1
|
Singh J, Patten SA. Modeling neuromuscular diseases in zebrafish. Front Mol Neurosci 2022; 15:1054573. [PMID: 36583079 PMCID: PMC9794147 DOI: 10.3389/fnmol.2022.1054573] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Neuromuscular diseases are a diverse group of conditions that affect the motor system and present some overlapping as well as distinct clinical manifestations. Although individually rare, the combined prevalence of NMDs is similar to Parkinson's. Over the past decade, new genetic mutations have been discovered through whole exome/genome sequencing, but the pathogenesis of most NMDs remains largely unexplored. Little information on the molecular mechanism governing the progression and development of NMDs accounts for the continual failure of therapies in clinical trials. Different aspects of the diseases are typically investigated using different models from cells to animals. Zebrafish emerges as an excellent model for studying genetics and pathogenesis and for developing therapeutic interventions for most NMDs. In this review, we describe the generation of different zebrafish genetic models mimicking NMDs and how they are used for drug discovery and therapy development.
Collapse
Affiliation(s)
- Jaskaran Singh
- INRS – Centre Armand Frappier Santé Biotechnologie, Laval, QC, Canada
| | - Shunmoogum A. Patten
- INRS – Centre Armand Frappier Santé Biotechnologie, Laval, QC, Canada,Departement de Neurosciences, Université de Montréal, Montréal, QC, Canada,Centre d'Excellence en Recherche sur les Maladies Orphelines – Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal, QC, Canada,*Correspondence: Shunmoogum A. Patten,
| |
Collapse
|
2
|
Nicole S, Diaz CC, Frugier T, Melki J. Spinal muscular atrophy: recent advances and future prospects. Muscle Nerve 2002; 26:4-13. [PMID: 12115944 DOI: 10.1002/mus.10110] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spinal muscular atrophies (SMA) are characterized by degeneration of lower motor neurons associated with muscle paralysis and atrophy. Childhood SMA is a frequent recessive autosomal disorder and represents one of the most common genetic causes of death in childhood. Mutations of the SMN1 gene are responsible for SMA. The knowledge of the genetic basis of SMA, a better understanding of SMN function, and the recent generation of SMA mouse models represent major advances in the field of SMA. These are starting points towards understanding the pathophysiology of SMA and developing therapeutic strategies for this devastating neurodegenerative disease, for which no curative treatment is known so far.
Collapse
Affiliation(s)
- Sophie Nicole
- Molecular Neurogenetics Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM), Université d'Evry, E.9913, Genopole, 2 rue Gaston Crémieux, CP 5724, 91057 Evry, France
| | | | | | | |
Collapse
|
3
|
Xu M, Okada T, Sakai H, Miyamoto N, Yanagisawa Y, MacKenzie AE, Hadano S, Ikeda JE. Functional human NAIP promoter transcription regulatory elements for the NAIP and PsiNAIP genes. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1574:35-50. [PMID: 11955612 DOI: 10.1016/s0167-4781(01)00343-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neuronal apoptosis inhibitory protein (NAIP) has been shown to inhibit apoptosis in vitro and in vivo with an expression which is regulated in a variety of cells and tissues and may be modulated by a variety of external stimuli. To understand the molecular basis of the transcriptional regulation of the NAIP gene, we have analyzed the 5'-flanking region and transcription of the human NAIP gene. The functional promoter and silencer elements were identified by luciferase reporter constructs in transient transfection experiments using four different human cells. Although the location of the functional elements were shared among the different cells used, the activities for the NAIP promoter varied. Further, cell type-specific protein binding activities were observed by an electrophoretic mobility shift assay (EMSA). EMSA analysis with specific antibodies and DNA sequence analysis identified the POU domain transcription factor Brn-2 as a candidate transcriptional regulator of the NAIP gene. The DNA sequence of the promoter region of the PsiNAIP gene, a copy gene for NAIP, was nearly identical to that of the NAIP gene, indicating a common regulatory mechanism for transcription of the NAIP and PsiNAIP genes. Indeed, the transcript of the PsiNAIP gene was identified. These results provided the first evidence for the functional promoter and candidate transcriptional factor for the NAIP gene and transcription of the PsiNAIP gene.
Collapse
Affiliation(s)
- Ming Xu
- NeuroGenes, International Cooperative Research Project, Japan Science and Technology Corporation, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Kelter AR, Herchenbach J, Wirth B. The transcription factor-like nuclear regulator (TFNR) contains a novel 55-amino-acid motif repeated nine times and maps closely to SMN1. Genomics 2000; 70:315-26. [PMID: 11161782 DOI: 10.1006/geno.2000.6396] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transcription factor-like nuclear regulator (TFNR) is a novel human gene that maps on 5q13, distal to the duplicated region that includes SMN1, the spinal muscular atrophy (SMA) determining gene. The location of TFNR allowed us to design an evolutionary model of the SMA region. The 9.5-kb TFNR transcript is highly expressed in cerebellum and weakly in all other tissues tested. TFNR encodes a protein of 2254 amino acids (aa) and contains nine repeats of a novel 55-aa motif, of yet unknown function. The coding region is organized in 32 exons. Alternative splicing of exon 15 results in a truncated protein of 796 aa. TFNR comprises a series of polypeptides that range from 55 to 250 kDa. Immunocytological studies showed that the TFNR protein is present exclusively in the nucleus, where it is concentrated in several nuclear structures. Amino acids 155-474 show significant homology to TFC5, a subunit of the yeast transcription factor TFIIIB, suggesting that TFNR is a putative transcription factor. Based on its proximity to SMN1 and its expression pattern, TFNR may be a candidate gene for atypical forms of SMA with cerebral atrophy and axonal neuropathy that have been shown to carry large deletions in the SMA region.
Collapse
Affiliation(s)
- A R Kelter
- Institute of Human Genetics, Wilhelmstrasse 31, Bonn, D-53111, Germany
| | | | | |
Collapse
|
5
|
Stevens G, Yawitch T, Rodda J, Verhaart S, Krause A. Different molecular basis for spinal muscular atrophy in South African black patients. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1096-8628(19991029)86:5<420::aid-ajmg5>3.0.co;2-s] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Lin SP, Chang JG, Jong YJ, Yang TY, Tsai CH, Wang NM, Li H, Hsieh-Li HM, Hu CJ. Prenatal prediction of spinal muscular atrophy in Chinese. Prenat Diagn 1999; 19:657-61. [PMID: 10419615 DOI: 10.1002/(sici)1097-0223(199907)19:7<657::aid-pd602>3.0.co;2-p] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We used linkage analysis, non-isotope SSCP (single-strand conformation polymorphism) and PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism) for prenatal diagnosis of spinal muscular atrophy (SMA). A total of 26 cases from 20 SMA families (16, type 1 and 4) were evaluated. 5 out of 26 fetuses were affected and, following genetic counselling, the parents decided to terminate the pregnancies. Aborted fetal tissues were examined and the diagnosis was confirmed in each case. The 21 unaffected cases were either normals (12 cases) or carriers (9 cases). These children have been followed for six months to two and a half years. No false-negative or false-positive results on prenatal testing were found. We conclude that prenatal diagnosis of SMA is reliable and accurate.
