1
|
Behjati A, Zare-Mirakabad F, Arab SS, Nowzari-Dalini A. Protein sequence profile prediction using ProtAlbert transformer. Comput Biol Chem 2022; 99:107717. [DOI: 10.1016/j.compbiolchem.2022.107717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 06/03/2022] [Accepted: 06/21/2022] [Indexed: 11/03/2022]
|
2
|
Rohani L, Morton DJ, Wang XQ, Chaudhary J. Relative Stability of Wild-Type and Mutant p53 Core Domain: A Molecular Dynamic Study. J Comput Biol 2015; 23:80-89. [PMID: 26675082 DOI: 10.1089/cmb.2015.0163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The p53 protein is a stress response protein that functions primarily as a tetrameric transcription factor. A tumor suppressor p53 binds to a specific DNA sequence and transactivates target genes, leading to cell cycle apoptosis. Encoded by the human gene TP53, p53 is a stress response protein that functions primarily as a tetrameric transcription factor. This gene regulates a large number of genes in response to a variety of cellular functions, including oncogene activation and DNA damage. Mutations in p53 are common in human cancer types. Herein we mutate a wild-type p53, 1TSR with four of its mutated proteins. The energy for the wild-type and mutated proteins is calculated by using molecular dynamics simulations along with simulated annealing. Our results show significant differences in energy between hotspot mutations and the wild type. Based on the findings, we investigate the correlation between molar masses of the target residue and the relative energy with respect to the wild type. Our results indicate that the relative energy changes play a pivotal role in bioactivity, in conformity with observations in the rate of mutation in biology.
Collapse
Affiliation(s)
- Leyla Rohani
- 1 Department of Physics and Center for Functional Nanoscale Materials, Clark Atlanta University , Atlanta, Georgia
| | - Derrick J Morton
- 2 Department of Biology, Center for Cancer Research and Therapeutics Development, Clark Atlanta University , Atlanta, Georgia
| | - Xiao-Qian Wang
- 1 Department of Physics and Center for Functional Nanoscale Materials, Clark Atlanta University , Atlanta, Georgia
| | - Jaideep Chaudhary
- 2 Department of Biology, Center for Cancer Research and Therapeutics Development, Clark Atlanta University , Atlanta, Georgia
| |
Collapse
|
3
|
Elhefnawy W, Chen L, Han Y, Li Y. ICOSA: A Distance-Dependent, Orientation-Specific Coarse-Grained Contact Potential for Protein Structure Modeling. J Mol Biol 2015; 427:2562-2576. [DOI: 10.1016/j.jmb.2015.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/21/2015] [Indexed: 11/16/2022]
|
4
|
Mathé C, Devineau S, Aude JC, Lagniel G, Chédin S, Legros V, Mathon MH, Renault JP, Pin S, Boulard Y, Labarre J. Structural determinants for protein adsorption/non-adsorption to silica surface. PLoS One 2013; 8:e81346. [PMID: 24282583 PMCID: PMC3839912 DOI: 10.1371/journal.pone.0081346] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/11/2013] [Indexed: 11/18/2022] Open
Abstract
The understanding of the mechanisms involved in the interaction of proteins with inorganic surfaces is of major interest in both fundamental research and applications such as nanotechnology. However, despite intense research, the mechanisms and the structural determinants of protein/surface interactions are still unclear. We developed a strategy consisting in identifying, in a mixture of hundreds of soluble proteins, those proteins that are adsorbed on the surface and those that are not. If the two protein subsets are large enough, their statistical comparative analysis must reveal the physicochemical determinants relevant for adsorption versus non-adsorption. This methodology was tested with silica nanoparticles. We found that the adsorbed proteins contain a higher number of charged amino acids, particularly arginine, which is consistent with involvement of this basic amino acid in electrostatic interactions with silica. The analysis also identified a marked bias toward low aromatic amino acid content (phenylalanine, tryptophan, tyrosine and histidine) in adsorbed proteins. Structural analyses and molecular dynamics simulations of proteins from the two groups indicate that non-adsorbed proteins have twice as many π-π interactions and higher structural rigidity. The data are consistent with the notion that adsorption is correlated with the flexibility of the protein and with its ability to spread on the surface. Our findings led us to propose a refined model of protein adsorption.
