1
|
Vallina NS, Geary C, Jepsen M, Andersen ES. Computer-Aided Design and Production of RNA Origami as Protein Scaffolds and Biosensors. Methods Mol Biol 2023; 2639:51-67. [PMID: 37166710 DOI: 10.1007/978-1-0716-3028-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
RNA nanotechnology is able to take advantage of the modularity of RNA to build a wide variety of structures and functional devices from a common set of structural modules. The RNA origami architecture harnesses the property of RNA to fold as it is being enzymatically synthesized by the RNA polymerase and enables the design of single-stranded devices that integrate multiple structural and functional RNA motifs. Here, we provide detailed procedures on how to design and characterize RNA origami structures. The process is illustrated by two examples: one that forms lattices and another example that acts as biosensors.
Collapse
Affiliation(s)
| | - Cody Geary
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Mette Jepsen
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
2
|
Abstract
Surface plasmon resonance (SPR)-based instruments have become gold-standard tools for investigating molecular interactions involving macromolecules. The major advantage is that the measured signal is sensitive to changes in mass. Therefore, all kinds of complexes can be analyzed including those with compounds as small as cations. SPR is mainly used to determine the dissociation equilibrium constant and the binding rates of a reaction if slow enough. SPR is well suited for analysis molecular interactions with nucleic acids because these negatively charged macromolecules do not have a tendency to stick to the sensor chip surface as some proteins can do. To illustrate the use of SPR with RNA molecules, we describe methods that we used for monitoring the interaction between the protein Rop from E. coli and two RNA-RNA loop-loop complexes. One is derived from the natural target of Rop, RNAI-RNAII. The other one is an RNA-RNA complex formed between a shortened version of the TAR element of HIV-1 and a structured RNA, TAR* rationally designed to interact with TAR through loop-loop interactions. These methods can be easily adapted to other complexes involving RNA molecules and to other SPR instruments.
Collapse
Affiliation(s)
- Carmelo Di Primo
- Laboratoire ARNA, University of Bordeaux, Bordeaux, France.
- INSERM U1212, CNRS UMR 5320, Institut Européen de Chimie et Biologie, Pessac, France.
| |
Collapse
|
3
|
Danaee P, Rouches M, Wiley M, Deng D, Huang L, Hendrix D. bpRNA: large-scale automated annotation and analysis of RNA secondary structure. Nucleic Acids Res 2019; 46:5381-5394. [PMID: 29746666 PMCID: PMC6009582 DOI: 10.1093/nar/gky285] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/11/2018] [Indexed: 01/04/2023] Open
Abstract
While RNA secondary structure prediction from sequence data has made remarkable progress, there is a need for improved strategies for annotating the features of RNA secondary structures. Here, we present bpRNA, a novel annotation tool capable of parsing RNA structures, including complex pseudoknot-containing RNAs, to yield an objective, precise, compact, unambiguous, easily-interpretable description of all loops, stems, and pseudoknots, along with the positions, sequence, and flanking base pairs of each such structural feature. We also introduce several new informative representations of RNA structure types to improve structure visualization and interpretation. We have further used bpRNA to generate a web-accessible meta-database, ‘bpRNA-1m’, of over 100 000 single-molecule, known secondary structures; this is both more fully and accurately annotated and over 20-times larger than existing databases. We use a subset of the database with highly similar (≥90% identical) sequences filtered out to report on statistical trends in sequence, flanking base pairs, and length. Both the bpRNA method and the bpRNA-1m database will be valuable resources both for specific analysis of individual RNA molecules and large-scale analyses such as are useful for updating RNA energy parameters for computational thermodynamic predictions, improving machine learning models for structure prediction, and for benchmarking structure-prediction algorithms.
Collapse
Affiliation(s)
| | | | | | - Dezhong Deng
- School of Electrical Engineering and Computer Science
| | - Liang Huang
- School of Electrical Engineering and Computer Science
| | - David Hendrix
- School of Electrical Engineering and Computer Science.,Department of Biochemistry and Biophysics
| |
Collapse
|
4
|
Jasinski D, Haque F, Binzel DW, Guo P. Advancement of the Emerging Field of RNA Nanotechnology. ACS NANO 2017; 11:1142-1164. [PMID: 28045501 PMCID: PMC5333189 DOI: 10.1021/acsnano.6b05737] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/03/2017] [Indexed: 05/14/2023]
Abstract
The field of RNA nanotechnology has advanced rapidly during the past decade. A variety of programmable RNA nanoparticles with defined shape, size, and stoichiometry have been developed for diverse applications in nanobiotechnology. The rising popularity of RNA nanoparticles is due to a number of factors: (1) removing the concern of RNA degradation in vitro and in vivo by introducing chemical modification into nucleotides without significant alteration of the RNA property in folding and self-assembly; (2) confirming the concept that RNA displays very high thermodynamic stability and is suitable for in vivo trafficking and other applications; (3) obtaining the knowledge to tune the immunogenic properties of synthetic RNA constructs for in vivo applications; (4) increased understanding of the 4D structure and intermolecular interaction of RNA molecules; (5) developing methods to control shape, size, and stoichiometry of RNA nanoparticles; (6) increasing knowledge of regulation and processing functions of RNA in cells; (7) decreasing cost of RNA production by biological and chemical synthesis; and (8) proving the concept that RNA is a safe and specific therapeutic modality for cancer and other diseases with little or no accumulation in vital organs. Other applications of RNA nanotechnology, such as adapting them to construct 2D, 3D, and 4D structures for use in tissue engineering, biosensing, resistive biomemory, and potential computer logic gate modules, have stimulated the interest of the scientific community. This review aims to outline the current state of the art of RNA nanoparticles as programmable smart complexes and offers perspectives on the promising avenues of research in this fast-growing field.
Collapse
Affiliation(s)
| | | | - Daniel W Binzel
- College of Pharmacy, Division
of Pharmaceutics and Pharmaceutical Chemistry; College of Medicine,
Department of Physiology & Cell Biology; and Dorothy M. Davis
Heart and Lung Research Institute, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Peixuan Guo
- College of Pharmacy, Division
of Pharmaceutics and Pharmaceutical Chemistry; College of Medicine,
Department of Physiology & Cell Biology; and Dorothy M. Davis
Heart and Lung Research Institute, The Ohio
State University, Columbus, Ohio 43210, United States
| |
Collapse
|
5
|
Abstract
RNAs adopt diverse folded structures that are essential for function and thus play critical roles in cellular biology. A striking example of this is the ribosome, a complex, three-dimensionally folded macromolecular machine that orchestrates protein synthesis. Advances in RNA biochemistry, structural and molecular biology, and bioinformatics have revealed other non-coding RNAs whose functions are dictated by their structure. It is not surprising that aberrantly folded RNA structures contribute to disease. In this Review, we provide a brief introduction into RNA structural biology and then describe how RNA structures function in cells and cause or contribute to neurological disease. Finally, we highlight successful applications of rational design principles to provide chemical probes and lead compounds targeting structured RNAs. Based on several examples of well-characterized RNA-driven neurological disorders, we demonstrate how designed small molecules can facilitate the study of RNA dysfunction, elucidating previously unknown roles for RNA in disease, and provide lead therapeutics.
Collapse
Affiliation(s)
- Viachaslau Bernat
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
6
|
Multiple approaches for the investigation of bacterial small regulatory RNAs self-assembly. Methods Mol Biol 2015; 1297:21-42. [PMID: 25895993 DOI: 10.1007/978-1-4939-2562-9_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
RNAs are flexible molecules involved in a multitude of roles in the cell. Specifically, noncoding RNAs (i.e., RNAs that do not encode a protein) have important functions in the regulation of biological processes such as RNA decay, translation, or protein translocation. In bacteria, most of those noncoding RNAs have been shown to be critical for posttranscriptional control through their binding to the untranslated regions of target mRNAs. Recent evidence shows that some of these noncoding RNAs have the propensity to self-assemble in prokaryotes. Although the function of this self-assembly is not known and may vary from one RNA to another, it offers new insights into riboregulation pathways. We present here the various approaches that can be used for the detection and analysis of bacterial small noncoding RNA self-assemblies.
Collapse
|
7
|
Haque F, Guo P. Overview of methods in RNA nanotechnology: synthesis, purification, and characterization of RNA nanoparticles. Methods Mol Biol 2015; 1297:1-19. [PMID: 25895992 DOI: 10.1007/978-1-4939-2562-9_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
RNA nanotechnology encompasses the use of RNA as a construction material to build homogeneous nanostructures by bottom-up self-assembly with defined size, structure, and stoichiometry; this pioneering concept demonstrated in 1998 (Guo et al., Molecular Cell 2:149-155, 1998; featured in Cell) has emerged as a new field that also involves materials engineering and synthetic structural biology (Guo, Nature Nanotechnology 5:833-842, 2010). The field of RNA nanotechnology has skyrocketed over the last few years, as evidenced by the burst of publications in prominent journals on RNA nanostructures and their applications in nanomedicine and nanotechnology. Rapid advances in RNA chemistry, RNA biophysics, and RNA biology have created new opportunities for translating basic science into clinical practice. RNA nanotechnology holds considerable promise in this regard. Increased evidence also suggests that substantial part of the 98.5 % of human genome (Lander et al. Nature 409:860-921, 2001) that used to be called "junk DNA" actually codes for noncoding RNA. As we understand more on how RNA structures are related to function, we can fabricate synthetic RNA nanoparticles for the diagnosis and treatment of diseases. This chapter provides a brief overview of the field regarding the design, construction, purification, and characterization of RNA nanoparticles for diverse applications in nanotechnology and nanomedicince.
