1
|
Werner H. Key targets for small molecule drugs on the IGF1 signaling pathway. Future Med Chem 2025; 17:751-753. [PMID: 39980245 PMCID: PMC12026114 DOI: 10.1080/17568919.2025.2470105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Affiliation(s)
- Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Sabourirad S, Dimitriadis E, Mantamadiotis T. Viruses exploit growth factor mechanisms to achieve augmented pathogenicity and promote tumorigenesis. Arch Microbiol 2024; 206:193. [PMID: 38526562 PMCID: PMC10963461 DOI: 10.1007/s00203-024-03855-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/13/2024] [Accepted: 01/20/2024] [Indexed: 03/26/2024]
Abstract
Cellular homeostasis is regulated by growth factors (GFs) which orchestrate various cellular processes including proliferation, survival, differentiation, motility, inflammation and angiogenesis. Dysregulation of GFs in microbial infections and malignancies have been reported previously. Viral pathogens exemplify the exploitation of host cell GFs and their signalling pathways contributing to viral entry, virulence, and evasion of anti-viral immune responses. Viruses can also perturb cellular metabolism and the cell cycle by manipulation of GF signaling. In some cases, this disturbance may promote oncogenesis. Viral pathogens can encode viral GF homologues and induce the endogenous biosynthesis of GFs and their corresponding receptors or manipulate their activity to infect the host cells. Close investigation of how viral strategies exploit and regulate GFs, a will shed light on how to improve anti-viral therapy and cancer treatment. In this review, we discuss and provide insights on how various viral pathogens exploit different GFs to promote viral survival and oncogenic transformation, and how this knowledge can be leveraged toward the design of more efficient therapeutics or novel drug delivery systems in the treatment of both viral infections and malignancies.
Collapse
Affiliation(s)
- Sarvenaz Sabourirad
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia.
| | - Evdokia Dimitriadis
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia
- Gynaecology Research Centre, Royal Women's Hospital, Parkville, VIC, Australia
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Theo Mantamadiotis
- Department of Surgery RMH, The University of Melbourne, Parkville, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
3
|
Carcaboso AM. Results from the Children's Oncology Group phase III trial of a monoclonal antibody against the insulin-like growth factor-1 receptor in patients with newly diagnosed metastatic Ewing sarcoma. Transl Pediatr 2023; 12:1916-1919. [PMID: 37969125 PMCID: PMC10644028 DOI: 10.21037/tp-23-388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/14/2023] [Indexed: 11/17/2023] Open
Affiliation(s)
- Angel M. Carcaboso
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain
- Pediatric Cancer Program, Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| |
Collapse
|
4
|
Werner H. The IGF1 Signaling Pathway: From Basic Concepts to Therapeutic Opportunities. Int J Mol Sci 2023; 24:14882. [PMID: 37834331 PMCID: PMC10573540 DOI: 10.3390/ijms241914882] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Insulin-like growth factor 1 (IGF1) is a peptide growth factor with important functions in multiple aspects of growth, development and metabolism. The biological actions of IGF1 are mediated by the IGF1 receptor (IGF1R), a cell-surface protein that is evolutionarily related to the insulin receptor (InsR). The effects of IGF1 are moderated by a group of binding proteins (IGFBPs) that bind and transport the ligand in the circulation and extracellular fluids. In mechanistic terms, IGF1R function is linked to the MAPK and PI3K signaling pathways. Furthermore, IGF1R has been shown to migrate to cell nucleus, where it functions as a transcriptional activator. The co-localization of IGF1R and MAPK in the nucleus is of major interest as it suggests novel mechanistic paradigms for the IGF1R-MAPK network. Given its potent anti-apoptotic and pro-survival roles, and in view of its almost universal pattern of expression in most types of cancer, IGF1R has emerged as a promising molecular target in oncology. The present review article provides a concise overview of key scientific developments in the research area of IGF and highlights a number of more recent findings, including its nuclear migration and its interaction with oncogenes and tumor suppressors.
Collapse
Affiliation(s)
- Haim Werner
- Department of Human Molecular Genetics and Biochemistry, School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
5
|
Maxia C, Isola M, Grecu E, Cuccu A, Scano A, Orrù G, Di Girolamo N, Diana A, Murtas D. Synergic Action of Insulin-like Growth Factor-2 and miRNA-483 in Pterygium Pathogenesis. Int J Mol Sci 2023; 24:ijms24054329. [PMID: 36901760 PMCID: PMC10002351 DOI: 10.3390/ijms24054329] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Pterygium is a multifactorial disease in which UV-B is speculated to play a key role by inducing oxidative stress and phototoxic DNA damage. In search for candidate molecules that are useful for justifying the intense epithelial proliferation observed in pterygium, our attention has been focused on Insulin-like Growth Factor 2 (IGF-2), mainly detected in embryonic and fetal somatic tissues, which regulate metabolic and mitogenic functions. The binding between IGF-2 and its receptor Insulin-like Growth Factor 1 Receptor (IGF-1R) activates the PI3K-AKT pathway, which leads to the regulation of cell growth, differentiation, and the expression of specific genes. Since IGF2 is regulated by parental imprinting, in different human tumors, the IGF2 Loss of Imprinting (LOI) results in IGF-2- and IGF2-derived intronic miR-483 overexpression. Based on these activities, the purpose of this study was to investigate the overexpression of IGF-2, IGF-1R, and miR-483. Using an immunohistochemical approach, we demonstrated an intense colocalized epithelial overexpression of IGF-2 and IGF-1R in most pterygium samples (Fisher's exact test, p = 0.021). RT-qPCR gene expression analysis confirmed IGF2 upregulation and demonstrated miR-483 expression in pterygium compared to normal conjunctiva (253.2-fold and 12.47-fold, respectively). Therefore, IGF-2/IGF-1R co-expression could suggest their interplay through the two different paracrine/autocrine IGF-2 routes for signaling transfer, which would activate the PI3K/AKT signaling pathway. In this scenario, miR-483 gene family transcription might synergically reinforce IGF-2 oncogenic function through its boosting pro-proliferative and antiapoptotic activity.
Collapse
Affiliation(s)
- Cristina Maxia
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
- Correspondence:
| | - Michela Isola
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Eleonora Grecu
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Alberto Cuccu
- Department of Surgical Science, Eye Clinic, Azienda Ospedaliero-Universitaria (AOU), 09123 Cagliari, Italy
| | - Alessandra Scano
- Department of Surgical Sciences, Molecular Biology Service Laboratory, University of Cagliari, 09123 Cagliari, Italy
| | - Germano Orrù
- Department of Surgical Sciences, Molecular Biology Service Laboratory, University of Cagliari, 09123 Cagliari, Italy
| | - Nick Di Girolamo
- Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 4385, Australia
| | - Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Daniela Murtas
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| |
Collapse
|
6
|
Werner H, LeRoith D. Hallmarks of cancer: The insulin-like growth factors perspective. Front Oncol 2022; 12:1055589. [PMID: 36479090 PMCID: PMC9720135 DOI: 10.3389/fonc.2022.1055589] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/07/2022] [Indexed: 08/30/2023] Open
Abstract
The identification of a series of attributes or hallmarks that are shared by virtually all cancer cells constitutes a true milestone in cancer research. The conceptualization of a catalogue of common genetic, molecular, biochemical and cellular events under a unifying Hallmarks of Cancer idea had a major impact in oncology. Furthermore, the fact that different types of cancer, ranging from pediatric tumors and leukemias to adult epithelial cancers, share a large number of fundamental traits reflects the universal nature of the biological events involved in oncogenesis. The dissection of a complex disease like cancer into a finite directory of hallmarks is of major basic and translational relevance. The role of insulin-like growth factor-1 (IGF1) as a progression/survival factor required for normal cell cycle transition has been firmly established. Similarly well characterized are the biochemical and cellular activities of IGF1 and IGF2 in the chain of events leading from a phenotypically normal cell to a diseased one harboring neoplastic traits, including growth factor independence, loss of cell-cell contact inhibition, chromosomal abnormalities, accumulation of mutations, activation of oncogenes, etc. The purpose of the present review is to provide an in-depth evaluation of the biology of IGF1 at the light of paradigms that emerge from analysis of cancer hallmarks. Given the fact that the IGF1 axis emerged in recent years as a promising therapeutic target, we believe that a careful exploration of this signaling system might be of critical importance on our ability to design and optimize cancer therapies.
Collapse
Affiliation(s)
- Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Derek LeRoith
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
7
|
Sipos F, Bohusné Barta B, Simon Á, Nagy L, Dankó T, Raffay RE, Petővári G, Zsiros V, Wichmann B, Sebestyén A, Műzes G. Survival of HT29 Cancer Cells Is Affected by IGF1R Inhibition via Modulation of Self-DNA-Triggered TLR9 Signaling and the Autophagy Response. Pathol Oncol Res 2022; 28:1610322. [PMID: 35651701 PMCID: PMC9148969 DOI: 10.3389/pore.2022.1610322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/27/2022] [Indexed: 02/05/2023]
Abstract
Purpose: In HT29 colon cancer cells, a close interplay between self-DNA-induced TLR9 signaling and autophagy response was found, with remarkable effects on cell survival and differentiation. IGF1R activation drives the development and malignant progression of colorectal cancer. IGF1R inhibition displays a controversial effect on autophagy. The interrelated roles of IGF1R inhibition and TLR9/autophagy signaling in HT29 cancer cells have not yet been clarified. In our study, we aimed to investigate the complex interplay of IGF1R inhibition and TLR9/autophagy signaling in HT29 cells. Methods: HT29 cells were incubated with tumor-originated self-DNA with or without inhibitors of IGF1R (picropodophyllin), autophagy (chloroquine), and TLR9 (ODN2088), respectively. Cell proliferation and metabolic activity measurements, direct cell counting, NanoString and Taqman gene expression analyses, immunocytochemistry, WES Simple Western blot, and transmission electron microscopy investigations were performed. Results: The concomitant use of tumor-derived self-DNA and IGF1R inhibitors displays anti-proliferative potential, which can be reversed by parallel TLR9 signaling inhibition. The distinct effects of picropodophyllin, ODN2088, and chloroquine per se or in combination on HT29 cell proliferation and autophagy suggest that either the IGF1R-associated or non-associated autophagy machinery is "Janus-faced" regarding its actions on cell proliferation. Autophagy, induced by different combinations of self-DNA and inhibitors is not sufficient to rescue HT29 cells from death but results in the survival of some CD133-positive stem-like HT29 cells. Conclusion: The creation of new types of combined IGF1R, autophagy, and/or TLR9 signaling inhibitors would play a significant role in the development of more personalized anti-tumor therapies for colorectal cancer.
Collapse
Affiliation(s)
- Ferenc Sipos
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
| | - Bettina Bohusné Barta
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
| | - Ágnes Simon
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
| | - Lőrinc Nagy
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
| | - Titanilla Dankó
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Regina Eszter Raffay
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Gábor Petővári
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Viktória Zsiros
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | | | - Anna Sebestyén
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Györgyi Műzes
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
8
|
Lipopeptides in promoting signals at surface/interface of micelles: Their roles in repairing cellular and nuclear damages. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Moens U, Prezioso C, Pietropaolo V. Functional Domains of the Early Proteins and Experimental and Epidemiological Studies Suggest a Role for the Novel Human Polyomaviruses in Cancer. Front Microbiol 2022; 13:834368. [PMID: 35250950 PMCID: PMC8894888 DOI: 10.3389/fmicb.2022.834368] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
As their name indicates, polyomaviruses (PyVs) can induce tumors. Mouse PyV, hamster PyV and raccoon PyV have been shown to cause tumors in their natural host. During the last 30 years, 15 PyVs have been isolated from humans. From these, Merkel cell PyV is classified as a Group 2A carcinogenic pathogen (probably carcinogenic to humans), whereas BKPyV and JCPyV are class 2B (possibly carcinogenic to humans) by the International Agency for Research on Cancer. Although the other PyVs recently detected in humans (referred to here as novel HPyV; nHPyV) share many common features with PyVs, including the viral oncoproteins large tumor antigen and small tumor antigen, as their role in cancer is questioned. This review discusses whether the nHPyVs may play a role in cancer based on predicted and experimentally proven functions of their early proteins in oncogenic processes. The functional domains that mediate the oncogenic properties of early proteins of known PyVs, that can cause cancer in their natural host or animal models, have been well characterized and we examined whether these functional domains are conserved in the early proteins of the nHPyVs and presented experimental evidence that these conserved domains are functional. Furthermore, we reviewed the literature describing the detection of nHPyV in human tumors.
