1
|
Kwok van der Giezen FM, Viljoen A, Campbell-Clause L, Dao NT, Colas des Francs-Small C, Small I. Insights into U-to-C RNA editing from the lycophyte Phylloglossum drummondii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:445-459. [PMID: 38652016 DOI: 10.1111/tpj.16775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/15/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
The lycophyte Phylloglossum drummondii is the sole inhabitant of its genus in the Huperzioideae group and one of a small minority of plants which perform uridine to cytidine RNA editing. We assembled the P. drummondii chloroplast and mitochondrial genomes and used RNA sequence data to build a comprehensive profile of organellar RNA editing events. In addition to many C-to-U editing events in both organelles, we found just four U-to-C editing events in the mitochondrial transcripts cob, nad1, nad5 and rpl2. These events are conserved in related lycophytes in the genera Huperzia and Phlegmariurus. De novo transcriptomes for three of these lycophytes were assembled to search for putative U-to-C RNA editing enzymes. Four putative U-to-C editing factors could be matched to the four mitochondrial U-to-C editing sites. Due to the unusually few numbers of U-to-C RNA editing sites, P. drummondii and related lycophytes are useful models for studying this poorly understood mechanism.
Collapse
Affiliation(s)
- Farley M Kwok van der Giezen
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Amy Viljoen
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Leni Campbell-Clause
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Nhan Trong Dao
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Catherine Colas des Francs-Small
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Ian Small
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
2
|
Vedalankar P, Tripathy BC. Light dependent protochlorophyllide oxidoreductase: a succinct look. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:719-731. [PMID: 38846463 PMCID: PMC11150229 DOI: 10.1007/s12298-024-01454-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/01/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024]
Abstract
Reducing protochlorophyllide (Pchlide) to chlorophyllide (Chlide) is a major regulatory step in the chlorophyll biosynthesis pathway. This reaction is catalyzed by light-dependent protochlorophyllide oxidoreductase (LPOR) in oxygenic phototrophs, particularly angiosperms. LPOR-NADPH and Pchlide form a ternary complex to be efficiently photo-transformed to synthesize Chlide and, subsequently, chlorophyll during the transition from skotomorphogenesis to photomorphogenesis. Besides lipids, carotenoids and poly-cis xanthophylls influence the formation of the photoactive LPOR complexes and the PLBs. The crystal structure of LPOR reveals evolutionarily conserved cysteine residues implicated in the Pchlide binding and catalysis around the active site. Different isoforms of LPOR viz PORA, PORB, and PORC expressed at different stages of chloroplast development play a photoprotective role by quickly transforming the photosensitive Pchlide to Chlide. Non-photo-transformed Pchlide acts as a photosensitizer to generate singlet oxygen that causes oxidative stress and cell death. Therefore, different isoforms of LPOR have evolved and differentially expressed during plant development to protect plants from photodamage and thus play a pivotal role during photomorphogenesis. This review brings out the salient features of LPOR structure, structure-function relationships, and ultra-fast photo transformation of Pchlide to Chlide by oligomeric and polymeric forms of LPOR.
Collapse
Affiliation(s)
| | - Baishnab C. Tripathy
- Department of Biotechnology, Sharda University, Greater Noida, Uttar Pradesh 201310 India
| |
Collapse
|
3
|
Dong CS, Liu L. Fluorination of a conserved tyrosine in POR offers new clues for proton transfer. FEBS J 2024; 291:1400-1403. [PMID: 38297957 DOI: 10.1111/febs.17074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/02/2024]
Abstract
Reduction of the 17,18-double bond in the D-ring during chlorophyll biosynthesis is catalyzed by the rare, naturally occurring photoenzyme protochlorophyllide oxidoreductase (POR). A conserved tyrosine residue has been suggested to donate a proton to C18 of the substrate in the past decades. Taylor and colleagues scrutinized the model with a powerful tool that utilized a modified genetic code to introduce fluorinated tyrosine analogues into POR. The presented results show that the suggested catalytically critical tyrosine is unlikely to participate in the reaction chemistry but is required for substrate binding, and instead, a cysteine residue preceding the lid helix is proposed to have the role of proton donor.
Collapse
Affiliation(s)
| | - Lin Liu
- School of Life Sciences, Anhui University, China
| |
Collapse
|
4
|
Silva PJ, Cheng Q. An Alternative Proposal for the Reaction Mechanism of Light-Dependent Protochlorophyllide Oxidoreductase. ACS Catal 2022; 12:2589-2605. [PMID: 36568346 PMCID: PMC9778109 DOI: 10.1021/acscatal.1c05351] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Light-dependent protochlorophyllide oxidoreductase is one of the few known enzymes that require a quantum of light to start their catalytic cycle. Upon excitation, it uses NADPH to reduce the C17-C18 in its substrate (protochlorophyllide) through a complex mechanism that has heretofore eluded precise determination. Isotopic labeling experiments have shown that the hydride-transfer step is very fast, with a small barrier close to 9 kcal mol-1, and is followed by a proton-transfer step, which has been postulated to be the protonation of the product by the strictly conserved Tyr189 residue. Since the structure of the enzyme-substrate complex has not yet been experimentally determined, we first used modeling techniques to discover the actual substrate binding mode. Two possible binding modes were found, both yielding stable binding (as ascertained through molecular dynamics simulations) but only one of which placed the critical C17=C18 bond consistently close to the NADPH pro-S hydrogen and to Tyr189. This binding pose was then used as a starting point for the testing of previous mechanistic proposals using time-dependent density functional theory. The quantum-chemical computations clearly showed that such mechanisms have prohibitively high activation energies. Instead, these computations showed the feasibility of an alternative mechanism initiated by excited-state electron transfer from the key Tyr189 to the substrate. This mechanism appears to agree with the extant experimental data and reinterprets the final protonation step as a proton transfer to the active site itself rather than to the product, aiming at regenerating it for another round of catalysis.
