1
|
Wang G, Zhao J, Vasquez KM. Detection of cis- and trans-acting Factors in DNA Structure-Induced Genetic Instability Using In silico and Cellular Approaches. Front Genet 2016; 7:135. [PMID: 27532010 PMCID: PMC4969553 DOI: 10.3389/fgene.2016.00135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/15/2016] [Indexed: 11/13/2022] Open
Abstract
Sequences that can adopt alternative DNA structures (i.e., non-B DNA) are very abundant in mammalian genomes, and recent studies have revealed many important biological functions of non-B DNA structures in chromatin remodeling, DNA replication, transcription, and genetic instability. Here, we provide results from an in silico web-based search engine coupled with cell-based experiments to characterize the roles of non-B DNA conformations in genetic instability in eukaryotes. The purpose of this article is to illustrate strategies that can be used to identify and interrogate the biological roles of non-B DNA structures, particularly on genetic instability. We have included unpublished data using a short H-DNA-forming sequence from the human c-MYC promoter region as an example, and identified two different mechanisms of H-DNA-induced genetic instability in yeast and mammalian cells: a DNA replication-related model of mutagenesis; and a replication-independent cleavage model. Further, we identified candidate proteins involved in H-DNA-induced genetic instability by using a yeast genetic screen. A combination of in silico and cellular methods, as described here, should provide further insight into the contributions of non-B DNA structures in biological functions, genetic evolution, and disease development.
Collapse
Affiliation(s)
- Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute Austin, TX, USA
| | - Junhua Zhao
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute Austin, TX, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute Austin, TX, USA
| |
Collapse
|
2
|
Ma C, Zhang J, Durrin LK, Lv J, Zhu D, Han X, Sun Y. The BCL2 major breakpoint region (mbr) regulates gene expression. Oncogene 2006; 26:2649-57. [PMID: 17057736 DOI: 10.1038/sj.onc.1210069] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BCL2 expression is finely tuned by a variety of environmental and endogenous stimuli and regulated at both transcriptional and post-transcriptional levels. Our previous investigations demonstrated that the BCL2 major breakpoint region (mbr) in the 3'-UTR upregulates reporter gene expression, which implies that this region possessed intrinsic regulatory function. However, the effect of the mbr on BCL2 expression, and the underlying regulatory mechanisms, remain to be elucidated. To assess the direct effect of the mbr on the transcriptional activity of the BCL2 gene, we employed targeted homologous recombination to establish a mbr(+)/mbr(-) heterozygous Nalm-6 cell line and then compared the transcriptional activity and apoptotic effect on transcription between the wild type and targeted alleles. We found that deletion of the mbr significantly decreased the transcriptional activity of the corresponding allele in the mbr(+)/mbr(-) cell. The BCL2 allele deleted of the mbr had a slower response to apoptotic stimuli than did the wild type allele. The regulatory function of the mbr was mediated through SATB1. Overexpression of SATB1 increased BCL2 expression, while knockdown of SATB1 with RNAi decreased BCL2 expression. Our results clearly indicated that the mbr could positively regulate BCL2 gene expression and this regulatory function was closely related to SATB1.
Collapse
Affiliation(s)
- C Ma
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, PR China
| | | | | | | | | | | | | |
Collapse
|
3
|
Omori S, Takiguchi Y, Suda A, Sugimoto T, Miyazawa H, Takiguchi Y, Tanabe N, Tatsumi K, Kimura H, Pardington PE, Chen F, Chen DJ, Kuriyama T. Suppression of a DNA double-strand break repair gene, Ku70, increases radio- and chemosensitivity in a human lung carcinoma cell line. DNA Repair (Amst) 2002; 1:299-310. [PMID: 12509248 DOI: 10.1016/s1568-7864(02)00006-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ku70 protein, cooperating with Ku80 and DNA-dependent protein kinase (DNA-PK) catalytic subunit (DNA-PKcs), is involved in DNA double-strand break (DNA DSB) repair and V(D)J recombination. Recent studies have revealed increased ionizing radiosensitivity in Ku70-deficient cells. The presented study, using a human squamous cell lung carcinoma cell line, demonstrated that introduction of an antisense Ku70 nucleic acid made the cells more radio- and chemosensitive than the parental cells. Ku70 protein expression was suppressed in the cells with antisense Ku70 construct when compared to the wild-type cells. A relatively small but statistically significant increase in radiosensitivity of the cells was achieved by the introduction of the antisense Ku70. The increased radiosensitivity in vitro was accompanied by an approximately two-fold increase in alpha and alpha/beta values in a linear-quadratic model. The antisense Ku70 increased the chemosensitivity of the cells to some DNA-damaging agents such as bleomycin and methyl methanesulfonate, but not to cisplatin, mitomycin C, and paclitaxel. This system provides us with partial suppression of Ku70, and will be a useful experimental model for investigating the physiological roles of the DNA DSB repair gene.