Collapse
Affiliation(s)
- Ugo Moens
- Faculty of Health Sciences, Department of Medical Biology, University of Tromsø – The Arctic University of Norway, Tromsø, Norway
- *Correspondence: Ugo Moens,
| | - Carla Prezioso
- Microbiology of Chronic Neuro-Degenerative Pathologies, IRCSS San Raffaele Roma, Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- Valeria Pietropaolo,
| |
Collapse
|
10
|
Targeting the IGF-1R in prostate and colorectal cancer: reasons behind trial failure and future directions. Ther Deliv 2022; 13:167-186. [PMID: 35029130 DOI: 10.4155/tde-2021-0060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
IGF-1Rs enact a significant part in cancer growth and its progress. IGF-1R inhibitors were encouraged in the early trials, but the patients did not benefit due to the unavailability of predictive biomarkers and IGF-1R system complexity. However, the linkage between IGF-1R and cancer was reported three decades ago. This review will shed light on the IGF-1R system, targeting IGF-1R through monoclonal antibodies, reasons behind IGF-1R trial failure and future directions. This study presented that targeting IGF-1R through monoclonal antibodies is still effective in cancer treatment, and there is a need to look for future directions. Cancer patients may benefit from using mAbs that target existing and new cancer targets, evidenced by promising results. It is also essential that the academician, trial experts and pharmaceutical companies play their role in finding a treatment for this deadly disease.
Collapse
|
11
|
Unraveling the IGF System Interactome in Sarcomas Exploits Novel Therapeutic Options. Cells 2021; 10:cells10082075. [PMID: 34440844 PMCID: PMC8392407 DOI: 10.3390/cells10082075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Aberrant bioactivity of the insulin-like growth factor (IGF) system results in the development and progression of several pathologic conditions including cancer. Preclinical studies have shown promising anti-cancer therapeutic potentials for anti-IGF targeted therapies. However, a clear but limited clinical benefit was observed only in a minority of patients with sarcomas. The molecular complexity of the IGF system, which comprises multiple regulators and interactions with other cancer-related pathways, poses a major limitation in the use of anti-IGF agents and supports the need of combinatorial therapeutic strategies to better tackle this axis. In this review, we will initially highlight multiple mechanisms underlying IGF dysregulation in cancer and then focus on the impact of the IGF system and its complexity in sarcoma development and progression as well as response to anti-IGF therapies. We will also discuss the role of Ephrin receptors, Hippo pathway, BET proteins and CXCR4 signaling, as mediators of sarcoma malignancy and relevant interactors with the IGF system in tumor cells. A deeper understanding of these molecular interactions might provide the rationale for novel and more effective therapeutic combinations to treat sarcomas.
Collapse
|
12
|
Cheng Y, Li W, Gui R, Wang C, Song J, Wang Z, Wang X, Shen Y, Wang Z, Hao L. Dual Characters of GH-IGF1 Signaling Pathways in Radiotherapy and Post-radiotherapy Repair of Cancers. Front Cell Dev Biol 2021; 9:671247. [PMID: 34178997 PMCID: PMC8220142 DOI: 10.3389/fcell.2021.671247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022] Open
Abstract
Radiotherapy remains one of the most important cancer treatment modalities. In the course of radiotherapy for tumor treatment, the incidental irradiation of adjacent tissues could not be completely avoided. DNA damage is one of the main factors of cell death caused by ionizing radiation, including single-strand (SSBs) and double-strand breaks (DSBs). The growth hormone-Insulin-like growth factor 1 (GH-IGF1) axis plays numerous roles in various systems by promoting cell proliferation and inhibiting apoptosis, supporting its effects in inducing the development of multiple cancers. Meanwhile, the GH-IGF1 signaling involved in DNA damage response (DDR) and DNA damage repair determines the radio-resistance of cancer cells subjected to radiotherapy and repair of adjacent tissues damaged by radiotherapy. In the present review, we firstly summarized the studies on GH-IGF1 signaling in the development of cancers. Then we discussed the adverse effect of GH-IGF1 signaling in radiotherapy to cancer cells and the favorable impact of GH-IGF1 signaling on radiation damage repair to adjacent tissues after irradiation. This review further summarized recent advances on research into the molecular mechanism of GH-IGF1 signaling pathway in these effects, expecting to specify the dual characters of GH-IGF1 signaling pathways in radiotherapy and post-radiotherapy repair of cancers, subsequently providing theoretical basis of their roles in increasing radiation sensitivity during cancer radiotherapy and repairing damage after radiotherapy.
Collapse
Affiliation(s)
- Yunyun Cheng
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Wanqiao Li
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Ruirui Gui
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Chunli Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Jie Song
- College of Animal Science, Jilin University, Changchun, China
| | - Zhaoguo Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Xue Wang
- The First Hospital of Jilin University, Changchun, China
| | - Yannan Shen
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Zhicheng Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
13
|
Novel Regulators of the IGF System in Cancer. Biomolecules 2021; 11:biom11020273. [PMID: 33673232 PMCID: PMC7918569 DOI: 10.3390/biom11020273] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
The insulin-like growth factor (IGF) system is a dynamic network of proteins, which includes cognate ligands, membrane receptors, ligand binding proteins and functional downstream effectors. It plays a critical role in regulating several important physiological processes including cell growth, metabolism and differentiation. Importantly, alterations in expression levels or activation of components of the IGF network are implicated in many pathological conditions including diabetes, obesity and cancer initiation and progression. In this review we will initially cover some general aspects of IGF action and regulation in cancer and then focus in particular on the role of transcriptional regulators and novel interacting proteins, which functionally contribute in fine tuning IGF1R signaling in several cancer models. A deeper understanding of the biological relevance of this network of IGF1R modulators might provide novel therapeutic opportunities to block this system in neoplasia.
Collapse
|
14
|
Werner H, Laron Z. Role of the GH-IGF1 system in progression of cancer. Mol Cell Endocrinol 2020; 518:111003. [PMID: 32919021 DOI: 10.1016/j.mce.2020.111003] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022]
Abstract
Emerging evidence links the growth hormone (GH)-insulin-like growth factor-1 (IGF1) endocrine axis to cancer development. While this putative correlation is of major translational relevance, most clinical and epidemiological reports to date found no causal linkage between GH therapy and enhanced cancer risk. Thus, it is generally agreed that GH therapy constitutes a safe pharmacological intervention. The present review focuses on a number of issues in the area of GH-IGF1 action in cancer development. Emphasis is given to the idea that GH and IGF1 do not conform to the definition of oncogenic factors. Specifically, these hormones, even at high pharmacological doses, are unable to induce malignant transformation. However, the GH-IGF1 axis is capable of 'pushing' already transformed cells through the various phases of the cell cycle. Viral and cellular oncogenes require an intact IGF1 signaling pathway in order to elicit transformation; in other words, oncogenic agents adopt the IGF1 pathway. This universal mechanism of action of oncogenes has broad implications in oncology. Our review provides an in-depth analysis of the interplay between the GH-IGF1 axis and cancer genes, including tumor suppressors p53 and BRCA1. Finally, the safety of GH therapy in both children and adults needs further long-term follow-up studies.
Collapse
Affiliation(s)
- Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Yoran Institute for Human Genome Research, Tel Aviv University, Tel Aviv, Israel.
| | - Zvi Laron
- Endocrinology and Diabetes Research Unit, Schneider Children's Medical Center, Petah Tikva, Israel
| |
Collapse
|
15
|
Ha DP, Lee AS. Insulin-like growth factor 1-receptor signaling stimulates GRP78 expression through the PI3K/AKT/mTOR/ATF4 axis. Cell Signal 2020; 75:109736. [PMID: 32805346 DOI: 10.1016/j.cellsig.2020.109736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/06/2020] [Accepted: 08/09/2020] [Indexed: 01/09/2023]
Abstract
GRP78, a major molecular chaperone, is critical for the folding and maturation of membrane and secretory proteins and serves as the master regulator of the unfolded protein response. Thus, GRP78 is frequently upregulated in highly proliferative cells to cope with elevated protein synthesis and metabolic stress. IGF-1 is a potent regulator of cell growth, metabolism and survival. Previously we discovered that GRP78 is a novel downstream target of IGF-1 signaling by utilizing mouse embryonic fibroblast model systems where the IGF-1 receptor (IGF-1R) was either overexpressed (R+) or knockout (R-). Here we investigated the mechanisms whereby GRP78 is upregulated in the R+ cells. Our studies revealed that suppression of PI3K/AKT/mTOR downstream of IGF-1R signaling resulted in concurrent decrease in GRP78 and the transcription factor ATF4. Through knock-down and overexpression studies, we established ATF4 as the essential downstream nodal of the PI3K/AKT/mTOR signaling pathway critical for GRP78 transcriptional upregulation mediated by IGF-1R.
Collapse
Affiliation(s)
- Dat P Ha
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Amy S Lee
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
16
|
Farabaugh SM, Litzenburger BC, Elangovan A, Pecar G, Walheim L, Atkinson JM, Lee AV. IGF1R constitutive activation expands luminal progenitors and influences lineage differentiation during breast tumorigenesis. Dev Biol 2020; 463:77-87. [PMID: 32376245 DOI: 10.1016/j.ydbio.2020.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/11/2020] [Accepted: 04/15/2020] [Indexed: 12/16/2022]
Abstract
Breast tumors display tremendous heterogeneity in part due to varying molecular alterations, divergent cells of origin, and differentiation. Understanding where and how this heterogeneity develops is likely important for effective breast cancer eradication. Insulin-like growth factor (IGF) signaling is critical for normal mammary gland development and function, and has an established role in tumor development and resistance to therapy. Here we demonstrate that constitutive activation of the IGF1 receptor (IGF1R) influences lineage differentiation during mammary tumorigenesis. Transgenic IGF1R constitutive activation promotes tumors with mixed histologies, multiple cell lineages and an expanded bi-progenitor population. In these tumors, IGF1R expands the luminal-progenitor population while influencing myoepithelial differentiation. Mammary gland transplantation with IGF1R-infected mammary epithelial cells (MECs) resulted in hyperplastic, highly differentiated outgrowths and attenuated reconstitution. Restricting IGF1R constitutive activation to luminal versus myoepithelial lineage-sorted MECs resulted in ductal reconstitutions co-expressing high IGF1R levels in the opposite lineage of origin. Using in vitro models, IGF1R constitutively activated MCF10A cells showed increased mammosphere formation and CD44+/CD24-population, which was dependent upon Snail and NFκB signaling. These results suggest that IGF1R expands luminal progenitor populations while also stimulating myoepithelial cell differentiation. This ability to influence lineage differentiation may promote heterogeneous mammary tumors, and have implications for clinical treatment.
Collapse
Affiliation(s)
- Susan M Farabaugh
- Women's Cancer Research Center, Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, Magee Women's Research Institute, USA
| | - Beate C Litzenburger
- Lester and Sue Smith Breast Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ashuvinee Elangovan
- Women's Cancer Research Center, Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, Magee Women's Research Institute, USA
| | - Geoffrey Pecar
- Women's Cancer Research Center, Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, Magee Women's Research Institute, USA
| | - Lauren Walheim
- Women's Cancer Research Center, Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, Magee Women's Research Institute, USA
| | - Jennifer M Atkinson
- Women's Cancer Research Center, Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, Magee Women's Research Institute, USA
| | - Adrian V Lee
- Women's Cancer Research Center, Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, Magee Women's Research Institute, USA.
| |
Collapse
|
17
|
Sinai-Livne T, Pasmanik-Chor M, Cohen Z, Tsarfaty I, Werner H, Berger R. Proteomic analysis of combined IGF1 receptor targeted therapy and chemotherapy identifies signatures associated with survival in breast cancer patients. Oncotarget 2020; 11:1515-1530. [PMID: 32391121 PMCID: PMC7197451 DOI: 10.18632/oncotarget.27566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/03/2020] [Indexed: 01/05/2023] Open
Abstract
Clinical, epidemiological and experimental data identified the insulin-like growth factor-1 receptor (IGF1R) as a candidate therapeutic target in oncology. While this paradigm is based on well-established biological facts, including the potent anti-apoptotic and cell survival capabilities of the receptor, most Phase III clinical trials designed to target the IGF1R led to disappointing results. The present study was aimed at evaluating the hypothesis that combined treatment composed of selective IGF1R inhibitor along with classical chemotherapy might be more effective than individual monotherapies in breast cancer treatment. Analyses included comprehensive measurements of the synergism achieved by various combination regimens using the CompuSyn software. In addition, proteomic analyses were conducted to identify the proteins involved in the synergistic killing effect at a global level. Data presented here demonstrates that co-treatment of IGF1R inhibitor along with chemotherapeutic drugs markedly improves the therapeutic efficiency in breast cancer cells. Of clinical relevance, our analyses indicate that high IGF1R baseline expression may serve as a predictive biomarker for IGF1R targeted therapy. In addition, we identified a ten-genes signature with potential predictive value. In conclusion, the use of a series of bioinformatics tools shed light on some of the biological pathways that might be responsible for synergysm in cancer therapy.