Collapse
Affiliation(s)
- Farzin Haque
- Nanobiotechnology Center, Markey Cancer Center, Departmentof Pharmaceutical Sciences, University of Kentucky, 789 S Limestone Ave, 576 Biopharm Complex, Lexington, KY, 40536, USA,
| | | |
Collapse
|
8
|
Mashaghi A, van Wijk R, Tans S. Circuit Topology of Proteins and Nucleic Acids. Structure 2014; 22:1227-1237. [DOI: 10.1016/j.str.2014.06.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 05/10/2014] [Accepted: 06/17/2014] [Indexed: 01/19/2023]
|
9
|
Shu Y, Pi F, Sharma A, Rajabi M, Haque F, Shu D, Leggas M, Evers BM, Guo P. Stable RNA nanoparticles as potential new generation drugs for cancer therapy. Adv Drug Deliv Rev 2014; 66:74-89. [PMID: 24270010 DOI: 10.1016/j.addr.2013.11.006] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 10/11/2013] [Accepted: 11/13/2013] [Indexed: 12/13/2022]
Abstract
Human genome sequencing revealed that only ~1.5% of the DNA sequence coded for proteins. More and more evidence has uncovered that a substantial part of the 98.5% so-called "junk" DNAs actually code for noncoding RNAs. Two milestones, chemical drugs and protein drugs, have already appeared in the history of drug development, and it is expected that the third milestone in drug development will be RNA drugs or drugs that target RNA. This review focuses on the development of RNA therapeutics for potential cancer treatment by applying RNA nanotechnology. A therapeutic RNA nanoparticle is unique in that its scaffold, ligand, and therapeutic component can all be composed of RNA. The special physicochemical properties lend to the delivery of siRNA, miRNA, ribozymes, or riboswitches; imaging using fluogenenic RNA; and targeting using RNA aptamers. With recent advances in solving the chemical, enzymatic, and thermodynamic stability issues, RNA nanoparticles have been found to be advantageous for in vivo applications due to their uniform nano-scale size, precise stoichiometry, polyvalent nature, low immunogenicity, low toxicity, and target specificity. In vivo animal studies have revealed that RNA nanoparticles can specifically target tumors with favorable pharmacokinetic and pharmacodynamic parameters without unwanted accumulation in normal organs. This review summarizes the key studies that have led to the detailed understanding of RNA nanoparticle formation as well as chemical and thermodynamic stability issue. The methods for RNA nanoparticle construction, and the current challenges in the clinical application of RNA nanotechnology, such as endosome trapping and production costs, are also discussed.
Collapse
Affiliation(s)
- Yi Shu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Fengmei Pi
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Ashwani Sharma
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Mehdi Rajabi
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Farzin Haque
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Dan Shu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Markos Leggas
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - B Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Peixuan Guo
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
10
|
Qiu M, Khisamutdinov E, Zhao Z, Pan C, Choi JW, Leontis NB, Guo P. RNA nanotechnology for computer design and in vivo computation. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2013; 371:20120310. [PMID: 24000362 PMCID: PMC3758167 DOI: 10.1098/rsta.2012.0310] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Molecular-scale computing has been explored since 1989 owing to the foreseeable limitation of Moore's law for silicon-based computation devices. With the potential of massive parallelism, low energy consumption and capability of working in vivo, molecular-scale computing promises a new computational paradigm. Inspired by the concepts from the electronic computer, DNA computing has realized basic Boolean functions and has progressed into multi-layered circuits. Recently, RNA nanotechnology has emerged as an alternative approach. Owing to the newly discovered thermodynamic stability of a special RNA motif (Shu et al. 2011 Nat. Nanotechnol. 6, 658-667 (doi:10.1038/nnano.2011.105)), RNA nanoparticles are emerging as another promising medium for nanodevice and nanomedicine as well as molecular-scale computing. Like DNA, RNA sequences can be designed to form desired secondary structures in a straightforward manner, but RNA is structurally more versatile and more thermodynamically stable owing to its non-canonical base-pairing, tertiary interactions and base-stacking property. A 90-nucleotide RNA can exhibit 4⁹⁰ nanostructures, and its loops and tertiary architecture can serve as a mounting dovetail that eliminates the need for external linking dowels. Its enzymatic and fluorogenic activity creates diversity in computational design. Varieties of small RNA can work cooperatively, synergistically or antagonistically to carry out computational logic circuits. The riboswitch and enzymatic ribozyme activities and its special in vivo attributes offer a great potential for in vivo computation. Unique features in transcription, termination, self-assembly, self-processing and acid resistance enable in vivo production of RNA nanoparticles that harbour various regulators for intracellular manipulation. With all these advantages, RNA computation is promising, but it is still in its infancy. Many challenges still exist. Collaborations between RNA nanotechnologists and computer scientists are necessary to advance this nascent technology.
Collapse
Affiliation(s)
- Meikang Qiu
- Department of Computer Engineering, San Jose State University, San Jose, CA 95192, USA
| | - Emil Khisamutdinov
- Department of Pharmaceutical Science, University of Kentucky, Lexington, KY 40506, USA
| | - Zhengyi Zhao
- Department of Pharmaceutical Science, University of Kentucky, Lexington, KY 40506, USA
| | - Cheryl Pan
- Department of Electrical and Computer Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 121-742, Korea
| | - Neocles B. Leontis
- Department of Chemistry, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Peixuan Guo
- Department of Pharmaceutical Science, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
11
|
Appasamy SD, Ramlan EI, Firdaus-Raih M. Comparative sequence and structure analysis reveals the conservation and diversity of nucleotide positions and their associated tertiary interactions in the riboswitches. PLoS One 2013; 8:e73984. [PMID: 24040136 PMCID: PMC3764141 DOI: 10.1371/journal.pone.0073984] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 07/25/2013] [Indexed: 12/17/2022] Open
Abstract
The tertiary motifs in complex RNA molecules play vital roles to either stabilize the formation of RNA 3D structure or to provide important biological functionality to the molecule. In order to better understand the roles of these tertiary motifs in riboswitches, we examined 11 representative riboswitch PDB structures for potential agreement of both motif occurrences and conservations. A total of 61 unique tertiary interactions were found in the reference structures. In addition to the expected common A-minor motifs and base-triples mainly involved in linking distant regions the riboswitch structures three highly conserved variants of A-minor interactions called G-minors were found in the SAM-I and FMN riboswitches where they appear to be involved in the recognition of the respective ligand’s functional groups. From our structural survey as well as corresponding structure and sequence alignments, the agreement between motif occurrences and conservations are very prominent across the representative riboswitches. Our analysis provide evidence that some of these tertiary interactions are essential components to form the structure where their sequence positions are conserved despite a high degree of diversity in other parts of the respective riboswitches sequences. This is indicative of a vital role for these tertiary interactions in determining the specific biological function of riboswitch.
Collapse
Affiliation(s)
- Sri D Appasamy
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | | | | |
Collapse
|
12
|
Shen Y, Wong HS, Zhang S, Zhang L. RNA structural motif recognition based on least-squares distance. RNA (NEW YORK, N.Y.) 2013; 19:1183-1191. [PMID: 23887146 PMCID: PMC3753925 DOI: 10.1261/rna.037648.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 06/13/2013] [Indexed: 06/02/2023]
Abstract
RNA structural motifs are recurrent structural elements occurring in RNA molecules. RNA structural motif recognition aims to find RNA substructures that are similar to a query motif, and it is important for RNA structure analysis and RNA function prediction. In view of this, we propose a new method known as RNA Structural Motif Recognition based on Least-Squares distance (LS-RSMR) to effectively recognize RNA structural motifs. A test set consisting of five types of RNA structural motifs occurring in Escherichia coli ribosomal RNA is compiled by us. Experiments are conducted for recognizing these five types of motifs. The experimental results fully reveal the superiority of the proposed LS-RSMR compared with four other state-of-the-art methods.
Collapse
Affiliation(s)
- Ying Shen
- School of Software Engineering, Tongji University, Shanghai 200092, China
| | - Hau-San Wong
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong
| | - Shaohong Zhang
- Department of Computer Science, Guangzhou University, Guangzhou 510006, China
| | - Lin Zhang
- School of Software Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
13
|
Halder S, Bhattacharyya D. RNA structure and dynamics: a base pairing perspective. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 113:264-83. [PMID: 23891726 DOI: 10.1016/j.pbiomolbio.2013.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/25/2013] [Accepted: 07/16/2013] [Indexed: 12/12/2022]
Abstract
RNA is now known to possess various structural, regulatory and enzymatic functions for survival of cellular organisms. Functional RNA structures are generally created by three-dimensional organization of small structural motifs, formed by base pairing between self-complementary sequences from different parts of the RNA chain. In addition to the canonical Watson-Crick or wobble base pairs, several non-canonical base pairs are found to be crucial to the structural organization of RNA molecules. They appear within different structural motifs and are found to stabilize the molecule through long-range intra-molecular interactions between basic structural motifs like double helices and loops. These base pairs also impart functional variation to the minor groove of A-form RNA helices, thus forming anchoring site for metabolites and ligands. Non-canonical base pairs are formed by edge-to-edge hydrogen bonding interactions between the bases. A large number of theoretical studies have been done to detect and analyze these non-canonical base pairs within crystal or NMR derived structures of different functional RNA. Theoretical studies of these isolated base pairs using ab initio quantum chemical methods as well as molecular dynamics simulations of larger fragments have also established that many of these non-canonical base pairs are as stable as the canonical Watson-Crick base pairs. This review focuses on the various structural aspects of non-canonical base pairs in the organization of RNA molecules and the possible applications of these base pairs in predicting RNA structures with more accuracy.