Collapse
Affiliation(s)
- Shigenari Omori
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, 260-8670, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Aster JC, Longtine JA. Detection of BCL2 rearrangements in follicular lymphoma. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:759-63. [PMID: 11891173 PMCID: PMC1867166 DOI: 10.1016/s0002-9440(10)64897-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jon C Aster
- Department of Pathology, Brigham and Women's Hospital,Boston, Massachusetts 02420, USA.
| | | |
Collapse
|
5
|
Jeanson L, Mouscadet JF. Ku represses the HIV-1 transcription: identification of a putative Ku binding site homologous to the mouse mammary tumor virus NRE1 sequence in the HIV-1 long terminal repeat. J Biol Chem 2002; 277:4918-24. [PMID: 11733502 DOI: 10.1074/jbc.m110830200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ku has been implicated in nuclear processes, including DNA break repair, transcription, V(D)J recombination, and telomere maintenance. Its mode of action involves two distinct mechanisms: one in which a nonspecific binding occurs to DNA ends and a second that involves a specific binding to negative regulatory elements involved in transcription repression. Such elements were identified in mouse mammary tumor virus and human T cell leukemia virus retroviruses. The purpose of this study was to investigate a role for Ku in the regulation of human immunodeficiency virus (HIV)-1 transcription. First, HIV-1 LTR activity was studied in CHO-K1 cells and in CH0-derived xrs-6 cells, which are devoid of Ku80. LTR-driven expression of a reporter gene was significantly increased in xrs-6 cells. This enhancement was suppressed after re-expression of Ku80. Second, transcription of HIV-1 was followed in U1 human cells that were depleted in Ku by using a Ku80 antisense RNA. Ku depletion led to a increase of both HIV-1 mRNA synthesis and viral production compared with the parent cells. These results demonstrate that Ku acts as a transcriptional repressor of HIV-1 expression. Finally, a putative Ku-specific binding site was identified within the negative regulatory region of the HIV-1 long terminal repeat, which may account for this repression of transcription.
Collapse
Affiliation(s)
- Laurence Jeanson
- CNRS UMR8532, Institut Gustave-Roussy, PR2, 39 rue Camille Desmoulins, 94805 Villejuif, France
| | | |
Collapse
|
6
|
Sun Y, Wyatt RT, Bigley A, Krontiris TG. Expression and replication timing patterns of wildtype and translocated BCL2 genes. Genomics 2001; 73:161-70. [PMID: 11318606 DOI: 10.1006/geno.2000.6479] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Translocation of the BCL2 gene from chromosome 18 to chromosome 14 results in constitutive expression of the gene. We have recently demonstrated that the major breakpoint region (mbr) of BCL2, which is implicated in 70% of t(14;18) translocations present in human follicular lymphoma, is a matrix attachment region. Since these regions are implicated in control of both transcription and replication, we wished to determine whether BCL2 translocation was also accompanied by changes in replication timing of the translocated allele. Using both fluorescence in situ hybridization and allele-specific PCR, we have demonstrated that the translocated allele replicates at the G1/S boundary, while the wildtype allele continues to replicate as usual in mid-S phase. These differences are accompanied by allele-specific changes in BCL2 expression. Since the net structural effect of t(14;18) translocations within the mbr is to disrupt the BCL2 MAR and replace it with the IGH MARs located just downstream of each breakpoint, we conclude that MAR exchange is a significant, selectable outcome of these translocations. We propose that subsequent changes of replication and transcriptional patterns for the translocated BCL2 allele result from this exchange and represent important early steps in lymphomagenesis.
