighting the contributions of Dr. John D. Biggers and his colleagues and students. RESULTS The culture of mammalian embryos began about a century ago. However, defined media without biological fluids were only developed in the late 1950s, and the first live young born from cultured embryos, using these media, were produced by McLaren and Biggers in 1958. It wasn’t until the late 1980s, however, that preimplantation mammalian embryos could generally be cultured in vitro from fertilized eggs to blastocysts. These new media led to insights into embryo physiology, including the importance of cell volume homeostasis to early embryo viability. CONCLUSIONS The development of successful preimplantation embryo culture media has had a profound effect on assisted reproduction technologies and on research into early embryo physiology.
Collapse
|
39
|
|
40
|
GlyT-1 Inhibitors: From Hits to Clinical Candidates. SMALL MOLECULE THERAPEUTICS FOR SCHIZOPHRENIA 2014. [DOI: 10.1007/7355_2014_53] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
GlyT1 and GlyT2 in brain astrocytes: expression, distribution and function. Brain Struct Funct 2013; 219:817-30. [DOI: 10.1007/s00429-013-0537-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/02/2013] [Indexed: 11/25/2022]
|
42
|
Henneberger C, Bard L, King C, Jennings A, Rusakov DA. NMDA Receptor Activation: Two Targets for Two Co-Agonists. Neurochem Res 2013; 38:1156-62. [DOI: 10.1007/s11064-013-0987-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 01/27/2013] [Accepted: 01/28/2013] [Indexed: 12/01/2022]
|
43
|
Abstract
The solute carrier 6 (SLC6) family of the human genome comprises transporters for neurotransmitters, amino acids, osmolytes and energy metabolites. Members of this family play critical roles in neurotransmission, cellular and whole body homeostasis. Malfunction or altered expression of these transporters is associated with a variety of diseases. Pharmacological inhibition of the neurotransmitter transporters in this family is an important strategy in the management of neurological and psychiatric disorders. This review provides an overview of the biochemical and pharmacological properties of the SLC6 family transporters.
Collapse
Affiliation(s)
- Stefan Bröer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| | | |
Collapse
|
44
|
Barreiro-Iglesias A, Mysiak KS, Adrio F, Rodicio MC, Becker CG, Becker T, Anadón R. Distribution of glycinergic neurons in the brain of glycine transporter-2 transgenic Tg(glyt2:Gfp) adult zebrafish: Relationship to brain-spinal descending systems. J Comp Neurol 2012; 521:389-425. [DOI: 10.1002/cne.23179] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 01/25/2012] [Accepted: 06/21/2012] [Indexed: 12/19/2022]
|
45
|
Morrow JA, Gilfillan R, Neale SA. Glutamatergic Approaches for the Treatment of Schizophrenia. DRUG DISCOVERY FOR PSYCHIATRIC DISORDERS 2012. [DOI: 10.1039/9781849734943-00056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system and plays a key role in most aspects of normal brain function including cognition, learning and memory. Dysfunction of glutamatergic neurotransmission has been implicated in a number of neurological and psychiatric disorders with a growing body of evidence suggesting that hypofunction of glutamatergic neurotransmission via the N-methyl-d-aspartate (NMDA) receptor plays an important role in the pathophysiology of schizophrenia. It thus follows that potentiation of NMDA receptor function via pharmacological manipulation may provide therapeutic utility for the treatment of schizophrenia and a number of different approaches are currently being pursued by the pharmaceutical industry with this aim in mind. These include strategies that target the glycine/d-serine site of the NMDA receptor (glycine transporter GlyT1, d-serine transporter ASC-1 and d-amino acid oxidase (DAAO) inhibitors) together with those aimed at enhancing glutamatergic neurotransmission via modulation of AMPA receptor and metabotropic glutamate receptor function. Such efforts are now beginning to bear fruit with compounds such as the GlyT1 inhibitor RG1678 and mGlu2 agonist LY2140023 proving to have clinical meaningful effects in phase II clinical trials. While more studies are required to confirm long-term efficacy, functional outcome and safety in schizophrenic agents, these agents hold real promise for addressing unmet medical needs, in particular refractory negative and cognitive symptoms, not currently addressed by existing antipsychotic agents.