Collapse
Affiliation(s)
- Sukanya Halder
- Biophysics division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700 064, India
| | | |
Collapse
|
14
|
Shu Y, Haque F, Shu D, Li W, Zhu Z, Kotb M, Lyubchenko Y, Guo P. Fabrication of 14 different RNA nanoparticles for specific tumor targeting without accumulation in normal organs. RNA (NEW YORK, N.Y.) 2013; 19:767-77. [PMID: 23604636 PMCID: PMC3683911 DOI: 10.1261/rna.037002.112] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 03/05/2013] [Indexed: 05/19/2023]
Abstract
Due to structural flexibility, RNase sensitivity, and serum instability, RNA nanoparticles with concrete shapes for in vivo application remain challenging to construct. Here we report the construction of 14 RNA nanoparticles with solid shapes for targeting cancers specifically. These RNA nanoparticles were resistant to RNase degradation, stable in serum for >36 h, and stable in vivo after systemic injection. By applying RNA nanotechnology and exemplifying with these 14 RNA nanoparticles, we have established the technology and developed "toolkits" utilizing a variety of principles to construct RNA architectures with diverse shapes and angles. The structure elements of phi29 motor pRNA were utilized for fabrication of dimers, twins, trimers, triplets, tetramers, quadruplets, pentamers, hexamers, heptamers, and other higher-order oligomers, as well as branched diverse architectures via hand-in-hand, foot-to-foot, and arm-on-arm interactions. These novel RNA nanostructures harbor resourceful functionalities for numerous applications in nanotechnology and medicine. It was found that all incorporated functional modules, such as siRNA, ribozymes, aptamers, and other functionalities, folded correctly and functioned independently within the nanoparticles. The incorporation of all functionalities was achieved prior, but not subsequent, to the assembly of the RNA nanoparticles, thus ensuring the production of homogeneous therapeutic nanoparticles. More importantly, upon systemic injection, these RNA nanoparticles targeted cancer exclusively in vivo without accumulation in normal organs and tissues. These findings open a new territory for cancer targeting and treatment. The versatility and diversity in structure and function derived from one biological RNA molecule implies immense potential concealed within the RNA nanotechnology field.
Collapse
Affiliation(s)
- Yi Shu
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Farzin Haque
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Dan Shu
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Wei Li
- Nanobiotechnology Center, SEEBME, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Zhenqi Zhu
- Department of Molecular Genetics, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Malak Kotb
- Department of Molecular Genetics, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Yuri Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Peixuan Guo
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, USA
- Corresponding authorE-mail
| |
Collapse
|
15
|
Ultrastable pRNA hexameric ring gearing hexameric phi29 DNA-packaging motor by revolving without rotating and coiling. Curr Opin Biotechnol 2013; 24:581-90. [PMID: 23683853 DOI: 10.1016/j.copbio.2013.03.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/11/2013] [Accepted: 03/21/2013] [Indexed: 11/20/2022]
Abstract
Biomotors have previously been classified into two categories: linear and rotational motors. It has long been popularly believed that viral DNA packaging motors are rotation motors. We have recently found that the DNA-packaging motor of bacteriophage phi29 uses a third mechanism: revolution without rotation. phi29 motor consists of three-coaxial rings of hexameric RNA, a hexameric ATPase, and a dodecameric channel. The motor uses six ATP to revolve one helical turn of dsDNA around the hexameric ring of ATPase gp16. Each dodecameric segment tilts at a 30°-angle and runs anti-parallel to the dsDNA helix to facilitate translation in one direction. The negatively charged phosphate backbone interacts with four positively charged lysine rings, resulting in four steps of transition. This review will discuss how the novel pRNA meets motor requirements for translocation concerning structure, stoichiometry, and thermostability; how pRNA studies have led to the generation of the concept of RNA nanotechnology; and how pRNA is fabricated into nanoparticles to deliver siRNA, miRNA, and ribozymes to cancer and virus-infected cells.
Collapse
|
16
|
Abstract
The folding of various intra- and intermolecular i-motif DNAs is systematically studied to expand the toolbox for the control of mechanical operations in DNA nanoarchitectures. We analyzed i-motif DNAs with two C-tracts under acidic conditions by gel electrophoresis, circular dichroism, and thermal denaturation and show that their intra- versus intermolecular folding primarily depends on the length of the C-tracts. Two stretches of six or fewer C-residues favor the intermolecular folding of i-motifs, whereas longer C-tracts promote the formation of intramolecular i-motif structures with unusually high thermal stability. We then introduced intra- and intermolecular i-motifs formed by DNAs containing two C-tracts into single-stranded regions within otherwise double-stranded DNA nanocircles. By adjusting the length of C-tracts we can control the intra- and intermolecular folding of i-motif DNAs and achieve programmable functionalization of dsDNA nanocircles. Single-stranded gaps in the nanocircle that are functionalized with an intramolecular i-motif enable the reversible contraction and extension of the DNA circle, as monitored by fluorescence quenching. Thereby, the nanocircle behaves as a proton-fueled DNA prototype machine. In contrast, nanorings containing intermolecular i-motifs induce the assembly of defined multicomponent DNA architectures in response to proton-triggered predicted structural changes, such as dimerization, "kiss", and cyclization. The resulting DNA nanostructures are verified by gel electrophoresis and visualized by atomic force microscopy, including different folding topologies of an intermolecular i-motif. The i-motif-functionalized DNA nanocircles may serve as a versatile tool for the formation of larger interlocked dsDNA nanostructures, like rotaxanes and catenanes, to achieve diverse mechanical operations.
Collapse
Affiliation(s)
- Tao Li
- Life and Medical Science (LIMES) Institute, Program Unit Chemical Biology and Medicinal Chemistry, University of Bonn, 53121 Bonn, Germany
| | | |
Collapse
|
17
|
Guo P, Haque F, Hallahan B, Reif R, Li H. Uniqueness, advantages, challenges, solutions, and perspectives in therapeutics applying RNA nanotechnology. Nucleic Acid Ther 2012; 22:226-45. [PMID: 22913595 DOI: 10.1089/nat.2012.0350] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The field of RNA nanotechnology is rapidly emerging. RNA can be manipulated with the simplicity characteristic of DNA to produce nanoparticles with a diversity of quaternary structures by self-assembly. Additionally RNA is tremendously versatile in its function and some RNA molecules display catalytic activities much like proteins. Thus, RNA has the advantage of both worlds. However, the instability of RNA has made many scientists flinch away from RNA nanotechnology. Other concerns that have deterred the progress of RNA therapeutics include the induction of interferons, stimulation of cytokines, and activation of other immune systems, as well as short pharmacokinetic profiles in vivo. This review will provide some solutions and perspectives on the chemical and thermodynamic stability, in vivo half-life and biodistribution, yield and production cost, in vivo toxicity and side effect, specific delivery and targeting, as well as endosomal trapping and escape.
Collapse
Affiliation(s)
- Peixuan Guo
- Nanobiotechnology Center, Markey Cancer Center and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536, USA.
| | | | | | | | | |
Collapse
|
18
|
Guo P, Haque F, Hallahan B, Reif R, Li H. Uniqueness, advantages, challenges, solutions, and perspectives in therapeutics applying RNA nanotechnology. Nucleic Acid Ther 2012. [PMID: 22913595 DOI: 10.1201/b15152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
The field of RNA nanotechnology is rapidly emerging. RNA can be manipulated with the simplicity characteristic of DNA to produce nanoparticles with a diversity of quaternary structures by self-assembly. Additionally RNA is tremendously versatile in its function and some RNA molecules display catalytic activities much like proteins. Thus, RNA has the advantage of both worlds. However, the instability of RNA has made many scientists flinch away from RNA nanotechnology. Other concerns that have deterred the progress of RNA therapeutics include the induction of interferons, stimulation of cytokines, and activation of other immune systems, as well as short pharmacokinetic profiles in vivo. This review will provide some solutions and perspectives on the chemical and thermodynamic stability, in vivo half-life and biodistribution, yield and production cost, in vivo toxicity and side effect, specific delivery and targeting, as well as endosomal trapping and escape.
Collapse
Affiliation(s)
- Peixuan Guo
- Nanobiotechnology Center, Markey Cancer Center and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536, USA.
| | | | | | | | | |
Collapse
|
19
|
Lee SH, Chung BH, Park TG, Nam YS, Mok H. Small-interfering RNA (siRNA)-based functional micro- and nanostructures for efficient and selective gene silencing. Acc Chem Res 2012; 45:1014-25. [PMID: 22413937 DOI: 10.1021/ar2002254] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Because of RNA's ability to encode structure and functional information, researchers have fabricated diverse geometric structures from this polymer at the micro- and nanoscale. With their tunable structures, rigidity, and biocompatibility, novel two-dimensional and three-dimensional RNA structures can serve as a fundamental platform for biomedical applications, including engineered tissues, biosensors, and drug delivery vehicles. The discovery of the potential of small-interfering RNA (siRNA) has underscored the applications of RNA-based micro- and nanostructures in medicine. Small-interfering RNA (siRNA), synthetic double-stranded RNA consisting of approximately 21 base pairs, suppresses problematic target genes in a sequence-specific manner via inherent RNA interference (RNAi) processing. As a result, siRNA offers a potential strategy for treatment of many human diseases. However, due to inefficient delivery to cells and off-target effects, the clinical application of therapeutic siRNA has been very challenging. To address these issues, researchers have studied a variety of nanocarrier systems for siRNA delivery. In this Account, we describe several strategies for efficient siRNA delivery and selective gene silencing. We took advantage of facile chemical conjugation and complementary hybridization to design novel siRNA-based micro- and nanostructures. Using chemical crosslinkers and hydrophobic/hydrophilic polymers at the end of siRNA, we produced various RNA-based structures, including siRNA block copolymers, micelles, linear siRNA homopolymers, and microhydrogels. Because of their increased charge density and flexibility compared with conventional siRNA, these micro- and nanostructures can form polyelectrolyte complexes with poorly charged and biocompatible cationic carriers that are both more condensed and more homogenous than the complexes formed in other carrier systems. In addition, the fabricated siRNA-based structures are linked by cleavable disulfide bonds for facile generation of original siRNA in the cytosol and for target-specific gene silencing. These newly developed siRNA-based structures greatly enhance intracellular uptake and gene silencing both in vitro and in vivo, making them promising biomaterials for siRNA therapeutics.