Collapse
Affiliation(s)
- Pedro J. Silva
- FP-I3ID/Fac.
de Ciências da Saúde, Universidade
Fernando Pessoa, 4200-150 Porto, Portugal,UCIBIO@REQUIMTE,
BioSIM, Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal,
| | - Qi Cheng
- Department
of Biochemistry, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071000, China,State
Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei 071000, China,
| |
Collapse
|
5
|
Sameer H, Victor G, Katalin S, Henrik A. Elucidation of ligand binding and dimerization of NADPH:protochlorophyllide (Pchlide) oxidoreductase from pea (Pisum sativum L.) by structural analysis and simulations. Proteins 2021; 89:1300-1314. [PMID: 34021929 DOI: 10.1002/prot.26151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/18/2021] [Accepted: 05/11/2021] [Indexed: 11/07/2022]
Abstract
NADPH:protochlorophyllide (Pchlide) oxidoreductase (POR) is a key enzyme of chlorophyll biosynthesis in angiosperms. It is one of few known photoenzymes, which catalyzes the light-activated trans-reduction of the C17-C18 double bond of Pchlide's porphyrin ring. Due to the light requirement, dark-grown angiosperms cannot synthesize chlorophyll. No crystal structure of POR is available, so to improve understanding of the protein's three-dimensional structure, its dimerization, and binding of ligands (both the cofactor NADPH and substrate Pchlide), we computationally investigated the sequence and structural relationships among homologous proteins identified through database searches. The results indicate that α4 and α7 helices of monomers form the interface of POR dimers. On the basis of conserved residues, we predicted 11 functionally important amino acids that play important roles in POR binding to NADPH. Structural comparison of available crystal structures revealed that they participate in formation of binding pockets that accommodate the Pchlide ligand, and that five atoms of the closed tetrapyrrole are involved in non-bonding interactions. However, we detected no clear pattern in the physico-chemical characteristics of the amino acids they interact with. Thus, we hypothesize that interactions of these atoms in the Pchlide porphyrin ring are important to hold the ligand within the POR binding site. Analysis of Pchlide binding in POR by molecular docking and PELE simulations revealed that the orientation of the nicotinamide group is important for Pchlide binding. These findings highlight the complexity of interactions of porphyrin-containing ligands with proteins, and we suggest that fit-inducing processes play important roles in POR-Pchlide interactions.
Collapse
Affiliation(s)
- Hassan Sameer
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Guallar Victor
- ICREA, Passeig Lluís Companys 23, Barcelona, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Solymosi Katalin
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Aronsson Henrik
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
6
|
Sun Y, Calderini E, Kourist R. A Reconstructed Common Ancestor of the Fatty Acid Photo-decarboxylase Clade Shows Photo-decarboxylation Activity and Increased Thermostability. Chembiochem 2021; 22:1833-1840. [PMID: 33539041 PMCID: PMC8252050 DOI: 10.1002/cbic.202000851] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/04/2021] [Indexed: 12/22/2022]
Abstract
Light-dependent enzymes are a rare type of biocatalyst with high potential for research and biotechnology. A recently discovered fatty acid photo-decarboxylase from Chlorella variabilis NC64A (CvFAP) converts fatty acids to the corresponding hydrocarbons only when irradiated with blue light (400 to 520 nm). To expand the available catalytic diversity for fatty acid decarboxylation, we reconstructed possible ancestral decarboxylases from a set of 12 extant sequences that were classified under the fatty acid decarboxylases clade within the glucose-methanol choline (GMC) oxidoreductase family. One of the resurrected enzymes (ANC1) showed activity in the decarboxylation of fatty acids, showing that the clade indeed contains several photo-decarboxylases. ANC1 has a 15 °C higher melting temperature (Tm ) than the extant CvFAP. Its production yielded 12-fold more protein than this wild type decarboxylase, which offers practical advantages for the biochemical investigation of this photoenzyme. Homology modelling revealed amino acid substitutions to more hydrophilic residues at the surface and shorter flexible loops compared to the wild type. Using ancestral sequence reconstruction, we have expanded the existing pool of confirmed fatty acid photo-decarboxylases, providing access to a more robust catalyst for further development via directed evolution.
Collapse
Affiliation(s)
- Yue Sun
- Institute of Molecular BiotechnologyGraz University of TechnologyPetersgasse 148010GrazAustria
| | - Elia Calderini
- Institute of Molecular BiotechnologyGraz University of TechnologyPetersgasse 148010GrazAustria
| | - Robert Kourist
- Institute of Molecular BiotechnologyGraz University of TechnologyPetersgasse 148010GrazAustria
| |
Collapse
|
7
|
Solymosi K, Mysliwa-Kurdziel B. The Role of Membranes and Lipid-Protein Interactions in the Mg-Branch of Tetrapyrrole Biosynthesis. FRONTIERS IN PLANT SCIENCE 2021; 12:663309. [PMID: 33995458 PMCID: PMC8113382 DOI: 10.3389/fpls.2021.663309] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/22/2021] [Indexed: 05/31/2023]
Abstract
Chlorophyll (Chl) is essential for photosynthesis and needs to be produced throughout the whole plant life, especially under changing light intensity and stress conditions which may result in the destruction and elimination of these pigments. All steps of the Mg-branch of tetrapyrrole biosynthesis leading to Chl formation are carried out by enzymes associated with plastid membranes. Still the significance of these protein-membrane and protein-lipid interactions in Chl synthesis and chloroplast differentiation are not very well-understood. In this review, we provide an overview on Chl biosynthesis in angiosperms with emphasis on its association with membranes and lipids. Moreover, the last steps of the pathway including the reduction of protochlorophyllide (Pchlide) to chlorophyllide (Chlide), the biosynthesis of the isoprenoid phytyl moiety and the esterification of Chlide are also summarized. The unique biochemical and photophysical properties of the light-dependent NADPH:protochlorophyllide oxidoreductase (LPOR) enzyme catalyzing Pchlide photoreduction and located to peculiar tubuloreticular prolamellar body (PLB) membranes of light-deprived tissues of angiosperms and to envelope membranes, as well as to thylakoids (especially grana margins) are also reviewed. Data about the factors influencing tubuloreticular membrane formation within cells, the spectroscopic properties and the in vitro reconstitution of the native LPOR enzyme complexes are also critically discussed.