Collapse
Affiliation(s)
- S P Lin
- Department of Medical Research, China Medical College Hospital, Taichung, Taiwan, ROC
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Biros I, Forrest S. Spinal muscular atrophy: untangling the knot? J Med Genet 1999; 36:1-8. [PMID: 9950358 PMCID: PMC1762953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Spinal muscular atrophy (SMA), a clinically and genetically heterogeneous group of neuromuscular diseases, is a disorder of motor neurones characterised by degeneration of spinal cord anterior horn cells and muscular atrophy. SMA is an autosomal recessive disorder with a carrier frequency of about 1150. Three candidate genes, the survival motor neurone (SMN) gene, the neuronal inhibitory protein (NAIP) gene, and the p44 (subunit of basal transcription factor TFIIH) gene, have been considered as genes involved in this condition. The region spanning these genes has a complex organisation including duplications, repetitive sequences, truncated genes, and pseudogenes, which makes molecular analysis of this condition difficult. Although deletions have been found in the majority of SMA patients, a few microrearrangements (like duplications, missense mutations, microdeletions, and gene conversions) localised in the telomeric form of the SMN gene have also been reported. The function of the protein encoded by the SMN gene is still not fully understood but recent studies have indicated that it is found intracellularly in gems, novel nuclear structures. Its interaction with other proteins suggests a role in mRNA processing and metabolism. Whether the NAIP gene protein and other apoptosis associated proteins are directly involved in the initial stages of neurone degeneration and apoptosis, or acting downstream on the pathological pathway, has been difficult to determine. Further studies will be required to elucidate possible functional interactions between these proteins.
Collapse
Affiliation(s)
- I Biros
- The Murdoch Institute, Royal Children's Hospital, Parkville, Melbourne, Australia
| | | |
Collapse
|
8
|
Parsons DW, McAndrew PE, Iannaccone ST, Mendell JR, Burghes AH, Prior TW. Intragenic telSMN mutations: frequency, distribution, evidence of a founder effect, and modification of the spinal muscular atrophy phenotype by cenSMN copy number. Am J Hum Genet 1998; 63:1712-23. [PMID: 9837824 PMCID: PMC1377643 DOI: 10.1086/302160] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The autosomal recessive neuromuscular disorder proximal spinal muscular atrophy (SMA) is caused by the loss or mutation of the survival motor neuron (SMN) gene, which exists in two nearly identical copies, telomeric SMN (telSMN) and centromeric SMN (cenSMN). Exon 7 of the telSMN gene is homozygously absent in approximately 95% of SMA patients, whereas loss of cenSMN does not cause SMA. We searched for other telSMN mutations among 23 SMA compound heterozygotes, using heteroduplex analysis. We identified telSMN mutations in 11 of these unrelated SMA-like individuals who carry a single copy of telSMN: these include two frameshift mutations (800ins11 and 542delGT) and three missense mutations (A2G, S262I, and T274I). The telSMN mutations identified to date cluster at the 3' end, in a region containing sites for SMN oligomerization and binding of Sm proteins. Interestingly, the novel A2G missense mutation occurs outside this conserved carboxy-terminal domain, closely upstream of an SIP1 (SMN-interacting protein 1) binding site. In three patients, the A2G mutation was found to be on the same allele as a rare polymorphism in the 5' UTR, providing evidence for a founder chromosome; Ag1-CA marker data also support evidence of an ancestral origin for the 800ins11 and 542delGT mutations. We note that telSMN missense mutations are associated with milder disease in our patients and that the severe type I SMA phenotype caused by frameshift mutations can be ameliorated by an increase in cenSMN gene copy number.
Collapse
Affiliation(s)
- D W Parsons
- Department of Pathology, Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | | |
Collapse
|
9
|
Banerjee P, Lewis CA, Kleyn PW, Shugart YY, Ross BM, Penchaszadeh GK, Ott J, Jacobson SG, Gilliam TC, Knowles JA. Homozygosity and physical mapping of the autosomal recessive retinitis pigmentosa locus (RP14) on chromosome 6p21.3. Genomics 1998; 48:171-7. [PMID: 9521870 DOI: 10.1006/geno.1997.5174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Retinitis pigmentosa (RP) is a heterogeneous genetic disorder with autosomal dominant, autosomal recessive, and X-linked forms. We previously mapped an additional arRP locus to chromosome 6p21 (RP14) in a single extended kinship from the Dominican Republic. Aided by a second linked RP pedigree from the same region of the Dominican Republic, we have refined the disease locus to a 2-cM region that is homozygous-by-descent in both pedigrees. A complete YAC, and a partial BAC, contig of the RP14 locus was constructed between the markers D6S1560 and D6S291, encompassing approximately 2.1 Mb. The contig contains 12 YACs and 31 BACs and is characterized by 45 markers including 8 microsatellite markers, 6 gene-derived sequences/ESTs obtained from the databases, and 28 new STSs and 4 new ESTs obtained by BLAST search using DNA sequence from the ends of the BAC and YAC inserts. With a STS density of approximately 1 every 20 kilobases, this contig significantly enhances available maps of the region.
Collapse
Affiliation(s)
- P Banerjee
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Chen Q, Baird SD, Mahadevan M, Besner-Johnston A, Farahani R, Xuan J, Kang X, Lefebvre C, Ikeda JE, Korneluk RG, MacKenzie AE. Sequence of a 131-kb region of 5q13.1 containing the spinal muscular atrophy candidate genes SMN and NAIP. Genomics 1998; 48:121-7. [PMID: 9503025 DOI: 10.1006/geno.1997.5141] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The spinal muscular atrophies (SMA), which are characterized by motor neuron loss and progressive paralysis, are among the most common autosomal recessive disorders. The SMA region of chromosome 5q13.1 is distinguished by variable amplification of genomic sequence incorporating a number of genes and pseudogenes. Recently, two SMA candidate genes mapping to this area were identified: survival motor neuron (SMN) and neuronal apoptosis inhibitory protein (NAIP). The telomeric copy of SMN (SMNtel) is deleted in over 95% of cases of SMA, with NAIP deletions primarily seen in type I SMA. We present here 131 kb of genomic sequence from 5q13.1 incorporating both NAIP and SMNtel in addition to revisions of the original NAIP cDNA sequence. The Alu-rich NAIP-SMNtel interval contains the microsatellite polymorphisms that are deleted in as many as 80% of type I SMA chromosomes, focusing attention on this region in the pathogenesis of type I SMA.