Collapse
Affiliation(s)
- Soo Hyeon Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Bong Hyun Chung
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Tae Gwan Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Yoon Sung Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Hyejung Mok
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Republic of Korea
| |
Collapse
|
20
|
Shukla GC, Haque F, Tor Y, Wilhelmsson LM, Toulmé JJ, Isambert H, Guo P, Rossi JJ, Tenenbaum SA, Shapiro BA. A boost for the emerging field of RNA nanotechnology. ACS NANO 2011; 5:3405-18. [PMID: 21604810 PMCID: PMC3102291 DOI: 10.1021/nn200989r] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This Nano Focus article highlights recent advances in RNA nanotechnology as presented at the First International Conference of RNA Nanotechnology and Therapeutics, which took place in Cleveland, OH, USA (October 23-25, 2010) ( http://www.eng.uc.edu/nanomedicine/RNA2010/ ), chaired by Peixuan Guo and co-chaired by David Rueda and Scott Tenenbaum. The conference was the first of its kind to bring together more than 30 invited speakers in the frontier of RNA nanotechnology from France, Sweden, South Korea, China, and throughout the United States to discuss RNA nanotechnology and its applications. It provided a platform for researchers from academia, government, and the pharmaceutical industry to share existing knowledge, vision, technology, and challenges in the field and promoted collaborations among researchers interested in advancing this emerging scientific discipline. The meeting covered a range of topics, including biophysical and single-molecule approaches for characterization of RNA nanostructures; structure studies on RNA nanoparticles by chemical or biochemical approaches, computation, prediction, and modeling of RNA nanoparticle structures; methods for the assembly of RNA nanoparticles; chemistry for RNA synthesis, conjugation, and labeling; and application of RNA nanoparticles in therapeutics. A special invited talk on the well-established principles of DNA nanotechnology was arranged to provide models for RNA nanotechnology. An Administrator from National Institutes of Health (NIH) National Cancer Institute (NCI) Alliance for Nanotechnology in Cancer discussed the current nanocancer research directions and future funding opportunities at NCI. As indicated by the feedback received from the invited speakers and the meeting participants, this meeting was extremely successful, exciting, and informative, covering many groundbreaking findings, pioneering ideas, and novel discoveries.
Collapse
Affiliation(s)
- Girish C. Shukla
- Center for Gene Regulation in Health and Disease, Department of Biological Sciences, Cleveland State University, Cleveland, Ohio 44115, United States
| | - Farzin Haque
- Nanobiomedical Center, College of Engineering and Applied Science, and College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - Yitzhak Tor
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - L. Marcus Wilhelmsson
- Department of Chemical and Biological Engineering/Physical Chemistry, Chalmers University of Technology, Kemivägen 10, SE-412 96 Göteborg, Sweden
| | - Jean-Jacques Toulmé
- Université Bordeaux Segalen, INSERM U869, Bâtiment 3A 1er étage, 33076 Bordeaux Cedex, France
| | - Hervé Isambert
- Institut Curie, Research Division, CNRS UMR 168, 11 rue P. & M. Curie, 75005 Paris, France
| | - Peixuan Guo
- Nanobiomedical Center, College of Engineering and Applied Science, and College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - John J. Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California 91010, United States
| | - Scott A. Tenenbaum
- College of Nanoscale Science & Engineering, University at Albany-SUNY, Albany, New York 12203, United States
| | - Bruce A. Shapiro
- Center for Cancer Research Nanobiology Program, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
| |
Collapse
|
21
|
|
22
|
|
23
|
Abstract
Like DNA, RNA can be designed and manipulated to produce a variety of different nanostructures. Moreover, RNA has a flexible structure and possesses catalytic functions that are similar to proteins. Although RNA nanotechnology resembles DNA nanotechnology in many ways, the base-pairing rules for constructing nanoparticles are different. The large variety of loops and motifs found in RNA allows it to fold into numerous complicated structures, and this diversity provides a platform for identifying viable building blocks for various applications. The thermal stability of RNA also allows the production of multivalent nanostructures with defined stoichiometry. Here we review techniques for constructing RNA nanoparticles from different building blocks, we describe the distinct attributes of RNA inside the body, and discuss potential applications of RNA nanostructures in medicine. We also offer some perspectives on the yield and cost of RNA production.
Collapse
Affiliation(s)
- Peixuan Guo
- Nanobiomedical Center, College of Engineering and College of Medicine, University of Cincinnati, Cincinnati, Ohio 45221, USA.
| |
Collapse
|
24
|
Avila Figueroa A, Delaney S. Mechanistic studies of hairpin to duplex conversion for trinucleotide repeat sequences. J Biol Chem 2010; 285:14648-57. [PMID: 20228068 DOI: 10.1074/jbc.m109.061853] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The expansion of a trinucleotide repeat sequence, such as CAG/CTG, has been pinpointed as the molecular basis for a number of neurodegenerative disorders. It has been proposed that as part of the expansion process, these repetitive sequences adopt non-B conformations such as hairpins. However, the prevalence of these hairpins and their contributions to the DNA expansion have not been well defined. In this work, we utilized a molecular beacon strategy to examine the stability of the (CAG)(10) hairpin and also its behavior in the presence of the complementary (CTG)(10) hairpin. We find that the two hairpins represent kinetically trapped species that can coexist but irreversibly convert to duplex upon thermal induction. Furthermore, as monitored by fluorescence and optical analysis, modifications to the base composition of either the loop or stem region have a profound effect on the ability of the trinucleotide repeat hairpins to convert to duplex. Additionally, the rate of duplex formation is also reduced with these loop and stem-modified hairpins. These results demonstrate that the trinucleotide repeat hairpins can convert to duplex via two independent mechanisms as follows: the loop-loop interactions found in kissing hairpins or the stem-stem interactions of a cruciform.
Collapse
|
25
|
Kharytonchyk S, Pedersen FS. A unique, thermostable dimer linkage structure of RD114 retroviral RNA. RNA (NEW YORK, N.Y.) 2010; 16:572-584. [PMID: 20075164 PMCID: PMC2822922 DOI: 10.1261/rna.1495110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 11/13/2009] [Indexed: 05/28/2023]
Abstract
Retroviruses package their genome as RNA dimers linked together primarily by base-pairing between palindromic stem-loop (psl) sequences at the 5' end of genomic RNA. Retroviral RNA dimers usually melt in the range of 55 degrees C-70 degrees C. However, RNA dimers from virions of the feline endogenous gammaretrovirus RD114 were reported to melt only at 87 degrees C. We here report that the high thermal stability of RD114 RNA dimers generated from in vitro synthesized RNA is an effect of multiple dimerization sites located in the 5' region from the R region to sequences downstream from the splice donor (SD) site. By antisense oligonucleotide probing we were able to map at least five dimerization sites. Computational prediction revealed a possibility to form stems with autocomplementary loops for all of the mapped dimerization sites. Three of them were located upstream of the SD site. Mutant analysis supported a role of all five loop sequences in the formation and thermal stability of RNA dimers. Four of the five psls were also predicted in the RNA of two baboon endogenous retroviruses proposed to be ancestors of RD114. RNA fragments of the 5' R region or prolonged further downstream could be efficiently dimerized in vitro. However, this was not the case for the 3' R region linked to upstream U3 sequences, suggesting a specific mechanism of negative regulation of dimerization at the 3' end of the genome, possibly explained by a long double-stranded RNA region at the U3-R border. Altogether, these data point to determinants of the high thermostability of the dimer linkage structure of the RD114 genome and reveal differences from other retroviruses.
Collapse
|
26
|
Moulton V, Singh M. Prediction of RNA Secondary Structure Including Kissing Hairpin Motifs. ALGORITHMS IN BIOINFORMATICS 2010. [PMCID: PMC7121939 DOI: 10.1007/978-3-642-15294-8_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We present three heuristic strategies for folding RNA sequences into secondary structures including kissing hairpin motifs. The new idea is to construct a kissing hairpin motif from an overlay of two simple canonical pseudoknots. The difficulty is that the overlay does not satisfy Bellman’s Principle of Optimality, and the kissing hairpin cannot simply be built from optimal pseudoknots. Our strategies have time/space complexities of O(n4) / O(n2), O(n4) / O(n3), and O(n5) / O(n2). All strategies have been implemented in the program pKiss and were evaluated against known structures. Surprisingly, our simplest strategy performs best. As it has the same complexity as the previous algorithm for simple pseudoknots, the overlay idea opens a way to construct a variety of practically useful algorithms for pseudoknots of higher topological complexity within O(n4) time and O(n2) space.