Collapse
Affiliation(s)
- Tali Sinai-Livne
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Zoya Cohen
- Institute of Oncology, Chaim Sheba Medical Center, Tel Hashomer 52620, Israel
| | - Ilan Tsarfaty
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.,Yoran Institute for Human Genome Research, Tel Aviv University, Tel Aviv 69978, Israel
| | - Raanan Berger
- Institute of Oncology, Chaim Sheba Medical Center, Tel Hashomer 52620, Israel
| |
Collapse
|
18
|
Rieger L, O’Connor R. Controlled Signaling-Insulin-Like Growth Factor Receptor Endocytosis and Presence at Intracellular Compartments. Front Endocrinol (Lausanne) 2020; 11:620013. [PMID: 33584548 PMCID: PMC7878670 DOI: 10.3389/fendo.2020.620013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022] Open
Abstract
Ligand-induced activation of the IGF-1 receptor triggers plasma-membrane-derived signal transduction but also triggers receptor endocytosis, which was previously thought to limit signaling. However, it is becoming ever more clear that IGF-1R endocytosis and trafficking to specific subcellular locations can define specific signaling responses that are important for key biological processes in normal cells and cancer cells. In different cell types, specific cell adhesion receptors and associated proteins can regulate IGF-1R endocytosis and trafficking. Once internalized, the IGF-1R may be recycled, degraded or translocated to the intracellular membrane compartments of the Golgi apparatus or the nucleus. The IGF-1R is present in the Golgi apparatus of migratory cancer cells where its signaling contributes to aggressive cancer behaviors including cell migration. The IGF-1R is also found in the nucleus of certain cancer cells where it can regulate gene expression. Nuclear IGF-1R is associated with poor clinical outcomes. IGF-1R signaling has also been shown to support mitochondrial biogenesis and function, and IGF-1R inhibition causes mitochondrial dysfunction. How IGF-1R intracellular trafficking and compartmentalized signaling is controlled is still unknown. This is an important area for further study, particularly in cancer.
Collapse
|
19
|
Adachi Y, Nojima M, Mori M, Kubo T, Yamano HO, Lin Y, Wakai K, Tamakoshi A. Circulating insulin-like growth factor binding protein-3 and risk of gastrointestinal malignant tumors. J Gastroenterol Hepatol 2019; 34:2104-2111. [PMID: 31158304 DOI: 10.1111/jgh.14753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/21/2019] [Accepted: 05/27/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND AIM Insulin-like growth factor-1 (IGF1) is a potent mitogen and is inhibited by IGF-binding protein-3 (IGFBP3). High serum IGF1 and low IGFBP3 are associated with increased risk of several carcinomas. Here, we assessed the relationship of these peptides with the risk of gastrointestinal malignancies, in a prospective case-control study nested in the Japan Collaborative Cohort Study. METHODS The analysis involved 916 cases who had been diagnosed as gastrointestinal malignancies (C15-25) and 2306 controls. To estimate odds ratios for incidence of malignancies associated with these levels, a conditional logistic model was used. RESULTS Both higher total and free IGFBP3 were associated with a decreased risk of tumor (P for trend < 0.001 and = 0.003, respectively). People in the second to fifth quintiles had lower risk compared to the first quintile (odds ratios ranged 0.532-0.650 and 0.582-0.725, respectively). After adjustment for IGF1, body mass index, drinking, and smoking, total IGFBP3 was inversely correlated with cancer risk (P for trend = 0.031). After adjustment, free IGFBP3 was inversely associated with the risk (P for trend = 0.007). Although total IGF1 was inversely correlated with tumor risk, it was not after controlling for IGFBP3 (P for trend = 0.007 and 0.589, respectively). Free IGF1 was not associated with the risk (P for trend = 0.361). Limiting subjects to those followed for over 3 years reinforced the inverted relationships of total and free IGFBP3 with risk for tumors (P for trend = 0.005 and 0.008, respectively). CONCLUSION Both total and free IGFBP3 may be inversely associated with the incidence of gastrointestinal malignancies.
Collapse
Affiliation(s)
- Yasushi Adachi
- Division of Gastroenterology, Department of Internal Medicine, Sapporo Shirakaba-dai Hospital, Sapporo, Japan
- Department of Gastroenterology and Hepatology, Sapporo Medical University, Sapporo, Japan
| | - Masanori Nojima
- The Institute of Medical Science Hospital, The University of Tokyo, Tokyo, Japan
| | - Mitsuru Mori
- Hokkaido Chitose College of Rehabilitation, Chitose, Japan
| | - Toshiyuki Kubo
- Division of Gastroenterology, Department of Internal Medicine, Sapporo Shirakaba-dai Hospital, Sapporo, Japan
- Department of Gastroenterology and Hepatology, Sapporo Medical University, Sapporo, Japan
| | - Hiro-O Yamano
- Department of Gastroenterology and Hepatology, Sapporo Medical University, Sapporo, Japan
| | - Yingsong Lin
- Department of Public Health, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | - Akiko Tamakoshi
- Department of Public Health, Hokkaido University Faculty of Medicine, Sapporo, Japan
| |
Collapse
|
20
|
Werner H, Sarfstein R, Bruchim I. Investigational IGF1R inhibitors in early stage clinical trials for cancer therapy. Expert Opin Investig Drugs 2019; 28:1101-1112. [PMID: 31731883 DOI: 10.1080/13543784.2019.1694660] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: The insulin-like growth factors (IGFs) are a family of secreted peptide hormones with important roles in different cellular and organism functions. The biological activities of the IGFs are mediated by the IGF1 receptor (IGF1R), a cell surface, tyrosine kinase-containing heterotetramer that is linked to numerous cytoplasmic signaling cascades. The IGF1R displays potent antiapoptotic, pro-survival capacities and plays a key role in malignant transformation. Research has identified the IGF1R as a candidate therapeutic target in cancer.Areas covered: We offer a synopsis of ongoing efforts to target the IGF axis for therapeutic purposes. Our review includes a digest of early experimental work that led to the identification of IGF1R as a candidate therapeutic target in oncology.Expert opinion: Targeting of the IGF axis has yielded disappointing results in phase III trials, but it is important to learn from this to improve future trials in a rational manner. The potential of anti-IGF1R antibodies and small molecular weight inhibitors, alone or in combination with chemotherapy or other biological agents, should be investigated further in randomized studies. Moreover, the implementation of predictive biomarkers for patient selection will improve the outcome of future trials. Emerging personalized medicine could have a major impact on IGF1R targeting.
Collapse
Affiliation(s)
- Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Yoran Institute for Human Genome Research, Tel Aviv University, Tel Aviv, Israel
| | - Rive Sarfstein
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ilan Bruchim
- Gynecologic Oncology Division, Hillel Yaffe Medical Center, Technion Institute of Technology, Haifa, Israel
| |
Collapse
|
21
|
Selfe J, Shipley JM. IGF signalling in germ cells and testicular germ cell tumours: roles and therapeutic approaches. Andrology 2019; 7:536-544. [PMID: 31179642 PMCID: PMC6771568 DOI: 10.1111/andr.12658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/01/2019] [Accepted: 05/05/2019] [Indexed: 02/06/2023]
Abstract
The insulin-like growth factor (IGF) axis plays key roles in normal tissue growth and development as well as in the progression of several tumour types and their subsequent growth and progression to a metastatic phenotype. This review explores the role of IGF system in normal germ cell development and function in addition to examining the evidence for deregulation of IGF signalling in cancer, with particular relevance to evidence supporting a role in testicular germ cell tumours (TGCTs). Despite the clear preclinical rationale for targeting the IGF axis in cancer, there has been a lack of progress in identifying which patients may benefit from such therapy. Future employment of agents targeting the IGF pathway is expected to concentrate on their use in combination with other treatments to prevent resistance and exploit their potential as chemo- and radiosensitizers.
Collapse
Affiliation(s)
- J Selfe
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - J M Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| |
Collapse
|
22
|
Al-Tamimi J, Semlali A, Hassan I, Ebaid H, Alhazza IM, Mehdi SH, Al-Khalifa M, Alanazi MS. Samsum Ant Venom Exerts Anticancer Activity Through Immunomodulation In Vitro and In Vivo. Cancer Biother Radiopharm 2018; 33:65-73. [PMID: 29634416 DOI: 10.1089/cbr.2017.2400] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Samsum ant venom (SAV) is a rich repertoire of natural compounds with tremendous pharmacological properties. The present work explores its antineoplastic activity in different cell lines followed by its confirmation in vivo. The cell lines, HepG2, MCF-7, and LoVo showed the differential dose-dependent antineoplastic effect with an increased level of significant cytokines, including Interleukin (IL)-1β, IL-6, and IL-8 and transcription factor, Nuclear factor-kappa B (NF-κB). However, the venom was more effective on HepG2 and MCF-7 cells than LoVo cells. Furthermore, the extract was administered to four groups (n = 8) of rats. Group I was taken as a control without any treatment, whereas group II received CCl4 (1 mL/kg) for induction of mild hepatoma. Group III was given 100 μg/kg of SAV twice a week for 1 month. Group IV was pretreated with the CCl4 (like group II) followed by dosing with SAV (100 μg/kg) for 2 months as per the authors' prestandardized dosing schedule. Intriguingly, the rats of group IV demonstrated significant decrease in key cytokines, IL-1β and IL-6, as well as the transcription factors, including Tumor Necrosis Factor-alpha (TNF-α), NF-κB, and Inhibitor-kappa B (I-κB) as compared with group II. Furthermore, increase in IL-10 and First apoptosis signal (FAS) in the same group confirmed that SAV induces apoptosis at the given dose through immunomodulation leading to enhanced tumor killing in vivo. Hence, SAV has an excellent antineoplastic activity that can be directly used to treat certain types of cancer. Moreover, study of its ingredients can pave ways to design novel anticancer drugs. However, further in-depth investigation is required before its clinical trials.
Collapse
Affiliation(s)
- Jameel Al-Tamimi
- 1 Department of Zoology, College of Science, King Saud University , Riyadh, Saudi Arabia
| | - Abdelhabib Semlali
- 2 Genome Research Chair, Department of Biochemistry, College of Science, King Saud University , Riyadh, Saudi Arabia
| | - Iftekhar Hassan
- 1 Department of Zoology, College of Science, King Saud University , Riyadh, Saudi Arabia
| | - Hossam Ebaid
- 1 Department of Zoology, College of Science, King Saud University , Riyadh, Saudi Arabia
| | - Ibrahim M Alhazza
- 1 Department of Zoology, College of Science, King Saud University , Riyadh, Saudi Arabia
| | - Syed H Mehdi
- 3 Department of Geriatrics, Donald W Reynolds Institute of Aging , UAMS Little Rock, Little Rock, Arkansas
| | - Mohammed Al-Khalifa
- 1 Department of Zoology, College of Science, King Saud University , Riyadh, Saudi Arabia
| | - Mohammad S Alanazi
- 2 Genome Research Chair, Department of Biochemistry, College of Science, King Saud University , Riyadh, Saudi Arabia
| |
Collapse
|
23
|
Cevenini A, Orrù S, Mancini A, Alfieri A, Buono P, Imperlini E. Molecular Signatures of the Insulin-like Growth Factor 1-mediated Epithelial-Mesenchymal Transition in Breast, Lung and Gastric Cancers. Int J Mol Sci 2018; 19:ijms19082411. [PMID: 30111747 PMCID: PMC6122069 DOI: 10.3390/ijms19082411] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 02/07/2023] Open
Abstract
The insulin-like growth factor (IGF) system, which is constituted by the IGF-1 and IGF-2 peptide hormones, their corresponding receptors and several IGF binding proteins, is involved in physiological and pathophysiological processes. The IGF system promotes cancer proliferation/survival and its signaling induces the epithelial-mesenchymal transition (EMT) phenotype, which contributes to the migration, invasiveness, and metastasis of epithelial tumors. These cancers share two major IGF-1R signaling transduction pathways, PI3K/AKT and RAS/MEK/ERK. However, as far as we could review at this time, each type of cancer cell undergoes EMT through tumor-specific routes. Here, we review the tumor-specific molecular signatures of IGF-1-mediated EMT in breast, lung, and gastric cancers.
