1
|
de Jong SI, van den Broek MA, Merkel AY, de la Torre Cortes P, Kalamorz F, Cook GM, van Loosdrecht MCM, McMillan DGG. Genomic analysis of Caldalkalibacillus thermarum TA2.A1 reveals aerobic alkaliphilic metabolism and evolutionary hallmarks linking alkaliphilic bacteria and plant life. Extremophiles 2020; 24:923-935. [PMID: 33030592 PMCID: PMC7561548 DOI: 10.1007/s00792-020-01205-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 09/23/2020] [Indexed: 12/28/2022]
Abstract
The aerobic thermoalkaliphile Caldalkalibacillus thermarum strain TA2.A1 is a member of a separate order of alkaliphilic bacteria closely related to the Bacillales order. Efforts to relate the genomic information of this evolutionary ancient organism to environmental adaptation have been thwarted by the inability to construct a complete genome. The existing draft genome is highly fragmented due to repetitive regions, and gaps between and over repetitive regions were unbridgeable. To address this, Oxford Nanopore Technology's MinION allowed us to span these repeats through long reads, with over 6000-fold coverage. This resulted in a single 3.34 Mb circular chromosome. The profile of transporters and central metabolism gives insight into why the organism prefers glutamate over sucrose as carbon source. We propose that the deamination of glutamate allows alkalization of the immediate environment, an excellent example of how an extremophile modulates environmental conditions to suit its own requirements. Curiously, plant-like hallmark electron transfer enzymes and transporters are found throughout the genome, such as a cytochrome b6c1 complex and a CO2-concentrating transporter. In addition, multiple self-splicing group II intron-encoded proteins closely aligning to those of a telomerase reverse transcriptase in Arabidopsis thaliana were revealed. Collectively, these features suggest an evolutionary relationship to plant life.
Collapse
Affiliation(s)
- Samuel I de Jong
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | | - Alexander Y Merkel
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | | | - Falk Kalamorz
- The New Zealand Institute for Plant and Food Research, Lincoln, New Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, The University of Otago, Dunedin, New Zealand
| | | | - Duncan G G McMillan
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
2
|
Challenges and Adaptations of Life in Alkaline Habitats. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 172:85-133. [DOI: 10.1007/10_2019_97] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
3
|
Henderson RK, Fendler K, Poolman B. Coupling efficiency of secondary active transporters. Curr Opin Biotechnol 2018; 58:62-71. [PMID: 30502621 DOI: 10.1016/j.copbio.2018.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
Abstract
Secondary active transporters are fundamental to a myriad of biological processes. They use the electrochemical gradient of one solute to drive transport of another solute against its concentration gradient. Central to this mechanism is that the transport of one does not occur in the absence of the other. However, like in most of biology, imperfections in the coupling mechanism exist and we argue that these are innocuous and may even be beneficial for the cell. We discuss the energetics and kinetics of alternating-access in secondary transport and focus on the mechanistic aspects of imperfect coupling that give rise to leak pathways. Additionally, inspection of available transporter structures gives valuable insight into coupling mechanics, and we review literature where proteins have been altered to change their coupling efficiency.
Collapse
Affiliation(s)
- Ryan K Henderson
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Klaus Fendler
- Department of Biophysical Chemistry, Max-Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
4
|
Dibrov P, Dibrov E, Pierce GN. Na+-NQR (Na+-translocating NADH:ubiquinone oxidoreductase) as a novel target for antibiotics. FEMS Microbiol Rev 2017; 41:653-671. [PMID: 28961953 DOI: 10.1093/femsre/fux032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/17/2017] [Indexed: 01/08/2023] Open
Abstract
The recent breakthrough in structural studies on Na+-translocating NADH:ubiquinone oxidoreductase (Na+-NQR) from the human pathogen Vibrio cholerae creates a perspective for the systematic design of inhibitors for this unique enzyme, which is the major Na+ pump in aerobic pathogens. Widespread distribution of Na+-NQR among pathogenic species, its key role in energy metabolism, its relation to virulence in different species as well as its absence in eukaryotic cells makes this enzyme especially attractive as a target for prospective antibiotics. In this review, the major biochemical, physiological and, especially, the pharmacological aspects of Na+-NQR are discussed to assess its 'target potential' for drug development. A comparison to other primary bacterial Na+ pumps supports the contention that NQR is a first rate prospective target for a new generation of antimicrobials. A new, narrowly targeted furanone inhibitor of NQR designed in our group is presented as a molecular platform for the development of anti-NQR remedies.
Collapse
Affiliation(s)
- Pavel Dibrov
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Elena Dibrov
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, Canada.,Department of Physiology and Pathophysiology, Colleges of Medicine and Pharmacy, Faculty of Health Sciences, Winnipeg, Canada
| | - Grant N Pierce
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, Canada.,Department of Physiology and Pathophysiology, Colleges of Medicine and Pharmacy, Faculty of Health Sciences, Winnipeg, Canada
| |
Collapse
|
5
|
Mazhab-Jafari MT, Rubinstein JL. Cryo-EM studies of the structure and dynamics of vacuolar-type ATPases. SCIENCE ADVANCES 2016; 2:e1600725. [PMID: 27532044 PMCID: PMC4985227 DOI: 10.1126/sciadv.1600725] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/15/2016] [Indexed: 06/06/2023]
Abstract
Electron cryomicroscopy (cryo-EM) has significantly advanced our understanding of molecular structure in biology. Recent innovations in both hardware and software have made cryo-EM a viable alternative for targets that are not amenable to x-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. Cryo-EM has even become the method of choice in some situations where x-ray crystallography and NMR spectroscopy are possible but where cryo-EM can determine structures at higher resolution or with less time or effort. Rotary adenosine triphosphatases (ATPases) are crucial to the maintenance of cellular homeostasis. These enzymes couple the synthesis or hydrolysis of adenosine triphosphate to the use or production of a transmembrane electrochemical ion gradient, respectively. However, the membrane-embedded nature and conformational heterogeneity of intact rotary ATPases have prevented their high-resolution structural analysis to date. Recent application of cryo-EM methods to the different types of rotary ATPase has led to sudden advances in understanding the structure and function of these enzymes, revealing significant conformational heterogeneity and characteristic transmembrane α helices that are highly tilted with respect to the membrane. In this Review, we will discuss what has been learned recently about rotary ATPase structure and function, with a particular focus on the vacuolar-type ATPases.