Collapse
Affiliation(s)
- Vincent Moulton
- School of Computing Sciences, University of East Anglia, NR 7TJ Norwich, UK
| | - Mona Singh
- Lewis-Sigler Institute for Integrative Genomics, Department of Computer Science, Princeton University, NJ 08544 Princeton, USA
| |
Collapse
|
27
|
Leipply D, Lambert D, Draper DE. Ion-RNA interactions thermodynamic analysis of the effects of mono- and divalent ions on RNA conformational equilibria. Methods Enzymol 2009; 469:433-63. [PMID: 20946802 DOI: 10.1016/s0076-6879(09)69021-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RNA secondary and tertiary structures are strongly stabilized by added salts, and a quantitative thermodynamic analysis of the relevant ion-RNA interactions is an important aspect of the RNA folding problem. Because of long-range electrostatic forces, an RNA perturbs the distribution of both cations and anions throughout a large volume. Binding formalisms that require a distinction between "bound" and "free" ions become problematic in such situations. A more fundamental thermodynamic framework is developed here, based on preferential interaction coefficients; linkage equations derived from this framework provide a model-free description of the "uptake" or "release" of cations and anions that accompany an RNA conformational transition. Formulas appropriate for analyzing the dependence of RNA stability on either mono- or divalent salt concentration are presented and their application to experimental data is illustrated. Two example datasets are analyzed with respect to the monovalent salt dependence of tertiary structure formation in different RNAs, and three different experimental methods for quantitating the "uptake" of Mg(2+) ions are applied to the folding of a riboswitch RNA. Advantages and limitations of each method are discussed.
Collapse
Affiliation(s)
- Desirae Leipply
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | |
Collapse
|
28
|
Watrin M, Von Pelchrzim F, Dausse E, Schroeder R, Toulmé JJ. In vitro selection of RNA aptamers derived from a genomic human library against the TAR RNA element of HIV-1. Biochemistry 2009; 48:6278-84. [PMID: 19496624 DOI: 10.1021/bi802373d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The transactivating responsive (TAR) element is a RNA hairpin located in the 5' untranslated region of HIV-1 mRNA. It is essential for full-length transcription of the retroviral genome and therefore for HIV-1 replication. Hairpin aptamers that generate highly stable and specific complexes with TAR were previously identified, thus decreasing the level of TAR-dependent expression in cultured cells [Kolb, G., et al. (2006) RNA Biol. 3, 150-156]. We performed genomic SELEX against TAR using a human RNA library to identify human transcripts that might interact with the retroviral genome through loop-loop interactions and potentially contribute to the regulation of TAR-mediated processes. We identified a genomic aptamer termed a1 that folds as a hairpin with an apical loop complementary to five nucleotides of the TAR hexanucleotide loop. Surface plasmon resonance experiments performed on a truncated or mutated version of the a1 aptamer, in the presence of the Rop protein of Escherichia coli, indicate the formation of a highly stable a1-TAR kissing complex. The 5' ACCCAG loop of a1 constitutes a new motif of interaction with the TAR loop.
Collapse
Affiliation(s)
- Marguerite Watrin
- Inserm U869, European Institute of Chemistry and Biology, Pessac, France
| | | | | | | | | |
Collapse
|
29
|
Lambert D, Leipply D, Shiman R, Draper DE. The influence of monovalent cation size on the stability of RNA tertiary structures. J Mol Biol 2009; 390:791-804. [PMID: 19427322 PMCID: PMC2712228 DOI: 10.1016/j.jmb.2009.04.083] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 04/29/2009] [Accepted: 04/30/2009] [Indexed: 01/03/2023]
Abstract
Many RNA tertiary structures are stable in the presence of monovalent ions alone. To evaluate the degree to which ions at or near the surfaces of such RNAs contribute to stability, the salt-dependent stability of a variety of RNA structures was measured with each of the five group I cations. The stability of hairpin secondary structures and a pseudoknot tertiary structure are insensitive to the ion identity, but the tertiary structures of two other RNAs, an adenine riboswitch and a kissing loop complex, become more stable by 2-3 kcal/mol as ion size decreases. This "default" trend is attributed to the ability of smaller ions to approach the RNA surface more closely. The degree of cation accumulation around the kissing loop complex was also inversely proportional to ion radius, perhaps because of the presence of sterically restricted pockets that can be accessed only by smaller ions. An RNA containing the tetraloop-receptor motif shows a strong (up to approximately 3 kcal/mol) preference for Na(+) or K(+) over other group I ions, consistent with the chelation of K(+) by this motif in some crystal structures. This RNA reverts to the default dependence on ion size when a base forming part of the chelation site is mutated. Lastly, an RNA aptamer for cobinamide, which was originally selected in the presence of high concentrations of LiCl, binds ligand more strongly in the presence of Li(+) than other monovalent ions. On the basis of these trends in RNA stability with group I ion size, it is argued that two features of RNA tertiary structures may promote strong interactions with ions at or near the RNA surface: negative charge densities that are higher than that in secondary structures, and the occasional presence of chelation sites, which are electronegative pockets that selectively bind ions of an optimum size.
Collapse
Affiliation(s)
- Dominic Lambert
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
30
|
Xin Y, Laing C, Leontis NB, Schlick T. Annotation of tertiary interactions in RNA structures reveals variations and correlations. RNA (NEW YORK, N.Y.) 2008; 14:2465-2477. [PMID: 18957492 PMCID: PMC2590958 DOI: 10.1261/rna.1249208] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 08/30/2008] [Indexed: 05/27/2023]
Abstract
RNA tertiary motifs play an important role in RNA folding and biochemical functions. To help interpret the complex organization of RNA tertiary interactions, we comprehensively analyze a data set of 54 high-resolution RNA crystal structures for motif occurrence and correlations. Specifically, we search seven recognized categories of RNA tertiary motifs (coaxial helix, A-minor, ribose zipper, pseudoknot, kissing hairpin, tRNA D-loop/T-loop, and tetraloop-tetraloop receptor) by various computer programs. For the nonredundant RNA data set, we find 613 RNA tertiary interactions, most of which occur in the 16S and 23S rRNAs. An analysis of these motifs reveals the diversity and variety of A-minor motif interactions and the various possible loop-loop receptor interactions that expand upon the tetraloop-tetraloop receptor. Correlations between motifs, such as pseudoknot or coaxial helix with A-minor, reveal higher-order patterns. These findings may ultimately help define tertiary structure restraints for RNA tertiary structure prediction. A complete annotation of the RNA diagrams for our data set is available at http://www.biomath.nyu.edu/motifs/.
Collapse
Affiliation(s)
- Yurong Xin
- Department of Chemistry, New York University, New York, New York 10012, USA
| | | | | | | |
Collapse
|
31
|
Di Primo C. Real time analysis of the RNAI-RNAII-Rop complex by surface plasmon resonance: from a decaying surface to a standard kinetic analysis. J Mol Recognit 2008; 21:37-45. [PMID: 18247355 DOI: 10.1002/jmr.860] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RNA loop-loop complexes are motifs that regulate biological functions in both prokaryotic and eukaryotic organisms. In E. coli, RNAI, an antisense RNA encoded by the ColE1 plasmid, regulates the plasmid replication by recognizing through loop-loop interactions RNAII, the RNA primer that binds to the plasmidic DNA to initiate the replication. Rop, a plasmid-encoded homodimeric protein interacts with this transient RNAI-RNAII kissing complex. A surface plasmon resonance (SPR)-based biosensor was used to investigate this protein-nucleic acid ternary complex, at 5 degrees C, in experimental conditions such as the protein binds either to the loop-loop complex while it dissociates or to a saturated stable RNAI-RNAII surface. The results show that RNAI hairpin dissociates from the RNAII surface 110 times slower in the presence of Rop than in its absence. Rop binds to RNAI-RNAII with an on-rate of 3.6 x 10(6) M(-1) s(-1) and an off-rate of 0.11 s(-1), resulting in a binding equilibrium constant equal to 31 nM. A Scatchard-plot analysis of the interaction monitored by SPR confirms a 1:1 complex of Rop and RNAI-RNAII as observed for non-natural Rop-loop-loop complexes.
Collapse
Affiliation(s)
- Carmelo Di Primo
- INSERM U869, Institut Européen de Chimie et Biologie, Pessac, F-33607, France.
| |
Collapse
|
32
|
Abstract
Since the year 2000 a number of large RNA three-dimensional structures have been determined by X-ray crystallography. Structures composed of more than 100 nucleotide residues include the signal recognition particle RNA, group I intron, the GlmS ribozyme, RNAseP RNA, and ribosomal RNAs from Haloarcula morismortui, Escherichia coli, Thermus thermophilus, and Deinococcus radiodurans. These large RNAs are constructed from the same secondary and tertiary structural motifs identified in smaller RNAs but appear to have a larger organizational architecture. They are dominated by long continuous interhelical base stacking, tend to segregate into domains, and are planar in overall shape as opposed to their globular protein counterparts. These findings have consequences in RNA folding, intermolecular interaction, and packing, in addition to studies of design and engineering and structure prediction.
Collapse
Affiliation(s)
- Stephen R Holbrook
- Structural Biology Department, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| |
Collapse
|
33
|
Liquid-crystal NMR structure of HIV TAR RNA bound to its SELEX RNA aptamer reveals the origins of the high stability of the complex. Proc Natl Acad Sci U S A 2008; 105:9210-5. [PMID: 18607001 DOI: 10.1073/pnas.0712121105] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transactivation-response element (TAR) is a stable stem-loop structure of HIV RNA, which plays a crucial role during the life cycle of the virus. The apical loop of TAR acts as a binding site for essential cellular cofactors required for the replication of HIV. High-affinity aptamers directed against the apical loop of TAR have been identified by the SELEX approach. The RNA aptamers with the highest affinity for TAR fold as hairpins and form kissing complexes with the targeted RNA through loop-loop interactions. The aptamers with the strongest binding properties all possess a GA base pair combination at the loop-closing position. Using liquid-crystal NMR methodology, we have obtained a structural model in solution of a TAR-aptamer kissing complex with an unprecedented accuracy. This high-resolution structure reveals that the GA base pair is unilaterally shifted toward the 5' strand and is stabilized by a network of intersugar hydrogen bonds. This specific conformation of the GA base pair allows for the formation of two supplementary stable base-pair interactions. By systematic permutations of the loop-closing base pair, we establish that the identified atomic interactions, which form the basis for the high stability of the complex, are maintained in several other kissing complexes. This study rationalizes the stabilizing role of the loop-closing GA base pairs in kissing complexes and may help the development or improvement of drugs against RNA loops of viruses or pathogens as well as the conception of biochemical tools targeting RNA hairpins involved in important biological functions.