Collapse
Affiliation(s)
- Y Sun
- Division of Molecular Medicine, Beckman Research Institute of the City of Hope National Medical Center, 1450 E. Duarte Road, Duarte, CA 91010, USA
| | | | | | | |
Collapse
|
7
|
Abstract
Ku is a heterodimeric protein composed of approximately 70- and approximately 80-kDa subunits (Ku70 and Ku80) originally identified as an autoantigen recognized by the sera of patients with autoimmune diseases. Ku has high binding affinity for DNA ends and that is why originally it was known as a DNA end binding protein, but now it is known to also bind the DNA structure at nicks, gaps, hairpins, as well as the ends of telomeres. It has been reported also to bind with sequence specificity to DNA and with weak affinity to RNA. Ku is an abundant nuclear protein and is present in vertebrates, insects, yeast, and worms. Ku contains ssDNA-dependent ATPase and ATP-dependent DNA helicase activities. It is the regulatory subunit of the DNA-dependent protein kinase that phosphorylates many proteins, including SV-40 large T antigen, p53, RNA-polymerase II, RP-A, topoisomerases, hsp90, and many transcription factors such as c-Jun, c-Fos, oct-1, sp-1, c-Myc, TFIID, and many more. It seems to be a multifunctional protein that has been implicated to be involved directly or indirectly in many important cellular metabolic processes such as DNA double-strand break repair, V(D)J recombination of immunoglobulins and T-cell receptor genes, immunoglobulin isotype switching, DNA replication, transcription regulation, regulation of heat shock-induced responses, regulation of the precise structure of telomeric termini, and it also plays a novel role in G2 and M phases of the cell cycle. The mechanism underlying the regulation of all the diverse functions of Ku is still obscure.
Collapse
Affiliation(s)
- R Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi.
| | | |
Collapse
|
8
|
Ramakrishnan M, Liu WM, DiCroce PA, Posner A, Zheng J, Kohwi-Shigematsu T, Krontiris TG. Modulated binding of SATB1, a matrix attachment region protein, to the AT-rich sequence flanking the major breakpoint region of BCL2. Mol Cell Biol 2000; 20:868-77. [PMID: 10629043 PMCID: PMC85203 DOI: 10.1128/mcb.20.3.868-877.2000] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/1999] [Accepted: 10/22/1999] [Indexed: 11/20/2022] Open
Abstract
The t(14,18) chromosomal translocation that occurs in human follicular lymphoma constitutively activates the BCL2 gene and disrupts control of apoptosis. Interestingly, 70% of the t(14,18) translocations are confined to three 15-bp clusters positioned within a 150-bp region (major breakpoint region or [MBR]) in the untranslated portion of terminal exon 3. We analyzed DNA-protein interactions in the MBR, as these may play some role in targeting the translocation to this region. An 87-bp segment (87MBR) immediately 3' to breakpoint cluster 3 was essential for DNA-protein interaction monitored with mobility shift assays. We further delineated a core binding region within 87MBR: a 33-bp, very AT-rich sequence highly conserved between the human and mouse BCL2 gene (37MBR). We have purified and identified one of the core factors as the matrix attachment region (MAR) binding protein, SATB1, which is known to bind to AT-rich sequences with a high propensity to unwind. Additional factors in nuclear extracts, which we have not yet characterized further, increased SATB1 affinity for the 37MBR target four- to fivefold. Specific binding activity within 37MBR displayed cell cycle regulation in Jurkat T cells, while levels of SATB1 remained constant throughout the cell cycle. Finally, we demonstrated in vivo binding of SATB1 to the MBR, strongly suggesting the BCL2 major breakpoint region is a MAR. We discuss the potential consequences of our observations for both MBR fragility and regulatory function.
