1
|
Vo JN, Campbell PR, Mahfuz NN, Ramli R, Pagendam D, Barnard R, Geering ADW. Characterization of the banana streak virus capsid protein and mapping of the immunodominant continuous B-cell epitopes to the surface-exposed N terminus. J Gen Virol 2016; 97:3446-3457. [DOI: 10.1099/jgv.0.000643] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jenny N. Vo
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, GPO Box 267, Brisbane, Queensland 4001, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Plant Biosecurity Cooperative Research Centre, LPO Box 5012, Bruce, Australian Capital Territory 2617, Australia
| | - Paul R. Campbell
- Plant Biosecurity Cooperative Research Centre, LPO Box 5012, Bruce, Australian Capital Territory 2617, Australia
- Queensland Department of Agriculture, Fisheries and Forestry, GPO Box 267, Brisbane, Queensland 4001, Australia
| | - Nur N. Mahfuz
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Ras Ramli
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Daniel Pagendam
- CSIRO Mathematics, Informatics and Statistics, Ecosciences Precinct, 41 Boggo Road, Dutton Park, Queensland 4102, Australia
| | - Ross Barnard
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Andrew D. W. Geering
- Plant Biosecurity Cooperative Research Centre, LPO Box 5012, Bruce, Australian Capital Territory 2617, Australia
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, GPO Box 267, Brisbane, Queensland 4001, Australia
| |
Collapse
|
2
|
Hohn T. Plant pararetroviruses: interactions of cauliflower mosaic virus with plants and insects. Curr Opin Virol 2013; 3:629-38. [PMID: 24075119 DOI: 10.1016/j.coviro.2013.08.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/26/2013] [Accepted: 08/26/2013] [Indexed: 10/26/2022]
Abstract
Virion associated protein (VAP) binds to the icosahedral capsid of cauliflower mosaic virus (CaMV) - a plant pararetrovirus. The interactive coiled-coil domains of this protein can interact with the coiled-coils of either the movement protein or the aphid transmission factor, thereby mediating both cell-to-cell movement and aphid transmission. The host counters CaMV infection with two lines of defense: innate immunity and silencing. The viral protein 'transactivator/viroplasmin' (TAV) is recognized as an effector and either initiates the innate immunity reaction in a non-permissive host or interferes with it in a permissive host. As a silencing suppressor, TAV interferes with dicing of dsRNAs.
Collapse
Affiliation(s)
- Thomas Hohn
- Basel University, Botanical Institute, Basel, Switzerland.
| |
Collapse
|
3
|
Structural insights into the molecular mechanisms of cauliflower mosaic virus transmission by its insect vector. J Virol 2010; 84:4706-13. [PMID: 20181714 DOI: 10.1128/jvi.02662-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cauliflower mosaic virus (CaMV) is transmitted from plant to plant through a seemingly simple interaction with insect vectors. This process involves an aphid receptor and two viral proteins, P2 and P3. P2 binds to both the aphid receptor and P3, itself tightly associated with the virus particle, with the ensemble forming a transmissible viral complex. Here, we describe the conformations of both unliganded CaMV P3 protein and its virion-associated form. X-ray crystallography revealed that the N-terminal domain of unliganded P3 is a tetrameric parallel coiled coil with a unique organization showing two successive four-stranded subdomains with opposite supercoiling handedness stabilized by a ring of interchain disulfide bridges. A structural model of virus-liganded P3 proteins, folding as an antiparallel coiled-coil network coating the virus surface, was derived from molecular modeling. Our results highlight the structural and biological versatility of this coiled-coil structure and provide new insights into the molecular mechanisms involved in CaMV acquisition and transmission by the insect vector.