Collapse
Affiliation(s)
- Q Chen
- Solange Gauthier Karsh Laboratory, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Campbell L, Potter A, Ignatius J, Dubowitz V, Davies K. Genomic variation and gene conversion in spinal muscular atrophy: implications for disease process and clinical phenotype. Am J Hum Genet 1997; 61:40-50. [PMID: 9245983 PMCID: PMC1715870 DOI: 10.1086/513886] [Citation(s) in RCA: 210] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Autosomal recessive spinal muscular atrophy (SMA) is classified, on the basis of age at onset and severity, into three types: type I, severe; type II, intermediate; and type III, mild. The critical region in 5q13 contains an inverted repeat harboring several genes, including the survival motor neuron (SMN) gene, the neuronal apoptosis inhibitory protein (NAIP) gene, and the p44 gene, which encodes a transcription-factor subunit. Deletion of NAIP and p44 is observed more often in severe SMA, but there is no evidence that these genes play a role in the pathology of the disease. In > 90% of all SMA patients, exons 7 and 8 of the telomeric SMN gene (SMNtel) are not detectable, and this is also observed in some normal siblings and parents. Point mutations and gene conversions in SMNtel suggest that it plays a major role in the disease. To define a correlation between genotype and phenotype, we mapped deletions, using pulsed-field gel electrophoresis. Surprisingly, our data show that mutations in SMA types II and III, previously classed as deletions, are in fact due to gene-conversion events in which SMNtel is replaced by its centromeric counterpart, SMNcen. This results in a greater number of SMNcen copies in type II and type III patients compared with type I patients and enables a genotype/phenotype correlation to be made. We also demonstrate individual DNA-content variations of several hundred kilobases, even in a relatively isolated population from Finland. This explains why no consensus map of this region has been produced. This DNA variation may be due to a midisatellite repeat array, which would promote the observed high deletion and gene-conversion rate.
Collapse
Affiliation(s)
- L Campbell
- Department of Biochemistry, University of Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
13
|
Wang CH, Carter TA, Das K, Xu J, Ross BM, Penchaszadeh GK, Gilliam TC. Extensive DNA deletion associated with severe disease alleles on spinal muscular atrophy homologues. Ann Neurol 1997; 42:41-9. [PMID: 9225684 DOI: 10.1002/ana.410420109] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Spinal muscular atrophy (SMA) is a motor neuron disease presenting with a wide spectrum of phenotypic variations. The primary cause of most, if not all, forms of childhood-onset spinal muscular atrophy appears to be the homozygous loss of the telomeric copy of the survival motor neuron (SMNT) gene. It is interesting that approximately half of all affected patients are likewise homozygous nulls for the neuronal apoptosis inhibitory protein (NAIP) gene and a somewhat lesser fraction for the basal transcription factor, p44 subunit (BTF2p44) gene. It has been proposed that homozygous loss of SMNT is the primary cause of spinal muscular atrophy while the loss of NAIP and perhaps other genes primarily affects the severity of disease manifestation. We explored this hypothesis by evaluating the extent of gene deletions in three multigenerational families with spinal muscular atrophy exhibiting dramatic intrafamilial phenotypic variation. Using somatic cell hybrid lines to sequester individual spinal muscular atrophy homologues, we show that homologues missing several contiguous genes correlate with "severe" disease alleles and homologues missing only SMNT correlate with "mild" disease alleles. These observations support the hypothesis that phenotypic severity among the childhood-onset spinal muscular atrophies is directly correlated with the extent of disease-specific deletions.
Collapse
Affiliation(s)
- C H Wang
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, MO, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
McAndrew PE, Parsons DW, Simard LR, Rochette C, Ray PN, Mendell JR, Prior TW, Burghes AH. Identification of proximal spinal muscular atrophy carriers and patients by analysis of SMNT and SMNC gene copy number. Am J Hum Genet 1997; 60:1411-22. [PMID: 9199562 PMCID: PMC1716150 DOI: 10.1086/515465] [Citation(s) in RCA: 392] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The survival motor neuron (SMN) transcript is encoded by two genes, SMNT and SMNC. The autosomal recessive proximal spinal muscular atrophy that maps to 5q12 is caused by mutations in the SMNT gene. The SMNT gene can be distinguished from the SMNC gene by base-pair changes in exons 7 and 8. SMNT exon 7 is not detected in approximately 95% of SMA cases due to either deletion or sequence-conversion events. Small mutations in SMNT now have been identified in some of the remaining nondeletion patients. However, there is no reliable quantitative assay for SMNT, to distinguish SMA compound heterozygotes from non-5q SMA-like cases (phenocopies) and to accurately determine carrier status. We have developed a quantitative PCR assay for the determination of SMNT and SMNC gene-copy number. This report demonstrates how risk estimates for the diagnosis and detection of SMA carriers can be modified by the accurate determination of SMNT copy number.
Collapse
Affiliation(s)
- P E McAndrew
- Department of Pathology, Ohio State University, Columbus 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Carter TA, Bönnemann CG, Wang CH, Obici S, Parano E, De Fatima Bonaldo M, Ross BM, Penchaszadeh GK, Mackenzie A, Soares MB, Kunkel LM, Gilliam TC. A multicopy transcription-repair gene, BTF2p44, maps to the SMA region and demonstrates SMA associated deletions. Hum Mol Genet 1997; 6:229-36. [PMID: 9063743 DOI: 10.1093/hmg/6.2.229] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The childhood-onset spinal muscular atrophies are a clinically heterogeneous group of autosomal recessive disorders characterized by selective degeneration of the anterior horn cells with subsequent weakness and atrophy of limb muscles. The disease locus has been mapped to a region of chromosome 5q13 characterized by genetic instability and DNA duplication. Among the duplicated genes in this region, SMNT (telomeric copy; survival motor neuron) is thought to be the major disease determining gene since it is missing in the majority of SMA patients and since small, intragenic mutations in the gene have been associated with the disorder. Approximately half of the severely affected SMA I patients are also missing both homologues of a neighboring gene, the neuronal apoptosis inhibitory protein (NAIP). These data indicate that loss of NAIP may affect disease severity and further, that the molecular events underlying the childhood-onset SMAs are complex, possibly involving multiple genes. We report a third multicopy gene in the SMA region, encoding the p44 subunit of basal transcription factor II (BTF2p44). One copy of this transcription-repair gene is deleted in at least 15% of all SMA cases.