Collapse
Affiliation(s)
- Mohammad T. Mazhab-Jafari
- Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada
| | - John L. Rubinstein
- Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada
- Department of Biochemistry, The University of Toronto, 1 King’s College Circle, Toronto, Ontario M5S 1A8, Canada
- Department of Medical Biophysics, The University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
6
|
Sodium-Proton (Na+/H+) Antiporters: Properties and Roles in Health and Disease. Met Ions Life Sci 2016; 16:391-458. [DOI: 10.1007/978-3-319-21756-7_12] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
Driessen AJM, Poolman B. In memoriam: Wilhelmus Nicolaas Konings (1937–2014). Extremophiles 2015; 19:233-4. [DOI: 10.1007/s00792-015-0736-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Functional and structural dynamics of NhaA, a prototype for Na(+) and H(+) antiporters, which are responsible for Na(+) and H(+) homeostasis in cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:1047-62. [PMID: 24361841 DOI: 10.1016/j.bbabio.2013.12.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/09/2013] [Accepted: 12/13/2013] [Indexed: 01/14/2023]
Abstract
The crystal structure of down-regulated NhaA crystallized at acidic pH4 [21] has provided the first structural insights into the antiport mechanism and pH regulation of a Na(+)/H(+) antiporter [22]. On the basis of the NhaA crystal structure [21] and experimental data (reviewed in [2,22,38] we have suggested that NhaA is organized into two functional regions: (i) a cluster of amino acids responsible for pH regulation (ii) a catalytic region at the middle of the TM IV/XI assembly, with its unique antiparallel unfolded regions that cross each other forming a delicate electrostatic balance in the middle of the membrane. This unique structure contributes to the cation binding site and allows the rapid conformational changes expected for NhaA. Extended chains interrupting helices appear now a common feature for ion binding in transporters. However the NhaA fold is unique and shared by ASBTNM [30] and NapA [29]. Computation [13], electrophysiology [69] combined with biochemistry [33,47] have provided intriguing models for the mechanism of NhaA. However, the conformational changes and the residues involved have not yet been fully identified. Another issue which is still enigma is how energy is transduced "in this 'nano-machine.'" We expect that an integrative approach will reveal the residues that are crucial for NhaA activity and regulation, as well as elucidate the pHand ligand-induced conformational changes and their dynamics. Ultimately, integrative results will shed light on the mechanism of activity and pH regulation of NhaA, a prototype of the CPA2 family of transporters. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
|
9
|
Engevik MA, Aihara E, Montrose MH, Shull GE, Hassett DJ, Worrell RT. Loss of NHE3 alters gut microbiota composition and influences Bacteroides thetaiotaomicron growth. Am J Physiol Gastrointest Liver Physiol 2013; 305:G697-711. [PMID: 24072680 PMCID: PMC3840232 DOI: 10.1152/ajpgi.00184.2013] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/20/2013] [Indexed: 01/31/2023]
Abstract
Changes in the intestinal microbiota have been linked to diabetes, obesity, inflammatory bowel disease, and Clostridium difficile (C. difficile)-associated disease. Despite this, it remains unclear how the intestinal environment, set by ion transport, affects luminal and mucosa-associated bacterial composition. Na(+)/H(+)-exchanger isoform 3 (NHE3), a target of C. difficile toxin B, plays an integral role in intestinal Na(+) absorption. Thus the NHE3-deficient mouse model was chosen to examine the effect of pH and ion composition on bacterial growth. We hypothesized that ion transport-induced change in the intestinal environment would lead to alteration of the microbiota. Region-specific changes in ion composition and pH correlated with region-specific alteration of luminal and mucosal-associated bacteria with general decreases in Firmicutes and increases in Bacteroidetes members. Bacteroides thetaiotaomicron (B. thetaiotaomicron) increased in NHE3(-/-) terminal ileum and was examined in vitro to determine whether altered Na(+) was sufficient to affect growth. Increased in vitro growth of B. thetaiotaomicron occurred in 43 mM Na(+) correlating with the NHE3(-/-) mouse terminal ileum [Na(+)]. NHE3(-/-) terminal ileum displayed increased fut2 mRNA and fucosylation correlating with B. thetaiotaomicron growth. Inoculation of B. thetaiotaomicron in wild-type and NHE3(-/-) terminal ileum organoids displayed increased fut2 and fucosylation, indicating that B. thetaiotaomicron alone is sufficient for the increased fucosylation seen in vivo. These data demonstrate that loss of NHE3 alters the intestinal environment, leading to region-specific changes in bacteria, and shed light on the growth requirements of some gut microbiota members, which is vital for creating better treatments of complex diseases with an altered gut microbiota.
Collapse
Affiliation(s)
- Melinda A Engevik
- Dept. of Molecular and Cellular Physiology, Univ. of Cincinnati College of Medicine, Cincinnati, OH 45267.
| | | | | | | | | | | |
Collapse
|
10
|
|
11
|
|
12
|
Abstract
AbstractThe rotary ATPase family of membrane protein complexes may have only three members, but each one plays a fundamental role in biological energy conversion. The F1Fo-ATPase (F-ATPase) couples ATP synthesis to the electrochemical membrane potential in bacteria, mitochondria and chloroplasts, while the vacuolar H+-ATPase (V-ATPase) operates as an ATP-driven proton pump in eukaryotic membranes. In different species of archaea and bacteria, the A1Ao-ATPase (A-ATPase) can function as either an ATP synthase or an ion pump. All three of these multi-subunit complexes are rotary molecular motors, sharing a fundamentally similar mechanism in which rotational movement drives the energy conversion process. By analogy to macroscopic systems, individual subunits can be assigned to rotor, axle or stator functions. Recently, three-dimensional reconstructions from electron microscopy and single particle image processing have led to a significant step forward in understanding of the overall architecture of all three forms of these complexes and have allowed the organisation of subunits within the rotor and stator parts of the motors to be more clearly mapped out. This review describes the emerging consensus regarding the organisation of the rotor and stator components of V-, A- and F-ATPases, examining core similarities that point to a common evolutionary origin, and highlighting key differences. In particular, it discusses how newly revealed variation in the complexity of the inter-domain connections may impact on the mechanics and regulation of these molecular machines.
Collapse
|
13
|
Cook GM, Russell JB. Dual Mechanisms of Tricarboxylate Transport and Catabolism by Acidaminococcus fermentans. Appl Environ Microbiol 2010; 60:2538-44. [PMID: 16349331 PMCID: PMC201681 DOI: 10.1128/aem.60.7.2538-2544.1994] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acidaminococcus fermentans utilized citrate or the citrate analog aconitate as an energy source for growth, and these tricarboxylates were used simultaneously. Citrate utilization and uptake showed biphasic kinetics. High-affinity citrate uptake had a K(t) of 40 muM, but the V(max) was only 25 nmol/mg of protein per min. Low-affinity citrate utilization had a 10-fold higher V(max), but the K(s) was greater than 1.0 mM. Aconitate was a competitive inhibitor (K(i) = 34muM) of high-affinity citrate uptake, but low-affinity aconitate utilization had a 10-fold-lower requirement for sodium than did low-affinity citrate utilization. On the basis of this large difference in sodium requirements, it appeared that A. fermentans probably has two systems of tricarboxylate uptake: (i) a citrate/aconitate carrier with a low affinity for sodium and (ii) an aconitate carrier with a high affinity for sodium. Citrate was catabolized by a pathway involving a biotin-requiring, avidin-sensitive, sodium-dependent, membrane-bound oxaloacetate decarboxylase. The cells also had aconitase, but this enzyme was unable to convert citrate to isocitrate. Since cell-free extracts converted either aconitate or glutamate to 2-oxoglutarate, it appeared that aconitate was being catabolized by the glutaconyl-CoA decarboxylase pathway. Exponentially growing cultures on citrate or citrate plus aconitate were inhibited by the sodium/proton antiporter, monensin. Because monensin had no effect on cultures growing with aconitate alone, it appeared that citrate metabolism was acting as an inducer of monensin sensitivity. A. fermentans cells always had a low proton motive force (<50 mV), and cells treated with the protonophore TCS (3,3',4',5-tetrachlorosalicylanide) grew even though the proton motive force was less than 20 mV. On the basis of these results, it appeared that A. fermentans was depending almost exclusively on a sodium motive force for its membrane energetics.
Collapse
Affiliation(s)
- G M Cook
- Section of Microbiology, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
14
|
F1F0-ATP synthases of alkaliphilic bacteria: lessons from their adaptations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1362-77. [PMID: 20193659 DOI: 10.1016/j.bbabio.2010.02.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 02/22/2010] [Accepted: 02/23/2010] [Indexed: 12/14/2022]
Abstract
This review focuses on the ATP synthases of alkaliphilic bacteria and, in particular, those that successfully overcome the bioenergetic challenges of achieving robust H+-coupled ATP synthesis at external pH values>10. At such pH values the protonmotive force, which is posited to provide the energetic driving force for ATP synthesis, is too low to account for the ATP synthesis observed. The protonmotive force is lowered at a very high pH by the need to maintain a cytoplasmic pH well below the pH outside, which results in an energetically adverse pH gradient. Several anticipated solutions to this bioenergetic conundrum have been ruled out. Although the transmembrane sodium motive force is high under alkaline conditions, respiratory alkaliphilic bacteria do not use Na+- instead of H+-coupled ATP synthases. Nor do they offset the adverse pH gradient with a compensatory increase in the transmembrane electrical potential component of the protonmotive force. Moreover, studies of ATP synthase rotors indicate that alkaliphiles cannot fully resolve the energetic problem by using an ATP synthase with a large number of c-subunits in the synthase rotor ring. Increased attention now focuses on delocalized gradients near the membrane surface and H+ transfers to ATP synthases via membrane-associated microcircuits between the H+ pumping complexes and synthases. Microcircuits likely depend upon proximity of pumps and synthases, specific membrane properties and specific adaptations of the participating enzyme complexes. ATP synthesis in alkaliphiles depends upon alkaliphile-specific adaptations of the ATP synthase and there is also evidence for alkaliphile-specific adaptations of respiratory chain components.