Collapse
Affiliation(s)
- Christelle Mathé
- Laboratoire de Radiolyse, SIS2M, IRAMIS and UMR3299 CEA-CNRS, Saclay, France
- Service de Biologie Intégrative et Génétique Moléculaire, iBiTec-S, FRE3377 CEA-CNRS-Université Paris-Sud, Saclay, France
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, UMR 8587 CNRS-Université Evry Val d'Essonne, Evry, France
| | - Stéphanie Devineau
- Laboratoire de Radiolyse, SIS2M, IRAMIS and UMR3299 CEA-CNRS, Saclay, France
| | - Jean-Christophe Aude
- Service de Biologie Intégrative et Génétique Moléculaire, iBiTec-S, FRE3377 CEA-CNRS-Université Paris-Sud, Saclay, France
| | - Gilles Lagniel
- Service de Biologie Intégrative et Génétique Moléculaire, iBiTec-S, FRE3377 CEA-CNRS-Université Paris-Sud, Saclay, France
| | - Stéphane Chédin
- Service de Biologie Intégrative et Génétique Moléculaire, iBiTec-S, FRE3377 CEA-CNRS-Université Paris-Sud, Saclay, France
| | - Véronique Legros
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, UMR 8587 CNRS-Université Evry Val d'Essonne, Evry, France
| | | | | | - Serge Pin
- Laboratoire de Radiolyse, SIS2M, IRAMIS and UMR3299 CEA-CNRS, Saclay, France
| | - Yves Boulard
- Service de Biologie Intégrative et Génétique Moléculaire, iBiTec-S, FRE3377 CEA-CNRS-Université Paris-Sud, Saclay, France
- Laboratoire Structure et Dynamique par Résonance Magnétique, SIS2M, IRAMIS and UMR3299 CEA-CNRS, Saclay, France
| | - Jean Labarre
- Service de Biologie Intégrative et Génétique Moléculaire, iBiTec-S, FRE3377 CEA-CNRS-Université Paris-Sud, Saclay, France
- * E-mail:
| |
Collapse
|
5
|
Valleriani A, Zhang G, Nagar A, Ignatova Z, Lipowsky R. Length-dependent translation of messenger RNA by ribosomes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:042903. [PMID: 21599226 DOI: 10.1103/physreve.83.042903] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Indexed: 05/30/2023]
Abstract
A simple measure for the efficiency of protein synthesis by ribosomes is provided by the steady state amount of protein per messenger RNA (mRNA), the so-called translational ratio, which is proportional to the translation rate. Taking the degradation of mRNA into account, we show theoretically that both the translation rate and the translational ratio decrease with increasing mRNA length, in agreement with available experimental data for the prokaryote Escherichia coli. We also show that, compared to prokaryotes, mRNA degradation in eukaryotes leads to a less rapid decrease of the translational ratio. This finding is consistent with the fact that, compared to prokaryotes, eukaryotes tend to have longer proteins.
Collapse
Affiliation(s)
- Angelo Valleriani
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, D-14424 Potsdam, Germany.