Collapse
Affiliation(s)
- T A Carter
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
DiDonato CJ, Ingraham SE, Mendell JR, Prior TW, Lenard S, Moxley RT, Florence J, Burghes AH. Deletion and conversion in spinal muscular atrophy patients: is there a relationship to severity? Ann Neurol 1997; 41:230-7. [PMID: 9029072 DOI: 10.1002/ana.410410214] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The spinal muscular atrophy-determining gene, survival motor neuron (SMN), is present in two copies, telSMN and cenSMN, which can be distinguished by base-pair changes in exons 7 and 8. The telSMN gene is often absent in spinal muscular atrophy patients, which could be due to deletion or sequence conversion (telSMN conversion to cenSMN giving rise to two cenSMN genes). To test for conversion events in spinal muscular atrophy, we amplified a 1-kb fragment that spanned exons 7 and 8 of SMN from 5 patients who retained telSMN exon 8 but lacked exon 7. In all patients, sequence analysis demonstrated that cenSMN exon 7 was adjacent to telSMN exon 8, indicating conversion. All 5 patients with this mutation had type II or III spinal muscular atrophy, strongly supporting an association with chronic spinal muscular atrophy. We also identified 3 families in which 2 siblings had no detectable telSMN but presented with markedly different phenotypes. We suggest that sequence conversion is a common event in spinal muscular atrophy and is associated with the milder form of the disease. The severity, however, can be modified in either a positive or negative direction by other factors that influence splicing or expression of the sequence converted SMN gene.
Collapse
Affiliation(s)
- C J DiDonato
- Department of Molecular Genetics, College of Biological Sciences, Ohio State University, Columbus, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Hahnen E, Schönling J, Rudnik-Schöneborn S, Zerres K, Wirth B. Hybrid survival motor neuron genes in patients with autosomal recessive spinal muscular atrophy: new insights into molecular mechanisms responsible for the disease. Am J Hum Genet 1996; 59:1057-65. [PMID: 8900234 PMCID: PMC1914839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a frequent autosomal recessive neurodegenerative disorder leading to weakness and atrophy of voluntary muscles. The survival motor-neuron gene (SMN), a strong candidate for SMA, is present in two highly homologous copies (telSMN and cenSMN) within the SMA region. Only five nucleotide differences within the region between intron 6 and exon 8 distinguish these homologues. Independent of the severity of the disease, 90%-98% of all SMA patients carry homozygous deletions in telSMN, affecting either exon 7 or both exons 7 and 8. We present the molecular analysis of 42 SMA patients who carry homozygous deletions of telSMN exon 7 but not of exon 8. The question arises whether in these cases the telSMN is truncated upstream of exon 8 or whether hybrid SMN genes exist that are composed of centromeric and telomeric sequences. By a simple PCR-based assay we demonstrate that in each case the remaining telSMN exon 8 is part of a hybrid SMN gene. Sequencing of cloned hybrid SMN genes from seven patients, as well as direct sequencing and single-strand conformation analysis of all patients, revealed the same composition in all but two patients: the base-pair differences in introns 6 and 7 and exon 7 are of centromeric origin whereas exon 8 is of telomeric origin. Nonetheless, haplotype analysis with polymorphic multicopy markers, Ag1-CA and C212, localized at the 5' end of the SMN genes suggests different mechanisms of occurrence, unequal rearrangements, and gene conversion involving both copies of the SMN genes. In approximately half of all patients, we identified a consensus haplotype, suggesting a common origin. Interestingly, we identified a putative recombination hot spot represented by recombination-stimulating elements (TGGGG and TGAGGT) in exon 8 that is homologous to the human deletion-hot spot consensus sequence in the immunoglobulin switch region, the alpha-globin cluster, and the polymerase alpha arrest sites. This may explain why independent hybrid SMN genes show identical sequences.
Collapse
Affiliation(s)
- E Hahnen
- Institute of Human Genetics, University of Bonn
| | | | | | | | | |
Collapse
|
18
|
Parano E, Pavone L, Falsaperla R, Trifiletti R, Wang C. Molecular basis of phenotypic heterogeneity in siblings with spinal muscular atrophy. Ann Neurol 1996; 40:247-51. [PMID: 8773609 DOI: 10.1002/ana.410400219] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We report on a family with childhood-onset spinal muscular atrophy with intrafamilial phenotypic variation. Typical of a large majority of such patients, both the child with spinal muscular atrophy type I and the child with type II were missing both copies of the survival motor neuron telomeric gene (SMN(T)). The more severely affected child, however, showed genotypic evidence consistent with the de novo loss of DNA sequence in addition to that inherited by both affected children. These data suggest that the intrafamilial phenotypic variation in this family results from a new mutation event in the more severely affected child. Examples of intrafamilial phenotypic variability are quite rare, but some reports exist in the spinal muscular atrophy literature. We present evidence that one explanation for this phenomenon is the occurrence of de novo deletion events at the highly unstable disease locus.
Collapse
Affiliation(s)
- E Parano
- Division of Pediatric Neurology, University of Catania, Italy
| | | | | | | | | |
Collapse
|
19
|
|
20
|
Rodrigues NR, Talbot K, Davies KE. Molecular genetics of autosomal recessive spinal muscular atrophy. Mol Med 1996; 2:400-4. [PMID: 8827710 PMCID: PMC2230174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- N R Rodrigues
- Biochemistry Department, University of Oxford, United Kingdom
| | | | | |
Collapse
|
21
|
Kleyn PW, Fan W, Kovats SG, Lee JJ, Pulido JC, Wu Y, Berkemeier LR, Misumi DJ, Holmgren L, Charlat O, Woolf EA, Tayber O, Brody T, Shu P, Hawkins F, Kennedy B, Baldini L, Ebeling C, Alperin GD, Deeds J, Lakey ND, Culpepper J, Chen H, Glücksmann-Kuis MA, Carlson GA, Duyk GM, Moore KJ. Identification and characterization of the mouse obesity gene tubby: a member of a novel gene family. Cell 1996; 85:281-90. [PMID: 8612280 DOI: 10.1016/s0092-8674(00)81104-6] [Citation(s) in RCA: 246] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The mutated gene responsible for the tubby obesity phenotype has been identified by positional cloning. A single base change within a splice donor site results in the incorrect retention of a single intron in the mature tub mRNA transcript. The consequence of this mutation is the substitution of the carboxy-terminal 44 amino acids with 24 intron-encoded amino acids. The normal transcript appears to be abundantly expressed in the hypothalamus, a region of the brain involved in body weight regulation. Variation in the relative abundance of alternative splice products is observed between inbred mouse strains and appears to correlate with an intron length polymorphism. This allele of tub is a candidate for a previously reported diet-induced obesity quantitative trait locus on mouse chromosome 7.