Collapse
|
15
|
Mesbah NM, Cook GM, Wiegel J. The halophilic alkalithermophile Natranaerobius thermophilus adapts to multiple environmental extremes using a large repertoire of Na(K)/H antiporters. Mol Microbiol 2009; 74:270-81. [PMID: 19708921 PMCID: PMC2764116 DOI: 10.1111/j.1365-2958.2009.06845.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2009] [Indexed: 11/30/2022]
Abstract
Natranaerobius thermophilus is an unusual extremophile because it is halophilic, alkaliphilic and thermophilic, growing optimally at 3.5 M Na(+), pH(55 degrees C) 9.5 and 53 degrees C. Mechanisms enabling this tripartite lifestyle are essential for understanding how microorganisms grow under inhospitable conditions, but remain unknown, particularly in extremophiles growing under multiple extremes. We report on the response of N. thermophilus to external pH at high salt and elevated temperature and identify mechanisms responsible for this adaptation. N. thermophilus exhibited cytoplasm acidification, maintaining an unanticipated transmembrane pH gradient of 1 unit over the entire extracellular pH range for growth. N. thermophilus uses two distinct mechanisms for cytoplasm acidification. At extracellular pH values at and below the optimum, N. thermophilus utilizes at least eight electrogenic Na(+)(K(+))/H(+) antiporters for cytoplasm acidification. Characterization of these antiporters in antiporter-deficient Escherichia coli KNabc showed overlapping pH profiles (pH 7.8-10.0) and Na(+) concentrations for activity (K(0.5) values 1.0-4.4 mM), properties that correlate with intracellular conditions of N. thermophilus. As the extracellular pH increases beyond the optimum, electrogenic antiport activity ceases, and cytoplasm acidification is achieved by energy-independent physiochemical effects (cytoplasmic buffering) potentially mediated by an acidic proteome. The combination of these strategies allows N. thermophilus to grow over a range of extracellular pH and Na(+) concentrations and protect biomolecules under multiple extreme conditions.
Collapse
Affiliation(s)
- Noha M Mesbah
- Department of Microbiology, University of GeorgiaAthens, GA 30602, USA.
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of OtagoDunedin, New Zealand
| | - Juergen Wiegel
- Department of Microbiology, University of GeorgiaAthens, GA 30602, USA.
| |
Collapse
|
16
|
Slonczewski JL, Fujisawa M, Dopson M, Krulwich TA. Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Adv Microb Physiol 2009; 55:1-79, 317. [PMID: 19573695 DOI: 10.1016/s0065-2911(09)05501-5] [Citation(s) in RCA: 293] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Of all the molecular determinants for growth, the hydronium and hydroxide ions are found naturally in the widest concentration range, from acid mine drainage below pH 0 to soda lakes above pH 13. Most bacteria and archaea have mechanisms that maintain their internal, cytoplasmic pH within a narrower range than the pH outside the cell, termed "pH homeostasis." Some mechanisms of pH homeostasis are specific to particular species or groups of microorganisms while some common principles apply across the pH spectrum. The measurement of internal pH of microbes presents challenges, which are addressed by a range of techniques under varying growth conditions. This review compares and contrasts cytoplasmic pH homeostasis in acidophilic, neutralophilic, and alkaliphilic bacteria and archaea under conditions of growth, non-growth survival, and biofilms. We present diverse mechanisms of pH homeostasis including cell buffering, adaptations of membrane structure, active ion transport, and metabolic consumption of acids and bases.
Collapse
|
17
|
Takemura Y, Tamura N, Imamura M, Koyama N. Role of the charged amino acid residues in the cytoplasmic loop between putative transmembrane segments 6 and 7 of Na+-ATPase of an alkaliphilic bacterium, Exiguobacterium aurantiacum. FEMS Microbiol Lett 2009; 299:143-8. [PMID: 19702882 DOI: 10.1111/j.1574-6968.2009.01740.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
ATPase activity of the membrane-bound Na(+)-ATPase of an alkaliphilic bacterium, Exiguobacterium aurantiacum, was measured in various concentrations of NaCl. Hill plot analysis showed a Hill number of 1.7 with 5.2 mM as the K(0.5) value for Na(+). When the site-directed mutagenesis of seven charged amino acid residues in the cytoplasmic loop (L6/7) between putative transmembrane segments 6 and 7 of the enzyme was conducted, all the mutated enzymes exhibited Hill numbers close to that of the wild-type enzyme (WT). When reconstituted with lecithin, all the mutants exhibited Na(+)-transport activity. While alanine substitution for several residues gave some significant effects on the enzyme function, the most remarkable effect was observed in the substitution for Glu-733. The K(0.5) value of E733A for Na(+) was 83.2 mM. The mutant exhibited only 8.5% of the ATPase activity and 54.0% of the energy-coupling efficiency for Na(+) transport as compared with those of WT, respectively. Drastic decreases of apparent affinity for Na(+) and energy efficiency of ion transport were also observed in E733K and E733T, respectively.
Collapse
Affiliation(s)
- Youhei Takemura
- Department of Chemistry, Faculty of Science, Chiba University, Chiba, Japan
| | | | | | | |
Collapse
|
18
|
Mulkidjanian AY, Dibrov P, Galperin MY. The past and present of sodium energetics: may the sodium-motive force be with you. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:985-92. [PMID: 18485887 DOI: 10.1016/j.bbabio.2008.04.028] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 04/18/2008] [Accepted: 04/18/2008] [Indexed: 10/22/2022]
Abstract
All living cells routinely expel Na(+) ions, maintaining lower concentration of Na(+) in the cytoplasm than in the surrounding milieu. In the vast majority of bacteria, as well as in mitochondria and chloroplasts, export of Na(+) occurs at the expense of the proton-motive force. Some bacteria, however, possess primary generators of the transmembrane electrochemical gradient of Na(+) (sodium-motive force). These primary Na(+) pumps have been traditionally seen as adaptations to high external pH or to high temperature. Subsequent studies revealed, however, the mechanisms for primary sodium pumping in a variety of non-extremophiles, such as marine bacteria and certain bacterial pathogens. Further, many alkaliphiles and hyperthermophiles were shown to rely on H(+), not Na(+), as the coupling ion. We review here the recent progress in understanding the role of sodium-motive force, including (i) the conclusion on evolutionary primacy of the sodium-motive force as energy intermediate, (ii) the mechanisms, evolutionary advantages and limitations of switching from Na(+) to H(+) as the coupling ion, and (iii) the possible reasons why certain pathogenic bacteria still rely on the sodium-motive force.