| | | | | | | | | |
Collapse
|
6
|
Esque J, Oguey C, de Brevern AG. Comparative Analysis of Threshold and Tessellation Methods for Determining Protein Contacts. J Chem Inf Model 2011; 51:493-507. [DOI: 10.1021/ci100195t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jeremy Esque
- LPTM, CNRS UMR 8089, Université de Cergy Pontoise, 2 av. Adolphe Chauvin, 95302 Cergy-Pontoise, France
- INSERM UMR-S 665, Dynamique des Structures et Interactions des Macromolécules Biologiques (DSIMB), Université Paris Diderot, Paris 7, INTS, 6, rue Alexandre Cabanel, 75739 Paris Cedex 15, France
| | - Christophe Oguey
- LPTM, CNRS UMR 8089, Université de Cergy Pontoise, 2 av. Adolphe Chauvin, 95302 Cergy-Pontoise, France
| | - Alexandre G. de Brevern
- INSERM UMR-S 665, Dynamique des Structures et Interactions des Macromolécules Biologiques (DSIMB), Université Paris Diderot, Paris 7, INTS, 6, rue Alexandre Cabanel, 75739 Paris Cedex 15, France
| |
Collapse
|
7
|
|
8
|
Faure G, Bornot A, de Brevern AG. Analysis of protein contacts into Protein Units. Biochimie 2009; 91:876-87. [PMID: 19383526 DOI: 10.1016/j.biochi.2009.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 04/13/2009] [Indexed: 11/18/2022]
Abstract
Three-dimensional structures of proteins are the support of their biological functions. Their folds are maintained by inter-residue interactions which are one of the main focuses to understand the mechanisms of protein folding and stability. Furthermore, protein structures can be composed of single or multiple functional domains that can fold and function independently. Hence, dividing a protein into domains is useful for obtaining an accurate structure and function determination. In previous studies, we enlightened protein contact properties according to different definitions and developed a novel methodology named Protein Peeling. Within protein structures, Protein Peeling characterizes small successive compact units along the sequence called protein units (PUs). The cutting done by Protein Peeling maximizes the number of contacts within the PUs and minimizes the number of contacts between them. This method is so a relevant tool in the context of the protein folding research and particularly regarding the hierarchical model proposed by George Rose. Here, we accurately analyze the PUs at different levels of cutting, using a non-redundant protein databank. Distribution of PU sizes, number of PUs or their accessibility are screened to determine their common and different features. Moreover, we highlight the preferential amino acid interactions inside and between PUs. Our results show that PUs are clearly an intermediate level between secondary structures and protein structural domains.
Collapse
Affiliation(s)
- Guilhem Faure
- INSERM UMR-S 726, Equipe de Bioinformatique Génomique et Moléculaire (EBGM), DSIMB, Université Paris Diderot - Paris 7, case 7113, 2 place Jussieu, 75251 Paris, France
| | | | | |
Collapse
|
9
|
Ho SL, Wang AHJ. Structural bioinformatics analysis of free cysteines in protein environments. J Taiwan Inst Chem Eng 2009; 40:123-129. [PMID: 32288881 PMCID: PMC7102755 DOI: 10.1016/j.jtice.2008.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 07/25/2008] [Indexed: 11/18/2022]
Abstract
Cysteine has been considered as a “hydrophilic” amino acid because of its pKa and its ability to form (weak) hydrogen bonds. However, cysteines are found mostly in hydrophobic environments, either in S–S (disulphide) form or in free cysteine form. When free cysteines are found on the surface of proteins, they are often involved in catalytic residues, as in cysteine proteases, P-loop phosphatases, etc. Additionally, a unique property of cysteines is that their side-chain volume is different from all other amino acids. This study is focused on the discrimination between structural versus active free cysteines based on a local environment analysis which does not appear to have been attempted previously. We have demonstrated the corresponding structural positions associated with free cysteines in their three-dimensional localization environment. We examined protein samples including nine, sequenced, coronavirus proteases and cysteine-rich non-membrane proteins. Our present study shows that the sequential environments of free cysteines of coronavirus proteases are rather hydrophobic and that the free cysteines of non-membrane proteases have a higher amount of contacts to hydrophobic residues and lower amount of contacts to polar or charged residues.
Collapse
Key Words
- C, cysteine
- Free cysteine
- HSSP, a database of homology-derived secondary structure of proteins
- Hydrophobic
- PDB, Protein Data Bank
- PERL, Practical Extraction and Report Language, a dynamic programming language
- Proteases
- RMSD, the square deviations
- SH
- SH, free cysteine form
- SS
- SS, disulphide from
- Spatial neighborhood
- Structural bioinformatics
- Structural preference
- aa, amino acid
- pro, main proteinase
- Å, RMSD from the crystal structure of the complex
Collapse
Affiliation(s)
- Sheau Ling Ho
- Department of Chemical Engineering, Chinese Culture University, Taipei 111, Taiwan
- Corresponding author.