Collapse
Affiliation(s)
- Katalin Solymosi
- Department of Plant Anatomy, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Beata Mysliwa-Kurdziel
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
8
|
Zhang S, Godwin ARF, Taylor A, Hardman SJO, Jowitt TA, Johannissen LO, Hay S, Baldock C, Heyes DJ, Scrutton NS. Dual role of the active site 'lid' regions of protochlorophyllide oxidoreductase in photocatalysis and plant development. FEBS J 2020; 288:175-189. [PMID: 32866986 DOI: 10.1111/febs.15542] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/15/2020] [Accepted: 08/24/2020] [Indexed: 11/29/2022]
Abstract
Protochlorophyllide oxidoreductase (POR) catalyses reduction of protochlorophyllide (Pchlide) to chlorophyllide, a light-dependent reaction of chlorophyll biosynthesis. POR is also important in plant development as it is the main constituent of prolamellar bodies in etioplast membranes. Prolamellar bodies are highly organised, paracrystalline structures comprising aggregated oligomeric structures of POR-Pchlide-NADPH complexes. How these oligomeric structures are formed and the role of Pchlide in oligomerisation remains unclear. POR crystal structures highlight two peptide regions that form a 'lid' to the active site, and undergo conformational change on binding Pchlide. Here, we show that Pchlide binding triggers formation of large oligomers of POR using size exclusion chromatography. A POR 'octamer' has been isolated and its structure investigated by cryo-electron microscopy at 7.7 Å resolution. This structure shows that oligomer formation is most likely driven by the interaction of amino acid residues in the highly conserved lid regions. Computational modelling indicates that Pchlide binding stabilises exposure of hydrophobic surfaces formed by the lid regions, which supports POR dimerisation and ultimately oligomer formation. Studies with variant PORs demonstrate that lid residues are involved in substrate binding and photocatalysis. These highly conserved lid regions therefore have a dual function. The lid residues position Pchlide optimally to enable photocatalysis. Following Pchlide binding, they also enable POR oligomerisation - a process that is reversed through subsequent photocatalysis in the early stages of chloroplast development.
Collapse
Affiliation(s)
- Shaowei Zhang
- Manchester Institute of Biotechnology, The University of Manchester, UK.,Department of Chemistry, Faculty of Science and Engineering, School of Natural Sciences, The University of Manchester, UK
| | - Alan R F Godwin
- Wellcome Centre for Cell-Matrix Research, University of Manchester, UK.,Division of Cell-Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, UK
| | - Aoife Taylor
- Manchester Institute of Biotechnology, The University of Manchester, UK.,Department of Chemistry, Faculty of Science and Engineering, School of Natural Sciences, The University of Manchester, UK
| | - Samantha J O Hardman
- Manchester Institute of Biotechnology, The University of Manchester, UK.,Department of Chemistry, Faculty of Science and Engineering, School of Natural Sciences, The University of Manchester, UK
| | - Thomas A Jowitt
- Wellcome Centre for Cell-Matrix Research, University of Manchester, UK.,Division of Cell-Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, UK
| | - Linus O Johannissen
- Manchester Institute of Biotechnology, The University of Manchester, UK.,Department of Chemistry, Faculty of Science and Engineering, School of Natural Sciences, The University of Manchester, UK
| | - Sam Hay
- Manchester Institute of Biotechnology, The University of Manchester, UK.,Department of Chemistry, Faculty of Science and Engineering, School of Natural Sciences, The University of Manchester, UK
| | - Clair Baldock
- Wellcome Centre for Cell-Matrix Research, University of Manchester, UK.,Division of Cell-Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, UK
| | - Derren J Heyes
- Manchester Institute of Biotechnology, The University of Manchester, UK.,Department of Chemistry, Faculty of Science and Engineering, School of Natural Sciences, The University of Manchester, UK
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, The University of Manchester, UK.,Department of Chemistry, Faculty of Science and Engineering, School of Natural Sciences, The University of Manchester, UK
| |
Collapse
|
9
|
Crystal structures of cyanobacterial light-dependent protochlorophyllide oxidoreductase. Proc Natl Acad Sci U S A 2020; 117:8455-8461. [PMID: 32234783 DOI: 10.1073/pnas.1920244117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The reduction of protochlorophyllide (Pchlide) to chlorophyllide (Chlide) is the penultimate step of chlorophyll biosynthesis. In oxygenic photosynthetic bacteria, algae, and plants, this reaction can be catalyzed by the light-dependent Pchlide oxidoreductase (LPOR), a member of the short-chain dehydrogenase superfamily sharing a conserved Rossmann fold for NAD(P)H binding and the catalytic activity. Whereas modeling and simulation approaches have been used to study the catalytic mechanism of this light-driven reaction, key details of the LPOR structure remain unclear. We determined the crystal structures of LPOR from two cyanobacteria, Synechocystis sp. PCC 6803 and Thermosynechococcus elongatus Structural analysis defines the LPOR core fold, outlines the LPOR-NADPH interaction network, identifies the residues forming the substrate cavity and the proton-relay path, and reveals the role of the LPOR-specific loop. These findings provide a basis for understanding the structure-function relationships of the light-driven Pchlide reduction.
Collapse
|
10
|
Stadler AM, Schneidewind J, Zamponi M, Knieps-Grünhagen E, Gholami S, Schwaneberg U, Rivalta I, Garavelli M, Davari MD, Jaeger KE, Krauss U. Ternary Complex Formation and Photoactivation of a Photoenzyme Results in Altered Protein Dynamics. J Phys Chem B 2019; 123:7372-7384. [PMID: 31380636 DOI: 10.1021/acs.jpcb.9b06608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interplay between protein dynamics and catalysis remains a fundamental question in enzymology. We here investigate the ns-timescale dynamics of a light-dependent NADPH:protochlorophyllide oxidoreductase (LPOR), a photoenzyme crucial for chlorophyll synthesis. LPORs catalyze the light-triggered trans addition of a hydride and a proton across the C17═C18 double bond of the chlorophyll precursor protochlorophyllide (Pchlide). Because of the lack of an LPOR structure, the global structural and dynamic consequences of LPOR/Pchlide/NADPH ternary complex formation remain elusive. Moreover, photoactivation of LPORs by low-light preillumination is controversially discussed as unequivocal proof for this phenomenon is lacking. By employing quasielastic neutron spectroscopy (QENS), we show that the formation of the ternary holoprotein complex as well as photoactivation lead to progressive rigidification of the protein. These findings are supported by thermostability measurements, which reveal different melting behavior and thermostabilities for the apo- and holoprotein ternary complexes. Molecular dynamics simulations in good agreement with the experimental QENS results suggest that the increased flexibility observed for the apoprotein stems from structural fluctuations of the NADPH and Pchlide substrate binding sites of the enzyme. On the basis of our results, in conjunction with activity and stability measurements, we provide independent proof for LPOR photoactivation, defined as a process that modifies the protein structure and dynamics, resulting in an increased substrate turnover. Our findings advance the structural and dynamic understanding of LPORs and provide a first link between protein dynamics and catalysis for this enzyme class.