Collapse
|
19
|
|
20
|
Konings WN. Microbial transport: Adaptations to natural environments. Antonie van Leeuwenhoek 2006; 90:325-42. [PMID: 17043914 DOI: 10.1007/s10482-006-9089-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 05/11/2006] [Indexed: 11/25/2022]
Abstract
The cytoplasmic membrane of bacteria is the matrix for metabolic energy transducing processes such as proton motive force generation and solute transport. Passive permeation of protons across the cytoplasmic membrane is a crucial determinant in the proton motive generating capacity of the organisms. Adaptations of the membrane composition are needed to restrict the proton permeation rates especially at higher temperatures. Thermophilic bacteria cannot sufficiently restrict this proton permeation at their growth temperature and have to rely on the much lower permeation of Na + to generate a sodium motive force for driving metabolic energy-dependent membrane processes. Specific transport systems mediate passage across the membrane at physiological rates of all compounds needed for growth and metabolism and of all end products of metabolism. Some of transport systems, the secondary transporters, transduce one form of electrochemical energy into another form. These transporters can play crucial roles in the generation of metabolic energy. This is especially so in anaerobes such as Lactic Acid Bacteria which live under energy-limited conditions. Several transport systems are specifically aimed at the generation of metabolic energy during periods of energy-limitation. In their natural environment bacteria are also often exposed to cytotoxic compounds, including antibiotics. Many bacteria can respond to this live-threatening condition by overexpressing powerful drug-extruding multidrug resistance systems.
Collapse
Affiliation(s)
- Wil N Konings
- Department of Microbiology, Groningen Bio-molecular Sciences and Biotechnology Center, University of Groningen, Kerklaan 30, 9751 NN, Haren, The Netherlands.
| |
Collapse
|
21
|
Ferguson SA, Keis S, Cook GM. Biochemical and molecular characterization of a Na+-translocating F1Fo-ATPase from the thermoalkaliphilic bacterium Clostridium paradoxum. J Bacteriol 2006; 188:5045-54. [PMID: 16816177 PMCID: PMC1539966 DOI: 10.1128/jb.00128-06] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium paradoxum is an anaerobic thermoalkaliphilic bacterium that grows rapidly at pH 9.8 and 56 degrees C. Under these conditions, growth is sensitive to the F-type ATP synthase inhibitor N,N'-dicyclohexylcarbodiimide (DCCD), suggesting an important role for this enzyme in the physiology of C. paradoxum. The ATP synthase was characterized at the biochemical and molecular levels. The purified enzyme (30-fold purification) displayed the typical subunit pattern for an F1Fo-ATP synthase but also included the presence of a stable oligomeric c-ring that could be dissociated by trichloroacetic acid treatment into its monomeric c subunits. The purified ATPase was stimulated by sodium ions, and sodium provided protection against inhibition by DCCD that was pH dependent. ATP synthesis in inverted membrane vesicles was driven by an artificially imposed chemical gradient of sodium ions in the presence of a transmembrane electrical potential that was sensitive to monensin. Cloning and sequencing of the atp operon revealed the presence of a sodium-binding motif in the membrane-bound c subunit (viz., Q28, E61, and S62). On the basis of these properties, the F1Fo-ATP synthase of C. paradoxum is a sodium-translocating ATPase that is used to generate an electrochemical gradient of + that could be used to drive other membrane-bound bioenergetic processes (e.g., solute transport or flagellar rotation). In support of this proposal are the low rates of ATP synthesis catalyzed by the enzyme and the lack of the C-terminal region of the epsilon subunit that has been shown to be essential for coupled ATP synthesis.
Collapse
Affiliation(s)
- Scott A Ferguson
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | | | | |
Collapse
|
22
|
Kurz M, Brünig ANS, Galinski EA. NhaD type sodium/proton-antiporter of Halomonas elongata: a salt stress response mechanism in marine habitats? SALINE SYSTEMS 2006; 2:10. [PMID: 16872527 PMCID: PMC1552076 DOI: 10.1186/1746-1448-2-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 07/27/2006] [Indexed: 02/04/2023]
Abstract
Background Sodium/proton-antiporters (Nha) are known to play an important role in pH- and Na+-homeostasis. In microorganisms several types with different capacity, affinity and selectivity for Na+ and Li+ exist. The homeostasis system of E. coli, NhaA and NhaB, is well researched, but the function of other types of Na+/H+-antiporters like NhaD is yet to be fully understood. Since several antiporters play an important role at various points in the physiology of higher organisms, one can speculate that the main functions of some of those procaryotic antiporters differ from pH- and Na+-homeostasis. Results This study investigates the function and regulation of a gene encoding for a NhaD type antiporter which was discovered in the halophilic eubacterium Halomonas elongata. The deduced primary amino acid sequence of the abovementioned gene showed more than 60% identity to known antiporters of the NhaD type from Alkalimonas amylolytica, Shewanella oneidensis and several other marine organisms of the γ-Proteobacteria. Evidence was found for a dual regulation of H. elongata NhaD expression. The gene was cloned and expressed in E. coli. Antiporter deficient NaCl and LiCl sensitive E. coli mutants EP432 and KNabc were partially complemented by a plasmid carrying the H. elongata nhaD gene. Surprisingly the LiCl sensitivity of E. coli strain DH5α having a complete homeostasis system was increased when NhaD was co-expressed. Conclusion Since NhaD is an antiporter known so far only from halophilic or haloalcaliphilic Proteobacteria one can speculate that this type of antiporter provides a special mechanism for adaptation to marine habitats. As was already speculated – though without supporting data – and substantiated in this study this might be active Na+-import for osmoregulatory purposes.
Collapse
Affiliation(s)
- Matthias Kurz
- Institut für Mikrobiologie und Biotechnologie, Rheinische Friedrich Wilhelms-Universität Bonn, Meckenheimer Allee, Bonn, Germany
| | - Anika NS Brünig
- Institut für Mikrobiologie und Biotechnologie, Rheinische Friedrich Wilhelms-Universität Bonn, Meckenheimer Allee, Bonn, Germany
| | - Erwin A Galinski
- Institut für Mikrobiologie und Biotechnologie, Rheinische Friedrich Wilhelms-Universität Bonn, Meckenheimer Allee, Bonn, Germany
| |
Collapse
|
23
|
Mesbah NM, Wiegel J. 19 Isolation, Cultivation and Characterization of Alkalithermophiles. METHODS IN MICROBIOLOGY 2006. [DOI: 10.1016/s0580-9517(08)70022-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Padan E, Bibi E, Ito M, Krulwich TA. Alkaline pH homeostasis in bacteria: new insights. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1717:67-88. [PMID: 16277975 PMCID: PMC3072713 DOI: 10.1016/j.bbamem.2005.09.010] [Citation(s) in RCA: 501] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2005] [Revised: 08/19/2005] [Accepted: 09/07/2005] [Indexed: 10/25/2022]
Abstract
The capacity of bacteria to survive and grow at alkaline pH values is of widespread importance in the epidemiology of pathogenic bacteria, in remediation and industrial settings, as well as in marine, plant-associated and extremely alkaline ecological niches. Alkali-tolerance and alkaliphily, in turn, strongly depend upon mechanisms for alkaline pH homeostasis, as shown in pH shift experiments and growth experiments in chemostats at different external pH values. Transcriptome and proteome analyses have recently complemented physiological and genetic studies, revealing numerous adaptations that contribute to alkaline pH homeostasis. These include elevated levels of transporters and enzymes that promote proton capture and retention (e.g., the ATP synthase and monovalent cation/proton antiporters), metabolic changes that lead to increased acid production, and changes in the cell surface layers that contribute to cytoplasmic proton retention. Targeted studies over the past decade have followed up the long-recognized importance of monovalent cations in active pH homeostasis. These studies show the centrality of monovalent cation/proton antiporters in this process while microbial genomics provides information about the constellation of such antiporters in individual strains. A comprehensive phylogenetic analysis of both eukaryotic and prokaryotic genome databases has identified orthologs from bacteria to humans that allow better understanding of the specific functions and physiological roles of the antiporters. Detailed information about the properties of multiple antiporters in individual strains is starting to explain how specific monovalent cation/proton antiporters play dominant roles in alkaline pH homeostasis in cells that have several additional antiporters catalyzing ostensibly similar reactions. New insights into the pH-dependent Na(+)/H(+) antiporter NhaA that plays an important role in Escherichia coli have recently emerged from the determination of the structure of NhaA. This review highlights the approaches, major findings and unresolved problems in alkaline pH homeostasis, focusing on the small number of well-characterized alkali-tolerant and extremely alkaliphilic bacteria.