Collapse
Affiliation(s)
- Armando Cevenini
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Via S. Pansini 5, 80131 Napoli, Italy.
- CEINGE-Biotecnologie Avanzate S.c.a r.l., Via G. Salvatore 486, 80145 Napoli, Italy.
| | - Stefania Orrù
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Via Medina 40, 80133 Napoli, Italy.
- IRCCS SDN, Via Francesco Crispi 8, 80121 Napoli, Italy.
| | - Annamaria Mancini
- CEINGE-Biotecnologie Avanzate S.c.a r.l., Via G. Salvatore 486, 80145 Napoli, Italy.
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Via Medina 40, 80133 Napoli, Italy.
| | - Andreina Alfieri
- CEINGE-Biotecnologie Avanzate S.c.a r.l., Via G. Salvatore 486, 80145 Napoli, Italy.
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Via Medina 40, 80133 Napoli, Italy.
| | - Pasqualina Buono
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Via Medina 40, 80133 Napoli, Italy.
- IRCCS SDN, Via Francesco Crispi 8, 80121 Napoli, Italy.
| | | |
Collapse
|
24
|
Mancarella C, Scotlandi K. IGF system in sarcomas: a crucial pathway with many unknowns to exploit for therapy. J Mol Endocrinol 2018; 61:T45-T60. [PMID: 29273680 DOI: 10.1530/jme-17-0250] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022]
Abstract
The insulin-like growth factor (IGF) system has gained substantial interest due to its involvement in regulating cell proliferation, differentiation and survival during anoikis and after conventional and targeted therapies. However, results from clinical trials have been largely disappointing, with only a few but notable exceptions, such as trials targeting sarcomas, especially Ewing sarcoma. This review highlights key studies focusing on IGF signaling in sarcomas, specifically studies underscoring the properties that make this system an attractive therapeutic target and identifies new relationships that may be exploited. This review discusses the potential roles of IGF2 mRNA-binding proteins (IGF2BPs), discoidin domain receptors (DDRs) and metalloproteinase pregnancy-associated plasma protein-A (PAPP-A) in regulating the IGF system. Deeper investigation of these novel regulators of the IGF system may help us to further elucidate the spatial and temporal control of the IGF axis, as understanding the control of this axis is essential for future clinical studies.
Collapse
Affiliation(s)
- Caterina Mancarella
- Experimental Oncology Lab, CRS Development of Biomolecular Therapies, Orthopaedic Rizzoli Institute, Bologna, Italy
| | - Katia Scotlandi
- Experimental Oncology Lab, CRS Development of Biomolecular Therapies, Orthopaedic Rizzoli Institute, Bologna, Italy
| |
Collapse
|
25
|
Yang Z, Zhang J, Jiang D, Khatri P, Solow-Cordero DE, Toesca DAS, Koumenis C, Denko NC, Giaccia AJ, Le QT, Koong AC. A Human Genome-Wide RNAi Screen Reveals Diverse Modulators that Mediate IRE1α-XBP1 Activation. Mol Cancer Res 2018; 16:745-753. [PMID: 29440447 PMCID: PMC5932228 DOI: 10.1158/1541-7786.mcr-17-0307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 11/02/2017] [Accepted: 02/05/2018] [Indexed: 11/16/2022]
Abstract
Activation of the unfolded protein response (UPR) signaling pathways is linked to multiple human diseases, including cancer. The inositol-requiring kinase 1α (IRE1α)-X-box binding protein 1 (XBP1) pathway is the most evolutionarily conserved of the three major signaling branches of the UPR. Here, we performed a genome-wide siRNA screen to obtain a systematic assessment of genes integrated in the IRE1α-XBP1 axis. We monitored the expression of an XBP1-luciferase chimeric protein in which luciferase was fused in-frame with the spliced (active) form of XBP1. Using cells expressing this reporter construct, we identified 162 genes for which siRNA inhibition resulted in alteration in XBP1 splicing. These genes express diverse types of proteins modulating a wide range of cellular processes. Pathway analysis identified a set of genes implicated in the pathogenesis of breast cancer. Several genes, including BCL10, GCLM, and IGF1R, correlated with worse relapse-free survival (RFS) in an analysis of patients with triple-negative breast cancer (TNBC). However, in this cohort of 1,908 patients, only high GCLM expression correlated with worse RFS in both TNBC and non-TNBC patients. Altogether, our study revealed unidentified roles of novel pathways regulating the UPR, and these findings may serve as a paradigm for exploring novel therapeutic opportunities based on modulating the UPR.Implications: Genome-wide RNAi screen identifies novel genes/pathways that modulate IRE1α-XBP1 signaling in human tumor cells and leads to the development of improved therapeutic approaches targeting the UPR.Visual Overview: http://mcr.aacrjournals.org/content/molcanres/16/5/745/F1.large.jpg Mol Cancer Res; 16(5); 745-53. ©2018 AACR.
Collapse
Affiliation(s)
- Zhifen Yang
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Jing Zhang
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Dadi Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, and Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California
| | - David E Solow-Cordero
- High-Throughput Bioscience Center, Department of Chemical and Systems Biology, Stanford University, Stanford, California
| | - Diego A S Toesca
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Nicholas C Denko
- Department of Radiation Oncology, The Ohio State University, Columbus, Ohio
| | - Amato J Giaccia
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Albert C Koong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
26
|
Sun X, Liu X, Wang Y, Yang S, Chen Y, Yuan T. miR-100 inhibits the migration and invasion of nasopharyngeal carcinoma by targeting IGF1R. Oncol Lett 2018; 15:8333-8338. [PMID: 29805566 PMCID: PMC5950178 DOI: 10.3892/ol.2018.8420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/12/2018] [Indexed: 12/26/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a cancer pattern that often develops in the epithelial cells of the nasopharynx. miR-100 is a miRNA that has been identified in a number of cancers. The aim of the present study was to investigate whether miR-100 can affect cell migration and proliferation of NPC by targeting insulin-like growth factor 1 receptor (IGF1R). Western blot analysis was used to determine the protein levels of genes. The reverse transcription-quantitative PCR (RT-qPCR) was used to detect the expression level of miR-100 and IGF1R. Transwell assay was used to detect the migration and invasion of cell lines. The luciferase reporter assay was employed to confirm the target gene of miR-100. miR-100 expression was highly reduced in NPC tissues compared with non-cancerous tissues. Overexpression of miR-100 significantly inhibited the migration and invasion of NPC cell lines C666-1 and SUNE1. IGF1R was a downstream target of miR-100 and was downregulated by miR-100. Knockdown of IGF1R by siRNA suppressed cell proliferation of the C666-1 cell line. The newly identified miR-100/IGF1R axis offers novel biomarkers for the therapeutic intervention of NPC treatment. As a result, our findings suggest that miR-100 plays an important role in suppressing migration and invasion of NPC cells and suppresses IGF1R expression by directly targeting its 3'-UTR. It is suggested that miR-100 may be a novel therapeutic target of microRNA-mediated suppression of cell migration and invasion in NPC. However, the role of the miR-100/IGF1R axis in NPC progression needs further investigation.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Department of Otorhinolaryngology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Xiaoying Liu
- Department of Otorhinolaryngology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Yanmei Wang
- Department of Otorhinolaryngology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Shuqin Yang
- Department of Otorhinolaryngology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Yao Chen
- Department of Otorhinolaryngology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Tiejun Yuan
- Department of Otorhinolaryngology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
27
|
Werner H, Meisel-Sharon S, Bruchim I. Oncogenic fusion proteins adopt the insulin-like growth factor signaling pathway. Mol Cancer 2018; 17:28. [PMID: 29455671 PMCID: PMC5817802 DOI: 10.1186/s12943-018-0807-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/05/2018] [Indexed: 02/08/2023] Open
Abstract
The insulin-like growth factor-1 receptor (IGF1R) has been identified as a potent anti-apoptotic, pro-survival tyrosine kinase-containing receptor. Overexpression of the IGF1R gene constitutes a typical feature of most human cancers. Consistent with these biological roles, cells expressing high levels of IGF1R are expected not to die, a quintessential feature of cancer cells. Tumor specific chromosomal translocations that disrupt the architecture of transcription factors are a common theme in carcinogenesis. Increasing evidence gathered over the past fifteen years demonstrate that this type of genomic rearrangements is common not only among pediatric and hematological malignancies, as classically thought, but may also provide a molecular and cytogenetic foundation for an ever-increasing portion of adult epithelial tumors. In this review article we provide evidence that the mechanism of action of oncogenic fusion proteins associated with both pediatric and adult malignancies involves transactivation of the IGF1R gene, with ensuing increases in IGF1R levels and ligand-mediated receptor phosphorylation. Disrupted transcription factors adopt the IGF1R signaling pathway and elicit their oncogenic activities via activation of this critical regulatory network. Combined targeting of oncogenic fusion proteins along with the IGF1R may constitute a promising therapeutic approach.
Collapse
Affiliation(s)
- Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel. .,Yoran Institute for Human Genome Research, Tel Aviv University, 69978, Tel Aviv, Israel.
| | - Shilhav Meisel-Sharon
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Ilan Bruchim
- Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera 38100, affiliated with the Technion Institute of Technology, Haifa, Israel
| |
Collapse
|
28
|
Vishwamitra D, George SK, Shi P, Kaseb AO, Amin HM. Type I insulin-like growth factor receptor signaling in hematological malignancies. Oncotarget 2018; 8:1814-1844. [PMID: 27661006 PMCID: PMC5352101 DOI: 10.18632/oncotarget.12123] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 09/12/2016] [Indexed: 12/19/2022] Open
Abstract
The insulin-like growth factor (IGF) signaling system plays key roles in the establishment and progression of different types of cancer. In agreement with this idea, substantial evidence has shown that the type I IGF receptor (IGF-IR) and its primary ligand IGF-I are important for maintaining the survival of malignant cells of hematopoietic origin. In this review, we discuss current understanding of the role of IGF-IR signaling in cancer with a focus on the hematological neoplasms. We also address the emergence of IGF-IR as a potential therapeutic target for the treatment of different types of cancer including plasma cell myeloma, leukemia, and lymphoma.