Collapse
Affiliation(s)
- P W Kleyn
- Millennium Pharmaceuticals, Inc., Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Capon F, Levato C, Semprini S, Pizzuti A, Merlini L, Novelli G, Dallapiccola B. Deletion analysis of SMN and NAIP genes in spinal muscular atrophy Italian families. Muscle Nerve 1996; 19:378-80. [PMID: 8606706 DOI: 10.1002/(sici)1097-4598(199603)19:3<378::aid-mus17>3.0.co;2-o] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- F Capon
- Dipartimento di Sanità Pubblica e Biologia Cellulare, Università Tor Vergata di Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Velasco E, Valero C, Valero A, Moreno F, Hernández-Chico C. Molecular analysis of the SMN and NAIP genes in Spanish spinal muscular atrophy (SMA) families and correlation between number of copies of cBCD541 and SMA phenotype. Hum Mol Genet 1996; 5:257-63. [PMID: 8824882 DOI: 10.1093/hmg/5.2.257] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Spinal muscular atrophy is an autosomal recessive disorder which affects about 1 in 10,000 individuals. The three clinical forms of SMA were mapped to the 5q13 region. Three candidate genes have been isolated and shown to be deleted in SMA patients: the Survival Motor Neuron gene (SMN), the Neuronal Apoptosis Inhibitory Protein gene (NAIP) and the XS2G3 cDNA. In this report we present the molecular analysis of the SMN exons 7 and 8 and NAIP exon 5 in 65 Spanish SMA families. NAIP was mostly deleted in type I patients (67.9%) and SMN was deleted in 92.3% of patients with severe and milder forms. Most patients who lacked the NAIP gene also lacked the SMN gene, but we identified one type II patient deleted for NAIP exon 5 but not for SMN exons 7 and 8. Two other patients carried deletions of NAIP exon 5 and SMN exon 7 but retained the SMN exon 8. Three polymorphic variants from the SMN gene, showing changes on the sequence of the centromeric (cBCD541) and telomeric copies of the SMN gene, were found. In addition, we show several genetic rearrangements of the telomeric SMN gene, which include duplication of this gene in one normal chromosome, and putative gene conversion events in affected and normal chromosomes. Altogether these results corroborate the high genetic variability of the SMA region. Finally, we have determined the ratio between the number of centromeric and telomeric copies of the SMN gene in parents of SMA patients, showing that the majority of parents of types II and III patients carried three or more copies of the cBCD541 gene; we suggest a relationship between the number of copies of cBCD541 and the disease phenotype.
Collapse
Affiliation(s)
- E Velasco
- Unidad de Genética Molecular, Hospital Ramón y Cajal, Madrid, Spain
| | | | | | | | | |
Collapse
|
24
|
Rodrigues NR, Owen N, Talbot K, Patel S, Muntoni F, Ignatius J, Dubowitz V, Davies KE. Gene deletions in spinal muscular atrophy. J Med Genet 1996; 33:93-6. [PMID: 8929942 PMCID: PMC1051831 DOI: 10.1136/jmg.33.2.93] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Two candidate genes (NAIP and SMN) have recently been reported for childhood onset spinal muscular atrophy (SMA). Although affected subjects show deletions of these genes, these deletions can lead to either a very mild or a severe phenotype. We have analysed a large number of clinically well defined patients, carriers, and normal controls to assess the frequency and extent of deletions encompassing both of these genes. A genotype analysis indicates that more extensive deletions are seen in the severe form of SMA than in the milder forms. In addition, 1 center dot 9% of phenotypically normal carriers are deleted for the NAIP gene; no carriers were deleted for the SMN gene. Our data suggest that deletions in both of these genes, using the currently available assays, are associated with both a severe and very mild phenotype.
Collapse
Affiliation(s)
- N R Rodrigues
- Genetics Laboratory, Department of Genetics, University of Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
25
|
van der Steege G, Cobben JM, Osinga J, Scheffer H, van Ommen GJ, Buys CH. A sublocus of the multicopy microsatellite marker CMS1 maps proximal to spinal muscular atrophy (SMA) as shown by recombinant analysis. Hum Genet 1995; 96:589-91. [PMID: 8530008 DOI: 10.1007/bf00197416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The critical region containing the spinal muscular atrophy (SMA) gene is flanked by the 5q11-q13 markers, D5S435 and D5S557, as determined by linkage analysis. Here we present the results of an analysis of a Dutch SMA family with the multicopy microsatellite marker CMS1. A crossover is revealed in the critical SMA region. We conclude that at least one of the CMS1 subloci maps proximal to the SMA gene. This reduces the minimal SMA region from approximately 1.4 Mb to 600-700 kb.
Collapse
Affiliation(s)
- G van der Steege
- Department of Medical Genetics, University of Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
26
|
Yaraghi Z, McLean MD, Roy N, Surh L, Ikeda JE, Korneluk RG, MacKenzie A. A recombination event occurring within two complex 5q13.1 microsatellite repeat polymorphisms suggests a telomeric mapping of spinal muscular atrophy. Hum Genet 1995; 96:330-4. [PMID: 7649551 DOI: 10.1007/bf00210417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The gene for the childhood spinal muscular atrophies (SMAs) has been mapped to 5q13.1. The interval containing the SMA gene has been defined by linkage analysis as 5qcen-D5S629-SMA-D5S557-5qter. We have identified a recombination event within this interval on a type-I SMA chromosome. The recombination maps to a region of multilocus microsatellite repeat (MSR) markers, and occurs between different subloci of two such markers, CMS-1 and 7613. While the possibility of a novel mutation caused by the recombination cannot be discounted, we believe when viewed in the context of a similar recombination in a Dutch SMA family, a centromeric boundary at the recombination site for the critical SMA interval is likely. This new proximal boundary would reduce the minimal region harboring the SMA locus from approximately 1.1 Mb to approximately 600 kb.
Collapse
Affiliation(s)
- Z Yaraghi
- Department of Biochemistry, University of Ottawa, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
27
|
Huschenbett J, Gasch A, Katzer A, Affeldt M, Speer A. Mapping of a human rRNA gene in the YAC contig surrounding the SMA candidate gene. Hum Genet 1995; 96:335-8. [PMID: 7649552 DOI: 10.1007/bf00210418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Using the yeast artificial chromosome (YAC) 116 flanking the autosomal recessive spinal muscular atrophy (SMA) gene region, we have screened a human fetal brain cDNA library and isolated the cDNA clone 14-3/9 with an insert size of 2.5 kb. The cDNA clone could be identified as part of the human rRNA gene coding for 28S rRNA with a total size of 5025 bp. The human 28S rRNA is involved in the organization of the 60S ribosomal subparticle and is arranged in a 13-kb pre-rRNA transcription unit that occurs in tandem repeat clusters. Multiple copies of the rRNA gene have been mapped by pulsed field blot hybridization in the YAC contig between YAC 66 and YAC 116, which encompasses the SMA candidate gene, and additionally in the distally localized YAC 153.