Collapse
Affiliation(s)
- M Ramakrishnan
- Division of Molecular Medicine, Beckman Research Institute of the City of Hope National Medical Center, Duarte, California 91010, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Gilbert F. Disease genes and chromosomes: disease maps of the human genome. Chromosome 18. GENETIC TESTING 1999; 1:69-71. [PMID: 10464628 DOI: 10.1089/gte.1997.1.69] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Galande S, Kohwi-Shigematsu T. Poly(ADP-ribose) polymerase and Ku autoantigen form a complex and synergistically bind to matrix attachment sequences. J Biol Chem 1999; 274:20521-8. [PMID: 10400681 DOI: 10.1074/jbc.274.29.20521] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genomic sequences with a cluster of ATC sequence stretches where one strand consists exclusively of well mixed As, Ts, and Cs confer high base unpairing propensity under negative superhelical strain. Such base unpairing regions (BURs) are typically found in scaffold or matrix attachment regions (SARs/MARs) that are thought to contribute to the formation of the loop domain structure of chromatin. Several proteins, including cell type-specific proteins, have been identified that bind specifically to double-stranded BURs either in vitro or in vivo. By using BUR-affinity chromatography to isolate BUR-binding proteins from breast cancer SK-BR-3 cells, we almost exclusively obtained a complex of poly(ADP-ribose) polymerase (PARP) and DNA-dependent protein kinase (DNA-PK). Both PARP and DNA-PK are activated by DNA strand breaks and are implicated in DNA repair, recombination, DNA replication, and transcription. In contrast to the previous notion that PARP and Ku autoantigen, the DNA-binding subunit of DNA-PK, mainly bind to free ends of DNA, here we show that both proteins individually bind BURs with high affinity and specificity in an end-independent manner using closed circular BUR-containing DNA substrates. We further demonstrate that PARP and Ku autoantigen form a molecular complex in vivo and in vitro in the absence of DNA, and as a functional consequence, their affinity to the BURs are synergistically enhanced. ADP-ribosylation of the nuclear extract abrogated the BUR binding activity of this complex. These results provide a mechanistic link toward understanding the functional overlap of PARP and DNA-PK and suggest a novel role for these proteins in the regulation of chromatin structure and function.
Collapse
Affiliation(s)
- S Galande
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
11
|
Torrance H, Giffin W, Rodda DJ, Pope L, Haché RJ. Sequence-specific binding of Ku autoantigen to single-stranded DNA. J Biol Chem 1998; 273:20810-9. [PMID: 9694826 DOI: 10.1074/jbc.273.33.20810] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucocorticoid-induced transcription of mouse mammary tumor virus is repressed by Ku antigen/DNA-dependent protein kinase (DNA-PK) through a DNA sequence element (NRE1) in the viral long terminal repeat. Nuclear factors binding to the separated single strands of NRE1 have been identified that may also be important for transcriptional regulation through this element. We report the separation of the upper-stranded NRE1 binding activity in Jurkat T cell nuclear extracts into two components. One component was identified as Ku antigen. The DNA sequence preference for Ku binding to single-stranded DNA closely paralleled the sequence requirements of Ku for double-stranded DNA. Recombinant Ku bound the single, upper strand of NRE1 with an affinity that was 3-4-fold lower than its affinity for double-stranded NRE1. Sequence-specific single-stranded Ku binding occurred rapidly (t1/2 on = 2.0 min) and was exceptionally stable, with an off rate of t1/2= 68 min. While Ku70 cross-linked to the upper strand of NRE1 when Ku was bound to double-stranded and single-stranded DNAs, the Ku80 subunit only cross-linked to single-stranded NRE1. Intriguingly, addition of Mg2+ and ATP, the cofactors required for Ku helicase activity, induced the cross-linking of Ku80 to a double-stranded NRE1-containing oligonucleotide, without completely unwinding the two strands.
