1
|
Hoory E, Budassi J, Pfeffer E, Cho N, Thalappillil J, Andersen J, Rafailovich M, Sokolov J. Discrimination of Adsorbed Double-Stranded and Single-Stranded DNA Molecules on Surfaces by Fluorescence Emission Spectroscopy Using Acridine Orange Dye. J Fluoresc 2017; 27:2153-2158. [DOI: 10.1007/s10895-017-2154-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
|
2
|
Abstract
Optical mapping (OM) has been used in microbiology for the past 20 years, initially as a technique to facilitate DNA sequence-based studies; however, with decreases in DNA sequencing costs and increases in sequence output from automated sequencing platforms, OM has grown into an important auxiliary tool for genome assembly and comparison. Currently, there are a number of new and exciting applications for OM in the field of microbiology, including investigation of disease outbreaks, identification of specific genes of clinical and/or epidemiological relevance, and the possibility of single-cell analysis when combined with cell-sorting approaches. In addition, designing lab-on-a-chip systems based on OM is now feasible and will allow the integrated and automated microbiological analysis of biological fluids. Here, we review the basic technology of OM, detail the current state of the art of the field, and look ahead to possible future developments in OM technology for microbiological applications.
Collapse
|
3
|
Dorfman KD, King SB, Olson DW, Thomas JDP, Tree DR. Beyond gel electrophoresis: microfluidic separations, fluorescence burst analysis, and DNA stretching. Chem Rev 2013; 113:2584-667. [PMID: 23140825 PMCID: PMC3595390 DOI: 10.1021/cr3002142] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kevin D. Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota — Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455, Phone: 1-612-624-5560. Fax: 1-612-626-7246
| | - Scott B. King
- Department of Chemical Engineering and Materials Science, University of Minnesota — Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455, Phone: 1-612-624-5560. Fax: 1-612-626-7246
| | - Daniel W. Olson
- Department of Chemical Engineering and Materials Science, University of Minnesota — Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455, Phone: 1-612-624-5560. Fax: 1-612-626-7246
| | - Joel D. P. Thomas
- Department of Chemical Engineering and Materials Science, University of Minnesota — Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455, Phone: 1-612-624-5560. Fax: 1-612-626-7246
| | - Douglas R. Tree
- Department of Chemical Engineering and Materials Science, University of Minnesota — Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455, Phone: 1-612-624-5560. Fax: 1-612-626-7246
| |
Collapse
|
4
|
Upcroft JA, Krauer KG, Upcroft P. Chromosome sequence maps of the Giardia lamblia assemblage A isolate WB. Trends Parasitol 2010; 26:484-91. [PMID: 20739222 DOI: 10.1016/j.pt.2010.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 07/07/2010] [Accepted: 07/08/2010] [Indexed: 12/11/2022]
Abstract
Two genotypes, assemblages A and B, of the pathogenic gut protozoan parasite Giardia lamblia infect humans. Symptoms of infection range from asymptomatic to chronic diarrhea. Giardia chromosomes have long been characterized but not until the publication of the first Giardia genome sequence was chromosome mapping work, commenced nearly two decades ago, completed. Initial mapping studies identified and ordered Not I chromosome segments (summating to 1.8 Mb) of the estimated 2 Mb chromosome 3. The resulting map was confirmed with the release of the Giardia genome sequence and this revitalized mapping. The result is that 93% of the WB isolate genome sequence has now been assigned to one of five major chromosomes, and community access to these data has been made available through GiardiaDB, the database for Giardia genomes.