Collapse
MESH Headings
- Adult
- Brain Chemistry
- Chromosome Mapping
- Chromosomes, Artificial, Yeast
- Chromosomes, Human, Pair 5/genetics
- DNA, Complementary
- DNA, Ribosomal/genetics
- Electrophoresis, Gel, Pulsed-Field
- Genetic Markers
- Humans
- Muscular Atrophy, Spinal/genetics
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal, 28S/chemistry
- RNA, Ribosomal, 28S/genetics
- Repetitive Sequences, Nucleic Acid
- Spinal Cord/chemistry
- Transcription, Genetic
Collapse
Affiliation(s)
- J Huschenbett
- J. Medizinische Klinik, Universitätsklinikum Charité, Humboldt-Universität, Berlin, Germany
| | | | | | | | | |
Collapse
|
28
|
Wirth B, Rudnik-Schöneborn S, Hahnen E, Röhrig D, Zerres K. Prenatal prediction in families with autosomal recessive proximal spinal muscular atrophy (5q11.2-q13.3): molecular genetics and clinical experience in 109 cases. Prenat Diagn 1995; 15:407-17. [PMID: 7644431 DOI: 10.1002/pd.1970150503] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Prenatal prediction in families at risk for autosomal recessive proximal spinal muscular atrophy (SMA) mainly of type I is often requested due to the high incidence and the fetal outcome of the disease. So far, only indirect genotype analysis can be performed in SMA families, since the gene has not yet been identified. We present our experience of 109 prenatal diagnoses obtained in 91 families by use of single- and multi-locus polymorphic microsatellites of the region 5q11.2-q13.3. The marker combinations and specific features of the closest microsatellites are described in detail. From 137 requests for prenatal prediction of SMA between October 1991 and August 1994, 28 families were excluded, mostly because the clinical diagnosis was uncertain or doubtful. Others had to be classified as 'SMA-variants' or showed autosomal dominant transmission of SMA. Of the 109 prenatal diagnoses performed, 29 fetuses were diagnosed to be at high risk (> 99 per cent) of developing the disease, while in seven additional pregnancies no exact prediction could be made due to a recombination event in one parental haplotype. Altogether, recombinations between closely flanking markers were observed in 14 cases. In 35 cases, the parents decided to terminate the pregnancy. Of the remaining pregnancies, 32 could be followed beyond term. All infants were reported to develop normally without signs of SMA. Two children were born with transverse reduction defects of one hand, which was most likely related to early chorionic villus sampling at 9 and 10 weeks' gestation. No further abnormalities could be detected. The limits of indirect genotype analysis and the problems of diagnostic accuracy and heterogeneity of proximal SMA are discussed.
Collapse
Affiliation(s)
- B Wirth
- Institute of Human Genetics, Bonn, Germany
| | | | | | | | | |
Collapse
|
29
|
Selig S, Bruno S, Scharf JM, Wang CH, Vitale E, Gilliam TC, Kunkel LM. Expressed cadherin pseudogenes are localized to the critical region of the spinal muscular atrophy gene. Proc Natl Acad Sci U S A 1995; 92:3702-6. [PMID: 7731968 PMCID: PMC42029 DOI: 10.1073/pnas.92.9.3702] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Low-copy repeats have been associated with genomic rearrangements and have been implicated in the generation of mutations in several diseases. Here we characterize a subset of low-copy repeats in the spinal muscular atrophy (SMA) region in human chromosome 5q13. We show that this repeated sequence, named c41-cad, is a highly expressed pseudogene derived from an intact neuronal cadherin gene, Br-cadherin, situated on 5p13-14. Br-cadherin is expressed specifically in the brain, whereas the c41-cad transcripts are 10-15 times more abundant and are present in all tissues examined. We speculate that the c41-cad repeats, separately or in concert with other repeats in the SMA region, are involved in the pathogenesis of SMA by promoting rearrangements and deletions.
Collapse
Affiliation(s)
- S Selig
- Howard Hughes Medical Institute, Children's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Roy N, McLean MD, Besner-Johnston A, Lefebvre C, Salih M, Carpten JD, Burghes AH, Yaraghi Z, Ikeda JE, Korneluk RG. Refined physical map of the spinal muscular atrophy gene (SMA) region at 5q13 based on YAC and cosmid contiguous arrays. Genomics 1995; 26:451-60. [PMID: 7607667 DOI: 10.1016/0888-7543(95)80162-f] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The gene for the autosomal recessive neurodegenerative disorder spinal muscular atrophy has been mapped to a region of 5q13 flanked proximally by CMS-1 and distally by D5S557. We present a 2-Mb yeast artificial chromosome (YAC) contig constructed from three libraries encompassing the D5S435/D5S629/CMS-1-SMA-D5S557/D5S112 interval. The D5S629/CMS-1-SMA-D5S557 interval is unusual insofar as chromosome 5-specific repetitive sequences are present and many of the simple tandem repeats (STR) are located at multiple loci that are unstable in our YAC clones. A long-range restriction map that demonstrates the SMA-containing interval to be 550 kb is presented. Moreover, a 210-kb cosmid array from both a YAC-specific and a chromosome 5-specific cosmid library encompassing the multilocus STRs CATT-1, CMS-1, D5F149, D5F150, and D5F153 has been assembled. We have recently reported strong linkage disequilibrium with Type I SMA for two of these STRs, indicating that the gene is located in close proximity to or within our cosmid clone array.
Collapse
Affiliation(s)
- N Roy
- Department of Biochemistry, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Daniels RJ, Campbell L, Rodrigues NR, Francis MJ, Morrison KE, McLean M, MacKenzie A, Ignatius J, Dubowitz V, Davies KE. Genomic rearrangements in childhood spinal muscular atrophy: linkage disequilibrium with a null allele. J Med Genet 1995; 32:93-6. [PMID: 7760328 PMCID: PMC1050226 DOI: 10.1136/jmg.32.2.93] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Autosomal recessive childhood onset spinal muscular atrophy has been mapped to chromosome 5q13. We report the analysis of a polymorphic microsatellite which shows linkage disequilibrium with the disease. The linkage disequilibrium is observed with a null allele which is seen as the non-inheritance of alleles from one or both parents. The inheritance of a null allele was observed in 26 out of 36 (72%) informative childhood onset spinal muscular atrophy (SMA) families tested, of all types of severity and from a variety of ethnic backgrounds. In seven families segregating for the severe Werdnig-Hoffmann or SMA type I, no alleles were inherited from either parent using this microsatellite. This null allele may represent a deletion which is either closely associated with, or causes, the disease.