Collapse
|
4
|
Stavolone L, Villani ME, Leclerc D, Hohn T. A coiled-coil interaction mediates cauliflower mosaic virus cell-to-cell movement. Proc Natl Acad Sci U S A 2005; 102:6219-24. [PMID: 15837934 PMCID: PMC1087906 DOI: 10.1073/pnas.0407731102] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The function of the virion-associated protein (VAP) of cauliflower mosaic virus (CaMV) has long been only poorly understood. VAP is associated with the virion but is dispensable for virus morphogenesis and replication. It mediates virus transmission by aphids through simultaneous interaction with both the aphid transmission factor and the virion. However, although insect transmission is not fundamental to CaMV survival, VAP is indispensable for spreading the virus infection within the host plant. We used a GST pull-down technique to demonstrate that VAP interacts with the viral movement protein through coiled-coil domains and surface plasmon resonance to measure the interaction kinetics. We mapped the movement protein coiled-coil to the C terminus of the protein and proved that it self-assembles as a trimer. Immunogold labeling/electron microscopy revealed that the VAP and viral movement protein colocalize on CaMV particles within plasmodesmata. These results highlight the multifunctional potential of the VAP protein conferred by its efficient coiled-coil interaction system and show a plant virus possessing a surface-exposed protein (VAP) mediating viral entry into host cells.
Collapse
Affiliation(s)
- Livia Stavolone
- Friedrich Miescher Institute, P.O. Box 2543, CH-4002, Basel, Switzerland.
| | | | | | | |
Collapse
|
5
|
Plisson C, Uzest M, Drucker M, Froissart R, Dumas C, Conway J, Thomas D, Blanc S, Bron P. Structure of the Mature P3-virus Particle Complex of Cauliflower Mosaic Virus Revealed by Cryo-electron Microscopy. J Mol Biol 2005; 346:267-77. [PMID: 15663943 DOI: 10.1016/j.jmb.2004.11.052] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 11/15/2004] [Accepted: 11/17/2004] [Indexed: 11/30/2022]
Abstract
The cauliflower mosaic virus (CaMV) has an icosahedral capsid composed of the viral protein P4. The viral product P3 is a multifunctional protein closely associated with the virus particle within host cells. The best-characterized function of P3 is its implication in CaMV plant-to-plant transmission by aphid vectors, involving a P3-virion complex. In this transmission process, the viral protein P2 attaches to virion-bound P3, and creates a molecular bridge between the virus and a putative receptor in the aphid's stylets. Recently, the virion-bound P3 has been suggested to participate in cell-to-cell or long-distance movement of CaMV within the host plant. Thus, as new data accumulate, the importance of the P3-virion complex during the virus life-cycle is becoming more and more evident. To provide a first insight into the knowledge of the transmission process of the virus, we determined the 3D structures of native and P3-decorated virions by cryo-electron microscopy and computer image processing. By difference mapping and biochemical analysis, we show that P3 forms a network around the capsomers and we propose a structural model for the binding of P3 to CaMV capsid in which its C terminus is anchored deeply in the inner shell of the virion, while the N-terminal extremity is facing out of the CaMV capsid, forming dimers by coiled-coil interactions. Our results combined with existing data reinforce the hypothesis that this coiled-coil N-terminal region of P3 could coordinate several functions during the virus life-cycle, such as cell-to-cell movement and aphid-transmission.
Collapse
Affiliation(s)
- Célia Plisson
- Université Rennes I, UMR 6026 CNRS, Campus de Beaulieu, 35042 Rennes, France
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Haas M, Bureau M, Geldreich A, Yot P, Keller M. Cauliflower mosaic virus: still in the news. MOLECULAR PLANT PATHOLOGY 2002; 3:419-29. [PMID: 20569349 DOI: 10.1046/j.1364-3703.2002.00136.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
SUMMARY Taxonomic relationship: Cauliflower mosaic virus (CaMV) is the type member of the Caulimovirus genus in the Caulimoviridae family, which comprises five other genera. CaMV replicates its DNA genome by reverse transcription of a pregenomic RNA and thus belongs to the pararetrovirus supergroup, which includes the Hepadnaviridae family infecting vertebrates. Physical properties: Virions are non-enveloped isometric particles, 53 nm in diameter (Fig. 1). They are constituted by 420 capsid protein subunits organized following T= 7 icosahedral symmetry (Cheng, R.H., Olson, N.H. and Baker, T.S. (1992) Cauliflower mosaic virus: a 420 subunit (T= 7), multilayer structure. Virology, 16, 655-668). The genome consists of a double-stranded circular DNA of approximately 8000 bp that is embedded in the inner surface of the capsid. Viral proteins: The CaMV genome encodes six proteins, a cell-to-cell movement protein (P1), two aphid transmission factors (P2 and P3), the precursor of the capsid proteins (P4), a polyprotein precursor of proteinase, reverse transcriptase and ribonuclease H (P5) and an inclusion body protein/translation transactivator (P6). Hosts: The host range of CaMV is limited to plants of the Cruciferae family, i.e. Brassicae species and Arabidopsis thaliana, but some viral strains can also infect solanaceous plants. In nature, CaMV is transmitted by aphids in a non-circulative manner.