Collapse
Affiliation(s)
| | | | - Michaela Zamponi
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ) , Forschungszentrum Jülich GmbH , Lichtenbergstr. 1 , 85748 Garching , Germany
| | | | - Samira Gholami
- Dipartimento di Chimica Industriale , Università degli Studi di Bologna , Viale del Risorgimento 4 , I-40136 Bologna , Italy
| | - Ulrich Schwaneberg
- Institute of Biotechnology , RWTH Aachen University , Worringer Weg 3 , D-52074 Aachen , Germany.,DWI-Leibniz Institute for Interactive Materials , Forckenbeckstraße 50 , 52056 Aachen , Germany
| | - Ivan Rivalta
- Université de Lyon, École Normale Supérieure de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182 , F-69342 Lyon , France
| | - Marco Garavelli
- Dipartimento di Chimica Industriale , Università degli Studi di Bologna , Viale del Risorgimento 4 , I-40136 Bologna , Italy.,École Normale Supérieure de Lyon, CNRS, Laboratoire de Chimie UMR 5182, Université de Lyon , 46 Allée d'Italie , F-69364 Lyon Cedex 07 , France
| | - Mehdi D Davari
- Institute of Biotechnology , RWTH Aachen University , Worringer Weg 3 , D-52074 Aachen , Germany
| | - Karl-Erich Jaeger
- IBG-1: Biotechnologie , Forschungszentrum Jülich GmbH , D-52425 Jülich , Germany
| | | |
Collapse
|
11
|
Sineshchekov VA, Belyaeva OB. Regulation of Chlorophyll Biogenesis by Phytochrome A. BIOCHEMISTRY (MOSCOW) 2019; 84:491-508. [DOI: 10.1134/s0006297919050043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Sineshchekov VA, Belyaeva OB. Regulation of Chlorophyll Biogenesis by Phytochrome A. BIOCHEMISTRY (MOSCOW) 2019; 84:491-508. [DOI: https:/doi.org/10.1134/s0006297919050043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 12/18/2023]
|
13
|
Erdei AL, Kósa A, Böddi B. Distinct UV-A or UV-B irradiation induces protochlorophyllide photoreduction and bleaching in dark-grown pea (Pisum sativum L.) epicotyls. PHOTOSYNTHESIS RESEARCH 2019; 140:93-102. [PMID: 30225812 DOI: 10.1007/s11120-018-0584-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
The effects of distinct UV-A and UV-B radiations were studied on etiolated pea (Pisum sativum L.) epicotyls. Emission spectra of the native protochlorophyll and protochlorophyllide forms were measured when epicotyls were excited with 360 or 300 nm light. The UV-A (360 nm) excited mainly the non-enzyme-bound monomers of protochlorophyll and protochlorophyllide and the UV-B (300 nm) excited preferentially the flash-photoactive protochlorophyllide complexes. These latter complexes converted into short- and long-wavelength chlorophyllide forms at 10-s illumination with both wavelength irradiations. As the spectral changes were very small, the effects of longer illumination periods were studied. Room temperature fluorescence emission spectra were measured from the same epicotyl spots before and after irradiation with various wavelengths between 280 and 360 nm for 15 min and the "illuminated" minus "dark" difference spectra were calculated. Both the UV-A and the UV-B irradiations caused photoreduction of protochlorophyllide into chlorophyllide. At 10 µmol photons m-2 s-1, the photoreduction rates were similar, however, at 60 µmol photons m-2 s-1, the UV-B irradiation was more effective in inducing chlorophyllide formation than the UV-A. The action spectra of protochlorophyllide plus protochlorophyll loss and chlorophyllide production showed that the radiation around 290 nm was the most effective in provoking protochlorophyllide photoreduction and the UV light above 320 nm caused strong bleaching. These results show that the effect of the UV radiation should be considered when discussing the protochlorophyllide-chlorophyllide photoreduction during germination and as a part of the regeneration of the photosynthetic apparatus proceeding in the daily run of photosynthesis.
Collapse
Affiliation(s)
- Anna Laura Erdei
- Department of Plant Anatomy, Faculty of Science, Institute of Biology, ELTE Eötvös Loránd University, Pázmány P. s. 1/c, Budapest, 1117, Hungary
- Department of Zoology, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Annamária Kósa
- Department of Plant Anatomy, Faculty of Science, Institute of Biology, ELTE Eötvös Loránd University, Pázmány P. s. 1/c, Budapest, 1117, Hungary
| | - Béla Böddi
- Department of Plant Anatomy, Faculty of Science, Institute of Biology, ELTE Eötvös Loránd University, Pázmány P. s. 1/c, Budapest, 1117, Hungary.
| |
Collapse
|
14
|
Gholami S, Nenov A, Rivalta I, Bocola M, Bordbar AK, Schwaneberg U, Davari MD, Garavelli M. Theoretical Model of the Protochlorophyllide Oxidoreductase from a Hierarchy of Protocols. J Phys Chem B 2018; 122:7668-7681. [PMID: 29996651 DOI: 10.1021/acs.jpcb.8b04231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The enzyme protochlorophyllide oxidoreductase (LPOR) catalyzes the light-driven reduction of protochlorophyllide (Pchlide), a crucial step in chlorophyll biosynthesis. Molecular understanding of the photocatalytic mechanism of LPOR is essential for harnessing light energy to mediate enzymatic reactions. The absence of X-ray crystal structure has promoted the development of LPOR homology models that lack a catalytically competent active site and could not explain the variously reported spectroscopic evidence, including time-resolved optical spectroscopy data. We have refined previous structural models to account for the catalytic active site and the characteristic experimental spectral features of Pchlide binding, including the 26 cm-1 red shift of the C13(1) carbonyl stretch vibration in the mid-infrared (IR) and the 12 nm red shift of the Q x electronic band. A hierarchy of theoretical methods, including homology modeling, molecular dynamics simulations, hybrid quantum mechanics [(TD-)DFT]/molecular mechanics [AMBER] calculations, and computational vibrational and electronic spectroscopies, have been combined in an iterative protocol to reproduce experimental evidence and to predict ultrafast transient IR spectroscopic fingerprints associated with the catalytic process. The successful application to the LPOR enzyme indicates that the presented hierarchical protocol provides a general workflow to protein structure refinement.