Collapse
Affiliation(s)
- R J Daniels
- Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- T C Gilliam
- Department of Genetics and Development, College of Physicians & Surgeons at Columbia University, New York, New York 10032, USA
| |
Collapse
|
33
|
Wang CH, Kleyn PW, Vitale E, Ross BM, Lien L, Xu J, Carter TA, Brzustowicz LM, Obici S, Selig S. Refinement of the spinal muscular atrophy locus by genetic and physical mapping. Am J Hum Genet 1995; 56:202-9. [PMID: 7825579 PMCID: PMC1801348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We report the mapping and characterization of 12 microsatellite markers including 11 novel markers. All markers were generated from overlapping YAC clones that span the spinal muscular atrophy (SMA) locus. PCR amplification of 32 overlapping YAC clones shows that 9 of the new markers (those set in italics) map to the interval between the two previous closest flanking markers (D5S629 and D5S557): cen-D5S6-D5S125-D5S435-D5S1407- D5S629-D5S1410-D5S1411/D5S1412-D5S1413- D5S1414-D5Z8-D5Z9-CATT1-D5Z10/D5Z6- D5S557-D5S1408-D5S1409-D5S637-D5S351-MA P1B-tel. Four of these new markers detect multiple loci in and out of the SMA gene region. Genetic analysis of recombinant SMA families indicates that D5S1413 is a new proximal flanking locus for the SMA gene. Interestingly, among the 40 physically mapped loci, the 14 multilocus markers map contiguously to a genomic region that overlaps, and perhaps helps define, the minimum genetic region encompassing the SMA gene(s).
Collapse
Affiliation(s)
- C H Wang
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Thompson TG, DiDonato CJ, Simard LR, Ingraham SE, Burghes AH, Crawford TO, Rochette C, Mendell JR, Wasmuth JJ. A novel cDNA detects homozygous microdeletions in greater than 50% of type I spinal muscular atrophy patients. Nat Genet 1995; 9:56-62. [PMID: 7704025 DOI: 10.1038/ng0195-56] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Spinal muscular atrophy (SMA) is the second most common lethal, autosomal recessive disease in Caucasians (after cystic fibrosis). Childhood SMAs are divided into three groups (type I, II and III), which are allelic variants of the same locus in a region of approximately 850 kb in chromosome 5q12-q13, containing multiple copies of a novel, chromosome 5-specific repeat as well as many atypical pseudogenes. This has hampered the identification of candidate genes. We have identified several coding sequences unique to the SMA region. A genomic fragment detected by one cDNA is homozygously deleted in 17/29 (58%) of type I SMA patients. Of 235 unaffected individuals examined, only two showed the deletion and both are carriers of SMA. Our results suggest that deletion of at least part of this novel gene is directly related to the phenotype of SMA.
Collapse
Affiliation(s)
- T G Thompson
- Department of Biological Chemistry, College of Medicine, University of California, Irvine 92717
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Theodosiou AM, Morrison KE, Nesbit AM, Daniels RJ, Campbell L, Francis MJ, Christodoulou Z, Davies KE. Complex repetitive arrangements of gene sequence in the candidate region of the spinal muscular atrophy gene in 5q13. Am J Hum Genet 1994; 55:1209-17. [PMID: 7977382 PMCID: PMC1918431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Childhood-onset proximal spinal muscular atrophy (SMA) is a heritable neurological disorder, which has been mapped by genetic linkage analysis to chromosome 5q13, in the interval between markers D5S435 and D5S557. Here, we present gene sequences that have been isolated from this interval, several of which show sequence homologies to exons of beta-glucuronidase. These gene sequences are repeated several times across the candidate region and are also present on chromosome 5p. The arrangement of these repetitive gene motifs is polymorphic between individuals. The high degree of variability observed may have some influence on the expression of the genes in the region. Since SMA is not inherited as a classical autosomal recessive disease, novel genomic rearrangements arising from aberrant recombination events between the complex repeats may be associated with the phenotype observed.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Chromosome Mapping
- Chromosomes, Artificial, Yeast/genetics
- Chromosomes, Human, Pair 5/genetics
- Cloning, Molecular/methods
- Cosmids/genetics
- DNA, Complementary/genetics
- Deoxyribonuclease BamHI/metabolism
- Glucuronidase/genetics
- Humans
- In Situ Hybridization, Fluorescence
- Molecular Sequence Data
- Nucleic Acid Hybridization
- Polymorphism, Genetic
- Repetitive Sequences, Nucleic Acid/genetics
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Spinal Muscular Atrophies of Childhood/genetics
Collapse
Affiliation(s)
- A M Theodosiou
- MRC Clinical Sciences Centre, Royal Postgraduate Medical School, Hammersmith Hospital, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
36
|
DiDonato CJ, Morgan K, Carpten JD, Fuerst P, Ingraham SE, Prescott G, McPherson JD, Wirth B, Zerres K, Hurko O. Association between Ag1-CA alleles and severity of autosomal recessive proximal spinal muscular atrophy. Am J Hum Genet 1994; 55:1218-29. [PMID: 7977383 PMCID: PMC1918452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The gene for autosomal recessive proximal spinal muscular atrophy (SMA) has been mapped to an 850-kb interval on 5q11.2-q13.3, between the centromeric D5S823 and telomeric D5S557 markers. We report a new complex marker, Ag1-CA, that lies in this interval, whose primers produce one, two, or rarely three amplification-fragment-length variants (AFLVs) per allele. Class I chromosomes are those which amplify a single AFLV allele, and class II chromosomes are those which amplify an allele with two or three AFLVs. Ag1-CA shows highly significant allelic association with type I SMA in both the French Canadian (Hôpital Sainte-Justine [HSJ]) and American (Ohio State University [OSU]) populations (P < .0001). Significant association between the Ag1-CA genotype and disease severity was also observed. Type I patients were predominantly homozygous for class I chromosomes (P = .0003 OSU; P = .0012 HSJ), whereas the majority of type II patients were heterozygous for class I and II chromosomes (P = .0014 OSU; P = .001 HSJ). There was no significant difference in Ag1-CA genotype frequencies between type III patients (P = .5 OSU; P = .25 HSJ) and the paired normal chromosomes from both carrier parents. Our results indicate that Ag1-CA is the most closely linked marker to SMA and defines the critical candidate-gene region. Finally, we have proposed a model that should be taken into consideration when screening candidate SMA genes.