Collapse
|
5
|
Abstract
DNA and RNA are the most individual molecules known. Therefore, single-molecule experiments with these nucleic acids are particularly useful. This review reports on recent experiments with single DNA and RNA molecules. First, techniques for their preparation and handling are summarised including the use of AFM nanotips and optical or magnetic tweezers. As important detection techniques, conventional and near-field microscopy as well as fluorescence resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS) are touched on briefly. The use of single-molecule techniques currently includes force measurements in stretched nucleic acids and in their complexes with binding partners, particularly proteins, and the analysis of DNA by restriction mapping, fragment sizing and single-molecule hybridisation. Also, the reactions of RNA polymerases and enzymes involved in DNA replication and repair are dealt with in some detail, followed by a discussion of the transport of individual nucleic acid molecules during the readout and use of genetic information and during the infection of cells by viruses. The final sections show how the enormous addressability in nucleic acid molecules can be exploited to construct a single-molecule field-effect transistor and a walking single-molecule robot, and how individual DNA molecules can be used to assemble a single-molecule DNA computer.
Collapse
Affiliation(s)
- Karl Otto Greulich
- Institute of Molecular Biotechnology, Beutenbergstr. 11, 07745 Jena, Germany.
| |
Collapse
|
6
|
Singleton SF, Simonette RA, Sharma NC, Roca AI. Intein-mediated affinity-fusion purification of the Escherichia coli RecA protein. Protein Expr Purif 2002; 26:476-88. [PMID: 12460773 DOI: 10.1016/s1046-5928(02)00571-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The RecA protein of Escherichia coli plays important roles in homologous recombination, recombinational DNA repair, and SOS induction. Because its functions are conserved among the phylogenetic kingdoms, RecA investigations have provided a paradigm for understanding these biological processes. The RecA protein has been overproduced in E. coli and purified using a variety of purification schemes requiring multiple, time-intensive steps. The purification schemes share a dependence on appropriate RecA structure and/or function at one or more steps. In this report, we used a modified protein splicing element (intein) and a chitin-binding domain, fused to the C-terminus of RecA, to facilitate a one-step affinity purification of RecA protein without modification of the native protein sequence. Following the single chromatographic step, RecA protein that is greater than 95% physical purity at a concentration of greater than microM was obtained. The protein displays in vitro activities that are identical to those of protein isolated using classical procedures. The purification strategy described here promises to yield mutant RecA proteins in sufficient quantity for rigorous biophysical characterization without dependence on intrinsic RecA function.
Collapse
Affiliation(s)
- Scott F Singleton
- Department of Chemistry, Rice University, P.O. Box 1892 MS 65, Houston, TX 77251-1892, USA.
| | | | | | | |
Collapse
|
7
|
Satoh W, Hirai Y, Tamayose K, Shimada T. Site-specific integration of an adeno-associated virus vector plasmid mediated by regulated expression of rep based on Cre-loxP recombination. J Virol 2000; 74:10631-8. [PMID: 11044107 PMCID: PMC110937 DOI: 10.1128/jvi.74.22.10631-10638.2000] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombinant adeno-associated virus (AAV) type 2 has attracted attention because it appears to have the potential to serve as a vector for human gene therapy. An interesting feature of wild-type AAV is its site-specific integration into AAVS1, a defined locus on chromosome 19. This reaction requires the presence of two viral elements: inverted terminal repeats and Rep78/68. Accordingly, current AAV vectors lacking the rep gene lack the capacity for site-specific integration. In this report, we describe the use of Cre-loxP recombination in a novel system for the regulated, transient expression of Rep78, which is potentially cytotoxic when synthesized constitutively. We constructed a plasmid in which the p5 promoter was situated downstream of the rep coding sequence; in this configuration, rep expression is silent. However, Cre circularizes the rep expression unit, directly joining the p5 promoter to the 5' end of the rep78 coding sequence, resulting in expression of Rep78. Such structural and functional changes were confirmed by detailed molecular analysis. A key feature of this system is that Rep expression was terminated when the circular molecule was linearized and integrated into the chromosome. Using this regulated expression system, we attempted site-specific integration of AAV vector plasmids. A PCR-based assay and analysis of fluorescence in situ hybridization showed that the AAV vector sequence was integrated into chromosome 19. Sequence analysis also confirmed that transient expression of Rep78 was sufficient for site-specific integration at the AAVS1 locus, as is observed with integration of wild-type AAV.