Collapse
Affiliation(s)
- Samira Gholami
- Department of Chemistry , University of Isfahan , Isfahan 81746-73441 , Iran.,Dipartimento di Chimica Industriale , Università degli Studi di Bologna , Viale del Risorgimento 4 , I-40136 Bologna , Italy
| | - Artur Nenov
- Dipartimento di Chimica Industriale , Università degli Studi di Bologna , Viale del Risorgimento 4 , I-40136 Bologna , Italy
| | - Ivan Rivalta
- Université de Lyon , École Normale Supérieure de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, F-69342 , Lyon , France
| | - Marco Bocola
- Institute of Biotechnology , RWTH Aachen University , Worringer Weg 3 , 52074 Aachen , Germany
| | - A Khalegh Bordbar
- Department of Chemistry , University of Isfahan , Isfahan 81746-73441 , Iran
| | - Ulrich Schwaneberg
- Institute of Biotechnology , RWTH Aachen University , Worringer Weg 3 , 52074 Aachen , Germany.,DWI-Leibniz Institute for Interactive Materials , Forckenbeckstraße 50 , 52056 Aachen , Germany
| | - Mehdi D Davari
- Institute of Biotechnology , RWTH Aachen University , Worringer Weg 3 , 52074 Aachen , Germany
| | - Marco Garavelli
- Dipartimento di Chimica Industriale , Università degli Studi di Bologna , Viale del Risorgimento 4 , I-40136 Bologna , Italy
| |
Collapse
|
15
|
Archipowa N, Kutta RJ, Heyes DJ, Scrutton NS. Stepwise Hydride Transfer in a Biological System: Insights into the Reaction Mechanism of the Light-Dependent Protochlorophyllide Oxidoreductase. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712729] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nataliya Archipowa
- Manchester Institute of Biotechnology and School of Chemistry; The University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Roger J. Kutta
- Manchester Institute of Biotechnology and School of Chemistry; The University of Manchester; 131 Princess Street Manchester M1 7DN UK
- Current address: Institut für Physikalische und Theoretische Chemie; Universität Regensburg; Universitätsstr. 31 93053 Regensburg Germany
| | - Derren J. Heyes
- Manchester Institute of Biotechnology and School of Chemistry; The University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Nigel S. Scrutton
- Manchester Institute of Biotechnology and School of Chemistry; The University of Manchester; 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
16
|
Archipowa N, Kutta RJ, Heyes DJ, Scrutton NS. Stepwise Hydride Transfer in a Biological System: Insights into the Reaction Mechanism of the Light-Dependent Protochlorophyllide Oxidoreductase. Angew Chem Int Ed Engl 2018; 57:2682-2686. [PMID: 29363234 PMCID: PMC5861667 DOI: 10.1002/anie.201712729] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/22/2018] [Indexed: 11/24/2022]
Abstract
Hydride transfer plays a crucial role in a wide range of biological systems. However, its mode of action (concerted or stepwise) is still under debate. Light‐dependent NADPH: protochlorophyllide oxidoreductase (POR) catalyzes the stereospecific trans addition of a hydride anion and a proton across the C17−C18 double bond of protochlorophyllide. Time‐resolved absorption and emission spectroscopy were used to investigate the hydride transfer mechanism in POR. Apart from excited states of protochlorophyllide, three discrete intermediates were resolved, consistent with a stepwise mechanism that involves an initial electron transfer from NADPH. A subsequent proton‐coupled electron transfer followed by a proton transfer yield distinct different intermediates for wild type and the C226S variant, that is, initial hydride attaches to either C17 or C18, but ends in the same chlorophyllide stereoisomer. This work provides the first evidence of a stepwise hydride transfer in a biological system.
Collapse
Affiliation(s)
- Nataliya Archipowa
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Roger J Kutta
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Current address: Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Derren J Heyes
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| |
Collapse
|
17
|
Three classes of oxygen-dependent cyclase involved in chlorophyll and bacteriochlorophyll biosynthesis. Proc Natl Acad Sci U S A 2017; 114:6280-6285. [PMID: 28559347 DOI: 10.1073/pnas.1701687114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The biosynthesis of (bacterio)chlorophyll pigments is among the most productive biological pathways on Earth. Photosynthesis relies on these modified tetrapyrroles for the capture of solar radiation and its conversion to chemical energy. (Bacterio)chlorophylls have an isocyclic fifth ring, the formation of which has remained enigmatic for more than 60 y. This reaction is catalyzed by two unrelated cyclase enzymes using different chemistries. The majority of anoxygenic phototrophic bacteria use BchE, an O2-sensitive [4Fe-4S] cluster protein, whereas plants, cyanobacteria, and some phototrophic bacteria possess an O2-dependent enzyme, the major catalytic component of which is a diiron protein, AcsF. Plant and cyanobacterial mutants in ycf54 display impaired function of the O2-dependent enzyme, accumulating the reaction substrate. Swapping cyclases between cyanobacteria and purple phototrophic bacteria reveals three classes of the O2-dependent enzyme. AcsF from the purple betaproteobacterium Rubrivivax (Rvi.) gelatinosus rescues the loss not only of its cyanobacterial ortholog, cycI, in Synechocystis sp. PCC 6803, but also of ycf54; conversely, coexpression of cyanobacterial cycI and ycf54 is required to complement the loss of acsF in Rvi. gelatinosus These results indicate that Ycf54 is a cyclase subunit in oxygenic phototrophs, and that different classes of the enzyme exist based on their requirement for an additional subunit. AcsF is the cyclase in Rvi. gelatinosus, whereas alphaproteobacterial cyclases require a newly discovered protein that we term BciE, encoded by a gene conserved in these organisms. These data delineate three classes of O2-dependent cyclase in chlorophototrophic organisms from higher plants to bacteria, and their evolution is discussed herein.