Collapse
Affiliation(s)
- Muriel Haas
- Institut de Biologie Moléculaire des Plantes CNRS, Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | | | | | | | | |
Collapse
|
7
|
Tsuge S, Okuno T, Furusawa I, Kubo Y, Horino O. Stabilization of cauliflower mosaic virus P3 tetramer by covalent linkage. Microbiol Immunol 2002; 45:365-71. [PMID: 11471824 DOI: 10.1111/j.1348-0421.2001.tb02632.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cauliflower mosaic virus (CaMV) open reading frame (ORF) III encodes a 15 kDa protein (P3) that is indispensable for viral infectivity. Although P3 has been shown to be a prerequisite for CaMV aphid transmission, its role in viral replication remains unknown. We previously showed that P3 forms a tetramer in planta and that P3 tetramer co-sediments with viral coat protein on sucrose gradient centrifugation, suggesting that a tetramer may be the functional form of P3. We presumed that disulfide bonds were involved in tetramer formation because 1) the tetramer was detected by Western blotting after electrophoresis under non-reducing conditions, and 2) the cysteine-X-cysteine motif is well conserved in CaMV P3 and P3 homologues among Caulimoviruses. Therefore we mutated either or both of the cysteine residues of CaMV P3. The mutant viruses were infectious and accumulated to a similar extent as the wild-type. An analysis of mutant proteins confirmed that the wild-type P3 molecules in the tetramer are covalently bound with one another through disulfide bonds. It was also suggested that mutant proteins are less stable than wild-type protein in planta. Furthermore, sedimentation study suggested that the disulfide bonds are involved in stable association of P3 with CaMV virions or virion-like particles, or both. The mutant viruses could be transmitted by aphids. These results suggested that the covalent bonds in P3 tetramer are dispensable for biological activity of P3 under experimental situations and may have some biological significance in natural infection in the field.
Collapse
Affiliation(s)
- S Tsuge
- Laboratory of Plant Pathology, Faculty of Agriculture, Kyoto Prefectural University, Kyoto, Japan.
| | | | | | | | | |
Collapse
|
8
|
Stavolone L, Herzog E, Leclerc D, Hohn T. Tetramerization is a conserved feature of the virion-associated protein in plant pararetroviruses. J Virol 2001; 75:7739-43. [PMID: 11462048 PMCID: PMC115011 DOI: 10.1128/jvi.75.16.7739-7743.2001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All plant pararetroviruses belong to the Caulimoviridae family. This family contains six genera of viruses with different biological, serological, and molecular characteristics. Although some important mechanisms of viral replication and host infection are understood, much remains to be discovered about the many functions of the viral proteins. The focus of this study, the virion-associated protein (VAP), is conserved among all members of the group and contains a coiled-coil structure that has been shown to assemble as a tetramer in the case of cauliflower mosaic virus. We have used the yeast two-hybrid system to characterize self-association of the VAPs of four distinct plant pararetroviruses, each belonging to a different genus of Caulimoviridae. Chemical cross-linking confirmed that VAPs assemble into tetramers. Tetramerization is thus a common property of these proteins in plant pararetroviruses. The possible implications of this conserved feature for VAP function are discussed.