Collapse
Affiliation(s)
- Deeksha Vishwamitra
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Suraj Konnath George
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ahmed O Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hesham M Amin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
29
|
Blurring Boundaries: Receptor Tyrosine Kinases as functional G Protein-Coupled Receptors. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 339:1-40. [DOI: 10.1016/bs.ircmb.2018.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Dai N, Ji F, Wright J, Minichiello L, Sadreyev R, Avruch J. IGF2 mRNA binding protein-2 is a tumor promoter that drives cancer proliferation through its client mRNAs IGF2 and HMGA1. eLife 2017; 6:27155. [PMID: 28753127 PMCID: PMC5576481 DOI: 10.7554/elife.27155] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/23/2017] [Indexed: 01/27/2023] Open
Abstract
The gene encoding the Insulin-like Growth Factor 2 mRNA binding protein 2/IMP2 is amplified and overexpressed in many human cancers, accompanied by a poorer prognosis. Mice lacking IMP2 exhibit a longer lifespan and a reduced tumor burden at old age. Herein we show in a diverse array of human cancer cells that IMP2 overexpression stimulates and IMP2 elimination diminishes proliferation by 50–80%. In addition to its known ability to promote the abundance of Insulin-like Growth Factor 2/IGF2, we find that IMP2 strongly promotes IGF action, by binding and stabilizing the mRNA encoding the DNA binding protein HMGA1, a known oncogene. HMGA1 suppresses the abundance of IGF binding protein 2/IGFBP2 and Grb14, inhibitors of IGF action. IMP2 stabilization of HMGA1 mRNA plus IMP2 stimulated IGF2 production synergistically drive cancer cell proliferation and account for IMP2’s tumor promoting action. IMP2’s ability to promote proliferation and IGF action requires IMP2 phosphorylation by mTOR. Some types of cancers develop when genes known as oncogenes or tumor promoters become faulty, and are present at abnormally high levels or inappropriately turned on. For example, cancer cells often have extra copies of the gene IMP2 and therefore produce too much the IMP2 protein. Previous research has shown that mice that lack the IMP2 protein develop fewer cancers and live longer, while patients whose cancers make too much IMP2 have a poorer prognosis. In healthy cells, the IMP2 protein normally helps to make new gene products by stabilising certain newly produced RNA molecules – the precursors of proteins, and in some cases by promoting the translation of these RNAs into proteins. For example, IMP2 binds to the mRNA that encodes the protein IGF2, which is a protein that helps cells to grow and is commonly produced in large quantities by cancer cells. However, until now it was not clear whether IMP2 only acts by increasing the production of IGF2 or also contributes to cancer growth in other ways. Using a range of human cancer cell lines, and healthy mouse cells, Dai et al. first confirmed that without IMP2, cancer cells made less IGF2 and grew less quickly. When IGF2 was added to the cells lacking IMP2, it only partially restored their ability to grow. Further experiments revealed that cells without IMP2 had increased levels of proteins that counteract the effects of IGF2. Usually, IMP2 binds and stabilizes the mRNA that encodes the oncogenic protein HMGA1, which is known to regulate the number of ‘anti-IGF2 proteins’. However, without IMP2, the HMGA1 levels drop, which causes an increase of the anti-IGF2 proteins. This indicates that IMP2 promotes cancer cell growth both by enabling cells to produce more IGF2 and by suppressing inhibitors of IGF2 action. This suggests that cancer patients whose tumors have abnormally high levels of IMP2 may be especially sensitive to drugs that target and inhibit IGF2.
Collapse
Affiliation(s)
- Ning Dai
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States.,Diabetes unit, Medical Services, Massachusetts General Hospital, Boston, United States.,Department of Medicine, Harvard Medical School, Boston, United States
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States.,Department of Genetics, Harvard Medical School, Boston, United States
| | - Jason Wright
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, United States
| | | | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States.,Department of Pathology, Harvard Medical School, Boston, United States
| | - Joseph Avruch
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States.,Diabetes unit, Medical Services, Massachusetts General Hospital, Boston, United States.,Department of Medicine, Harvard Medical School, Boston, United States
| |
Collapse
|
31
|
Cheng X, Merz KH, Vatter S, Zeller J, Muehlbeyer S, Thommet A, Christ J, Wölfl S, Eisenbrand G. Identification of a Water-Soluble Indirubin Derivative as Potent Inhibitor of Insulin-like Growth Factor 1 Receptor through Structural Modification of the Parent Natural Molecule. J Med Chem 2017; 60:4949-4962. [PMID: 28557430 DOI: 10.1021/acs.jmedchem.7b00324] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Indirubins have been identified as potent ATP-competitive protein kinase inhibitors. Structural modifications in the 5- and 3'-position have been extensively investigated, but the impact of substituents in 5'-position is not equally well-studied. Here, we report the synthesis of new indirubin 3'- and 5'-derivatives in the search of water-soluble indirubins by introducing basic centers. Antiproliferative activity of all compounds in tumor cells was evaluated along with kinase inhibition of selected compounds. The results show the 3'-position to tolerate large substituents without compromising activity, whereas bulk and rigid substituents in 5'-position appear unfavorable. Screening molecular targets of water-soluble 3'-oxime ethers revealed 6ha as preferential inhibitor of insulin-like growth factor 1 receptor (IGF-1R) in a panel of 22 protein kinases and in cells. Consistently, 6ha inhibited tumor cell growth in the NCI 60 cell line panel and induced apoptosis. The results indicate that the 5'-position provides limited space for chemical modifications and identify 6ha as a potent water-soluble indirubin-based IGF-1R inhibitor.
Collapse
Affiliation(s)
- Xinlai Cheng
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern , Erwin-Schrödinger-Strasse 52, D-67663 Kaiserslautern, Germany.,Department of Pharmacy and Molecular Biotechnology, Division of Pharmaceutical Biology, University of Heidelberg , Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Karl-Heinz Merz
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern , Erwin-Schrödinger-Strasse 52, D-67663 Kaiserslautern, Germany
| | - Sandra Vatter
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern , Erwin-Schrödinger-Strasse 52, D-67663 Kaiserslautern, Germany
| | - Jochen Zeller
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern , Erwin-Schrödinger-Strasse 52, D-67663 Kaiserslautern, Germany
| | - Stephan Muehlbeyer
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern , Erwin-Schrödinger-Strasse 52, D-67663 Kaiserslautern, Germany
| | - Andrea Thommet
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern , Erwin-Schrödinger-Strasse 52, D-67663 Kaiserslautern, Germany
| | - Jochen Christ
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern , Erwin-Schrödinger-Strasse 52, D-67663 Kaiserslautern, Germany
| | - Stefan Wölfl
- Department of Pharmacy and Molecular Biotechnology, Division of Pharmaceutical Biology, University of Heidelberg , Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Gerhard Eisenbrand
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern , Erwin-Schrödinger-Strasse 52, D-67663 Kaiserslautern, Germany
| |
Collapse
|
32
|
Functional antagonism of β-arrestin isoforms balance IGF-1R expression and signalling with distinct cancer-related biological outcomes. Oncogene 2017; 36:5734-5744. [PMID: 28581517 PMCID: PMC5658667 DOI: 10.1038/onc.2017.179] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/09/2017] [Accepted: 05/01/2017] [Indexed: 12/21/2022]
Abstract
With very similar 3D structures, the widely expressed β-arrestin isoforms 1 and 2 play at times identical, distinct or even opposing roles in regulating various aspects of G protein-coupled receptors (GPCR) expression and signalling. Recent evidence recognizes the β-arrestin system as a key regulator of not only GPCRs, but also receptor tyrosine kinases, including the highly cancer relevant insulin-like growth factor type 1 receptor (IGF-1R). Binding of β-arrestin1 to IGF-1R leads to ligand-dependent degradation of the receptor and generates additional MAPK/ERK signalling, protecting cancer cells against anti-IGF-1R therapy. Because the interplay between β-arrestin isoforms governs the biological effects for most GPCRs, as yet unexplored for the IGF-1R, we sought to investigate specifically the regulatory roles of the β-arrestin2 isoform on expression and function of the IGF-1R. Results from controlled expression of either β-arrestin isoform demonstrate that β-arrestin2 acts in an opposite manner to β-arrestin1 by promoting degradation of an unstimulated IGF-1R, but protecting the receptor against agonist-induced degradation. Although both isoforms co-immunoprecipitate with IGF-1R, the ligand-occupied receptor has greater affinity for β-arrestin1; this association lasts longer, sustains MAPK/ERK signalling and mitigates p53 activation. Conversely, β-arrestin2 has greater affinity for the ligand-unoccupied receptor; this interaction is transient, triggers receptor ubiquitination and degradation without signalling activation, and leads to a lack of responsiveness to IGF-1, cell cycle arrest and decreased viability of cancer cells. This study reveals contrasting abilities of IGF-1R to interact with each β-arrestin isoform, depending on the presence of the ligand and demonstrates the antagonism between the two β-arrestin isoforms in controlling IGF-1R expression and function, which could be developed into a practical anti-IGF-1R strategy for cancer therapy.
Collapse
|
33
|
Stromal-derived IGF2 promotes colon cancer progression via paracrine and autocrine mechanisms. Oncogene 2017; 36:5341-5355. [PMID: 28534511 DOI: 10.1038/onc.2017.116] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 02/25/2017] [Accepted: 03/23/2017] [Indexed: 12/31/2022]
Abstract
The insulin-like growth factor (IGF)2/IGF1 receptor (IGF1R) signaling axis has an important role in intestinal carcinogenesis and overexpression of IGF2 is an accepted risk factor for colorectal cancer (CRC) development. Genetic amplifications and loss of imprinting contribute to the upregulation of IGF2, but insufficiently explain the extent of IGF2 expression in a subset of patients. Here, we show that IGF2 was specifically induced in the tumor stroma of CRC and identified cancer-associated fibroblasts (CAFs) as the major source. Further, we provide functional evidence that stromal IGF2, via the paracrine IGF1R/insulin receptor axis, activated pro-survival AKT signaling in CRC cell lines. In addition to its effects on malignant cells, autocrine IGF2/IGF1R signaling in CAFs induced myofibroblast differentiation in terms of alpha-smooth muscle actin expression and contractility in floating collagen gels. This was further augmented in concert with transforming growth factor-β (TGFβ) signaling suggesting a cooperative mechanism. However, we demonstrated that IGF2 neither induced TGFβ/smooth muscle actin/mothers against decapentaplegic (SMAD) signaling nor synergized with TGFβ to hyperactivate this pathway in two dimensional and three dimensional cultures. IGF2-mediated physical matrix remodeling by CAFs, but not changes in extracellular matrix-modifying proteases or other secreted factors acting in a paracrine manner on/in cancer cells, facilitated subsequent tumor cell invasion in organotypic co-cultures. Consistently, colon cancer cells co-inoculated with CAFs expressing endogenous IGF2 in mouse xenograft models exhibited elevated invasiveness and dissemination capacity, as well as increased local tumor regrowth after primary tumor resection compared with conditions with IGF2-deficient CAFs. In line, expression of IGF2 correlated with elevated relapse rates and poor survival in CRC patients. In agreement with our results, high-level coexpression of IGF2 and TGFβ was predicting adverse outcome with higher accuracy than increased expression of the individual genes alone. Taken together, we demonstrate that stroma-induced IGF2 promotes colon cancer progression in a paracrine and autocrine manner and propose IGF2 as potential target for tumor stroma cotargeting strategies.
Collapse
|
34
|
Lin Y, Liu H, Waraky A, Haglund F, Agarwal P, Jernberg-Wiklund H, Warsito D, Larsson O. SUMO-modified insulin-like growth factor 1 receptor (IGF-1R) increases cell cycle progression and cell proliferation. J Cell Physiol 2017; 232:2722-2730. [PMID: 28112398 PMCID: PMC5518303 DOI: 10.1002/jcp.25818] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 12/24/2022]
Abstract
Increasing number of studies have shown nuclear localization of the insulin‐like growth factor 1 receptor (nIGF‐1R) in tumor cells and its links to adverse clinical outcome in various cancers. Any obvious cell physiological roles of nIGF‐1R have, however, still not been disclosed. Previously, we reported that IGF‐1R translocates to cell nucleus and modulates gene expression by binding to enhancers, provided that the receptor is SUMOylated. In this study, we constructed stable transfectants of wild type IGF1R (WT) and triple‐SUMO‐site‐mutated IGF1R (TSM) using igf1r knockout mouse fibroblasts (R‐). Cell clones (R‐WT and R‐TSM) expressing equal amounts of IGF‐1R were selected for experiments. Phosphorylation of IGF‐1R, Akt, and Erk upon IGF‐1 stimulation was equal in R‐WT and R‐TSM. WT was confirmed to enter nuclei. TSM did also undergo nuclear translocation, although to a lesser extent. This may be explained by that TSM heterodimerizes with insulin receptor, which is known to translocate to cell nuclei. R‐WT proliferated substantially faster than R‐TSM, which did not differ significantly from the empty vector control. Upon IGF‐1 stimulation G1‐S‐phase progression of R‐WT increased from 12 to 38%, compared to 13 to 20% of R‐TSM. The G1‐S progression of R‐WT correlated with increased expression of cyclin D1, A, and CDK2, as well as downregulation of p27. This suggests that SUMO‐IGF‐1R affects upstream mechanisms that control and coordinate expression of cell cycle regulators. Further studies to identify such SUMO‐IGF‐1R dependent mechanisms seem important.