Collapse
Affiliation(s)
- W Satoh
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo 113-8602, Japan
| | | | | | | |
Collapse
|
8
|
Sun HB, Smith GN, Hasty KA, Yokota H. Atomic force microscopy-based detection of binding and cleavage site of matrix metalloproteinase on individual type II collagen helices. Anal Biochem 2000; 283:153-8. [PMID: 10906235 DOI: 10.1006/abio.2000.4629] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Type II tropocollagen molecules were reacted with matrix metalloproteinase 8 (MMP-8) and the binding sites as well as the cleavage site of MMP-8 were detected on individual molecules using atomic force microscopy (AFM). Approximately 300-nm-long coiled-coil tropocollagen molecules were straightened and immobilized on an atomically flat surface for detection by AFM. The direct visualization of individual collagen molecules revealed heterogeneous characteristics of MMP-8:collagen complexes. We observed that there existed multiple MMP-8 nonspecific binding sites on the collagen molecules, but cleavage always took place at a unique site. When collagen molecules, straightened and immobilized on the surface, were reacted with MMP-8, a site of cleavage appeared as a gap in stretched molecules. This is the first report to visually show direct collagenase:collagen interactions using AFM. The described AFM-based analysis has potential as a protein analysis tool for understanding a complex mechanism of enzyme:substrate interactions.
Collapse
Affiliation(s)
- H B Sun
- Biomedical Engineering Program, Department of Anatomy and Cell Biology, Rheumatology Division, Indiana University-Purdue University at Indianapolis, Indiana University School of Medicine, Indiana, Indianapolis 46202, USA
| | | | | | | |
Collapse
|
9
|
Abstract
Optical Mapping is an emerging technology for constructing ordered restriction maps of DNA molecules. The underlying computational problems for this technology have been studied and several models have been proposed in recent literature. Most of these propose combinatorial models; some of them also present statistical approaches. However, it is not a priori clear as to how these models relate to one another and to the underlying problem. We present a uniform framework for the restriction map problems where each of these various models is a specific instance of the basic framework. We achieve this by identifying two "signature" functions f() and g() that characterize the models. We identify the constraints these two functions must satisfy, thus opening up the possibility of exploring other plausible models. We show that for all of the combinatorial models proposed in literature, the signature functions are semi-algebraic. We also analyze a proposed statistical method in this framework and show that the signature functions are transcendental for this model. We also believe that this framework would provide useful guidelines for dealing with other inferencing problems arising in practice. Finally, we indicate the open problems by including a survey of the best known results for these problems.
Collapse
Affiliation(s)
- L Parida
- Department of Computer Science, Courant Institute of Mathematical Sciences, New York University, New York 10012, USA.
| |
Collapse
|
10
|
Hu X, Aston C, Schwartz DC. Optical mapping of DNA polymerase I action and products. Biochem Biophys Res Commun 1999; 254:466-73. [PMID: 9918862 DOI: 10.1006/bbrc.1998.9971] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Single molecule approaches to the characterization of biochemical systems offer an intrinsically simple and direct approach to address difficult, previously unyielding problems. Optically based approaches have recently been used to construct high resolution, ordered restriction maps from a variety of clone types. Advancements in surface technologies have enabled the reliable elongation and fixation of large DNA molecules onto specially derivatized substrates with retention of biochemical accessibility. In this study, the addition of fluorescently labeled nucleotides to surface-mounted DNA molecules by the action of DNA polymerase I is investigated using fluorescence microscopy to image individual template molecules. Molecules undergoing nick translation and containing only a few fluorochromes are readily imaged. These novel results suggest that surface-bound molecules may serve as a substrate for a broad range of enzymatic actions, and may offer new routes to analysis when coupled to advanced imaging techniques.