Collapse
Affiliation(s)
- Etana Padan
- Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel.
| | | | | | | |
Collapse
|
25
|
Krulwich TA, Lewinson O, Padan E, Bibi E. Do physiological roles foster persistence of drug/multidrug-efflux transporters? A case study. Nat Rev Microbiol 2005; 3:566-72. [PMID: 15953929 DOI: 10.1038/nrmicro1181] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Drug and multidrug resistance have greatly compromised the compounds that were once the mainstays of antibiotic therapy. This resistance often persists despite reductions in the use of antibiotics, indicating that the proteins encoded by antibiotic-resistance genes have alternative physiological roles that can foster such persistence in the absence of selective pressure by antibiotics. The recent observations that Tet(L), a tetracycline-efflux transporter, and MdfA, a multidrug-efflux transporter, both confer alkali tolerance offer a striking case study in support of this hypothesis.
Collapse
Affiliation(s)
- Terry A Krulwich
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
26
|
Olsson K, Keis S, Morgan HW, Dimroth P, Cook GM. Bioenergetic properties of the thermoalkaliphilic Bacillus sp. strain TA2.A1. J Bacteriol 2003; 185:461-5. [PMID: 12511491 PMCID: PMC145327 DOI: 10.1128/jb.185.2.461-465.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The thermoalkaliphilic Bacillus sp. strain TA2.A1 was able to grow in pH-controlled batch culture containing a nonfermentable growth substrate from pH 7.5 to 10.0 with no significant change in its specific growth rate, demonstrating that this bacterium is a facultative alkaliphile. Growth at pH 10.0 was sensitive to the protonophore carbonyl cyanide m-chlorophenylhydrazone, suggesting that a proton motive force (Deltap) generated via aerobic respiration was an obligate requirement for growth of strain TA2.A1. Strain TA2.A1 exhibited intracellular pH homeostasis as the external pH increased from 7.5 to 10.0; however, the maximum DeltapH generated over this pH range was only 1.1 units at an external pH of 9.5. The membrane potential (Deltapsi) was maintained between -114 mV and -150 mV, and little significant change was observed over the pH range for growth. In contrast, the Deltap declined from -164 mV at pH 7.5 to approximately -78 mV at pH 10.0. An inwardly directed sodium motive force (DeltapNa(+)) of -100 mV at pH 10.0 indicated that cellular processes (i.e., solute transport) dependent on a sodium gradient would not be affected by the adverse Deltap. The phosphorylation potential of strain TA2.A1 was maintained between -300 mV and -418 mV, and the calculated H(+)/ATP stoichiometry of the ATP synthase increased from 2.0 at pH 7.5 to 5.7 at pH 10.0. Based on these data, vigorous growth of strain TA2.A1 correlated well with the DeltapNa(+), phosphorylation potential, and the ATP/ADP ratio, but not with Deltap. This communication represents the first report on the bioenergetics of an extremely thermoalkaliphilic aerobic bacterium.
Collapse
Affiliation(s)
- Karen Olsson
- Department of Microbiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
27
|
Nakamura T, Fujisaki Y, Enomoto H, Nakayama Y, Takabe T, Yamaguchi N, Uozumi N. Residue aspartate-147 from the third transmembrane region of Na(+)/H(+) antiporter NhaB of Vibrio alginolyticus plays a role in its activity. J Bacteriol 2001; 183:5762-7. [PMID: 11544242 PMCID: PMC95471 DOI: 10.1128/jb.183.19.5762-5767.2001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NhaB is a bacterial Na(+)/H(+) antiporter with unique topology. The pH dependence of NhaB from Vibrio alginolyticus differs from that of the Escherichia coli NhaB homolog. Replacement of Asp-147 with Glu made high H(+) concentrations a requirement for the NhaB activity. Replacement of Asp-147 with neutral amino acids inactivated NhaB.
Collapse
Affiliation(s)
- T Nakamura
- Laboratory of Molecular Cell Biology, Faculty of Pharmaceutical Sciences, Chiba University, Inage-ku, Chiba 263-8522, Japan.
| | | | | | | | | | | | | |
Collapse
|
28
|
Häse CC, Fedorova ND, Galperin MY, Dibrov PA. Sodium ion cycle in bacterial pathogens: evidence from cross-genome comparisons. Microbiol Mol Biol Rev 2001; 65:353-70, table of contents. [PMID: 11528000 PMCID: PMC99031 DOI: 10.1128/mmbr.65.3.353-370.2001] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Analysis of the bacterial genome sequences shows that many human and animal pathogens encode primary membrane Na+ pumps, Na+-transporting dicarboxylate decarboxylases or Na+ translocating NADH:ubiquinone oxidoreductase, and a number of Na+ -dependent permeases. This indicates that these bacteria can utilize Na+ as a coupling ion instead of or in addition to the H+ cycle. This capability to use a Na+ cycle might be an important virulence factor for such pathogens as Vibrio cholerae, Neisseria meningitidis, Salmonella enterica serovar Typhi, and Yersinia pestis. In Treponema pallidum, Chlamydia trachomatis, and Chlamydia pneumoniae, the Na+ gradient may well be the only energy source for secondary transport. A survey of preliminary genome sequences of Porphyromonas gingivalis, Actinobacillus actinomycetemcomitans, and Treponema denticola indicates that these oral pathogens also rely on the Na+ cycle for at least part of their energy metabolism. The possible roles of the Na+ cycling in the energy metabolism and pathogenicity of these organisms are reviewed. The recent discovery of an effective natural antibiotic, korormicin, targeted against the Na+ -translocating NADH:ubiquinone oxidoreductase, suggests a potential use of Na+ pumps as drug targets and/or vaccine candidates. The antimicrobial potential of other inhibitors of the Na+ cycle, such as monensin, Li+ and Ag+ ions, and amiloride derivatives, is discussed.
Collapse
Affiliation(s)
- C C Häse
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | |
Collapse
|
29
|
Abstract
Na(+)/H(+) antiporters are membrane proteins that play a major role in pH and Na(+) homeostasis of cells throughout the biological kingdom, from bacteria to humans and higher plants. The emerging genomic sequence projects already have started to reveal that the Na(+)/H(+) antiporters cluster in several families. Structure and function studies of a purified antiporter protein have as yet been conducted mainly with NhaA, the key Na(+)/H(+) antiporter of Escherichia coli. This antiporter has been overexpressed, purified and reconstituted in a functional form in proteoliposomes. It has recently been crystallized in both 3D as well as 2D crystals. The NhaA 2D crystals were analyzed by cryoelectron microscopy and a density map at 4 A resolution was obtained and a 3D map was reconstructed. NhaA is shown to exist in the 2D crystals as a dimer of monomers each composed of 12 transmembrane segments with an asymmetric helix packing. This is the first insight into the structure of a polytopic membrane protein. Many Na(+)/H(+) antiporters are characterized by very dramatic sensitivity to pH, a property that corroborates their role in pH homeostasis. The molecular mechanism underlying this pH sensitivity has been studied in NhaA. Amino acid residues involved in the pH response have been identified. Conformational changes transducing the pH change into a change in activity were found in loop VIII-IX and at the N-terminus by probing trypsin digestion or binding of a specific monoclonal antibody respectively. Regulation by pH of the eukaryotic Na(+)/H(+) antiporters involves an intricate signal transduction pathway (recently reviewed by Yun et al., Am. J. Physiol. 269 (1995) G1-G11). The transcription of NhaA has been shown to be regulated by a novel Na(+)-specific regulatory network. It is envisaged that interdisciplinary approaches combining structure, molecular and cell biology as well as genomics should be applied in the future to the study of this important group of transporters.