Collapse
Affiliation(s)
- Yingbo Lin
- Department of Oncology and Pathology, CCK R8: 04, Karolinska Institutet, Stockholm, Sweden
| | - Hongyu Liu
- Department of Oncology and Pathology, CCK R8: 04, Karolinska Institutet, Stockholm, Sweden.,Laboratory of Aquatic Animal Nutrition Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Ahmed Waraky
- Department of Oncology and Pathology, CCK R8: 04, Karolinska Institutet, Stockholm, Sweden
| | - Felix Haglund
- Department of Oncology and Pathology, CCK R8: 04, Karolinska Institutet, Stockholm, Sweden
| | - Prasoon Agarwal
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden.,Department of Laboratory Medicine (LABMED) H5, Division of Clinical Immunology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Dudi Warsito
- Department of Oncology and Pathology, CCK R8: 04, Karolinska Institutet, Stockholm, Sweden
| | - Olle Larsson
- Department of Oncology and Pathology, CCK R8: 04, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
35
|
Matsunaga Y, Adachi Y, Sasaki Y, Koide H, Motoya M, Nosho K, Takagi H, Yamamoto H, Sasaki S, Arimura Y, Tokino T, Carbone DP, Imai K, Shinomura Y. The effect of forced expression of mutated K-RAS gene on gastrointestinal cancer cell lines and the IGF-1R targeting therapy. Mol Carcinog 2017; 56:515-526. [PMID: 27312358 DOI: 10.1002/mc.22513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 05/09/2016] [Accepted: 06/14/2016] [Indexed: 08/29/2023]
Abstract
Mutation in K-RAS (K-RAS-MT) plays important roles in both cancer progression and resistance to anti-epidermal growth factor receptor (EGFR) therapy in gastrointestinal tumors. Insulin-like growth factor-1 receptor (IGF-1R) signaling is required for carcinogenicity and progression of many tumors as well. We have previously shown successful therapy for gastrointestinal cancer cell lines bearing a K-RAS mutation using an anti-IGF-1R monoclonal antibody. In this study, we sought to evaluate effects of forced K-RAS-MT expression on gastrointestinal cancer cell lines representing a possible second resistance mechanism for anti-EGFR therapy and IGF-1R-targeted therapy for these transfectants. We made stable transfectants of K-RAS-MT in two gastrointestinal cancer cell lines, colorectal RKO and pancreatic BxPC-3. We assessed the effect of forced expression of K-RAS-MT on proliferation, apoptosis, migration, and invasion in gastrointestinal cancer cells. Then we assessed anti-tumor effects of dominant negative IGF-1R (IGF-1R/dn) and an IGF-1R inhibitor, picropodophyllin, on the K-RAS-MT transfectants. Overexpression of K-RAS-MT in gastrointestinal cancer cell lines led to more aggressive phenotypes, with increased proliferation, decreased apoptosis, and increased motility and invasion. IGF-1R blockade suppressed cell growth, colony formation, migration, and invasion, and up-regulated chemotherapy-induced apoptosis of gastrointestinal cancer cells, even when K-RAS-MT was over-expressed. IGF-1R blockade inhibited the Akt pathway more than the extracellular signal-regulated kinase (ERK) pathway in the K-RAS-MT transfectants. IGF-1R/dn, moreover, inhibited the growth of murine xenografts expressing K-RAS-MT. Thus, K-RAS-MT might be important for progressive phonotype observed in gastrointestinal cancers. IGF-1R decoy is a candidate molecular therapeutic approach for gastrointestinal cancers even if K-RAS is mutated. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yasutaka Matsunaga
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University, Sapporo, Japan
| | - Yasushi Adachi
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University, Sapporo, Japan
- Sapporo Shirakaba-Dai Hospital, Sapporo, Japan
| | - Yasushi Sasaki
- Medical Genome Sciences, Research Institute of Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| | - Hideyuki Koide
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University, Sapporo, Japan
| | - Masayo Motoya
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University, Sapporo, Japan
| | - Katsuhiko Nosho
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University, Sapporo, Japan
| | - Hideyasu Takagi
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University, Sapporo, Japan
| | - Hiroyuki Yamamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Shigeru Sasaki
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University, Sapporo, Japan
| | - Yoshiaki Arimura
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University, Sapporo, Japan
| | - Takashi Tokino
- Medical Genome Sciences, Research Institute of Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| | - David P Carbone
- James Cancer Center, The Ohio State University Medical Center, Columbus, Ohio
| | - Kohzoh Imai
- The Institute of Medical Science Hospital, The University of Tokyo, Tokyo, Japan
| | - Yasuhisa Shinomura
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
36
|
Cohen-Sinai T, Cohen Z, Werner H, Berger R. Identification of BRCA1 As a Potential Biomarker for Insulin-Like Growth Factor-1 Receptor Targeted Therapy in Breast Cancer. Front Endocrinol (Lausanne) 2017; 8:148. [PMID: 28706506 PMCID: PMC5489552 DOI: 10.3389/fendo.2017.00148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/12/2017] [Indexed: 01/05/2023] Open
Abstract
The insulin-like growth factor-1 receptor (IGF1R) emerged in recent years as a promising therapeutic target in oncology. Identification of potential biomarkers capable of predicting response to IGF1R-targeted therapy is of cardinal importance. Tumor suppressor BRCA1 has important roles in multiple pathways, including gene transcription, DNA damage repair, and control of apoptosis. Early studies have identified the IGF1R gene as a downstream target for inhibitory regulation by wild-type, but not mutant, BRCA1. The aim of the present study was to evaluate the hypothesis that the mutational status of BRCA1 may influence the ability of IGF1R-directed therapies to efficiently inhibit the IGF1R axis. Using breast cancer-derived cell lines expressing a wild-type or a mutant BRCA1, we demonstrate that the capacity of MK-0646, a monoclonal antibody antagonist to the human IGF1R, to inhibit insulin-like growth factor-1-stimulated IGF1R and downstream mediators' phosphorylation was impaired in mutant BRCA1-expressing cell lines. In addition, the antibody was able to reduce proliferation of wild-type BRCA1-expressing cells but had a reduced inhibitory effect in mutant BRCA1-expressing cells. In summary, our data indicate that the mutational status of BRCA1 must be taken into account when selecting patients for IGF1R targeting protocols.
Collapse
Affiliation(s)
- Tali Cohen-Sinai
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Oncology, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Zoya Cohen
- Institute of Oncology, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Yoran Institute for Human Genome Research, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Haim Werner,
| | - Raanan Berger
- Institute of Oncology, Chaim Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
37
|
van Beijnum JR, Pieters W, Nowak-Sliwinska P, Griffioen AW. Insulin-like growth factor axis targeting in cancer and tumour angiogenesis - the missing link. Biol Rev Camb Philos Soc 2016; 92:1755-1768. [PMID: 27779364 DOI: 10.1111/brv.12306] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/15/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022]
Abstract
Numerous molecular players in the process of tumour angiogenesis have been shown to offer potential for therapeutic targeting. Initially denoted to be involved in malignant transformation and tumour progression, the insulin-like growth factor (IGF) signalling axis has been subject to therapeutic interference, albeit with limited clinical success. More recently, IGFs and their receptors have received attention for their contribution to tumour angiogenesis, which offers novel therapeutic opportunities. Here we review the contribution of this signalling axis to tumour angiogenesis, the mechanisms of resistance to therapy and the interplay with other pro-angiogenic pathways, to offer insight in the renewed interest in the application of IGF axis targeting agents in anti-cancer combination therapies.
Collapse
Affiliation(s)
- Judy R van Beijnum
- Department of Medical Oncology, Angiogenesis Laboratory, VU University Medical Center, PO box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Wietske Pieters
- Department of Medical Oncology, Angiogenesis Laboratory, VU University Medical Center, PO box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Patrycja Nowak-Sliwinska
- School of Pharmaceutical Sciences, University of Geneva (UNIGE), Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Arjan W Griffioen
- Department of Medical Oncology, Angiogenesis Laboratory, VU University Medical Center, PO box 7057, 1007 MB, Amsterdam, The Netherlands
| |
Collapse
|
38
|
Clinical studies in humans targeting the various components of the IGF system show lack of efficacy in the treatment of cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 772:105-122. [PMID: 28528684 DOI: 10.1016/j.mrrev.2016.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 01/28/2023]
Abstract
The insulin-like growth factors (IGFs) system regulates cell growth, differentiation and energy metabolism and plays crucial role in the regulation of key aspects of tumor biology, such as cancer cell growth, survival, transformation and invasion. The current focus for cancer therapeutic approaches have shifted from the conventional treatments towards the targeted therapies and the IGF system has gained a great interest as anti-cancer therapy. The proliferative, anti-apoptotic and transformation effects of IGFs are mainly triggered by the ligation of the type I IGF receptor (IGF-IR). Thus, aiming at developing novel and effective cancer therapies, different strategies have been employed to target IGF system in human malignancies, including but not limited to ligand or receptor neutralizing antibodies and IGF-IR signaling inhibitors. In this review, we have focused on the clinical studies that have been conducted targeting the various components of the IGF system for the treatment of different types of cancer, providing a description and the challenges of each targeting strategy and the degree of success.
Collapse
|
39
|
Gusscott S, Jenkins CE, Lam SH, Giambra V, Pollak M, Weng AP. IGF1R Derived PI3K/AKT Signaling Maintains Growth in a Subset of Human T-Cell Acute Lymphoblastic Leukemias. PLoS One 2016; 11:e0161158. [PMID: 27532210 PMCID: PMC4988785 DOI: 10.1371/journal.pone.0161158] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 08/01/2016] [Indexed: 11/19/2022] Open
Abstract
Insulin-like growth factor 1 receptor (IGF1R) is a prevalent signaling pathway in human cancer that supports cell growth/survival and thus contributes to aggressive biological behavior. Much work has gone into development of IGF1R inhibitors; however, candidate agents including small molecule tyrosine kinase inhibitors and blocking antibodies have yet to fulfill their promise clinically. Understanding cellular features that define sensitivity versus resistance are important for effective patient selection and anticipation of outgrowth of a resistant clone. We previously identified an important role for IGF signaling in T-cell acute lymphoblastic leukemia (T-ALL) relying primarily upon genetically defined mouse models. We present here an assessment of IGF1R dependence in human T-ALL using a broad panel of 27 established cell lines that capture a spectrum of the genetic variation that might be encountered in clinical practice. We observed that a subset of cell lines are sensitive to IGF1R inhibition and are characterized by high levels of surface IGF1R expression and PTEN positivity. Interestingly, lentiviral expression or knock-down of PTEN in PTEN-negative/positive cell lines, respectively, had limited effects on their response to IGF1R inhibition, suggesting that PTEN contributes to, but does not define IGF dependence. Additionally, we characterize downstream PI3K/AKT signaling as dominant over RAS/RAF/MEK/ERK in mediating growth and/or survival in this context. Finally, we demonstrate that IGF and interleukin-7 (IL-7) fulfill non-overlapping roles in supporting T-ALL growth. These findings are significant in that they reveal cellular features and downstream mechanisms that may determine the response of an individual patient’s tumor to IGF1R inhibitor therapy.
Collapse
Affiliation(s)
- Samuel Gusscott
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, V5Z 1L3, Canada
| | | | - Sonya H. Lam
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, V5Z 1L3, Canada
| | - Vincenzo Giambra
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, V5Z 1L3, Canada
| | - Michael Pollak
- Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Andrew P. Weng
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, V5Z 1L3, Canada
- * E-mail:
| |
Collapse
|
40
|
Werner H, Sarfstein R, LeRoith D, Bruchim I. Insulin-like Growth Factor 1 Signaling Axis Meets p53 Genome Protection Pathways. Front Oncol 2016; 6:159. [PMID: 27446805 PMCID: PMC4917523 DOI: 10.3389/fonc.2016.00159] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 06/10/2016] [Indexed: 01/08/2023] Open
Abstract
Clinical, epidemiological, and experimental evidence indicate that the insulin-like growth factors (IGFs) are important mediators in the biochemical chain of events that lead from a phenotypically normal to a neoplastic cell. The IGF1 receptor (IGF1R), which mediates the biological actions of IGF1 and IGF2, exhibits potent pro-survival and antiapoptotic activities. The IGF1R is highly expressed in most types of cancer and is regarded as a promising therapeutic target in oncology. p53 is a transcription factor with tumor suppressor activity that is usually activated in response to DNA damage and other forms of cellular stress. On the basis of its protective activities, p53 is commonly regarded as the guardian of the genome. We provide evidence that the IGF signaling axis and p53 genome protection pathways are tightly interconnected. Wild-type, but not mutant, p53 suppresses IGF1R gene transcription, leading to abrogation of the IGF signaling network, with ensuing cell cycle arrest. Gain-of-function, or loss-of-function, mutations of p53 in tumor cells may disrupt its inhibitory activity, thus generating oncogenic molecules capable of transactivating the IGF1R gene. The interplay between the IGF1 and p53 pathways is also of major relevance in terms of metabolic regulation, including glucose transport and glycolysis. A better understanding of the complex physical and functional interactions between these important signaling pathways will have major basic and translational relevance.