Collapse
Affiliation(s)
- X Hu
- Laboratory for Biomolecular Imaging, New York University, New York, New York, 10003, USA
| | | | | |
Collapse
|
11
|
Ferrin LJ, Camerini-Otero RD. Sequence-specific ligation of DNA using RecA protein. Proc Natl Acad Sci U S A 1998; 95:2152-7. [PMID: 9482854 PMCID: PMC19280 DOI: 10.1073/pnas.95.5.2152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A method is described that allows the sequence-specific ligation of DNA. The method is based on the ability of RecA protein from Escherichia coli to selectively pair oligonucleotides to their homologous sequences at the ends of fragments of duplex DNA. These three-stranded complexes were protected from the action of DNA polymerase. When treated with DNA polymerase, unprotected duplex fragments were converted to fragments with blunt ends, whereas protected fragments retained their cohesive ends. By using conditions that greatly favored ligation of cohesive ends, a second DNA fragment could be selectively ligated to a previously protected fragment of DNA. When this second DNA was a vector, selected fragments were preferentially cloned. The method had sufficient power to be used for the isolation of single-copy genes directly from yeast or human genomic DNA, and potentially could allow the isolation of much longer fragments with greater fidelity than obtainable by using PCR.
Collapse
Affiliation(s)
- L J Ferrin
- Genetics and Biochemistry Branch, National Institute of Diabetes, Digestive, and Kidney Disorders, Building 10, Room 9D20, 10 Center Drive, MSC 1810, Bethesda, MD 20892-1810, USA.
| | | |
Collapse
|
12
|
Anantharaman TS, Mishra B, Schwartz DC. Genomics via optical mapping. II: Ordered restriction maps. J Comput Biol 1997; 4:91-118. [PMID: 9228610 DOI: 10.1089/cmb.1997.4.91] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In this paper, we describe our algorithmic approach to constructing ordered restriction maps based on the data created from the images of population of individual DNA molecules (clones) digested by restriction enzymes. The goal is to devise map-making algorithms capable of producing high-resolution, high-accuracy maps rapidly and in a scalable manner. The resulting software is a key component of our optical mapping automation tools and has been used routinely to map cosmid, lambda and BAC clones. The experimental results appear highly promising.
Collapse
Affiliation(s)
- T S Anantharaman
- Computer Science and Chemistry Department, New York University, New York 10012, USA
| | | | | |
Collapse
|
13
|
Dancík V, Hannenhalli S, Muthurkrishnan S. Hardness of flip-cut problems from optical mapping. J Comput Biol 1997; 4:119-25. [PMID: 9228611 DOI: 10.1089/cmb.1997.4.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Optical mapping is a new technology for constructing restriction maps. Associated computational problems include aligning multiple partial restriction maps into a single "consensus" restriction map, and determining the correct orientation of each molecule, which was formalized as the Exclusive Binary Flip Cut (EBFC) Problem in (Muthukrishnan and Parida, 1997). Here we prove that the EBFC problem, as well as a number of its variants, are NP-complete. Therefore, they do not have efficient, that is, polynomial time solutions unless P = NP.
Collapse
Affiliation(s)
- V Dancík
- Department of Mathematics, University of Southern California, Los Angeles 90089-1113., USA.
| | | | | |
Collapse
|
14
|
Abstract
The specific protection of only one of many restriction sites in a genome from inactivation by a cognate methyltransferase (MTase) creates a unique cleavage site - an Achilles' heel cleavage (AC) site. In the RecA-AC, or RARE, technique, such specific protection is provided by a synaptic complex composed of RecA protein, a gamma-S analog of ATP and a 30-60 nucleotide long oligodeoxynucleotide complementary or identical to the sequence-targeted site in which the protected restriction site is embedded. Upon methylation and the subsequent removal of the protective complex and MTase, the protected site is the only site cut by the cognate restriction enzyme. Two such targeted cuts permit the excision of a unique DNA fragment from the genome. Recent advances include the calibration of DNA clones, the mapping of gaps, and the determination of the sizes of excised fragments by pulsed-field gel electrophoresis, which allows one to measure distances between any two neighboring sequence-targeted sites, in the range of a few kilobases to 10 megabases, with the purpose of physically mapping the genome.