Collapse
|
34
|
Upert G, Mehiri M, Di Giorgio A, Condom R, Patino N. Solid-phase synthesis and thermal denaturation study of cyclic PNAs targeting the HIV-1 TAR RNA loop. Bioorg Med Chem Lett 2007; 17:6026-30. [PMID: 17826994 DOI: 10.1016/j.bmcl.2007.07.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 07/04/2007] [Accepted: 07/05/2007] [Indexed: 10/23/2022]
Abstract
Cyclic PNAs targeting the HIV-1 TAR RNA loop have been synthesized following a convenient solid-phase strategy which allows on-resin cyclisation. UV-monitored thermal denaturation studies demonstrate that these cyclic PNAs are able to strongly interact with their TAR RNA target, very likely through the formation of a six-base pair stable complex, involving the TAR RNA loop.
Collapse
Affiliation(s)
- Gregory Upert
- Laboratoire de Chimie des Molécules Bioactives et des Arômes (LCMBA), UMR UNSA-CNRS 6001, Université de Nice-Sophia Antipolis, 06108 Nice Cedex 2, France
| | | | | | | | | |
Collapse
|
35
|
Wu T, Heilman-Miller SL, Levin JG. Effects of nucleic acid local structure and magnesium ions on minus-strand transfer mediated by the nucleic acid chaperone activity of HIV-1 nucleocapsid protein. Nucleic Acids Res 2007; 35:3974-87. [PMID: 17553835 PMCID: PMC1919501 DOI: 10.1093/nar/gkm375] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
HIV-1 nucleocapsid protein (NC) is a nucleic acid chaperone, which is required for highly specific and efficient reverse transcription. Here, we demonstrate that local structure of acceptor RNA at a potential nucleation site, rather than overall thermodynamic stability, is a critical determinant for the minus-strand transfer step (annealing of acceptor RNA to (−) strong-stop DNA followed by reverse transcriptase (RT)-catalyzed DNA extension). In our system, destabilization of a stem-loop structure at the 5′ end of the transactivation response element (TAR) in a 70-nt RNA acceptor (RNA 70) appears to be the major nucleation pathway. Using a mutational approach, we show that when the acceptor has a weak local structure, NC has little or no effect. In this case, the efficiencies of both annealing and strand transfer reactions are similar. However, when NC is required to destabilize local structure in acceptor RNA, the efficiency of annealing is significantly higher than that of strand transfer. Consistent with this result, we find that Mg2+ (required for RT activity) inhibits NC-catalyzed annealing. This suggests that Mg2+ competes with NC for binding to the nucleic acid substrates. Collectively, our findings provide new insights into the mechanism of NC-dependent and -independent minus-strand transfer.
Collapse
Affiliation(s)
| | | | - Judith G. Levin
- *To whom correspondence should be addressed. +1 301 496 1970+1 301 496 0243
| |
Collapse
|
36
|
Vo MN, Barany G, Rouzina I, Musier-Forsyth K. Mechanistic studies of mini-TAR RNA/DNA annealing in the absence and presence of HIV-1 nucleocapsid protein. J Mol Biol 2006; 363:244-61. [PMID: 16962137 DOI: 10.1016/j.jmb.2006.08.039] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 08/12/2006] [Accepted: 08/16/2006] [Indexed: 11/24/2022]
Abstract
HIV-1 reverse transcription involves several nucleic acid rearrangements, which are catalyzed by the nucleocapsid protein (NC). Annealing of the trans-activation response element (TAR) DNA hairpin to a complementary TAR RNA hairpin, resulting in the formation of an extended 98-base-pair duplex, is an essential step in the minus-strand transfer step of reverse transcription. To elucidate the TAR RNA/DNA annealing reaction pathway, annealing kinetics were studied systematically by gel-shift assays performed in the presence or absence of HIV-1 NC. Truncated 27 nucleotide mini-TAR RNA and DNA constructs were used in this work. In the absence of NC, the annealing is slow, and involves the fast formation of an unstable extended "kissing" loop intermediate, followed by a slower strand exchange between the terminal stems. This annealing is very sensitive to loop-loop complementarity, as well as to nucleic acid concentration, ionic strength and temperature. NC stimulates the annealing approximately 5000-fold by stabilizing the bimolecular intermediate approximately 100 to 200-fold, and promoting the subsequent strand exchange reaction approximately 10 to 20-fold. NC concentration dependence studies suggest that there is a direct correlation between the amount of NC required to stabilize the intermediate and the amount needed to induce mini-TAR aggregation. Whereas saturating levels of NC are required to efficiently aggregate nucleic acids, sub-saturating NC is sufficient to significantly enhance duplex destabilization. Equilibrium levels of mini-TAR RNA/DNA annealing were also measured under a variety of conditions. Taken together, the results presented here provide a quantitative accounting of HIV-1 NC's aggregation and duplex destabilizing activity, and provide insights into the universal nucleic acid chaperone activity of this essential viral protein.
Collapse
Affiliation(s)
- My-Nuong Vo
- University of Minnesota, Department of Chemistry and Institute for Molecular Virology, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
37
|
Liu HW, Cosa G, Landes CF, Zeng Y, Kovaleski BJ, Mullen DG, Barany G, Musier-Forsyth K, Barbara PF. Single-molecule FRET studies of important intermediates in the nucleocapsid-protein-chaperoned minus-strand transfer step in HIV-1 reverse transcription. Biophys J 2005; 89:3470-9. [PMID: 16100256 PMCID: PMC1366842 DOI: 10.1529/biophysj.105.065326] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The minus-strand transfer step of HIV-1 reverse transcription is chaperoned by the nucleocapsid protein (NC), which has been shown to facilitate the annealing between the transactivation response element (TAR) RNA and complementary TAR DNA stem-loop structures. In this work, potential intermediates in the mechanism of NC-chaperoned TAR DNA/TAR RNA annealing have been examined using single-molecule fluorescence resonance energy transfer. The interaction between TAR DNA and various DNA oligonucleotides designed to mimic the initial annealing step was monitored to capture potential intermediates along the reaction pathway. Two possible mechanisms of annealing were examined, namely nucleation through the 3'/5' termini, termed the "zipper" complex, or nucleation through the hairpin loops in a "kissing" complex. Intermediates associated with both mechanisms were observed in the presence of NC, and the kinetics of formation of these intermediates were also measured. Thus, the single-molecule experiments support the notion that NC-assisted annealing of TAR DNA:TAR RNA may occur through multiple pathways.
Collapse
Affiliation(s)
- Hsiao-Wei Liu
- Department of Chemistry and Biochemistry, Center for Nano and Molecular Science and Technology, University of Texas, Austin, TX 78712, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kurz K, Göbel MW. Hydrolytical Cleavage of TAR-RNA, thetrans-Activation Responsive Region of HIV-1, by a Bis(guanidinium) Catalyst Attached to Arginine. Helv Chim Acta 2004. [DOI: 10.1002/hlca.19960790719] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
Golebiowski J, Antonczak S, Fernandez-Carmona J, Condom R, Cabrol-Bass D. Closing loop base pairs in RNA loop-loop complexes: structural behavior, interaction energy and solvation analysis through molecular dynamics simulations. J Mol Model 2004; 10:408-17. [PMID: 15597210 DOI: 10.1007/s00894-004-0216-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Accepted: 09/10/2004] [Indexed: 10/26/2022]
Abstract
Nanosecond molecular dynamics using the Ewald summation method have been performed to elucidate the structural and energetic role of the closing base pair in loop-loop RNA duplexes neutralized by Mg2+ counterions in aqueous phases. Mismatches GA, CU and Watson-Crick GC base pairs have been considered for closing the loop of an RNA in complementary interaction with HIV-1 TAR. The simulations reveal that the mismatch GA base, mediated by a water molecule, leads to a complex that presents the best compromise between flexibility and energetic contributions. The mismatch CU base pair, in spite of the presence of an inserted water molecule, is too short to achieve a tight interaction at the closing-loop junction and seems to force TAR to reorganize upon binding. An energetic analysis has allowed us to quantify the strength of the interactions of the closing and the loop-loop pairs throughout the simulations. Although the water-mediated GA closing base pair presents an interaction energy similar to that found on fully geometry-optimized structure, the water-mediated CU closing base pair energy interaction reaches less than half the optimal value.
Collapse
Affiliation(s)
- Jérôme Golebiowski
- Laboratoire Arômes, Synthèses, Interactions, Faculté des sciences, Université de Nice-Sophia Antipolis, Nice Cedex 2, 06108, France.
| | | | | | | | | |
Collapse
|
40
|
Beaurain F, Laguerre M. MD Studies of the DIS/DIS Kissing Complex Solution and X-Ray Structures. Oligonucleotides 2003; 13:501-14. [PMID: 15025916 DOI: 10.1089/154545703322860816] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
As in all retroviruses, human immunodeficiency virus (HIV) genomic RNA is packaged into virions as a dimer. The two copies of the genome are noncovalently linked by their 5'-ends in the dimerization initiating site (DIS), which folds as a hairpin containing an apical autocomplementary sequence. In vitro, DIS is able to dimerize in two conformations: a kissing complex and an extended dimer. Both conformations have been resolved by NMR and x-ray diffraction. Here, we report molecular dynamics (MD) studies of the two available structures for the DIS/DIS kissing complex in aqueous solution and in the presence of sodium counterions. The two structures behave in two different manners. On one hand, the NMR structure displays a very stable behavior, and the simulated structure remains very close to the starting structure. On the other hand, the structure issued from crystallography displays a more dynamic behavior, in which residues A8 and A9 are seen in a new and surprising bulge-in conformation. The transition from the bulge-out to the bulge-in conformation is analyzed, and a new and simple dimerization process is proposed.