Collapse
Affiliation(s)
- Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Yoran Institute for Human Genome Research, Tel Aviv University, Tel Aviv, Israel
| | - Rive Sarfstein
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University , Tel Aviv , Israel
| | - Derek LeRoith
- Diabetes and Metabolism Clinical Research Center, Rambam Health Care Center , Haifa , Israel
| | - Ilan Bruchim
- Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center , Hadera , Israel
| |
Collapse
|
41
|
Rostoker R, Ben-Shmuel S, Rashed R, Shen Orr Z, LeRoith D. CD24 cell surface expression in Mvt1 mammary cancer cells serves as a biomarker for sensitivity to anti-IGF1R therapy. Breast Cancer Res 2016; 18:51. [PMID: 27179633 PMCID: PMC4867988 DOI: 10.1186/s13058-016-0711-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 04/26/2016] [Indexed: 01/14/2023] Open
Abstract
Background The pro-tumorigenic effects of the insulin-like growth factor receptor (IGF1R) are well described. IGF1R promotes cancer cell survival and proliferation and prevents apoptosis, and, additionally it was shown that IGF1R levels are significantly elevated in most common human malignancies including breast cancer. However, results from phase 3 clinical trials in unselected patients demonstrated lack of efficacy for anti-IGF1R therapy. These findings suggest that predictive biomarkers are greatly warranted in order to identify patients that will benefit from anti-IGF1R therapeutic strategies. Methods Using the delivery of shRNA vectors into the Mvt1 cell line, we tested the role of the IGF1R in the development of mammary tumors. Based on CD24 cell surface expression, control and IGF1R-knockdown (IGF1R-KD) cells were FACS sorted into CD24− and CD24+ subsets and further characterized in vitro. The tumorigenic capacity of each was determined following orthotopic inoculation into the mammary fat pad of female mice. Tumor cells were FACS characterized upon sacrifice to determine IGF1R effect on the plasticity of this cell’s phenotype. Metastatic capacity of the cells was assessed using the tail vein assay. Results In this study we demonstrate that downregulation of the IGF1R specifically in cancer cells expressing CD24 on the cell surface membrane affect both their morphology (from mesenchymal-like into epithelial-like morphology) and phenotype in vitro. Moreover, we demonstrate that IGF1R-KD abolished both CD24+ cells capacity to form mammary tumors and lung metastatic lesions. We found in both cells and tumors a marked upregulation in CTFG and a significant reduction of SLP1 expression in the CD24+/IGF1R-KD; tumor-suppressor and tumor-promoting genes respectively. Moreover, we demonstrate here that the IGF1R is essential for the maintenance of stem/progenitor-like cancer cells and we further demonstrate that IGF1R-KD induces in vivo differentiation of the CD24+ cells toward the CD24- phenotype. This further supports the antitumorigenic effects of IGF1R-KD, as we recently published that these differentiated cells demonstrate significantly lower tumorigenic capacity compared with their CD24+ counterparts. Conclusions Taken together these findings suggest that CD24 cell surface expression may serve as a valuable biomarker in order to identify mammary tumors that will positively respond to targeted IGF1R therapies. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0711-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ran Rostoker
- Diabetes and Metabolism Clinical Research Center of Excellence, Clinical Research Institute at Rambam (CRIR), Rambam Medical Center, Haifa, Israel
| | - Sarit Ben-Shmuel
- Diabetes and Metabolism Clinical Research Center of Excellence, Clinical Research Institute at Rambam (CRIR), Rambam Medical Center, Haifa, Israel
| | - Rola Rashed
- Diabetes and Metabolism Clinical Research Center of Excellence, Clinical Research Institute at Rambam (CRIR), Rambam Medical Center, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Zila Shen Orr
- Diabetes and Metabolism Clinical Research Center of Excellence, Clinical Research Institute at Rambam (CRIR), Rambam Medical Center, Haifa, Israel
| | - Derek LeRoith
- Diabetes and Metabolism Clinical Research Center of Excellence, Clinical Research Institute at Rambam (CRIR), Rambam Medical Center, Haifa, Israel. .,Department of Medicine, Icahn School of Medicine at Mt Sinai, New York City, NY, USA.
| |
Collapse
|
42
|
Girnita L, Takahashi SI, Crudden C, Fukushima T, Worrall C, Furuta H, Yoshihara H, Hakuno F, Girnita A. Chapter Seven - When Phosphorylation Encounters Ubiquitination: A Balanced Perspective on IGF-1R Signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:277-311. [PMID: 27378760 DOI: 10.1016/bs.pmbts.2016.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cell-surface receptors govern the critical information passage from outside to inside the cell and hence control important cellular decisions such as survival, growth, and differentiation. These receptors, structurally grouped into different families, utilize common intracellular signaling-proteins and pathways, yet promote divergent biological consequences. In rapid processing of extracellular signals to biological outcomes, posttranslational modifications offer a repertoire of protein processing options. Protein ubiquitination was originally identified as a signal for protein degradation through the proteasome system. It is now becoming increasingly recognized that both ubiquitin and ubiquitin-like proteins, all evolved from a common ubiquitin structural superfold, are used extensively by the cell and encompass signal tags for many different cellular fates. In this chapter we examine the current understanding of the ubiquitin regulation surrounding the insulin-like growth factor and insulin signaling systems, major members of the larger family of receptor tyrosine kinases (RTKs) and key regulators of fundamental physiological and pathological states.
Collapse
Affiliation(s)
- L Girnita
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| | - S-I Takahashi
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - C Crudden
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - T Fukushima
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan; Department of Biological Sciences, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Kanagawa, Japan
| | - C Worrall
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - H Furuta
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - H Yoshihara
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - F Hakuno
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - A Girnita
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Dermatology Department, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
43
|
HNRNPC as a candidate biomarker for chemoresistance in gastric cancer. Tumour Biol 2015; 37:3527-34. [PMID: 26453116 DOI: 10.1007/s13277-015-4144-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/23/2015] [Indexed: 02/06/2023] Open
Abstract
Chemoresistance is a major cause of treatment failure and high mortality in advanced gastric cancer (AGC). Currently, the mechanism of chemoresistance remains unclear, and there is no biomarker to accurately predict the efficacy of chemotherapy. In the present study, we established human gastric cancer (GC) cell lines resistant to 5-fluorouracil (5FU), paclitaxel (TA), or cisplatin (DDP) by gradient drug treatment and generated a novel monoclonal antibody 5B2 targeting heterogeneous nuclear ribonucleoproteins C1/C2 (HNRNPC) overexpressed in chemoresistant GC cells. Overexpressing HNRNPC in GC cells promoted chemoresistance, and knockdown of HNRNPC by small interfering RNA (siRNA) reversed chemoresistance. By utilizing available datasets, we demonstrated that high level of HNRNPC transcript indicated poor overall survival (OS) and free of progression (FP). HNRNPC expression was negatively correlated with OS of GC patients treated with 5FU-based drugs and with time to progression (TTP) of GC patients treated with CF regimen. These data suggest the potential usefulness of HNRNPC as a prognostic and therapeutic marker of GC.
Collapse
|
44
|
Raman S, Grimberg A, Waguespack SG, Miller BS, Sklar CA, Meacham LR, Patterson BC. Risk of Neoplasia in Pediatric Patients Receiving Growth Hormone Therapy--A Report From the Pediatric Endocrine Society Drug and Therapeutics Committee. J Clin Endocrinol Metab 2015; 100:2192-203. [PMID: 25839904 PMCID: PMC5393518 DOI: 10.1210/jc.2015-1002] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CONTEXT GH and IGF-1 have been shown to affect tumor growth in vitro and in some animal models. This report summarizes the available evidence on whether GH therapy in childhood is associated with an increased risk of neoplasia during treatment or after treatment is completed. EVIDENCE ACQUISITION A PubMed search conducted through February 2014 retrieved original articles written in English addressing GH therapy and neoplasia risk. Subsequent searches were done to include additional relevant publications. EVIDENCE SYNTHESIS In children without prior cancer or known risk factors for developing cancer, the clinical evidence does not affirm an association between GH therapy during childhood and neoplasia. GH therapy has not been reported to increase the risk for neoplasia in this population, although most of these data are derived from postmarketing surveillance studies lacking rigorous controls. In patients who are at higher risk for developing cancer, current evidence is insufficient to conclude whether or not GH further increases cancer risk. GH treatment of pediatric cancer survivors does not appear to increase the risk of recurrence but may increase their risk for subsequent primary neoplasms. CONCLUSIONS In children without known risk factors for malignancy, GH therapy can be safely administered without concerns about an increased risk for neoplasia. GH use in children with medical diagnoses predisposing them to the development of malignancies should be critically analyzed on an individual basis, and if chosen, appropriate surveillance for malignancies should be undertaken. GH can be used to treat GH-deficient childhood cancer survivors who are in remission with the understanding that GH therapy may increase their risk for second neoplasms.
Collapse
Affiliation(s)
- Sripriya Raman
- Division of Pediatric Endocrinology (S.R.), Children's Mercy Hospital, University of Missouri, Kansas City, Missouri 64111; University of Kansas Medical Center (S.R.), Kansas City, Kansas 66160; Department of Pediatrics (A.G.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Division of Endocrinology and Diabetes (A.G.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Department of Endocrine Neoplasia and Hormonal Disorders (S.G.W.), University of Texas MD Anderson Cancer Center, Houston, Texas 77030; Division of Endocrinology (B.S.M.), Department of Pediatrics, University of Minnesota Masonic Children's Hospital, Minneapolis, Minnesota 55455; Memorial Sloan Kettering Cancer Center (C.A.S.), New York, New York 10065; and Emory University/Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta (L.R.M., B.C.P.), Atlanta, Georgia 30322
| | - Adda Grimberg
- Division of Pediatric Endocrinology (S.R.), Children's Mercy Hospital, University of Missouri, Kansas City, Missouri 64111; University of Kansas Medical Center (S.R.), Kansas City, Kansas 66160; Department of Pediatrics (A.G.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Division of Endocrinology and Diabetes (A.G.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Department of Endocrine Neoplasia and Hormonal Disorders (S.G.W.), University of Texas MD Anderson Cancer Center, Houston, Texas 77030; Division of Endocrinology (B.S.M.), Department of Pediatrics, University of Minnesota Masonic Children's Hospital, Minneapolis, Minnesota 55455; Memorial Sloan Kettering Cancer Center (C.A.S.), New York, New York 10065; and Emory University/Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta (L.R.M., B.C.P.), Atlanta, Georgia 30322
| | - Steven G Waguespack
- Division of Pediatric Endocrinology (S.R.), Children's Mercy Hospital, University of Missouri, Kansas City, Missouri 64111; University of Kansas Medical Center (S.R.), Kansas City, Kansas 66160; Department of Pediatrics (A.G.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Division of Endocrinology and Diabetes (A.G.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Department of Endocrine Neoplasia and Hormonal Disorders (S.G.W.), University of Texas MD Anderson Cancer Center, Houston, Texas 77030; Division of Endocrinology (B.S.M.), Department of Pediatrics, University of Minnesota Masonic Children's Hospital, Minneapolis, Minnesota 55455; Memorial Sloan Kettering Cancer Center (C.A.S.), New York, New York 10065; and Emory University/Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta (L.R.M., B.C.P.), Atlanta, Georgia 30322
| | - Bradley S Miller
- Division of Pediatric Endocrinology (S.R.), Children's Mercy Hospital, University of Missouri, Kansas City, Missouri 64111; University of Kansas Medical Center (S.R.), Kansas City, Kansas 66160; Department of Pediatrics (A.G.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Division of Endocrinology and Diabetes (A.G.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Department of Endocrine Neoplasia and Hormonal Disorders (S.G.W.), University of Texas MD Anderson Cancer Center, Houston, Texas 77030; Division of Endocrinology (B.S.M.), Department of Pediatrics, University of Minnesota Masonic Children's Hospital, Minneapolis, Minnesota 55455; Memorial Sloan Kettering Cancer Center (C.A.S.), New York, New York 10065; and Emory University/Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta (L.R.M., B.C.P.), Atlanta, Georgia 30322
| | - Charles A Sklar
- Division of Pediatric Endocrinology (S.R.), Children's Mercy Hospital, University of Missouri, Kansas City, Missouri 64111; University of Kansas Medical Center (S.R.), Kansas City, Kansas 66160; Department of Pediatrics (A.G.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Division of Endocrinology and Diabetes (A.G.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Department of Endocrine Neoplasia and Hormonal Disorders (S.G.W.), University of Texas MD Anderson Cancer Center, Houston, Texas 77030; Division of Endocrinology (B.S.M.), Department of Pediatrics, University of Minnesota Masonic Children's Hospital, Minneapolis, Minnesota 55455; Memorial Sloan Kettering Cancer Center (C.A.S.), New York, New York 10065; and Emory University/Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta (L.R.M., B.C.P.), Atlanta, Georgia 30322
| | - Lillian R Meacham
- Division of Pediatric Endocrinology (S.R.), Children's Mercy Hospital, University of Missouri, Kansas City, Missouri 64111; University of Kansas Medical Center (S.R.), Kansas City, Kansas 66160; Department of Pediatrics (A.G.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Division of Endocrinology and Diabetes (A.G.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Department of Endocrine Neoplasia and Hormonal Disorders (S.G.W.), University of Texas MD Anderson Cancer Center, Houston, Texas 77030; Division of Endocrinology (B.S.M.), Department of Pediatrics, University of Minnesota Masonic Children's Hospital, Minneapolis, Minnesota 55455; Memorial Sloan Kettering Cancer Center (C.A.S.), New York, New York 10065; and Emory University/Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta (L.R.M., B.C.P.), Atlanta, Georgia 30322
| | - Briana C Patterson
- Division of Pediatric Endocrinology (S.R.), Children's Mercy Hospital, University of Missouri, Kansas City, Missouri 64111; University of Kansas Medical Center (S.R.), Kansas City, Kansas 66160; Department of Pediatrics (A.G.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Division of Endocrinology and Diabetes (A.G.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Department of Endocrine Neoplasia and Hormonal Disorders (S.G.W.), University of Texas MD Anderson Cancer Center, Houston, Texas 77030; Division of Endocrinology (B.S.M.), Department of Pediatrics, University of Minnesota Masonic Children's Hospital, Minneapolis, Minnesota 55455; Memorial Sloan Kettering Cancer Center (C.A.S.), New York, New York 10065; and Emory University/Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta (L.R.M., B.C.P.), Atlanta, Georgia 30322
| |
Collapse
|
45
|
Diabetes and its link with cancer: providing the fuel and spark to launch an aggressive growth regime. BIOMED RESEARCH INTERNATIONAL 2015; 2015:390863. [PMID: 25961014 PMCID: PMC4413255 DOI: 10.1155/2015/390863] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/27/2014] [Indexed: 01/21/2023]
Abstract
Diabetes is a disease involving metabolic derangements in multiple organs. While the spectrum of diabetic complications has been known for years, recent evidence suggests that diabetes could also contribute to the initiation and propagation of certain cancers. The mechanism(s) underlying this relationship are not completely resolved but likely involve changes in hormone and nutrient levels, as well as activation of inflammatory and stress-related pathways. Interestingly, some of the drugs used clinically to treat diabetes also appear to have antitumour effects, further highlighting the interaction between these two conditions. In this contribution we review recent literature on this emerging relationship and explore the potential mechanisms that may promote cancer in diabetic patients.