| | - Andrew H.-J. Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
10
|
Hoque T, Chetty M, Sattar A. Extended HP model for protein structure prediction. J Comput Biol 2009; 16:85-103. [PMID: 19119994 DOI: 10.1089/cmb.2008.0082] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This paper describes a detailed investigation of a lattice-based HP (hydrophobic-hydrophilic) model for ab initio protein structure prediction (PSP). The outcome of the simplified HP lattice model has high degeneracy, which could mislead the prediction. The HPNX model was proposed to address the degeneracy problem as well as to avoid the conformational deformity with the hydrophilic (P) residues. We have experimentally shown that it is necessary to further improve the existing HPNX model. We have found and solved the critical error of another existing YhHX model. By extracting the significant features from the YhHX for the HPNX model, we have proposed a novel hHPNX model. Hybrid Genetic Algorithm (HGA) has been used to compare the predictability of these models and hHPNX outperformed other models. We preferred 3D face-centered-cube (FCC) lattice configuration to have closest resemblance to the real folded 3D protein.
Collapse
Affiliation(s)
- Tamjidul Hoque
- Institute for Integrated and Intelligent Systems (IIIS), Griffith University, Nathan, QLD, Australia
| | - Madhu Chetty
- Gippsland School of Information Technology (GSIT), Monash University, Churchill, VIC, Australia
| | - Abdul Sattar
- Institute for Integrated and Intelligent Systems (IIIS), Griffith University, Nathan, QLD, Australia
| |
Collapse
|
11
|
Faure G, Bornot A, de Brevern AG. Protein contacts, inter-residue interactions and side-chain modelling. Biochimie 2008; 90:626-39. [DOI: 10.1016/j.biochi.2007.11.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 11/22/2007] [Indexed: 10/22/2022]
|
12
|
Wu Z, Wang Y, Feng E, Chen L. A new geometric-topological method to measure protein fold similarity. Chem Phys Lett 2007. [DOI: 10.1016/j.cplett.2006.11.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Affiliation(s)
- Gautam B Singh
- Center for Bioinformatics, Department of Computer Science and Engineering, Oakland University, Rochester, MI 48309, USA.
| | | |
Collapse
|
14
|
Bostick DL, Shen M, Vaisman II. A simple topological representation of protein structure: implications for new, fast, and robust structural classification. Proteins 2004; 56:487-501. [PMID: 15229882 DOI: 10.1002/prot.20146] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A topological representation of proteins is developed that makes use of two metrics: the Euclidean metric for identifying natural nearest neighboring residues via the Delaunay tessellation in Cartesian space and the distance between residues in sequence space. Using this representation, we introduce a quantitative and computationally inexpensive method for the comparison of protein structural topology. The method ultimately results in a numerical score quantifying the distance between proteins in a heuristically defined topological space. The properties of this scoring scheme are investigated and correlated with the standard Calpha distance root-mean-square deviation measure of protein similarity calculated by rigid body structural alignment. The topological comparison method is shown to have a characteristic dependence on protein conformational differences and secondary structure. This distinctive behavior is also observed in the comparison of proteins within families of structural relatives. The ability of the comparison method to successfully classify proteins into classes, superfamilies, folds, and families that are consistent with standard classification methods, both automated and human-driven, is demonstrated. Furthermore, it is shown that the scoring method allows for a fine-grained classification on the family, protein, and species level that agrees very well with currently established phylogenetic hierarchies. This fine classification is achieved without requiring visual inspection of proteins, sequence analysis, or the use of structural superimposition methods. Implications of the method for a fast, automated, topological hierarchical classification of proteins are discussed.
Collapse
Affiliation(s)
- David L Bostick
- Department of Physics and Program in Molecular/Cell Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | |
Collapse
|
15
|
Chelli R, Gervasio FL, Procacci P, Schettino V. Inter-residue and solvent-residue interactions in proteins: a statistical study on experimental structures. Proteins 2004; 55:139-51. [PMID: 14997548 DOI: 10.1002/prot.20030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A large set of protein structures resolved by X-ray or NMR techniques has been extracted from the Protein Data Bank and analyzed using statistical methods. In particular, we investigate the interactions between side chains and the interactions between solvent and side chains, pointing out on the possibility of including the solvent as part of a knowledge-based potential. The solvent-residue contacts are accounted for on the basis of the Voronoi's polyhedron analysis. Our investigation confirms the importance of hydrophobic residues in determining the protein stability. We observe that in general hydrophobic-hydrophobic interactions and, more specifically, aromatic-aromatic contacts tend to be increasingly distally separated in the primary sequence of proteins, thus connecting distinct secondary structure elements. A simple relation expressing the dependence of the protein free energy by the number of residues is proposed. Such a relation includes both the residue-residue and the solvent-residue contributions. The former is dominant for large size proteins, whereas for small sizes (number of residues less than 100) the two terms are comparable. Gapless threading experiments show that the solvent-residue knowledge-based potential yields a significant contribution with respect to discriminating the native structure of proteins. Such contribution is important especially for proteins of small size and is similar to that given by the most favorable residue-residue knowledge-based potential referring to hydrophobic-hydrophobic interactions such as isoleucine-leucine. In general, the inclusion of the solvent-residue interaction produces a relevant increase of the free energy gap between the native structures and decoys.