Collapse
|
18
|
Buhr F, Lahroussi A, Springer A, Rustgi S, von Wettstein D, Reinbothe C, Reinbothe S. NADPH:protochlorophyllide oxidoreductase B (PORB) action in Arabidopsis thaliana revisited through transgenic expression of engineered barley PORB mutant proteins. PLANT MOLECULAR BIOLOGY 2017; 94:45-59. [PMID: 28260138 DOI: 10.1007/s11103-017-0592-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/09/2017] [Indexed: 06/06/2023]
Abstract
NADPH:protochlorophyllide oxidoreductase (POR) is a key enzyme for the light-induced greening of etiolated angiosperm plants. It belongs to the 'RED' family of reductases, epimerases and dehydrogenases. All POR proteins characterized so far contain evolutionarily conserved cysteine residues implicated in protochlorophyllide (Pchlide)-binding and catalysis. cDNAs were constructed by site-directed mutagenesis that encode PORB mutant proteins with defined Cys→Ala exchanges. These cDNAs were expressed in transgenic plants of a PORB-deficient knock-out mutant (porB) of Arabidopsis thaliana. Results show that porB plants expressing PORB mutant proteins with Ala substitutions of Cys276 or Cys303 are hypersensitive to high-light conditions during greening. Hereby, failure to assemble higher molecular weight complexes of PORB with its twin isoenzyme, PORA, as encountered with (Cys303→Ala)-PORB plants, caused more severe effects than replacing Cys276 by an Ala residue in the active site of the enzyme, as encountered in (Cys276→Ala)-PORB plants. Our results are consistent with the presence of two distinct pigment binding sites in PORB, with Cys276 establishing the active site of the enzyme and Cys303 providing a second, low affinity pigment binding site that is essential for the assembly of higher molecular mass light-harvesting PORB::PORA complexes and photoprotection of etiolated seedlings. Failure to assemble such complexes provoked photodynamic damage through the generation of singlet oxygen. Together, our data highlight the importance of PORB for Pchlide homoeostasis and greening in Arabidopsis.
Collapse
Affiliation(s)
- Frank Buhr
- Biologie Environnementale et Systémique (BEeSy), Université Grenoble-Alpes, LBFA, BP53F, 38041, Grenoble cedex 9, France
| | - Abderrahim Lahroussi
- Biologie Environnementale et Systémique (BEeSy), Université Grenoble-Alpes, LBFA, BP53F, 38041, Grenoble cedex 9, France
| | - Armin Springer
- Biologie Environnementale et Systémique (BEeSy), Université Grenoble-Alpes, LBFA, BP53F, 38041, Grenoble cedex 9, France
- Medical Biology and Electron Microscopy Centre, University Medical Center Rostock, Strempelstraße 14, 18057, Rostock, Germany
| | - Sachin Rustgi
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC, 29506, USA
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
| | - Diter von Wettstein
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
| | - Christiane Reinbothe
- Biologie Environnementale et Systémique (BEeSy), Université Grenoble-Alpes, LBFA, BP53F, 38041, Grenoble cedex 9, France
| | - Steffen Reinbothe
- Biologie Environnementale et Systémique (BEeSy), Université Grenoble-Alpes, LBFA, BP53F, 38041, Grenoble cedex 9, France.
| |
Collapse
|
19
|
Hunsperger HM, Ford CJ, Miller JS, Cattolico RA. Differential Regulation of Duplicate Light-Dependent Protochlorophyllide Oxidoreductases in the Diatom Phaeodactylum tricornutum. PLoS One 2016; 11:e0158614. [PMID: 27367227 PMCID: PMC4930169 DOI: 10.1371/journal.pone.0158614] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/17/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Diatoms (Bacilliariophyceae) encode two light-dependent protochlorophyllide oxidoreductases (POR1 and POR2) that catalyze the penultimate step of chlorophyll biosynthesis in the light. Algae live in dynamic environments whose changing light levels induce photoacclimative metabolic shifts, including altered cellular chlorophyll levels. We hypothesized that the two POR proteins may be differentially adaptive under varying light conditions. Using the diatom Phaeodactylum tricornutum as a test system, differences in POR protein abundance and por gene expression were examined when this organism was grown on an alternating light:dark cycles at different irradiances; exposed to continuous light; and challenged by a significant decrease in light availability. RESULTS For cultures maintained on a 12h light: 12h dark photoperiod at 200μE m-2 s-1 (200L/D), both por genes were up-regulated during the light and down-regulated in the dark, though por1 transcript abundance rose and fell earlier than that of por2. Little concordance occurred between por1 mRNA and POR1 protein abundance. In contrast, por2 mRNA and POR2 protein abundances followed similar diurnal patterns. When 200L/D P. tricornutum cultures were transferred to continuous light (200L/L), the diurnal regulatory pattern of por1 mRNA abundance but not of por2 was disrupted, and POR1 but not POR2 protein abundance dropped steeply. Under 1200μE m-2 s-1 (1200L/D), both por1 mRNA and POR1 protein abundance displayed diurnal oscillations. A compromised diel por2 mRNA response under 1200L/D did not impact the oscillation in POR2 abundance. When cells grown at 1200L/D were then shifted to 50μE m-2 s-1 (50L/D), por1 and por2 mRNA levels decreased swiftly but briefly upon light reduction. Thereafter, POR1 but not POR2 protein levels rose significantly in response to this light stepdown. CONCLUSION Given the sensitivity of diatom por1/POR1 to real-time light cues and adherence of por2/POR2 regulation to the diurnal cycle, we suggest that POR1 supports photoacclimation, whereas POR2 is the workhorse for daily chlorophyll synthesis.