Collapse
Affiliation(s)
- E Padan
- Department of Microbial and Molecular Ecology, Institute of Life Sciences, Hebrew University of Jerusalem, Israel.
| | | | | | | |
Collapse
|
30
|
Ueno S, Kaieda N, Koyama N. Characterization of a P-type Na+-ATPase of a facultatively anaerobic alkaliphile, Exiguobacterium aurantiacum. J Biol Chem 2000; 275:14537-40. [PMID: 10799538 DOI: 10.1074/jbc.275.19.14537] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A facultatively anaerobic alkaliphile, Exiguobacterium aurantiacum, possesses a P-type Na(+)-stimulated ATPase in the membrane (Koyama, N. (1999) Curr. Microbiol. 39, 27-30). In this study, we attempted to purify and characterize the enzyme. The ATPase appears to consist of a single polypeptide with an apparent molecular mass of 100 kDa. The enzyme exhibited an optimum pH for activity at around 9. The enzyme was strongly inhibited by vanadate (50% inhibition observed at 3 microm) and forms an acylphosphate intermediate, suggesting a P-type ATPase. The enzyme, when reconstituted into soybean phospholipid vesicles, exhibited ATP-dependent (22)Na(+) uptake, which was completely inhibited by gramicidin. The reconstituted vesicles exhibited a generation of membrane potential (positive, inside). The enzyme is likely to be involved in an electrogenic transport of Na(+).
Collapse
Affiliation(s)
- S Ueno
- Department of Chemistry, Faculty of Science, Chiba University, Yayoi, Inage-ku, Chiba 263-8522, Japan
| | | | | |
Collapse
|
31
|
Ubbink-Kok T, Boekema EJ, van Breemen JF, Brisson A, Konings WN, Lolkema JS. Stator structure and subunit composition of the V(1)/V(0) Na(+)-ATPase of the thermophilic bacterium Caloramator fervidus. J Mol Biol 2000; 296:311-21. [PMID: 10656834 DOI: 10.1006/jmbi.1999.3459] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The V-type Na(+)-ATPase of the thermophilic, anaerobic bacterium Caloramator fervidus was purified to homogeneity. The subunit compositions of the catalytic V(1) and membrane-embedded V(0) parts were determined and the structure of the enzyme complex was studied by electron microscopy. The V(1) headpiece consists of seven subunits present in one to three copies, and the V(0) part of two subunits in a ratio of 5:2. An analysis of over 7500 single particle images obtained by electron microscopy of the purified V(1)V(0) enzyme complex revealed that the stalk region, connecting the V(1) and V(0) parts, contains two peripheral stalks in addition to a central stalk. One of the two is connected to the V(0) part, while the other is connected to the first via a bar-like structure that is positioned just above V(0), parallel with the plane of the membrane. In projection, this bar seems to contact the central stalk. The data show that the stator structure that prevents rotation of the static part of V(0) relative to V(1) in the rotary catalysis mechanism of energy coupling in ATPases/ATPsynthases is more complex than previously thought.
Collapse
Affiliation(s)
- T Ubbink-Kok
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Kerklaan, 9751 NN Haren, The Netherlands
| | | | | | | | | | | |
Collapse
|
32
|
Adaptations of the Cell Membrane for Life in Extreme Environments. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1568-1254(00)80008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
33
|
Padan E, Gerchman Y, Rimon A, Rothman A, Dover N, Carmel-Harel O. The molecular mechanism of regulation of the NhaA Na+/H+ antiporter of Escherichia coli, a key transporter in the adaptation to Na+ and H+. NOVARTIS FOUNDATION SYMPOSIUM 1999; 221:183-96; discussion 196-9. [PMID: 10207920 DOI: 10.1002/9780470515631.ch12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The NhaA Na+/H+ antiporter is the main system responsible for adaptation to Na+ and alkaline pH (in the presence of Na+) in Escherichia coli and many other enteric bacteria. It is under intricate control. At the protein level it is regulated directly by pH, one of its regulatory signals. A pH shift from 7 to 8.5 activates the antiporter and, in a fashion correlated with the activity change, confers a conformation change that, in isolated membrane vesicles, is reflected in the exposure of trypsin-cleavable sites. H225 and G338 are essential for the pH response of NhaA. nhaA transcription is dependent on NhaR, a positive regulator of the LysR family, and is regulated by Na+, the other environmental signal. Na+ affects the NhaR/nhaA interaction directly by changing the footprint of NhaR on nhaA in a pH-dependent fashion. The expression of nhaA is also under global regulation of H-NS. We suggest that the pattern of regulation of nhaA found in E. coli is a paradigm for the response of proteins and genes to H+ and Na+, the most common ions that challenge every cell.
Collapse
Affiliation(s)
- E Padan
- Hebrew University of Jerusalem, Department of Microbial and Molecular Ecology, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
34
|
Kakinuma Y. Inorganic cation transport and energy transduction in Enterococcus hirae and other streptococci. Microbiol Mol Biol Rev 1998; 62:1021-45. [PMID: 9841664 PMCID: PMC98938 DOI: 10.1128/mmbr.62.4.1021-1045.1998] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Energy metabolism by bacteria is well understood from the chemiosmotic viewpoint. We know that bacteria extrude protons across the plasma membrane, establishing an electrochemical potential that provides the driving force for various kinds of physiological work. Among these are the uptake of sugars, amino acids, and other nutrients with the aid of secondary porters and the regulation of the cytoplasmic pH and of the cytoplasmic concentration of potassium and other ions. Bacteria live in diverse habitats and are often exposed to severe conditions. In some circumstances, a proton circulation cannot satisfy their requirements and must be supplemented with a complement of primary transport systems. This review is concerned with cation transport in the fermentative streptococci, particularly Enterococcus hirae. Streptococci lack respiratory chains, relying on glycolysis or arginine fermentation for the production of ATP. One of the major findings with E. hirae and other streptococci is that ATP plays a much more important role in transmembrane transport than it does in nonfermentative organisms, probably due to the inability of this organism to generate a large proton potential. The movements of cations in streptococci illustrate the interplay between a variety of primary and secondary modes of transport.
Collapse
Affiliation(s)
- Y Kakinuma
- Faculty of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| |
Collapse
|
35
|
Boekema EJ, Ubbink-Kok T, Lolkema JS, Brisson A, Konings WN. Visualization of a peripheral stalk in V-type ATPase: evidence for the stator structure essential to rotational catalysis. Proc Natl Acad Sci U S A 1997; 94:14291-3. [PMID: 9405605 PMCID: PMC24945 DOI: 10.1073/pnas.94.26.14291] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/1997] [Indexed: 02/05/2023] Open
Abstract
F- and V-type ATPases are central enzymes in energy metabolism that couple synthesis or hydrolysis of ATP to the translocation of H+ or Na+ across biological membranes. They consist of a soluble headpiece that contains the catalytic sites and an integral membrane-bound part that conducts the ion flow. Energy coupling is thought to occur through the physical rotation of a stalk that connects the two parts of the enzyme complex. This mechanism implies that a stator-like structure prevents the rotation of the headpiece relative to the membrane-bound part. Such a structure has not been observed to date. Here, we report the projected structure of the V-type Na+-ATPase of Clostridium fervidus as determined by electron microscopy. Besides the central stalk, a second stalk of 130 A in length is observed that connects the headpiece and membrane-bound part in the periphery of the complex. This additional stalk is likely to be the stator.