Collapse
Affiliation(s)
- W Szybalski
- McArdle Laboratory for Cancer Research, The University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
15
|
Abstract
A variety of physical mapping methods exist for the analysis of nucleic acids or genomes, including hybridization, sequence tagged site mapping, restriction enzyme fingerprinting, radiation hybrid mapping and optical mapping. Single-molecule approaches offer numerous advantages, including very high resolution, small sample size requirements, and parallel sample processing. The convergence of recent advances in new single molecule techniques, surface chemistry and machine vision technology has contributed to novel approaches to genome analysis.
Collapse
Affiliation(s)
- D C Schwartz
- Department of Chemistry, W Keck Laboratory for Biomolecular Imaging, New York University, New York, NY 10003, USA.
| | | |
Collapse
|
16
|
Nie S, Zare RN. Optical detection of single molecules. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1997; 26:567-96. [PMID: 9241430 DOI: 10.1146/annurev.biophys.26.1.567] [Citation(s) in RCA: 245] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recent advances in ultrasensitive instrumentation have allowed for the detection, identification, and dynamic studies of single molecules in the condensed phase. This measurement capability provides a new set of tools for scientists to address important current problems and to explore new frontiers in many scientific disciplines, such as chemistry, molecular biology, molecular medicine, and nanostructured materials. This review focuses on the methodologies and biological applications of single-molecule detection based on laser-induced fluorescence.
Collapse
Affiliation(s)
- S Nie
- Department of Chemistry, Indiana University, Bloomington 47405, USA.
| | | |
Collapse
|
17
|
Hoyer C, Monajembashi S, Greulich K. Laser manipulation and UV induced single molecule reactions of individual DNA molecules. J Biotechnol 1996. [DOI: 10.1016/s0168-1656(96)01593-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Veselkov AG, Demidov VV, Nielson PE, Frank-Kamenetskii MD. A new class of genome rare cutters. Nucleic Acids Res 1996; 24:2483-7. [PMID: 8692685 PMCID: PMC145980 DOI: 10.1093/nar/24.13.2483] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Although significant efforts have been directed at developing efficient techniques for rare and super rare genome cutting, only limited success has been achieved. Here we propose a new approach to solve this problem. We demonstrate that peptide nucleic acid 'clamps' (bis-PNAs) bind strongly and sequence specifically to short homopyrimidine sites on lambda and yeast genomic DNAs. Such binding efficiently shields methylation/restriction sites which overlap with the bis-PNA binding sites from enzymatic methylation. After removing the bis-PNA, the genomic DNAs are quantitatively cleaved by restriction enzymes into a limited number of pieces of lengths from several hundred kbp to several Mbp. By combining various bis-PNAs with different methylation/restriction enzyme pairs, a huge new class of genome rare cutters can be created. These cutters cover the range of recognition specificities where very few, if any, cutters are now available.
Collapse
Affiliation(s)
- A G Veselkov
- Center for Advanced Biotechnology and Department of Biomedical Engineering, Boston University, 36 Cummington Street, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
19
|
Samad AH, Cai WW, Hu X, Irvin B, Jing J, Reed J, Meng X, Huang J, Huff E, Porter B. Mapping the genome one molecule at a time--optical mapping. Nature 1995; 378:516-7. [PMID: 7477412 DOI: 10.1038/378516a0] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- A H Samad
- Dept. of Pathology, Cornell Medical College, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Samad A, Huff EF, Cai W, Schwartz DC. Optical mapping: a novel, single-molecule approach to genomic analysis. Genome Res 1995; 5:1-4. [PMID: 8717049 DOI: 10.1101/gr.5.1.1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- A Samad
- Department of Pathology, Cornell Medical College-The New York Hospital, New York 10021, USA
| | | | | | | |
Collapse
|