Collapse
Affiliation(s)
- Heather M. Hunsperger
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Christopher J. Ford
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - James S. Miller
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Rose Ann Cattolico
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
20
|
Erdei AL, Kósa A, Kovács-Smirová L, Böddi B. Wavelength-dependent photooxidation and photoreduction of protochlorophyllide and protochlorophyll in the innermost leaves of cabbage (Brassica oleracea var. capitata L.). PHOTOSYNTHESIS RESEARCH 2016; 128:73-83. [PMID: 26519365 DOI: 10.1007/s11120-015-0200-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
The photoreduction and photooxidation processes of different protochlorophyll(ide) forms were studied in the innermost leaves of cabbage (Brassica oleracea var. capitata L.) under monochromatic irradiations. Room-temperature fluorescence emission spectra were measured from the same leaf spots before and after illumination to follow the wavelength dependence of the photochemical reactions. Short-wavelength light of 7 µmol photons m(-2) s(-1) (625-630 nm) provoked mainly bleaching, and longer wavelengths (630-640 nm) caused both bleaching and photoreduction, while above 640 nm resulted in basically photoreduction. When bleached leaves were kept in darkness at room temperature, all protochlorophyll(ide) forms regenerated during 72 h. Oxygen-reduced environment decreased the extent of bleaching suggesting the involvement of reactive oxygen species. These results confirm that the short-wavelength, 628 nm absorbing, and 633 nm emitting protochlorophyll(ide) form in etiolated cabbage leaves sensibilizes photooxidation. However, the 628 nm light at low intensities stimulates the photoreduction of the longer wavelength protochlorophyllide forms. Kinetic measurements showed that photoreduction saturates at a low PFD (photon flux density) compared to bleaching, suggesting that the quantum yield of photoreduction is higher than that of bleaching.
Collapse
Affiliation(s)
- Anna Laura Erdei
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány P. s. 1/c, Budapest, 1117, Hungary
| | - Annamária Kósa
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány P. s. 1/c, Budapest, 1117, Hungary
| | - Lilla Kovács-Smirová
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány P. s. 1/c, Budapest, 1117, Hungary
| | - Béla Böddi
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány P. s. 1/c, Budapest, 1117, Hungary.
| |
Collapse
|
21
|
Hoeven R, Hardman SJO, Heyes DJ, Scrutton NS. Cross-Species Analysis of Protein Dynamics Associated with Hydride and Proton Transfer in the Catalytic Cycle of the Light-Driven Enzyme Protochlorophyllide Oxidoreductase. Biochemistry 2016; 55:903-13. [DOI: 10.1021/acs.biochem.5b01355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robin Hoeven
- Centre for Synthetic Biology
of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Samantha J. O. Hardman
- Centre for Synthetic Biology
of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Derren J. Heyes
- Centre for Synthetic Biology
of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Nigel S. Scrutton
- Centre for Synthetic Biology
of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| |
Collapse
|
22
|
Garrone A, Archipowa N, Zipfel PF, Hermann G, Dietzek B. Plant Protochlorophyllide Oxidoreductases A and B: CATALYTIC EFFICIENCY AND INITIAL REACTION STEPS. J Biol Chem 2015; 290:28530-28539. [PMID: 26408201 DOI: 10.1074/jbc.m115.663161] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Indexed: 11/06/2022] Open
Abstract
The enzyme protochlorophyllide oxidoreductase (POR, EC 1.3.1.33) has a key role in plant development. It catalyzes one of the later steps in chlorophyll synthesis, the light-induced reduction of protochlorophyllide (PChlide) into chlorophyllide (Chlide) in the presence of NADPH. Two isozymes of plant POR, POR A and POR B from barley, which differ in their function during plant life, are compared with respect to their substrate binding affinity, catalytic efficiency, and catalytic mechanism. POR B as compared with POR A shows an 5-fold higher binding affinity for PChlide and an about 6-fold higher catalytic efficiency measured as kcat/Km. Based on the reaction intermediates, which can be trapped at low temperatures the same reaction mechanism operates in both POR A and POR B. In contrast to results reported for POR enzymes from cyanobacteria, the initial light-driven step, which occurs at temperatures below 180 K already involves the full chemistry of the photoreduction and yields the reaction product, Chlide, in an enzyme-bound form. The subsequent dark reactions, which include cofactor (NADP(+)) release and cofactor (NADPH) rebinding, show different temperature dependences for POR A and POR B and suggest a higher conformational flexibility of POR B in the surrounding active center. Both the higher substrate binding affinity and well adapted enzyme dynamics are held responsible for the increased catalytic activity of POR B as compared with POR A.
Collapse
Affiliation(s)
- Alessio Garrone
- Department of Biochemistry and Biophysics, and the Department of Physical Chemistry, Jena D-07743, Germany; Leibniz Institute of Photonic Technology, Jena D-07743, Germany
| | - Nataliya Archipowa
- Department of Biochemistry and Biophysics, and the Department of Physical Chemistry, Jena D-07743, Germany
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena D-07743, Germany; Friedrich Schiller University of Jena, Jena D-07743, Germany
| | - Gudrun Hermann
- Department of Biochemistry and Biophysics, and the Department of Physical Chemistry, Jena D-07743, Germany; Friedrich Schiller University of Jena, Jena D-07743, Germany.
| | - Benjamin Dietzek
- Department of Biochemistry and Biophysics, and the Department of Physical Chemistry, Jena D-07743, Germany; Leibniz Institute of Photonic Technology, Jena D-07743, Germany
| |
Collapse
|
23
|
Gabruk M, Mysliwa-Kurdziel B. Light-Dependent Protochlorophyllide Oxidoreductase: Phylogeny, Regulation, and Catalytic Properties. Biochemistry 2015; 54:5255-62. [PMID: 26230427 DOI: 10.1021/acs.biochem.5b00704] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This Current Topic focuses on light-dependent protochlorophyllide oxidoreductase (POR, EC 1.3.1.33). POR catalyzes the penultimate reaction of chlorophyll biosynthesis, i.e., the light-triggered reduction of protochlorophyllide to chlorophyllide. In this reaction, the chlorin ring of the chlorophyll molecule is formed, which is crucial for photosynthesis. POR is one of very few enzymes that are driven by light; however, it is unique in the need for its substrate to absorb photons to induce the conformational changes in the enzyme, which are required for its catalytic activation. Moreover, the enzyme is also involved in the negative feedback of the chlorophyll biosynthesis pathway and controls chlorophyll content via its light-dependent activity. Even though it has been almost 70 years since the first isolation of active POR complexes, our knowledge of them has markedly advanced in recent years. In this review, we summarize the current state of knowledge of POR, including the phylogenetic roots of POR, the mechanisms of the regulation of POR genes expression, the regulation of POR activity, the import of POR into plastids, the role of POR in PLB formation, and the molecular mechanism of protochlorophyllide reduction by POR. To the best of our knowledge, no previous review has compiled such a broad set of recent findings about POR.