Collapse
Affiliation(s)
- L Stavolone
- Friedrich Miescher Institute, CH-4002 Basel, Switzerland
| | | | | | | |
Collapse
|
9
|
Takemoto Y, Hibi T. Genes Ia, II, III, IV and V of Soybean chlorotic mottle virus are essential but the gene Ib product is non-essential for systemic infection. J Gen Virol 2001; 82:1481-1489. [PMID: 11369894 DOI: 10.1099/0022-1317-82-6-1481] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Soybean chlorotic mottle virus (SbCMV) is the type species of the genus ‘Soybean chlorotic mottle-like viruses’, within the family Caulimoviridae. The double-stranded DNA genome of SbCMV (8178 bp) contains eight major open reading frames (ORFs). Viral genes essential and non-essential for the replication and movement of SbCMV were investigated by mutational analysis of an infectious 1·3-mer DNA clone. The results indicated that ORFs Ia, II, III, IV and V were essential for systemic infection. The product of ORF Ib was non-essential, although the putative tRNAMet primer-binding site in ORF Ib was proved to be essential. Immunoselection PCR revealed that an ORF Ia deletion mutant was encapsidated in primarily infected cells, indicating that ORF Ia is required for virus movement but not for replication. ORF IV was confirmed to encode a capsid protein by peptide sequencing of the capsid. Analysis of the viral transcripts showed that the SbCMV DNA genome gives rise to a pregenomic RNA and an ORF VI mRNA, as shown in the case of Cauliflower mosaic virus.
Collapse
MESH Headings
- Capsid/chemistry
- Capsid/genetics
- Caulimovirus/genetics
- Caulimovirus/growth & development
- Caulimovirus/physiology
- Cloning, Molecular
- DNA, Viral/genetics
- Fabaceae/virology
- Gene Deletion
- Genes, Essential/genetics
- Genes, Viral/genetics
- Genome, Viral
- Movement
- Open Reading Frames/genetics
- Plant Leaves/virology
- Plants, Medicinal
- RNA Precursors/analysis
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA, Transfer, Met/genetics
- RNA, Viral/analysis
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Sequence Analysis, Protein
- Virus Assembly/genetics
- Virus Replication/genetics
Collapse
Affiliation(s)
- Yutaka Takemoto
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan1
| | - Tadaaki Hibi
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan1
| |
Collapse
|
10
|
Leclerc D, Stavolone L, Meier E, Guerra-Peraza O, Herzog E, Hohn T. The product of ORF III in cauliflower mosaic virus interacts with the viral coat protein through its C-terminal proline rich domain. Virus Genes 2001; 22:159-65. [PMID: 11324752 DOI: 10.1023/a:1008121228637] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Using the yeast two-hybrid system, we show that the ORF III product of cauliflower mosaic virus (pIII) interacts through its C-terminus with the viral coat protein. The last five amino acids of pIII were essential for the interaction and virus infectivity. Deletion of the last three amino acids or the mutation F129A decreased the strength of the interaction by 90%. We further show that pIII is closely associated with virus particles found in the inclusion bodies of infected plants but not in viral particles released from the inclusion bodies by urea treatment.
Collapse
Affiliation(s)
- D Leclerc
- CHUQ, Pav.CHUL, Center de Recherche en Infectiologie, P. Quebec, Canada
| | | | | | | | | | | |
Collapse
|
11
|
Leh V, Jacquot E, Geldreich A, Haas M, Blanc S, Keller M, Yot P. Interaction between the open reading frame III product and the coat protein is required for transmission of cauliflower mosaic virus by aphids. J Virol 2001; 75:100-6. [PMID: 11119578 PMCID: PMC113902 DOI: 10.1128/jvi.75.1.100-106.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transmission of cauliflower mosaic virus (CaMV) by aphids requires two viral nonstructural proteins, the open reading frame (ORF) II and ORF III products (P2 and P3). An interaction between a C-terminal domain of P2 and an N-terminal domain of P3 is essential for transmission. Purified particles of CaMV are efficiently transmitted only if aphids, previously fed a P2-containing solution, are allowed to acquire a preincubated mixture of P3 and virions in a second feed, thus suggesting a direct interaction between P3 and coat protein. Herein we demonstrate that P3 directly interacts with purified viral particles and unassembled coat protein without the need for any other factor and that P3 mediates the association of P2 with purified virus particles. The interaction domain of P3 is located in its C-terminal half, downstream of the P3-P2 interaction domain but overlapping a region which binds nucleic acids. Mutagenesis of P3 which interferes with the interaction between P3 and virions is correlated with the loss of transmission by aphids. Taken together, our results demonstrate that P3 plays a crucial role in the formation of the CaMV transmissible complex by serving as a bridge between P2 and virus particles.