Collapse
Affiliation(s)
- H Torrance
- Graduate Program in Biochemistry, University of Ottawa, Loeb Institute for Medical Research, Ottawa Civic Hospital, Ottawa, Ontario K1Y 4E9, Canada
| | | | | | | | | |
Collapse
|
12
|
Dynan WS, Yoo S. Interaction of Ku protein and DNA-dependent protein kinase catalytic subunit with nucleic acids. Nucleic Acids Res 1998; 26:1551-9. [PMID: 9512523 PMCID: PMC147477 DOI: 10.1093/nar/26.7.1551] [Citation(s) in RCA: 263] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Ku protein-DNA-dependent protein kinase system is one of the major pathways by which cells of higher eukaryotes respond to double-strand DNA breaks. The components of the system are evolutionarily conserved and homologs are known from a number of organisms. The Ku protein component binds directly to DNA ends and may help align them for ligation. Binding of Ku protein to DNA also nucleates formation of an active enzyme complex containing the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). The interaction between Ku protein, DNA-PKcs and nucleic acids has been extensively investigated. This review summarizes the results of these biochemical investigations and relates them to recent molecular genetic studies that reveal highly characteristic repair and recombination defects in mutant cells lacking Ku protein or DNA-PKcs.
Collapse
Affiliation(s)
- W S Dynan
- Program in Gene Regulation, Institute of Molecular Medicine and Genetics, Room CB-2803, Medical College of Georgia, 1120 15th Street, Augusta, GA 30912, USA.
| | | |
Collapse
|
13
|
Cary RB, Chen F, Shen Z, Chen DJ. A central region of Ku80 mediates interaction with Ku70 in vivo. Nucleic Acids Res 1998; 26:974-9. [PMID: 9461456 PMCID: PMC147353 DOI: 10.1093/nar/26.4.974] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ku, the DNA binding component of DNA-dependent protein kinase (DNA-PK), is a heterodimer composed of 70 and 86 kDa subunits, known as Ku70 and Ku80 respectively . Defects in DNA-PK subunits have been shown to result in a reduced capacity to repair DNA double-strand breaks. Assembly of the Ku heterodimer is required to obtain DNA end binding activity and association of the DNA-PK catalytic subunit. The regions of the Ku subunits responsible for heterodimerization have not been clearly defined in vivo . A previous study has suggested that the C-terminus of Ku80 is required for interaction with Ku70. Here we examine Ku subunit interaction using N- and C-terminal Ku80 deletions in a GAL4-based two-hybrid system and an independent mammalian in vivo system. Our two-hybrid study suggests that the central region of Ku80, not its C-terminus, is capable of mediating interaction with Ku70. To determine if this region mediates interaction with Ku70 in mammalian cells we transfected xrs-6 cells, which lack endogenous Ku80, with epitope-tagged Ku80 deletions carrying a nuclear localization signal. Immunoprecipitation from transfected cell extracts revealed that the central domain identified by the GAL4 two-hybrid studies stabilizes and co-immunoprecipitates with endogenous xrs-6 Ku70. The central interaction domain maps to the internally deleted regions of Ku80 in the mutant cell lines XR-V9B and XR-V15B. These findings indicate that the internally deleted Ku80 mutations carried in these cell lines are incapable of heterodimerization with Ku70.
Collapse
Affiliation(s)
- R B Cary
- Life Sciences Division, Los Alamos National Laboratory, Mail Stop M888, Los Alamos, NM 87545, USA
| | | | | | | |
Collapse
|
14
|
Cary RB, Peterson SR, Wang J, Bear DG, Bradbury EM, Chen DJ. DNA looping by Ku and the DNA-dependent protein kinase. Proc Natl Acad Sci U S A 1997; 94:4267-72. [PMID: 9113978 PMCID: PMC20711 DOI: 10.1073/pnas.94.9.4267] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The DNA-dependent protein kinase (DNA-PK) is required for DNA double-strand break (DSB) repair and immunoglobulin gene rearrangement and may play a role in the regulation of transcription. The DNA-PK holoenzyme is composed of three polypeptide subunits: the DNA binding Ku70/86 heterodimer and an approximately 460-kDa catalytic subunit (DNA-PKcs). DNA-PK has been hypothesized to assemble at DNA DSBs and play structural as well as signal transduction roles in DSB repair. Recent advances in atomic force microscopy (AFM) have resulted in a technology capable of producing high resolution images of native protein and protein-nucleic acid complexes without staining or metal coating. The AFM provides a rapid and direct means of probing the protein-nucleic acid interactions responsible for DNA repair and genetic regulation. Here we have employed AFM as well as electron microscopy to visualize Ku and DNA-PK in association with DNA. A significant number of DNA molecules formed loops in the presence of Ku. DNA looping appeared to be sequence-independent and unaffected by the presence of DNA-PKcs. Gel filtration of Ku in the absence and the presence of DNA indicates that Ku does not form nonspecific aggregates. We conclude that, when bound to DNA, Ku is capable of self-association. These findings suggest that Ku binding at DNA DSBs will result in Ku self-association and a physical tethering of the broken DNA strands.