Collapse
Affiliation(s)
- E J Boekema
- Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
36
|
Höner zu Bentrup K, Ubbink-Kok T, Lolkema JS, Konings WN. An Na+-pumping V1V0-ATPase complex in the thermophilic bacterium Clostridium fervidus. J Bacteriol 1997; 179:1274-9. [PMID: 9023212 PMCID: PMC178826 DOI: 10.1128/jb.179.4.1274-1279.1997] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Energy transduction in the anaerobic, thermophilic bacterium Clostridium fervidus relies exclusively on Na+ as the coupling ion. The Na+ ion gradient across the membrane is generated by a membrane-bound ATPase (G. Speelmans, B. Poolman, T. Abee, and W. N. Konings, J. Bacteriol. 176:5160-5162, 1994). The Na+-ATPase complex was purified to homogeneity. It migrates as a single band in native polyacrylamide gel electrophoresis and catalyzes Na+-stimulated ATPase activity. Denaturing gel electrophoresis showed that the complex consists of at least six different polypeptides with apparent molecular sizes of 66, 61, 51, 37, 26, and 17 kDa. The N-terminal sequences of the 66- and 51-kDa subunits were found to be significantly homologous to subunits A and B, respectively, of the Na+-translocating V-type ATPase of Enterococcus hirae. The purified V1V0 protein complex was reconstituted in a mixture of Escherichia coli phosphatidylethanolamine and egg yolk phosphatidylcholine and shown to catalyze the uptake of Na+ ions upon hydrolysis of ATP. Na+ transport was completely abolished by monensin, whereas valinomycin stimulated the uptake rate. This is indicative of electrogenic sodium transport. The presence of the protonophore SF6847 had no significant effect on the uptake, indicating that Na+ translocation is a primary event and in the cell is not accomplished by an H+-translocating pump in combination with an Na+-H+ antiporter.
Collapse
Affiliation(s)
- K Höner zu Bentrup
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | | | | | | |
Collapse
|
37
|
Cook GM, Russell JB, Reichert A, Wiegel J. The Intracellular pH of Clostridium paradoxum, an Anaerobic, Alkaliphilic, and Thermophilic Bacterium. Appl Environ Microbiol 1996; 62:4576-9. [PMID: 16535469 PMCID: PMC1389007 DOI: 10.1128/aem.62.12.4576-4579.1996] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When the extracellular pH was increased from 7.6 to 9.8, Clostridium paradoxum, a novel alkalithermophile, increased its pH gradient across the cell membrane ((Delta)pH, pH(infin) - pH(infout)) by as much as 1.3 U. At higher pH values (>10.0), the (Delta)pH and membrane potential ((Delta)(psi)) eventually declined, and the intracellular pH increased significantly. Growth ceased when the extracellular pH was greater than 10.2 and the intracellular pH increased to above 9.8. The membrane potential increased to 110 (plusmn) 8.6 mV at pH 9.1, but the total proton motive force ((Delta)p) declined from about 65 mV at pH 7.6 to 25 mV at pH 9.8. Between the extracellular pH of 8.0 and 10.3, the intracellular ATP concentration was around 1 mM and decreased at lower and higher pH values concomitantly with a decrease in growth rate.
Collapse
|
38
|
The glucose transport system of the hyperthermophilic anaerobic bacterium Thermotoga neapolitana. Appl Environ Microbiol 1996; 62:2915-8. [PMID: 9285772 PMCID: PMC168078 DOI: 10.1128/aem.62.8.2915-2918.1996] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The glucose transport system of the extremely thermophilic anaerobic bacterium Thermotoga neapolitana was studied with the nonmetabolizable glucose analog 2-deoxy-D-glucose (2-DOG). T. neapolitana accumulated 2-DOG against a concentration gradient in an intracellular free sugar pool that was exchangeable with external source of energy, such as pyruvate, and was inhibited by arsenate and gramicidin D. There was no phosphoenolpyruvate-dependent phosphorylation of glucose, 2-DOG, or fructose by cell extracts or toluene-treated cells, indicating the absence of a phosphoenolpyruvate:sugar phosphotransferase system. These data indicate that D-glucose is taken up by T. neapolitana via an active transport system that is energized by an ion gradient generated by ATP, derived from substrate-level phosphorylation.
Collapse
|
39
|
Prowe SG, van de Vossenberg JL, Driessen AJ, Antranikian G, Konings WN. Sodium-coupled energy transduction in the newly isolated thermoalkaliphilic strain LBS3. J Bacteriol 1996; 178:4099-104. [PMID: 8763937 PMCID: PMC178166 DOI: 10.1128/jb.178.14.4099-4104.1996] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Strain LBS3 is a novel anaerobic thermoalkaliphilic bacterium that grows optimally at pH 9.5 and 50 degrees C. Since a high concentration of Na+ ions is required for growth, we have analyzed the primary bioenergetic mechanism of energy transduction in this organism. For this purpose, a method was devised for the isolation of right-side-out membrane vesicles that are functional for the energy-dependent uptake of solutes. A strict requirement for Na+ was observed for the uptake of several amino acids, and in the case of L-leucine, it was concluded that amino acid uptake occurs in symport with Na+ ions. Further characterization of the leucine transport system revealed that its pH and temperature optima closely match the conditions that support the growth of strain LBS3. The ATPase activity associated with inside-out membrane vesicles was found to be stimulated by both Na+ and Li+ ions. These data suggest that the primary mechanism of energy transduction in the anaerobic thermoalkaliphilic strain LBS3 is dependent on sodium cycling. The implications of this finding for the mechanism of intracellular pH regulation are discussed.
Collapse
Affiliation(s)
- S G Prowe
- Technical Microbiology, Biotechnology I, Technical University Hamburg-Harburg, Germany
| | | | | | | | | |
Collapse
|
40
|
Driessen AJ, van de Vossenberg JL, Konings WN. Membrane composition and ion-permeability in extremophiles. FEMS Microbiol Rev 1996. [DOI: 10.1111/j.1574-6976.1996.tb00232.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
41
|
Beveridge TJ, Hughes MN, Lee H, Leung KT, Poole RK, Savvaidis I, Silver S, Trevors JT. Metal-microbe interactions: contemporary approaches. Adv Microb Physiol 1996; 38:177-243. [PMID: 8922121 DOI: 10.1016/s0065-2911(08)60158-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- T J Beveridge
- Department of Microbiology, College of Biological Science, University of Guelph, Canada
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Chapter 22 Bacterial Na+/H+ antiporters — Molecular biology, biochemistry and physiology. HANDBOOK OF BIOLOGICAL PHYSICS 1996. [DOI: 10.1016/s1383-8121(96)80063-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Differential effects of sodium ions on motility in the homoacetogenic bacteriaAcetobacterium woodii andSporomusa sphaeroides. Arch Microbiol 1995. [DOI: 10.1007/bf02529984] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
Bogachev AV, Murtazine RA, Shestopalov AI, Skulachev VP. Induction of the Escherichia coli cytochrome d by low delta mu H+ and by sodium ions. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 232:304-8. [PMID: 7556165 DOI: 10.1111/j.1432-1033.1995.tb20812.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Regulation of synthesis of cytochrome d in Escherichia coli has been studied using mutants with cytochrome-d--beta-galactosidase gene fusions. It was shown that various protonophorous uncouplers, when added to the growth medium, cause induction of the cytochrome d synthesis. The cytochrome-d-inducing activity of uncouplers correlates with their ability to inhibit such a delta mu (H+)-driven function as motility of the E. coli cells. An increase in the Na+ concentration in the growth medium from 1.5 mM to 25 mM results in induction of the cytochrome d synthesis. The cytochrome-d-inducing effect of uncouplers is much more pronounced when the Na+ concentration is high than when it is low. These data are in agreement with the assumption that cytochrome d is involved in the Na+ energetics substituting for the H+ energetics when the latter appears to be inefficient. Mutations in arcA or arcB genes (but not in fnr gene) completely prevent the increase in the cytochrome d level induced by uncouplers but are without effect on that induced by Na+. It is assumed that in the control of the cytochrome d synthesis, the Arc system is involved in the delta mu H+ sensing whereas sensing of delta mu Na+ (or of the Na+ concentration) is mediated by some other receptor system.