Collapse
Affiliation(s)
- V Leh
- Institut de Biologie Moléculaire des Plantes, FRE CNRS 2161, Université Louis Pasteur, 67084 Strasbourg Cedex, France
| | | | | | | | | | | | | |
Collapse
|
12
|
Herzog E, Guerra-Peraza O, Hohn T. The rice tungro bacilliform virus gene II product interacts with the coat protein domain of the viral gene III polyprotein. J Virol 2000; 74:2073-83. [PMID: 10666237 PMCID: PMC111688 DOI: 10.1128/jvi.74.5.2073-2083.2000] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rice tungro bacilliform virus (RTBV) is a plant pararetrovirus whose DNA genome contains four genes encoding three proteins and a large polyprotein. The function of most of the viral proteins is still unknown. To investigate the role of the gene II product (P2), we searched for interactions between this protein and other RTBV proteins. P2 was shown to interact with the coat protein (CP) domain of the viral gene III polyprotein (P3) both in the yeast two-hybrid system and in vitro. Domains involved in the P2-CP association have been identified and mapped on both proteins. To determine the importance of this interaction for viral multiplication, the infectivity of RTBV gene II mutants was investigated by agroinoculation of rice plants. The results showed that virus viability correlates with the ability of P2 to interact with the CP domain of P3. This study suggests that P2 could participate in RTBV capsid assembly.
Collapse
Affiliation(s)
- E Herzog
- Friedrich Miescher Institute, CH-4002 Basel, Switzerland
| | | | | |
Collapse
|
13
|
Tsuge S, Kobayashi K, Nakayashiki H, Mise K, Furusawa I. Cauliflower mosaic virus ORF III product forms a tetramer in planta: its implication in viral DNA folding during encapsidation. Microbiol Immunol 1999; 43:773-80. [PMID: 10524795 DOI: 10.1111/j.1348-0421.1999.tb02469.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cauliflower mosaic virus (CaMV) open reading frame (ORF) III encodes a 15 kDa protein; the function of which is as yet unknown. This protein has non-sequence-specific DNA binding activity and is associated with viral particles, suggesting that the ORF III product (P3) is involved in the folding of CaMV DNA during encapsidation. In this study, we demonstrated that P3 forms a tetramer in CaMV-infected plants. A P3-related protein with an apparent molecular weight of 60 kDa was detected by Western blotting analysis using anti-P3 antiserum under non-reducing conditions, while only 15 kDa P3 was detected under reducing conditions. Analysis of P3 using viable mutants with a 27-bp insertion in either ORF III or IV revealed that the 60 kDa protein was a tetramer of P3. The P3 tetramer co-sedimented with viral coat protein in multiple fractions on sucrose gradient centrifugation, suggesting that P3 tetramer binds to mature and immature virions. These results strongly suggested that CaMV P3 forms a tetramer in planta and that disulfide bonds are involved in its formation and/or stabilization. The finding of P3 tetramer in planta suggested that viral DNA would be folded compactly by the interaction with multiple P3 molecules, which would form tetramers, while being packaged into the capsid shell.
Collapse
Affiliation(s)
- S Tsuge
- Laboratory of Plant Pathology, Faculty of Agriculture, Kyoto Prefectural University, Japan.
| | | | | | | | | |
Collapse
|
14
|
Chapdelaine Y, Hohn T. The cauliflower mosaic virus capsid protein: assembly and nucleic acid binding in vitro. Virus Genes 1998; 17:139-50. [PMID: 9857987 DOI: 10.1023/a:1008064623335] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The capsid protein of the cauliflower mosaic virus (CaMV) was expressed in a bacterial system to study CaMV assembly. Bacterial lysates contained soluble particulate material and insoluble inclusion bodies that were both used for analysis. In vitro renaturation of pIV derivatives lead to the appearance of folded sheets or large tubular structures in electron microscopy. The region between amino acid positions 77 and 332 is sufficient for self-aggregation of pIV in vitro. C-terminal deletion to amino acid position 265 still allowed dimerization but prevented further aggregation. Nucleic acid binding assays of immobilized pIV derivatives demonstrated that a region located upstream of the retroviral "zinc finger-like" motif is involved in unspecific binding dsDNA, ssDNA and RNA.