Collapse
Affiliation(s)
- R B Cary
- Life Sciences Division, Los Alamos National Laboratory, Mail Stop M888, Los Alamos, NM 87545, USA
| | | | | | | | | | | |
Collapse
|
15
|
Giffin W, Kwast-Welfeld J, Rodda DJ, Préfontaine GG, Traykova-Andonova M, Zhang Y, Weigel NL, Lefebvre YA, Haché RJ. Sequence-specific DNA binding and transcription factor phosphorylation by Ku Autoantigen/DNA-dependent protein kinase. Phosphorylation of Ser-527 of the rat glucocorticoid receptor. J Biol Chem 1997; 272:5647-58. [PMID: 9038175 DOI: 10.1074/jbc.272.9.5647] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
NRE1 is a DNA sequence element through which Ku antigen/DNA-dependent protein kinase (DNA-PK) catalytic subunit represses the induction of mouse mammary tumor virus transcription by glucocorticoids. Although Ku is an avid binder of DNA ends and has the ability to translocate along DNA, we report that direct sequence-specific Ku binding occurs with higher affinity (Kd = 0.84 +/- 0.24 nM) than DNA end binding. Comparison of Ku binding to several sequences over which Ku can accumulate revealed two classes of sequence. Sequences with similarity to NRE1 competed efficiently for NRE1 binding. Conversely, sequences lacking similarity to NRE1 competed poorly for Ku and were not recognized in the absence of DNA ends. Phosphorylation of glucocorticoid receptor (GR) fusion proteins by DNA-PK reflected Ku DNA-binding preferences and demonstrated that co-localization of GR with DNA-PK on DNA in cis was critical for efficient phosphorylation. Phosphorylation of the GR fusion protein by DNA-PK mapped to a single site, Ser-527. This site occurs adjacent the GR nuclear localization sequence between the DNA and ligand binding domains of GR, and thus its phosphorylation, if confirmed, has the potential to affect receptor function in vivo.
Collapse
Affiliation(s)
- W Giffin
- Department of Medicine, University of Ottawa, Loeb Medical Research Institute, Ottawa Civic Hospital, Ottawa, Ontario, Canada K1Y 4E9
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lees-Miller SP. The DNA-dependent protein kinase, DNA-PK: 10 years and no ends in sight. Biochem Cell Biol 1996; 74:503-12. [PMID: 8960356 DOI: 10.1139/o96-054] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The phenomenon of DNA-dependent protein phosphorylation was first described little over 10 years ago. Since then a DNA-dependent protein kinase, DNA-PK, has been purified from human cells and many of its biochemical properties have been characterized. DNA-PK is composed of a large catalytic subunit, DNA-PKcs, and a DNA-targeting protein, Ku. When assembled on a suitable DNA molecule, the DNA-PK holoenzyme acts as a serine/threonine protein kinase that in vitro phosphorylates many DNA binding and non-binding proteins and transcription factors. Recent genetic studies point strongly to functions in DNA double-strand break repair and V(D)J recombination. In addition, biochemical studies suggest a role in the regulation of transcription. Here we discuss, from a historical perspective, the events leading up to our current understanding of the function of DNA-PK, including recent results from our own studies suggesting the involvement of DNA-PK in apoptosis and in viral infection of human cells.
Collapse
Affiliation(s)
- S P Lees-Miller
- Department of Biological Sciences, University of Calgary, AB, Canada.
| |
Collapse
|