Collapse
Affiliation(s)
- A V Bogachev
- Department of Bioenergetics, A. N. Belozersky Institute of Phisico-Chemical Biology, Moscow State University, Russia
| | | | | | | |
Collapse
|
45
|
Na+ as coupling ion in energy transduction in extremophilic Bacteria and Archaea. World J Microbiol Biotechnol 1995; 11:58-70. [DOI: 10.1007/bf00339136] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Skulachev VP. Chemiosmotic concept of the membrane bioenergetics: what is already clear and what is still waiting for elucidation? J Bioenerg Biomembr 1994; 26:589-98. [PMID: 7721720 DOI: 10.1007/bf00831533] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The present state of the chemiosmotic concept is reviewed. Special attention is paid to (i) further progress in studies on the Na(+)-coupled energetics and (ii) paradoxical bioenergetic effects when protonic or sodium potentials are utilized outside the coupling membrane (TonB-mediated uphill transports across the outer bacterial membrane). A hypothesis is put forward assuming that the same principle is employed in the bacterial flagellar motor.
Collapse
Affiliation(s)
- V P Skulachev
- Department of Bioenergetics, A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia
| |
Collapse
|
47
|
Speelmans G, Poolman B, Abee T, Konings WN. The F- or V-type Na(+)-ATPase of the thermophilic bacterium Clostridium fervidus. J Bacteriol 1994; 176:5160-2. [PMID: 8051034 PMCID: PMC196361 DOI: 10.1128/jb.176.16.5160-5162.1994] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Clostridium fervidus is a thermophilic, anaerobic bacterium which uses solely Na+ as a coupling ion for energy transduction. Important features of the primary Na+ pump (ATPase) that generates the sodium motive force are presented. The advantage of using a sodium rather than a proton motive force at high temperatures becomes apparent from the effect of temperature on H+ and Na+ permeation in liposomes.
Collapse
Affiliation(s)
- G Speelmans
- Department of Microbiology, University of Groningen, Haren, The Netherlands
| | | | | | | |
Collapse
|
48
|
Reidlinger J, Müller V. Purification of ATP synthase from Acetobacterium woodii and identification as a Na(+)-translocating F1F0-type enzyme. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 223:275-83. [PMID: 8033902 DOI: 10.1111/j.1432-1033.1994.tb18992.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The ATPase of Acetobacterium woodii was purified after solubilization of membranes with Triton X-100 by poly(ethylene glycol) precipitation and gel filtration. The enzyme consists of at least six subunits of apparent molecular masses of 57, 52, 35, 19, 15 and 4.8 kDa, as determined by SDS/PAGE. The 52-kDa band is immunologically related to the F1F0-ATPase beta subunit of Escherichia coli. The enzyme is not inhibited by vanadate but is inhibited by nitrate, azide and N,N'-dicyclohexylcarbodiimide; the 4.8-kDa subunit specifically reacts with N,N'-dicyclohexyl[14C]carbodiimide, indicating that the enzyme is of the F1F0 type. The enzyme activity is dependent on MgATP (Km = 0.4), has a pH optimum of pH 7-9 and is stimulated by sulfite. ATP hydrolysis is strictly dependent on sodium ions with a Km for Na+ of 0.4 mM. The purified enzyme was reconstituted into liposomes. Upon addition of ATP, primary and electrogenic 22Na+ transport into the lumen of the proteoliposomes was determined. These experiments demonstrate that the ATPase of Acetobacterium woodii is a Na(+)-translocating F1F0-type ATPase.
Collapse
|
49
|
Skulachev VP. Bioenergetics: the evolution of molecular mechanisms and the development of bioenergetic concepts. Antonie Van Leeuwenhoek 1994; 65:271-84. [PMID: 7832586 DOI: 10.1007/bf00872213] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Possible routes for the evolution of cell energetics are considered. It is assumed that u.v. light was the primary energy source for the precursors of the primordial living cell and that primitive energetics might have been based on the use of the adenine moiety of ADP as the u.v. chromophore. It is proposed that the excitation of the adenine residue facilitated phosphorylation of its amino group with subsequent transfer of a phosphoryl group to the terminal phosphate of ADP to form ATP. ATP-driven carbohydrate synthesis is considered as a mechanism for storing u.v.-derived energy, which was then used in the dark. Glycolysis presumably produced compounds like ethanol and CO2, which easily penetrate the membrane and therefore were lost by the cell. Later lactate-producing glycolysis appeared, the end product being non-penetrant and, hence, retained inside the cell to be utilized to regenerate carbohydrates when light energy became available. Production of lactate was accompanied by accumulation of equimolar H+. To avoid acidification of the cell interior, an F0-type H+ channel was employed. Later it was supplemented with F1. This allowed the ATP energy to be used for 'uphill' H+ pumping to the medium, which was acidified due to glycolytic activity of the cells. In the subsequent course of evolution, u.v. light was replaced by visible light, which has lower energy but is less dangerous for the cell. It is assumed that bacteriorhodopsin, a simple and very stable light-driven H+ pump which still exists in halophilic and thermophilic Archaea, was the primary system utilizing visible light. The delta mu-H+ formed was used to reverse the H(+)-ATPase, which began to function as H(+)-ATP-synthase. Later, bacteriorhodopsin photosynthesis was substituted by a more efficient chlorophyll photosynthesis, producing not only ATP, but also carbohydrates. O2, a side product of this process, was consumed by the H(+)-motive respiratory chain to form delta mu-H+ in the dark. At the next stage of evolution, a parallel energy-transducing mechanism appeared which employed Na+ instead of H+ as the coupling ion (the Na+ cycle).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- V P Skulachev
- Department of Bioenergetics, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia
| |
Collapse
|
50
|
Abstract
For many bacteria Na+ bioenergetics is important as a link between exergonic and endergonic reactions in the membrane. This article focusses on two primary Na+ pumps in bacteria, the Na(+)-translocating oxaloacetate decarboxylase of Klebsiella pneumoniae and the Na(+)-translocating F1Fo ATPase of Propionigenium modestum. Oxaloacetate decarboxylase is an essential enzyme of the citrate fermentation pathway and has the additional function to conserve the free energy of decarboxylation by conversion into a Na+ gradient. Oxaloacetate decarboxylase is composed of three different subunits and the related methylmalonyl-CoA decarboxylase consists of five different subunits. The genes encoding these enzymes have been cloned and sequenced. Remarkable are large areas of complete sequence identity in the integral membrane-bound beta-subunits including two conserved aspartates that may be important for Na+ translocation. The coupling ratio of the decarboxylase Na+ pumps depended on delta muNa+ and decreased from two to zero Na+ uptake per decarboxylation event as delta mu Na+ increased from zero to the steady state level. In P. modestum, delta mu Na+ is generated in the course of succinate fermentation to propionate and CO2. This delta mu Na+ is used by a unique Na(+)-translocating F1Fo ATPase for ATP synthesis. The enzyme is related to H(+)-translocating F1Fo ATPases. The Fo part is entirely responsible for the coupling of ion specificity. A hybrid ATPase formed by in vivo complementation of an Escherichia coli deletion mutant was completely functional as a Na(+)-ATP synthase conferring the E. coli strain the ability of Na(+)-dependent growth on succinate. The hybrid consisted of subunits a, c, b, delta and part of alpha from P. modestum and of the remaining subunits from E. coli. Studies on Na+ translocation through the Fo part of the P. modestum ATPase revealed typical transporter-like properties. Sodium ions specifically protected the ATPase from the modification of glutamate-65 in subunit c by dicyclohexylcarbodiimide in a pH-dependent manner indicating that the Na+ binding site is at this highly conserved acidic amino acid residue of subunit c within the middle of the membrane.
Collapse
Affiliation(s)
- P Dimroth
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Zürich, Switzerland
| |
Collapse
|