Collapse
Affiliation(s)
- Riccardo Chelli
- Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | | | | | | |
Collapse
|
16
|
Bostick D, Vaisman II. A new topological method to measure protein structure similarity. Biochem Biophys Res Commun 2003; 304:320-5. [PMID: 12711317 DOI: 10.1016/s0006-291x(03)00585-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A method for the quantitative evaluation of structural similarity between protein pairs is developed that makes use of a Delaunay-based topological mapping. The result of the mapping is a three-dimensional array which is representative of the global structural topology and whose elements can be used to construe an integral scoring scheme. This scoring scheme was tested for its dependence on the protein length difference in a pairwise comparison, its ability to provide a reasonable means for structural similarity comparison within a family of structural neighbors of similar length, and its sensitivity to the differences in protein conformation. It is shown that such a topological evaluation of similarity is capable of providing insight into these points of interest. Protein structure comparison using the method is computationally efficient and the topological scores, although providing different information about protein similarity, correlate well with the distance root-mean-square deviation values calculated by rigid-body structural alignment.
Collapse
Affiliation(s)
- David Bostick
- Department of Physics and Program in Molecular/Cell Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
17
|
Pritchard L, Cardle L, Quinn S, Dufton M. Simple intrasequence difference (SID) analysis: an original method to highlight and rank sub-structural interfaces in protein folds. Application to the folds of bovine pancreatic trypsin inhibitor, phospholipase A2, chymotrypsin and carboxypeptidase A. Protein Eng Des Sel 2003; 16:87-101. [PMID: 12676977 DOI: 10.1093/proeng/gzg012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We present Simple Intrasequence Difference (SID) analysis, a novel bioinformatic technique designed to help comprehend the properties of protein fold topologies. The analysis grades numerically every residue position in a given protein 3D structure according to the topological situation of the position in the folded chain. This results in an expression of the potential contribution of each residue position and its vicinity towards the integrity of the molecular conformation. Contiguous highly graded residues delineate the sub-structural interfaces that arise from the presence within the molecular fold of discrete domains and sub-domains. This comprehensive rendering of the internal arrangement of chain interfacing helps predict the potential for site-specific inductions (e.g. via mutations or ligand binding) of conformational change in the fold. Whereas SID analysis of single folds can convey an idea of the basic potential for topological adjustment in the protein family, comparative SID analysis of related folds focuses attention on those areas of the family fold where evolutionary changes, activation events and ligand binding have had the most topological impact. For demonstration, SID analysis is applied to the folds of pancreatic trypsin inhibitor (Kunitz), phospholipase A(2), chymotrypsin and carboxypeptidase A. We find that many of the potentially vulnerable sub-structural interfaces tend to be protected in the fold interior, in many cases stabilised by disulfide bridges spanning the interface. However, the most prominent interfaces tend to be externally accessible, without remedial stabilisation by disulfide bridges. These latter interfaces are associated so closely with the known functional sites that alterations to the interfacial juxtapositions should influence recognition and catalytic behaviour directly. This shows how side chain mutations, chemical modifications and binding events remote from the sites can nevertheless adjust, via interfacial realignment, the conformations and emergent properties of the sites. The close association also provides clear opportunities for interfacial rearrangements to follow intermolecular recognition events in the sites, facilitating translation of the binding into adjustment of the molecular conformation in areas distant from the sites. As a direct consequence of the topological arrangements, a large proportion of the molecular structure has the capacity to shape the character of the functional sites and, conversely, binding at these sites has the potential to radiate influence to the rest of the molecule. For the enzymes considered, the evidence is consistent with the possibility that primary and secondary binding by the substrate enhances catalytic efficiency by imposing conformational change upon the catalytic centre via adjustments to the fold. This influence may be expressed as favourable adjustment of the catalytic geometry, transition state ensemble, energy propagation pathway, or as a physical strain exerted on the substrate bond to be cleaved. The scale of the adjustments, and their importance to the mechanisms, may have been seriously underestimated.