Collapse
|
15
|
Leclerc D, Burri L, Kajava AV, Mougeot JL, Hess D, Lustig A, Kleemann G, Hohn T. The open reading frame III product of cauliflower mosaic virus forms a tetramer through a N-terminal coiled-coil. J Biol Chem 1998; 273:29015-21. [PMID: 9786907 DOI: 10.1074/jbc.273.44.29015] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The open reading frame III product of cauliflower mosaic virus is a protein of 15 kDa (p15) that is essential for the virus life cycle. It was shown that the 34 N-terminal amino acids are sufficient to support protein-protein interaction with the full-length p15 in the yeast two-hybrid system. A corresponding peptide was synthesized and a recombinant p15 was expressed in Escherichia coli and purified. Circular dichroism spectroscopy showed that the peptide and the full-length protein can assume an alpha-helical conformation. Analytical centrifugation allowed to determine that p15 assembles as a rod-shaped tetramer. Oxidative cross-linking of N-terminal cysteines of the peptide generated specific covalent oligomers, indicating that the N terminus of p15 is a coiled-coil that assembles as a parallel tetramer. Mutation of Lys22 into Asp destabilized the tetramer and put forward the presence of a salt bridge between Lys22 and Asp24 in a model building of the stalk. These results suggest a model in which the stalk segment of p15 is located at its N terminus, followed by a hinge that provides the space for presenting the C terminus for interactions with nucleic acids and/or proteins.
Collapse
Affiliation(s)
- D Leclerc
- Friedrich Miescher Institut, P. O. Box 2543, CH-4002 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Jacquot E, Geldreich A, Keller M, Yot P. Mapping regions of the cauliflower mosaic virus ORF III product required for infectivity. Virology 1998; 242:395-402. [PMID: 9514961 DOI: 10.1006/viro.1997.8995] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The open reading frame (ORF) III product (PIII) of the pararetrovirus cauliflower mosaic virus (CaMV) has nucleic acid-binding properties in vitro, but its biological role is not yet determined. ORF III is closely linked to ORF II and overlaps ORF IV out of frame in the CaMV genome. A new CaMV-derived vector (Ca delta) devoid of ORF III and containing unique restriction sites between ORFs II and IV was designed. Introduction of the wild-type CaMV ORF III into Ca delta results in a clone (Ca3) infectious in turnip plants. Truncated or point-mutated versions of ORF III were then inserted into Ca delta and tested in vivo. Inoculation of the different mutants into turnip revealed that the four C-terminal amino acid residues of PIII are dispensable for infectivity as well as an internal domain (amino acids 61 to 80). Taken together the results show that PIII possesses a functional two-domain organization. Moreover, the CaMV PIII function(s) cannot be replaced either by the PIII protein of another caulimovirus, the figwort mosaic virus, or by the P2 protein of the cacao swollen shoot badnavirus, a member of the second plant pararetrovirus group.
Collapse
Affiliation(s)
- E Jacquot
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université Louis Pasteur, Strasbourg, France
| | | | | | | |
Collapse
|
17
|
Schärer-Hernández N, Hohn T. Nonlinear ribosome migration on cauliflower mosaic virus 35S RNA in transgenic tobacco plants. Virology 1998; 242:403-13. [PMID: 9514980 DOI: 10.1006/viro.1998.9038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cauliflower mosaic virus (CaMV) uses a specialised translation mechanism to bypass the long leader sequence of the 35S RNA. The effect of the CaMV 35S RNA leader sequence on the expression of a downstream beta-glucuronidase (GUS) reporter gene was studied in transgenic tobacco plants. Enzymatic GUS assays of these transgenic plants show that a shunt mechanism of translation indeed occurs in planta with an average efficiency of 5% compared with the leaderless construct. Histological GUS analyses indicate that the shunt mechanism occurs throughout the whole plant and at all developmental stages.
Collapse
|
18
|
Rothnie HM, Chapdelaine Y, Hohn T. Pararetroviruses and retroviruses: a comparative review of viral structure and gene expression strategies. Adv Virus Res 1994; 44:1-67. [PMID: 7817872 DOI: 10.1016/s0065-3527(08)60327-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- H M Rothnie
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | |
Collapse
|