Collapse
Affiliation(s)
- John A. Morrow
- Neuroscience and Ophthalmology, Merck Research Laboratories 2015 Galloping Hill Road, Kenilworth, New Jersey 07033 USA
| | - Robert Gilfillan
- Discovery Chemistry, Merck Research Laboratories 770 Sumneytown Pike, West Point, Pennsylvania 19486 USA
| | - Stuart A. Neale
- Neurexpert Ltd Ground Floor, 2 Woodberry Grove, North Finchley, London, N12 0DR UK
| |
Collapse
|
46
|
Baltz JM, Zhou C. Cell volume regulation in mammalian oocytes and preimplantation embryos. Mol Reprod Dev 2012; 79:821-31. [DOI: 10.1002/mrd.22117] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 09/17/2012] [Indexed: 11/06/2022]
|
47
|
Omoto JJ, Maestas MJ, Rahnama-Vaghef A, Choi YE, Salto G, Sanchez RV, Anderson CM, Eskandari S. Functional consequences of sulfhydryl modification of the γ-aminobutyric acid transporter 1 at a single solvent-exposed cysteine residue. J Membr Biol 2012; 245:841-57. [PMID: 22918627 PMCID: PMC3505503 DOI: 10.1007/s00232-012-9492-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 07/16/2012] [Indexed: 11/18/2022]
Abstract
The aims of this study were to optimize the experimental conditions for labeling extracellularly oriented, solvent-exposed cysteine residues of γ-aminobutyric acid transporter 1 (GAT1) with the membrane-impermeant sulfhydryl reagent [2-(trimethylammonium)ethyl]methanethiosulfonate (MTSET) and to characterize the functional and pharmacological consequences of labeling on transporter steady-state and presteady-state kinetic properties. We expressed human GAT1 in Xenopus laevis oocytes and used radiotracer and electrophysiological methods to assay transporter function before and after sulfhydryl modification with MTSET. In the presence of NaCl, transporter exposure to MTSET (1–2.5 mM for 5–20 min) led to partial inhibition of GAT1-mediated transport, and this loss of function was completely reversed by the reducing reagent dithiothreitol. MTSET treatment had no functional effect on the mutant GAT1 C74A, whereas the membrane-permeant reagents N-ethylmaleimide and tetramethylrhodamine-6-maleimide inhibited GABA transport mediated by GAT1 C74A. Ion replacement experiments indicated that MTSET labeling of GAT1 could be driven to completion when valproate replaced chloride in the labeling buffer, suggesting that valproate induces a GAT1 conformation that significantly increases C74 accessibility to the extracellular fluid. Following partial inhibition by MTSET, there was a proportional reduction in both the presteady-state and steady-state macroscopic signals, and the functional and pharmacological properties of the remaining signals were indistinguishable from those of unlabeled GAT1. Therefore, covalent modification of GAT1 at C74 results in completely nonfunctional as well as electrically silent transporters.
Collapse
Affiliation(s)
- Jaison J Omoto
- Biological Sciences Department, California State Polytechnic University, Pomona, 3801 West Temple Avenue, Pomona, CA 91768-4032, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Kristensen AS, Andersen J, Jørgensen TN, Sørensen L, Eriksen J, Loland CJ, Strømgaard K, Gether U. SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol Rev 2011; 63:585-640. [PMID: 21752877 DOI: 10.1124/pr.108.000869] [Citation(s) in RCA: 625] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The neurotransmitter transporters (NTTs) belonging to the solute carrier 6 (SLC6) gene family (also referred to as the neurotransmitter-sodium-symporter family or Na(+)/Cl(-)-dependent transporters) comprise a group of nine sodium- and chloride-dependent plasma membrane transporters for the monoamine neurotransmitters serotonin (5-hydroxytryptamine), dopamine, and norepinephrine, and the amino acid neurotransmitters GABA and glycine. The SLC6 NTTs are widely expressed in the mammalian brain and play an essential role in regulating neurotransmitter signaling and homeostasis by mediating uptake of released neurotransmitters from the extracellular space into neurons and glial cells. The transporters are targets for a wide range of therapeutic drugs used in treatment of psychiatric diseases, including major depression, anxiety disorders, attention deficit hyperactivity disorder and epilepsy. Furthermore, psychostimulants such as cocaine and amphetamines have the SLC6 NTTs as primary targets. Beginning with the determination of a high-resolution structure of a prokaryotic homolog of the mammalian SLC6 transporters in 2005, the understanding of the molecular structure, function, and pharmacology of these proteins has advanced rapidly. Furthermore, intensive efforts have been directed toward understanding the molecular and cellular mechanisms involved in regulation of the activity of this important class of transporters, leading to new methodological developments and important insights. This review provides an update of these advances and their implications for the current understanding of the SLC6 NTTs.