Collapse
Affiliation(s)
- Leighton Pritchard
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| | | | | | | |
Collapse
|
18
|
Abstract
By analysing the surface composition of a set of protein 3D structures, complemented with predicted surface compositional information for homologous proteins, we have found significant evidence for a layer composition of protein structures. In the innermost and outermost parts of proteins there is a net negative charge, while the middle has a net positive charge. In addition, our findings indicate that the concept of conservative mutation needs substantial revision, e.g. very different spatial preferences were found for glutamic acid and aspartic acid. The alanine screening often used in protein engineering projects involves the substitution of residues to alanine, based on the assumption that alanine is a "neutral" residue. However, alanine has a high negative correlation with all but the non-polar residues. We therefore propose the use of, for example, serine as a substitute for the residues that are negatively correlated with alanine.
Collapse
Affiliation(s)
- P H Jonson
- Biostructure and Protein Engineering Group, Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark
| | | |
Collapse
|
19
|
Abstract
A hierarchy of residue density assessments and packing properties in protein structures are contrasted, including a regular density, a variety of charge densities, a hydrophobic density, a polar density, and an aromatic density. These densities are investigated by alternative distance measures and also at the interface of multiunit structures. Amino acids are divided into nine structural categories according to three secondary structure states and three solvent accessibility levels. To take account of amino acid abundance differences across protein structures, we normalize the observed density by the expected density defining a density index. Solvent accessibility levels exert the predominant influence in determinations of the regular residue density. Explicitly, the regular density values vary approximately linearly with respect to solvent accessibility levels, the linearity parameters depending on the amino acid. The charge index reveals pronounced inequalities between lysine and arginine in their interactions with acidic residues. The aromatic density calculations in all structural categories parallel the regular density calculations, indicating that the aromatic residues are distributed as a random sample of all residues. Moreover, aromatic residues are found to be over-represented in the neighborhood of all amino acids. This result might be attributed to nucleation sites and protein stability being substantially associated with aromatic residues.
Collapse
Affiliation(s)
- F Baud
- Department of Mathematics, Stanford University, Stanford, CA 94305-2125, USA
| | | |
Collapse
|
20
|
Abstract
The residue environment in protein structures is studied with respect to the density of carbon (C), oxygen (O), and nitrogen (N) atoms within a certain distance (say 5 A) of each residue. Two types of environments are evaluated: one based on side-chain atom contacts (abbreviated S-S) and the other based on all atom (side-chain + backbone) contacts (abbreviated A-A). Different atom counts are observed about nine-residue structural categories defined by three solvent accessibility levels and three secondary structure states. Among the structural categories, the S-S atom count ratios generally vary more than the A-A atom count ratios because of the fact that the backbone (O) and (N) atoms contribute equal counts. Secondary structure affects the (C) density for the A-A contacts whereas secondary structure has little influence on the (C) density for the S-S contacts. For S-S contacts, a greater density of (O) over (N) atom neighbors stands out in the environment of most amino acid types. By contrast, for A-A contacts, independent of the solvent accessibility levels, the ratio (O)/(N) is approximately 1 in helical states, consistent with the geometry of alpha-helical residues whose side-chains tilt oppositely to the amino to carboxy alpha-helical axis. The highest ratio of neighbor (O)/(N) is achieved under solvent exposed conditions. This (O) vs. (N) prevalence is advantageous at the protein surface that generally exhibits an acid excess that helps to enhance protein solubility in the cell and to avoid nonspecific interactions with phosphate groups of DNA, RNA, and other plasma constituents.