Collapse
|
46
|
Yokoyama NN, Denmon A, Uchio EM, Jordan M, Mercola D, Zi X. When Anti-Aging Studies Meet Cancer Chemoprevention: Can Anti-Aging Agent Kill Two Birds with One Blow? ACTA ACUST UNITED AC 2015; 1:420-433. [PMID: 26756023 DOI: 10.1007/s40495-015-0039-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent evidence has strongly supported that the rate of aging is controlled, at least to some extent, by evolutionarily conserved nutrient sensing pathways (e.g. the insulin/IGF-1-signaling, mTOR, AMPK, and sirtuins) from worms to humans. These pathways are also commonly involved in carcinogenesis and cancer metabolism. Agents (e.g. metformin, resveratrol, and Rhodiola) that target these nutrient sensing pathways often have both anti-aging and anti-cancer efficacy. These agents not only reprogram energy metabolism of malignant cells, but also target normal postmitotic cells by suppressing their conversion into senescent cells, which confers systematic metabolism benefits. These agents are fundamentally different from chemotherapy (e.g. paclitaxel and doxorubicin) or radiation therapy that causes molecular damage (e.g. DNA and protein damages) and thereby no selection resistance may be expected. By reviewing molecular mechanisms of action, epidemiological evidence, experimental data in tumor models, and early clinical study results, this review provides information supporting the promising use of agents with both anti-aging and anti-cancer efficacy for cancer chemoprevention.
Collapse
Affiliation(s)
- Noriko N Yokoyama
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
| | - Andria Denmon
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
| | - Edward M Uchio
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
| | - Mark Jordan
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
| | - Dan Mercola
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Orange, CA 92868, USA
| | - Xiaolin Zi
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA; Department of Pharmacology, University of California, Irvine, Orange, CA 92868, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868, USA
| |
Collapse
|
47
|
Vishwamitra D, Curry CV, Alkan S, Song YH, Gallick GE, Kaseb AO, Shi P, Amin HM. The transcription factors Ik-1 and MZF1 downregulate IGF-IR expression in NPM-ALK⁺ T-cell lymphoma. Mol Cancer 2015; 14:53. [PMID: 25884514 PMCID: PMC4415347 DOI: 10.1186/s12943-015-0324-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 02/17/2015] [Indexed: 01/18/2023] Open
Abstract
Background The type I insulin-like growth factor receptor (IGF-IR) tyrosine kinase promotes the survival of an aggressive subtype of T-cell lymphoma by interacting with nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) oncogenic protein. NPM-ALK+ T-cell lymphoma exhibits much higher levels of IGF-IR than normal human T lymphocytes. The mechanisms underlying increased expression of IGF-IR in this lymphoma are not known. We hypothesized that upregulation of IGF-IR could be attributed to previously unrecognized defects that inherently exist in the transcriptional machinery in NPM-ALK+ T-cell lymphoma. Methods and results Screening studies showed substantially lower levels of the transcription factors Ikaros isoform 1 (Ik-1) and myeloid zinc finger 1 (MZF1) in NPM-ALK+ T-cell lymphoma cell lines and primary tumor tissues from patients than in human T lymphocytes. A luciferase assay supported that Ik-1 and MZF1 suppress IGF-IR gene promoter. Furthermore, ChIP assay showed that these transcription factors bind specific sites located within the IGF-IR gene promoter. Forced expression of Ik-1 or MZF1 in the lymphoma cells decreased IGF-IR mRNA and protein. This decrease was associated with downregulation of pIGF-IR, and the phosphorylation of its interacting proteins IRS-1, AKT, and NPM-ALK. In addition, overexpression of Ik-1 and MZF1 decreased the viability, proliferation, migration, and anchorage-independent colony formation of the lymphoma cells. Conclusions Our results provide novel evidence that the aberrant decreases in Ik-1 and MZF1 contribute significantly to the pathogenesis of NPM-ALK+ T-cell lymphoma through the upregulation of IGF-IR expression. These findings could be exploited to devise new strategies to eradicate this lymphoma. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0324-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deeksha Vishwamitra
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas, USA. .,The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| | - Choladda V Curry
- Department of Pathology and Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA.
| | - Serhan Alkan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| | - Yao-Hua Song
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| | - Gary E Gallick
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA. .,Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | - Ahmed O Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
| | - Hesham M Amin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas, USA. .,The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
48
|
Mikkelsen JH, Resch ZT, Kalra B, Savjani G, Kumar A, Conover CA, Oxvig C. Indirect targeting of IGF receptor signaling in vivo by substrate-selective inhibition of PAPP-A proteolytic activity. Oncotarget 2015; 5:1014-25. [PMID: 24572990 PMCID: PMC4011579 DOI: 10.18632/oncotarget.1629] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The insulin-like growth factor (IGF) signaling pathway is involved in certain human cancers, and the feasibility of directly targeting the IGF receptor has been actively investigated. However, recent evidence from clinical trials suggests that this approach can be problematic. We have developed an alternative strategy to indirectly inhibit the IGF signaling by targeting the metalloproteinase, pregnancy-associated plasma protein-A (PAPP-A). PAPP-A associated with the cell surface cleaves IGF binding protein-4 (IGFBP-4), when IGF is bound to IGFBP-4, and thereby increases IGF bioavailability for receptor activation in an autocrine/paracrine manner. We hypothesized that inhibition of PAPP-A would suppress excessive local IGF signaling in tissues where this is caused by increased PAPP-A proteolytic activity. To test this hypothesis, we developed an inhibitory monoclonal antibody, mAb 1/41, which targets a unique substrate-binding exosite of PAPP-A. This inhibitor selectively and specifically inhibits proteolytic cleavage of IGFBP-4 with an inhibitory constant (Ki) of 135 pM. In addition, it inhibited intracellular signaling of the IGF receptor (AKT phosphorylation) in monolayers of A549 cells, an IGF-responsive lung cancer-derived cell line found to express high levels of PAPP-A. We further showed that mAb 1/41 is effective towards PAPP-A bound to cell surfaces, and that it is capable of inhibiting PAPP-A activity in vivo. Using a murine xenograft model of A549 cells, we demonstrated that mAb 1/41 administered intraperitoneally significantly inhibited tumor growth. Analysis of xenograft tumor tissue recovered from treated mice showed penetration of mAb 1/41, reduced IGFBP-4 proteolysis, and reduced AKT phosphorylation. Our study provides proof of concept that IGF signaling can be selectively reduced by targeting a regulatory proteinase that functions extracellularly, upstream of the IGF receptor. PAPP-A targeting thus represents an alternative therapeutic strategy for inhibiting IGF receptor signaling.
Collapse
Affiliation(s)
- Jakob H Mikkelsen
- Department of Molecular Biology and Genetics, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
We propose that dietary carbohydrate restriction, particularly ketogenic diets, may provide benefit as a therapeutic or preventive strategy in cancer, alone or as an adjunct to pharmacology. The argument derives from several points of evidence: There is a close association between cancer and both diabetes and obesity. Extensive evidence shows that low carbohydrate diets are the most effective dietary treatment of Type 2 diabetes and dietary adjunct in Type 1. Such diets also target all the markers of metabolic syndrome. Finally, de facto reduction in carbohydrate likely contributes to total dietary restriction, which is effective in the prevention and treatment of cancer. The idea is consistent with recent interest in treating cancer with drugs that target diabetes. To move forward, we must understand obesity and diabetes as response to a hyperglycemic state rather than simply a cause of downstream effects.
Collapse
Affiliation(s)
- Eugene J Fine
- a 1 Department of Nuclear Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | | |
Collapse
|
50
|
Crudden C, Girnita A, Girnita L. Targeting the IGF-1R: The Tale of the Tortoise and the Hare. Front Endocrinol (Lausanne) 2015; 6:64. [PMID: 25964779 PMCID: PMC4410616 DOI: 10.3389/fendo.2015.00064] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/11/2015] [Indexed: 11/13/2022] Open
Abstract
The insulin-like growth factor type 1 receptor (IGF-1R) plays a key role in the development and maintenance of cancer. Since the first links between growth factor receptors and oncogenes were noted over three decades ago, targeting the IGF-1R has been of great interest. This review follows the progress from inception through intense pharmaceutical development, disappointing clinical trials and recent updates to the signaling paradigm. In light of major developments in signaling understanding and activation complexities, we examine reasons for failure of first line targeting approaches. Recent findings include the fact that the IGF-1R can signal in the absence of the ligand, in the absence of kinase activity, and utilizes components of the GPCR system. With recognition of the unappreciated complexities that this first wave of targeting approaches encountered, we advocate re-recognition of IGF-1R as a valid target for cancer treatment and look to future directions, where both research and pharmaceutical strengths can lend themselves to finally unearthing anti-IGF-1R potential.
Collapse
Affiliation(s)
- Caitrin Crudden
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ada Girnita
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Dermatology, Karolinska University Hospital, Stockholm, Sweden
| | - Leonard Girnita
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- *Correspondence: Leonard Girnita, Cancer Centre Karolinska, Karolinska Institutet, Karolinska University Hospital, CCK R8:04, Stockholm S-17176, Sweden,
| |
Collapse
|