Collapse
Affiliation(s)
- C J DiDonato
- Department of Molecular Genetics, Ohio State University, Columbus 43210
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Montgomery JC, Guarnieri MH, Tartaglia KE, Flaherty LA. High-resolution genetic map and YAC contig around the mouse neurological locus reeler. Mamm Genome 1994; 5:756-61. [PMID: 7894155 DOI: 10.1007/bf00292008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mutations at the recessive reeler locus (rl) on mouse Chromosome (Chr) 5 result in abnormal development of multiple central nervous system components, including the cerebral and cerebellar cortices. These abnormalities are characterized by highly disorganized laminar structures thought to have arisen from a post-migration failure of neuronal organization events that are probably mediated through cell-cell interactions. As a result of a mutagenesis scheme designed to generate visible recessive mutations induced by the drug chlorambucil, we had previously recovered a new allele of the reeler locus (rlAlb) that is likely to involve a deletion based on the known mechanisms of chlorambucil action. We have constructed a high-resolution genetic map from two intercrosses segregating this allele. Our first cross, in which the mutation was outcrossed to the 101 strain prior to intercrossing, consisted of 196 meioses and resulted in the positioning of four loci proximal to rl, with D5Mit1 being the closest (2.6 +/- 1.1 cM). The second cross consisted of intercrossing rl heterozygotes derived from an outcross to the C57BL/6 strain. A total of 318 mice (636 meioses) gave rise to a panel of 41 recombinants, which were used to map a total of 14 loci within a 6.4-cM interval bounded by D5Mit1 and the En-2 gene. A yeast artificial chromosome contig consisting of clones containing two of these loci, D5Mit72 (located 0.31 cM distal to rl), and D5Mit61 (no recombinants with rl), has been assembled and is being used to locate the rl gene.
Collapse
Affiliation(s)
- J C Montgomery
- Laboratory of Developmental Genetics, Wadsworth Center, New York State Department of Health, Albany 12201-2002
| | | | | | | |
Collapse
|
38
|
Huschenbett J, Gasch A, Katzer A, Speer A. Fine mapping of human PI 3-kinase associated p85 alpha transcripts in the YAC contig surrounding the spinal muscular atrophy gene. Hum Genet 1994; 94:427-31. [PMID: 7927342 DOI: 10.1007/bf00201606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
During a search for transcribed sequences within the gene region for autosomal recessive spinal muscular atrophy (SMA), two cDNA clones were isolated from a human fetal brain and an adult spinal cord cDNA library, respectively, by use of the cosmid LA96B (LAS96). The clones sized 950 bp and 1733 bp detect a 7.7-kb transcript in all tested human tissues. An additional transcript of 6.6 kb is detectable in brain and kidney, and faintly in skeletal muscle and liver. Using comparative human Northern blot analysis, the isolated LA96B cDNA clones could be identified as parts of the 3' untranslated region from the phosphatidylinositol 3 (PI3)-kinase associated p85 alpha transcripts; these were unknown up to now. The 5' end of the gene was mapped to YAC-EFTA:A, whereas the 3' end was localized within the distal overlapping YAC 85 flanking the SMA candidate gene region.
Collapse
Affiliation(s)
- J Huschenbett
- Abteilung für Molekularbiologie, Universitätsklinikum Charité, Humboldt-Universität, Berlin, Germany
| | | | | | | |
Collapse
|
39
|
Melki J, Lefebvre S, Burglen L, Burlet P, Clermont O, Millasseau P, Reboullet S, Bénichou B, Zeviani M, Le Paslier D. De novo and inherited deletions of the 5q13 region in spinal muscular atrophies. Science 1994; 264:1474-7. [PMID: 7910982 DOI: 10.1126/science.7910982] [Citation(s) in RCA: 219] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Spinal muscular atrophies (SMAs) represent the second most common fatal autosomal recessive disorder after cystic fibrosis. Childhood spinal muscular atrophies are divided into severe (type I) and mild forms (types II and III). By a combination of genetic and physical mapping, a yeast artificial chromosome contig of the 5q13 region spanning the disease locus was constructed that showed the presence of low copy repeats in this region. Allele segregation was analyzed at the closest genetic loci detected by markers C212 and C272 in 201 SMA families. Inherited and de novo deletions were observed in nine unrelated SMA patients. Moreover, deletions were strongly suggested in at least 18 percent of SMA type I patients by the observation of marked heterozygosity deficiency for the loci studied. These results indicate that deletion events are statistically associated with the severe form of spinal muscular atrophy.
Collapse
Affiliation(s)
- J Melki
- Unité de Recherches sur les Handicaps Génétiques de l'Enfant, INSERM U-393, Hôpital des Enfants-Malades, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Brzustowicz LM, Allitto BA, Matseoane D, Theve R, Michaud L, Chatkupt S, Sugarman E, Penchaszadeh GK, Suslak L, Koenigsberger MR. Paternal isodisomy for chromosome 5 in a child with spinal muscular atrophy. Am J Hum Genet 1994; 54:482-8. [PMID: 8116617 PMCID: PMC1918127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Paternal isodisomy for chromosome 5 was detected in a 2-year-old boy with type III spinal muscular atrophy (SMA), an autosomal recessive degenerative disorder of alpha motor neurons, known to map to 5q11.2-13.3. Examination of 17 short-sequence repeat polymorphisms spanning 5p15.1-15.3 to 5q33.3-qter produced no evidence of maternally inherited alleles. Cytogenetic analysis revealed a normal male karyotype, and FISH with probes closely flanking the SMA locus confirmed the presence of two copies of chromosome 5. No developmental abnormalities, other than those attributable to classical childhood-onset SMA, were present. While the absence of a maternally derived chromosome 5 could have produced the symptoms of SMA through the mechanisms of genomic imprinting, the lack of more global developmental abnormalities would be unusual. Paternal transmission of two copies of a defective gene at the SMA locus seems to be the most likely cause of disease, but proof of this will have to await the identification of the SMA gene. While uniparental isodisomy is a rare event, it must be considered as a possible mechanism involved in SMA when conducting prenatal testing and counseling for this disorder.
Collapse
Affiliation(s)
- L M Brzustowicz
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, NY
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Petrukhin K, Fischer SG, Pirastu M, Tanzi RE, Chernov I, Devoto M, Brzustowicz LM, Cayanis E, Vitale E, Russo JJ. Mapping, cloning and genetic characterization of the region containing the Wilson disease gene. Nat Genet 1993; 5:338-43. [PMID: 8298640 DOI: 10.1038/ng1293-338] [Citation(s) in RCA: 299] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Wilson disease (WD) is an autosomal recessive disorder of copper transport which map to chromosome 13q14.3. In pursuit of the WD gene, we developed yeast artificial chromosome and cosmid contigs, and microsatellite markers which span the WD gene region. Linkage disequilibrium and haplotype analysis of 115 WD families confined the disease locus to a single marker interval. A candidate cDNA clone was mapped to this interval which, as shown in the accompanying paper, is very likely the WD gene. Our haplotype and mutation analyses predict that approximately half of all WD mutations will be rare in the American and Russian populations.
Collapse
Affiliation(s)
- K Petrukhin
- Department of Psychiatry, Columbia University, New York State Psychiatric Institute, New York 10032
| | | | | | | | | | | | | | | | | | | |
Collapse
|