Collapse
Affiliation(s)
- S Karlin
- Department of Mathematics, Stanford University, Stanford, CA 94305-2125, USA
| | | | | |
Collapse
|
21
|
Abstract
We investigate the folding of a 125-bead heteropolymer model for proteins subject to Monte Carlo dynamics on a simple cubic lattice. Detailed study of a few sequences revealed a folding mechanism consisting of a rapid collapse followed by a slow search for a stable core that served as the transition state for folding to a near-native intermediate. Rearrangement from the intermediate to the native state slowed folding further because it required breaking native-like local structure between surface monomers so that those residues could condense onto the core. We demonstrate here the generality of this mechanism by a statistical analysis of a 200 sequence database using a method that employs a genetic algorithm to pick the sequence attributes that are most important for folding and an artificial neural network to derive the corresponding functional dependence of folding ability on the chosen sequence attributes [quantitative structure-property relationships (QSPRs)]. QSPRs that use three sequence attributes yielded substantially more accurate predictions than those that use only one. The results suggest that efficient search for the core is dependent on both the native state's overall stability and its amount of kinetically accessible, cooperative structure, whereas rearrangement from the intermediate is facilitated by destabilization of contacts between surface monomers. Implications for folding and design are discussed.
Collapse
Affiliation(s)
- A R Dinner
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
22
|
Abstract
The two-dimensional contact map of interresidue distances is a visual analysis technique for protein structures. We present two standalone software tools designed to be used in combination to increase the versatility of this simple yet powerful technique. First, the program Structer calculates contact maps from three-dimensional molecular structural data. The contact map matrix can then be viewed in the graphical matrix-visualization program Dotter. Instead of using a predefined distance cutoff, we exploit Dotter's dynamic rendering control, allowing interactive exploration at varying distance cutoffs after calculating the matrix once. Structer can use a number of distance measures, can incorporate multiple chains in one contact map, and allows masking of user-defined residue sets. It works either directly with PDB files, or can use the MMDB network API for reading structures.
Collapse
Affiliation(s)
- E L Sonnhammer
- Computational Biology Branch, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | | |
Collapse
|
23
|
Pareja E, Tobes R, Martín J, Nieto A. The tetramer model: a new view of class II MHC molecules in antigenic presentation to T cells. TISSUE ANTIGENS 1997; 50:421-8. [PMID: 9389315 DOI: 10.1111/j.1399-0039.1997.tb02896.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Crystallographic studies suggest a plausible divalent interaction between T-cell receptor (TCR) and MHC class II molecules. In addition, biochemical data suggest that these divalent MHC molecules are preformed at the membrane of the antigen-presenting cell. The tetramer model is based on these preformed tetrameric class II molecules that can be loaded with identical or different peptides in their two grooves. This enables divalent class II molecules to deliver two different messages to T cell: 1) a two-peptide message, in which the tetramer with two identical peptides is able to cross-link two TCRs triggering full activation of a T cell. At the thymic level we propose that this message induces negative selection; or 2) a one-peptide message: only one of the peptides loaded in the class II tetramer is able to interact with that TCR. This message would be involved in triggering partial activation phenomena in mature lymphocytes, whereas in thymocytes this message would mediate positive selection. Since high concentrations of a peptide would favor the load of tetramers with identical peptides, the tetramer could therefore be viewed as a quantitative-qualitative transducer that would trigger different responses depending on the concentration of antigenic peptides.
Collapse
Affiliation(s)
- E Pareja
- Sección de Biologia Teórica, Subdirección de Investigación y Docencia, Hospital Virgen de las Nieves, Granada, Spain.
| | | | | | | |
Collapse
|
24
|
Dinner AR, Sali A, Karplus M. The folding mechanism of larger model proteins: role of native structure. Proc Natl Acad Sci U S A 1996; 93:8356-61. [PMID: 8710875 PMCID: PMC38675 DOI: 10.1073/pnas.93.16.8356] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The folding mechanism of a 125-bead heteropolymer model for proteins is investigated with Monte Carlo simulations on a cubic lattice. Sequences that do and do not fold in a reasonable time are compared. The overall folding behavior is found to be more complex than that of models for smaller proteins. Folding begins with a rapid collapse followed by a slow search through the semi-compact globule for a sequence-dependent stable core with about 30 out of 176 native contacts which serves as the transition state for folding to a near-native structure. Efficient search for the core is dependent on structural features of the native state. Sequences that fold have large amounts of stable, cooperative structure that is accessible through short-range initiation sites, such as those in anti-parallel sheets connected by turns. Before folding is completed, the system can encounter a second bottleneck, involving the condensation and rearrangement of surface residues. Overly stable local structure of the surface residues slows this stage of the folding process. The relation of the results from the 125-mer model studies to the folding of real proteins is discussed.