Collapse
Affiliation(s)
- Anders S Kristensen
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Bakkar W, Ma CL, Pabba M, Khacho P, Zhang YL, Muller E, Martina M, Bergeron R. Chronically saturating levels of endogenous glycine disrupt glutamatergic neurotransmission and enhance synaptogenesis in the CA1 region of mouse hippocampus. Synapse 2011; 65:1181-95. [PMID: 21633974 DOI: 10.1002/syn.20956] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 05/18/2011] [Indexed: 11/08/2022]
Abstract
Glycine serves a dual role in neurotransmission. It is the primary inhibitory neurotransmitter in the spinal cord and brain stem and is also an obligatory coagonist at the excitatory glutamate, N-methyl-D-aspartate receptor (NMDAR). Therefore, the postsynaptic action of glycine should be strongly regulated to maintain a balance between its inhibitory and excitatory inputs. The glycine concentration at the synapse is tightly regulated by two types of glycine transporters, GlyT1 and GlyT2, located on nerve terminals or astrocytes. Genetic studies demonstrated that homozygous (GlyT1-/-) newborn mice display severe sensorimotor deficits characterized by lethargy, hypotonia, and hyporesponsivity to tactile stimuli and ultimately die in their first postnatal day. These symptoms are similar to those associated with the human disease glycine encephalopathy in which there is a high level of glycine in cerebrospinal fluid of affected individuals. The purpose of this investigation is to determine the impact of chronically high concentrations of endogenous glycine on glutamatergic neurotransmission during postnatal development using an in vivo mouse model (GlyT1+/-). The results of our study indicate the following; that compared with wild-type mice, CA1 pyramidal neurons from mutants display significant disruptions in hippocampal glutamatergic neurotransmission, as suggested by a faster kinetic of NMDAR excitatory postsynaptic currents, a lower reduction of the amplitude of NMDAR excitatory postsynaptic currents by ifenprodil, no difference in protein expression for NR2A and NR2B but a higher protein expression for PSD-95, an increase in their number of synapses and finally, enhanced neuronal excitability.
Collapse
Affiliation(s)
- Wafae Bakkar
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Howard A, Hirst BH. The glycine transporter GLYT1 in human intestine: expression and function. Biol Pharm Bull 2011; 34:784-788. [PMID: 21628872 DOI: 10.1248/bpb.34.784] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Glycine is a well-documented cytoprotective agent and protects mammalian intestine against ischemia-reperfusion injury, irradiation and experimentally induced colitis. The specific glycine transporter GLYT1 is found throughout the human intestine where it is responsible for some 30-50% of glycine uptake into intestinal epithelial cells across the basolateral membrane and appears to function to maintain glycine supply to enterocytes and colonocytes. This paper reviews current knowledge of GLYT1 and presents recent evidence supporting its essential role in glycine mediated cytoprotection in intestinal absorptive cells. Regulatory mechanisms involved in intestinal expression of GLYT1 are discussed and the potential of glycine for use as an anti-inflammatory, protective agent in the management of inflammatory bowel disease examined.
Collapse
Affiliation(s)
- Alison Howard
- Epithelial Research Group, Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, UK
| | | |
Collapse
|