Collapse
Affiliation(s)
- François Beaurain
- Institut Européen de Chimie et Biologie, CNRS UMR 5144, 33607 Pessac Cedex, France.
| | | |
Collapse
|
41
|
Christ D, Winter G. Identification of functional similarities between proteins using directed evolution. Proc Natl Acad Sci U S A 2003; 100:13202-6. [PMID: 14573700 PMCID: PMC263750 DOI: 10.1073/pnas.2134365100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Accepted: 08/21/2003] [Indexed: 11/18/2022] Open
Abstract
Protein sequences are often highly redundant and evolution can change them beyond recognition. It can therefore be difficult to identify proteins with functional or structural similarities by inspection of their sequences. Here we have used an experimental evolutionary approach to detect hidden similarities between the antisense RNA-binding protein Rop and other proteins. We created an envelope of functional Rop mutants by combinatorial mutagenesis, used the compilation of mutant sequences to search a database of protein structures, and thereby identified a segment of the enzyme valyl-tRNA-synthetase (ValRS). Further inspection revealed that the structures of the RNA-binding sites of both proteins are highly related, as indeed are the RNA ligands. From the known 3D structure of the ValRS in complex with tRNA, we were able to build a model of an RNA hairpin pair in complex with Rop that has proved to be consistent with the biochemical and NMR data for the interaction between Rop and RNA hairpins. We suggest that this approach (mutational envelope scanning), by generating sequence information de novo, can help uncover hidden similarities between proteins.
Collapse
Affiliation(s)
- Daniel Christ
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom.
| | | |
Collapse
|
42
|
Kierzek E, Kierzek R. The thermodynamic stability of RNA duplexes and hairpins containing N6-alkyladenosines and 2-methylthio-N6-alkyladenosines. Nucleic Acids Res 2003; 31:4472-80. [PMID: 12888507 PMCID: PMC169893 DOI: 10.1093/nar/gkg633] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2003] [Revised: 05/30/2003] [Accepted: 05/30/2003] [Indexed: 11/14/2022] Open
Abstract
The N6-alkyladenosines and 2-methylthio-N6-alkyladenosines make up over half of the population of all naturally modified adenosines and they are present in the transfer ribonucleic acids (tRNA) at position 37. We measured effects of N6-alkyladenosines and 2-methylthio-N6-alkyladenosines on the thermodynamic stability of RNA duplexes containing a U-A(Mod) base pair at internal and terminal duplex positions, as well as containing modified adenosines as a 3'-terminal unpaired nucleotide. Beside naturally modified adenosines such as N6-isopentenyladenosine (i6A), N6-methyladenosine (m6A), 2-methylthio-N6-isopentenyladenosine (ms2i6A) and 2-methylthio-N6-methyladenosine (ms2m6A), we studied several artificial modifications to evaluate the steric and electronic effects of N6-alkyl substituents. Moreover, some N6-alkyladenosines and 2-methylthio-N6-alkyladenosines were placed in hairpins at positions corresponding to nucleotide 37 of the tRNA anticodon arm, and the thermodynamic stability of those hairpins was studied. The stability of the modified RNA hairpins was measured in standard melting buffer containing 1 M sodium chloride as well as in physiological buffer containing 10 mM magnesium chloride and 150 mM potassium chloride. The results obtained indicate that the nature of the adenosine modification and the position of U-A(Mod) base pairs within the duplex influence the thermodynamic stability of RNA duplexes. For most of the modification, the destabilization of duplexes was observed. Moreover, we found that the buffer composition and the structure of the modified adenosine very significantly affect the thermodynamic stability of RNA.
Collapse
Affiliation(s)
- Elzbieta Kierzek
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznañ, Poland
| | | |
Collapse
|
43
|
Beaurain F, Di Primo C, Toulmé JJ, Laguerre M. Molecular dynamics reveals the stabilizing role of loop closing residues in kissing interactions: comparison between TAR-TAR* and TAR-aptamer. Nucleic Acids Res 2003; 31:4275-84. [PMID: 12853646 PMCID: PMC165981 DOI: 10.1093/nar/gkg467] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2002] [Revised: 01/21/2003] [Accepted: 05/10/2003] [Indexed: 11/12/2022] Open
Abstract
A RNA aptamer (R06) raised against the trans- activation responsive (TAR) element of HIV-1 was previously shown to generate a loop-loop complex whose stability is strongly dependent on the selected G and A residues closing the aptamer loop. The rationally designed TAR* RNA hairpin with a loop sequence fully complementary to the TAR element, closed by U,A residues, also engages in a loop-loop association with TAR, but with a lower stability compared with the TAR-R06 complex. UV absorption monitored thermal denaturation showed that TAR-TAR*(GA), in which the U,A kissing residues were exchanged for G,A, is as stable as the selected TAR-R06 complex. Consequently, we used the TAR-TAR* structure deduced from NMR studies to model the TAR-R06 complex with either GA, CA or UA loop closing residues. The results of the molecular dynamics trajectories correlate well with the thermal denaturation experiments and show that the increased stability of the GA variant results from an optimized stacking of the bases at the stem-loop junction and from stable interbackbone hydrogen bonds.
Collapse
Affiliation(s)
- François Beaurain
- Institut Européen de Chimie et Biologie, CNRS UMR 5144, 16 Avenue Pey Berland, F-33607 Pessac Cedex, France.
| | | | | | | |
Collapse
|
44
|
Hamma T, Miller PS. Interactions of hairpin oligo-2'-O-methylribonucleotides containing methylphosphonate linkages with HIV TAR RNA. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2003; 13:19-30. [PMID: 12691533 DOI: 10.1089/108729003764097313] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Methylphosphonate-modified oligo-2'-O-methylribonucleotides 15-20 nucleotides (nt) in length were prepared whose sequences are complementary to the 5' and 3' sides of the upper hairpin of HIV trans-acting response element (TAR) RNA. These anti-TAR oligonucleotides (ODNs) form stable hairpins whose melting temperatures (Tm) range from 55 degrees C to 80 degrees C. Despite their rather high thermal stabilities, the hairpin oligo-2'-O-methylribonucleotides formed very stable complexes with TAR RNA, with dissociation constants in the nanomolar concentration range at 37 degrees C. The affinities of the hairpin oligomers for TAR RNA were influenced by the positions of the methylphosphonate linkages. The binding affinity was reduced approximately 17-fold by the presence of two methylphosphonate linkages in the TAR loop complementary region (TLCR) of the oligomer, whereas methylphosphonate linkages outside this region increased binding affinity approximately 3-fold. The configurations of the methylphosphonate linkages in the TLCR also affected binding affinity, with the RpRp isomer showing significantly higher binding than the SpSp isomer. In addition to serving as probes of the interactions between the oligomer and TAR RNA, the presence of the methylphosphonate linkages in combination with the hairpin structure increases the resistance of these oligomers to degradation by exonucleases found in mammalian serum. The combination of high binding affinity and nuclease resistance of the hairpin ODNs containing methylphosphonate linkages suggests their potential utility as antisense compounds.
Collapse
Affiliation(s)
- Tomoko Hamma
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | | |
Collapse
|
45
|
Abstract
The "ribose zipper", an important element of RNA tertiary structure, is characterized by consecutive hydrogen-bonding interactions between ribose 2'-hydroxyls from different regions of an RNA chain or between RNA chains. These tertiary contacts have previously been observed to also involve base-backbone and base-base interactions (A-minor type). We searched for ribose zipper tertiary interactions in the crystal structures of the large ribosomal subunit RNAs of Haloarcula marismortui and Deinococcus radiodurans, and the small ribosomal subunit RNA of Thermus thermophilus and identified a total of 97 ribose zippers. Of these, 20 were found in T. thermophilus 16 S rRNA, 44 in H. marismortui 23 S rRNA (plus 2 bridging 5 S and 23 S rRNAs) and 30 in D. radiodurans 23 S rRNA (plus 1 bridging 5 S and 23 S rRNAs). These were analyzed in terms of sequence conservation, structural conservation and stability, location in secondary structure, and phylogenetic conservation. Eleven types of ribose zippers were defined based on ribose-base interactions. Of these 11, seven were observed in the ribosomal RNAs. The most common of these is the canonical ribose zipper, originally observed in the P4-P6 group I intron fragment. All ribose zippers were formed by antiparallel chain interactions and only a single example extended beyond two residues, forming an overlapping ribose zipper of three consecutive residues near the small subunit A-site. Almost all ribose zippers link stem (Watson-Crick duplex) or stem-like (base-paired), with loop (external, internal, or junction) chain segments. About two-thirds of the observed ribose zippers interact with ribosomal proteins. Most of these ribosomal proteins bridge the ribose zipper chain segments with basic amino acid residues hydrogen bonding to the RNA backbone. Proteins involved in crucial ribosome function and in early stages of ribosomal assembly also stabilize ribose zipper interactions. All ribose zippers show strong sequence conservation both within these three ribosomal RNA structures and in a large database of aligned prokaryotic sequences. The physical basis of the sequence conservation is stacked base triples formed between consecutive base-pairs on the stem or stem-like segment with bases (often adenines) from the loop-side segment. These triples have previously been characterized as Type I and Type II A-minor motifs and are stabilized by base-base and base-ribose hydrogen bonds. The sequence and structure conservation of ribose zippers can be directly used in tertiary structure prediction and may have applications in molecular modeling and design.