Collapse
Affiliation(s)
- A R Dinner
- Committee on Higher Degrees in Biophysics, Department of Chemistry, Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
25
|
Zhu ZY, Karlin S. Clusters of charged residues in protein three-dimensional structures. Proc Natl Acad Sci U S A 1996; 93:8350-5. [PMID: 8710874 PMCID: PMC38674 DOI: 10.1073/pnas.93.16.8350] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Statistically significant charge clusters (basic, acidic, or of mixed charge) in tertiary protein structures are identified by new methods from a large representative collection of protein structures. About 10% of protein structures show at least one charge cluster, mostly of mixed type involving about equally anionic and cationic residues. Positive charge clusters are very rare. Negative (or histidine-acidic) charge clusters often coordinate calcium, or magnesium or zinc ions [e.g., thermolysin (PDB code: 3tln), mannose-binding protein (2msb), aminopeptidase (1amp)]. Mixed-charge clusters are prominent at interchain contacts where they stabilize quaternary protein formation [e.g., glutathione S-transferase (2gst), catalase (8act), and fructose-1,6-bisphosphate aldolase (1fba)]. They are also involved in protein-protein interaction and in substrate binding. For example, the mixed-charge cluster of aspartate carbamoyl-transferase (8atc) envelops the aspartate carbonyl substrate in a flexible manner (alternating tense and relaxed states) where charge associations can vary from weak to strong. Other proteins with charge clusters include the P450 cytochrome family (BM-3, Terp, Cam), several flavocytochromes, neuraminidase, hemagglutinin, the photosynthetic reaction center, and annexin. In each case in Table 2 we discuss the possible role of the charge clusters with respect to protein structure and function.
Collapse
Affiliation(s)
- Z Y Zhu
- Department of Mathematics, Stanford University, CA 94305-2125, USA
| | | |
Collapse
|
26
|
Karlin S, Brocchieri L. Evolutionary conservation of RecA genes in relation to protein structure and function. J Bacteriol 1996; 178:1881-94. [PMID: 8606161 PMCID: PMC177882 DOI: 10.1128/jb.178.7.1881-1894.1996] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Functional and structural regions inferred from the Escherichia coli R ecA protein crystal structure and mutation studies are evaluated in terms of evolutionary conservation across 63 RecA eubacterial sequences. Two paramount segments invariant in specific amino acids correspond to the ATP-binding A site and the functionally unassigned segment from residues 145 to 149 immediately carboxyl to the ATP hydrolysis B site. Not only are residues 145 to 149 conserved individually, but also all three-dimensional structural neighbors of these residues are invariant, strongly attesting to the functional or structural importance of this segment. The conservation of charged residues at the monomer-monomer interface, emphasizing basic residues on one surface and acidic residues on the other, suggests that RecA monomer polymerization is substantially mediated by electrostatic interactions. Different patterns of conservation also allow determination of regions proposed to interact with DNA, of LexA binding sites, and of filament-filament contact regions. Amino acid conservation is also compared with activities and properties of certain RecA protein mutants. Arginine 243 and its strongly cationic structural environment are proposed as the major site of competition for DNA and LexA binding to RecA. The conserved acidic and glycine residues of the disordered loop L1 and its proximity to the RecA acidic monomer interface suggest its involvement in monomer-monomer interactions rather than DNA binding. The conservation of various RecA positions and regions suggests a model for RecA-double-stranded DNA interaction and other functional and structural assignments.
Collapse
Affiliation(s)
- S Karlin
- Department of Mathematics, Stanford University, Stanford, California 94305-2125, USA
| | | |
Collapse
|