Collapse
MESH Headings
- Bacteria/chemistry
- Bacteria/genetics
- Conserved Sequence
- Haloarcula marismortui/chemistry
- Haloarcula marismortui/genetics
- Hydrogen Bonding
- Models, Molecular
- Nucleic Acid Conformation
- Phylogeny
- Protein Binding
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- Ribose/chemistry
- Ribosomal Proteins/chemistry
- Thermus thermophilus/chemistry
- Thermus thermophilus/genetics
Collapse
Affiliation(s)
- Makio Tamura
- Lawrence Berkeley National Laboratory, Structural Biology Department, Physical Biosciences Division, 1 Cyclotron Road, 132 Melvin Calvin Lab, Bldg 3, Berkeley, CA 94720, USA
| | | |
Collapse
|
46
|
Garlapati S, Wang CC. Identification of an essential pseudoknot in the putative downstream internal ribosome entry site in giardiavirus transcript. RNA (NEW YORK, N.Y.) 2002; 8:601-611. [PMID: 12022227 PMCID: PMC1370281 DOI: 10.1017/s135583820202071x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Enhanced translation of giardiavirus-luciferase chimeric mRNA in Giardia lamblia requires the initial 264-nt viral capsid coding region as a putative internal ribosomal entry site (IRES). Essential structural elements in this site include (1) a downstream box (DB) complementary to the anti-DB at the 3' end of 16S-like rRNA, (2) stem-loops I, II, III, and IVA, and (3) a pentanucleotide 5'-UCUCC-3' immediately downstream from stem loop IVA. A search for the structural role of the pentanucleotide suggested that it may form a pseudoknot with another pentanucleotide 5'-GGAGA-3' in loop II. Alteration of the two pentanucleotides by site-directed mutagenesis resulted in a drastic reduction in translation of the transcript. But the loss was recovered by compensatory changes in the two sequences, suggesting Watson-Crick base pairings between them. Results from in vitro enzymatic and chemical structural probing supported the presence of such a pseudoknot 143 nt downstream from the initiation codon. Minor repositioning of this codon led invariably to a complete loss of translation, suggesting that the initiation site is confined within a rigid position defined by all the structural elements in the IRES including the pseudoknot. This is the first pseudoknot of its kind shown to play an important role in a downstream IRES of a viral transcript. The finding is particularly interesting because it could reflect a unique feature of translation initiation in Giardia, which is known to have exceedingly short (1-6 nt) 5' untranslated regions in its mRNAs.
Collapse
Affiliation(s)
- Srinivas Garlapati
- Department of Pharmaceutical Chemistry, University of California, San Francisco 94143-0446, USA
| | | |
Collapse
|
47
|
Gerdeman MS, Henkin TM, Hines JV. In vitro structure-function studies of the Bacillus subtilis tyrS mRNA antiterminator: evidence for factor-independent tRNA acceptor stem binding specificity. Nucleic Acids Res 2002; 30:1065-72. [PMID: 11842119 PMCID: PMC100339 DOI: 10.1093/nar/30.4.1065] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2001] [Revised: 12/04/2001] [Accepted: 12/04/2001] [Indexed: 11/14/2022] Open
Abstract
Expression of many aminoacyl-tRNA synthetase, amino acid biosynthesis and transport genes in Bacillus subtilis is controlled at the level of transcription termination using the T box system and requires the formation of specific secondary structures in the mRNA leader region. One structure functions as a transcriptional terminator, while an alternate form, the antiterminator, is necessary for transcription of the downstream coding regions. We have investigated the interaction of antiterminator model RNAs, based on the B.subtilis tyrS antiterminator with tRNA(Tyr) and tRNA acceptor stem models, using a gel shift assay. Binding of the antiterminator RNA to tRNA(Tyr) was dependent on complimentarity with the acceptor end of the tRNA or microhelix; affinity for the microhelix RNA was reduced relative to the tRNA. Alteration of a conserved position in the non-base pairing region of the bulge greatly reduced tRNA binding, consistent with in vivo studies. Therefore, it appears that some of the antiterminator-tRNA binding specificity is dependent on the structure of the antiterminator bulge alone and the complex it forms with tRNA in the absence of additional trans-acting factors. During the course of these studies we also discovered that the antiterminator can form a 'kissing' bulge complex, a unique RNA motif. The ease of formation of this RNA homodimer illustrates the propensity for the bulge of the antiterminator to bind RNA.
Collapse
MESH Headings
- 5' Untranslated Regions
- Bacillus subtilis/genetics
- Base Pairing
- Base Sequence
- Binding Sites
- Dimerization
- Electrophoretic Mobility Shift Assay
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Bacterial/physiology
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- RNA, Messenger/physiology
- RNA, Transfer, Tyr/chemistry
- RNA, Transfer, Tyr/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Melinda S Gerdeman
- Division of Medicinal Chemistry, College of Pharmacy and Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
48
|
Verheije MH, Olsthoorn RCL, Kroese MV, Rottier PJM, Meulenberg JJM. Kissing interaction between 3' noncoding and coding sequences is essential for porcine arterivirus RNA replication. J Virol 2002; 76:1521-6. [PMID: 11773426 PMCID: PMC135790 DOI: 10.1128/jvi.76.3.1521-1526.2002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We used an infectious cDNA clone of porcine reproductive and respiratory syndrome virus (PRRSV) to investigate the presence of essential replication elements in the region of the genome encoding the structural proteins. Deletion analysis showed that a stretch of 34 nucleotides (14653 to 14686) within ORF7, which encodes the nucleocapsid protein, is essential for RNA replication. Strand-specific reverse transcription-PCR analysis of viral RNA isolated from transfected BHK-21 cells revealed that this region is required for negative-strand genomic RNA synthesis. The 34-nucleotide stretch is highly conserved among PRRSV isolates and folds into a putative hairpin. A 7-base sequence within the loop of this structure was suggested to base-pair with a sequence present in the loop of a hairpin located in the 3' noncoding region, resulting in a kissing interaction. Mutational analyses confirmed that this kissing interaction is required for RNA replication.
Collapse
Affiliation(s)
- M H Verheije
- Department of Infectious Diseases and Food Chain Quality, Institute for Animal Science and Health, Lelystad, The Netherlands.
| | | | | | | | | |
Collapse
|
49
|
Andersen AA, Collins RA. Intramolecular secondary structure rearrangement by the kissing interaction of the Neurospora VS ribozyme. Proc Natl Acad Sci U S A 2001; 98:7730-5. [PMID: 11427714 PMCID: PMC35410 DOI: 10.1073/pnas.141039198] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kissing interactions in RNA are formed when bases between two hairpin loops pair. Intra- and intermolecular kissing interactions are important in forming the tertiary or quaternary structure of many RNAs. Self-cleavage of the wild-type Varkud satellite (VS) ribozyme requires a kissing interaction between the hairpin loops of stem-loops I and V. In addition, self-cleavage requires a rearrangement of several base pairs at the base of stem I. We show that the kissing interaction is necessary for the secondary structure rearrangement of wild-type stem-loop I. Surprisingly, isolated stem-loop V in the absence of the rest of the ribozyme is sufficient to rearrange the secondary structure of isolated stem-loop I. In contrast to kissing interactions in other RNAs that are either confined to the loops or culminate in an extended intermolecular duplex, the VS kissing interaction causes changes in intramolecular base pairs within the target stem-loop.
Collapse
Affiliation(s)
- A A Andersen
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, ON, Canada M5S 1A8
| | | |
Collapse
|
50
|
Swisher J, Duarte CM, Su LJ, Pyle AM. Visualizing the solvent-inaccessible core of a group II intron ribozyme. EMBO J 2001; 20:2051-61. [PMID: 11296237 PMCID: PMC125427 DOI: 10.1093/emboj/20.8.2051] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2001] [Revised: 02/26/2001] [Accepted: 02/27/2001] [Indexed: 11/12/2022] Open
Abstract
Group II introns are well recognized for their remarkable catalytic capabilities, but little is known about their three-dimensional structures. In order to obtain a global view of an active enzyme, hydroxyl radical cleavage was used to define the solvent accessibility along the backbone of a ribozyme derived from group II intron ai5gamma. These studies show that a highly homogeneous ribozyme population folds into a catalytically compact structure with an extensively internalized catalytic core. In parallel, a model of the intron core was built based on known tertiary contacts. Although constructed independently of the footprinting data, the model implicates the same elements for involvement in the catalytic core of the intron.
Collapse
Affiliation(s)
| | - Carlos M. Duarte
- Integrated Program in Cellular, Molecular, and Biophysical Studies,
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY and Howard Hughes Medical Institute, USA Corresponding author at: Department of Biochemistry and Molecular Biophysics, Columbia University, 630 W. 168th Street, Box 36, New York, NY, USA e-mail:
| | - Linhui Julie Su
- Integrated Program in Cellular, Molecular, and Biophysical Studies,
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY and Howard Hughes Medical Institute, USA Corresponding author at: Department of Biochemistry and Molecular Biophysics, Columbia University, 630 W. 168th Street, Box 36, New York, NY, USA e-mail:
| | - Anna Marie Pyle
- Integrated Program in Cellular, Molecular, and Biophysical Studies,
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY and Howard Hughes Medical Institute, USA Corresponding author at: Department of Biochemistry and Molecular Biophysics, Columbia University, 630 W. 168th Street, Box 36, New York, NY, USA e-mail:
| |
Collapse
|