Collapse
Affiliation(s)
- Michal Gabruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Gronostajowa 7, 30-387 Krakow, Poland
| | - Beata Mysliwa-Kurdziel
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Gronostajowa 7, 30-387 Krakow, Poland
| |
Collapse
|
24
|
Evolutionary Aspects and Regulation of Tetrapyrrole Biosynthesis in Cyanobacteria under Aerobic and Anaerobic Environments. Life (Basel) 2015; 5:1172-203. [PMID: 25830590 PMCID: PMC4500134 DOI: 10.3390/life5021172] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 01/10/2023] Open
Abstract
Chlorophyll a (Chl) is a light-absorbing tetrapyrrole pigment that is essential for photosynthesis. The molecule is produced from glutamate via a complex biosynthetic pathway comprised of at least 15 enzymatic steps. The first half of the Chl pathway is shared with heme biosynthesis, and the latter half, called the Mg-branch, is specific to Mg-containing Chl a. Bilin pigments, such as phycocyanobilin, are additionally produced from heme, so these light-harvesting pigments also share many common biosynthetic steps with Chl biosynthesis. Some of these common steps in the biosynthetic pathways of heme, Chl and bilins require molecular oxygen for catalysis, such as oxygen-dependent coproporphyrinogen III oxidase. Cyanobacteria thrive in diverse environments in terms of oxygen levels. To cope with Chl deficiency caused by low-oxygen conditions, cyanobacteria have developed elaborate mechanisms to maintain Chl production, even under microoxic environments. The use of enzymes specialized for low-oxygen conditions, such as oxygen-independent coproporphyrinogen III oxidase, constitutes part of a mechanism adapted to low-oxygen conditions. Another mechanism adaptive to hypoxic conditions is mediated by the transcriptional regulator ChlR that senses low oxygen and subsequently activates the transcription of genes encoding enzymes that work under low-oxygen tension. In diazotrophic cyanobacteria, this multilayered regulation also contributes in Chl biosynthesis by supporting energy production for nitrogen fixation that also requires low-oxygen conditions. We will also discuss the evolutionary implications of cyanobacterial tetrapyrrole biosynthesis and regulation, because low oxygen-type enzymes also appear to be evolutionarily older than oxygen-dependent enzymes.
Collapse
|
25
|
Belyaeva OB, Litvin FF. Mechanisms of phototransformation of protochlorophyllide into chlorophyllide. BIOCHEMISTRY (MOSCOW) 2015; 79:337-48. [PMID: 24910207 DOI: 10.1134/s0006297914040038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The purpose of this review is to summarize and discuss data obtained in studies on the mechanisms of the primary photophysical and photochemical reactions of protochlorophyllide photoreduction in plant materials (etiolated leaves and leaf homogenates) and in model systems. Based on the results of numerous studies, it can be stated that the reduction of active forms of the chlorophyll precursor is a multistep process comprising two or three short-lived intermediates characterized by a singlet ESR signal. The first intermediate is probably a complex with charge transfer between protochlorophyllide and the hydride ion donor NADPH. The conserved tyrosine residue Tyr193 of protochlorophyllide oxidoreductase is the donor of the second proton.
Collapse
Affiliation(s)
- O B Belyaeva
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119992, Russia.
| | | |
Collapse
|
26
|
Hunsperger HM, Randhawa T, Cattolico RA. Extensive horizontal gene transfer, duplication, and loss of chlorophyll synthesis genes in the algae. BMC Evol Biol 2015; 15:16. [PMID: 25887237 PMCID: PMC4337275 DOI: 10.1186/s12862-015-0286-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/15/2015] [Indexed: 11/10/2022] Open
Abstract
Background Two non-homologous, isofunctional enzymes catalyze the penultimate step of chlorophyll a synthesis in oxygenic photosynthetic organisms such as cyanobacteria, eukaryotic algae and land plants: the light-independent (LIPOR) and light-dependent (POR) protochlorophyllide oxidoreductases. Whereas the distribution of these enzymes in cyanobacteria and land plants is well understood, the presence, loss, duplication, and replacement of these genes have not been surveyed in the polyphyletic and remarkably diverse eukaryotic algal lineages. Results A phylogenetic reconstruction of the history of the POR enzyme (encoded by the por gene in nuclei) in eukaryotic algae reveals replacement and supplementation of ancestral por genes in several taxa with horizontally transferred por genes from other eukaryotic algae. For example, stramenopiles and haptophytes share por gene duplicates of prasinophytic origin, although their plastid ancestry predicts a rhodophytic por signal. Phylogenetically, stramenopile pors appear ancestral to those found in haptophytes, suggesting transfer from stramenopiles to haptophytes by either horizontal or endosymbiotic gene transfer. In dinoflagellates whose plastids have been replaced by those of a haptophyte or diatom, the ancestral por genes seem to have been lost whereas those of the new symbiotic partner are present. Furthermore, many chlorarachniophytes and peridinin-containing dinoflagellates possess por gene duplicates. In contrast to the retention, gain, and frequent duplication of algal por genes, the LIPOR gene complement (chloroplast-encoded chlL, chlN, and chlB genes) is often absent. LIPOR genes have been lost from haptophytes and potentially from the euglenid and chlorarachniophyte lineages. Within the chlorophytes, rhodophytes, cryptophytes, heterokonts, and chromerids, some taxa possess both POR and LIPOR genes while others lack LIPOR. The gradual process of LIPOR gene loss is evidenced in taxa possessing pseudogenes or partial LIPOR gene compliments. No horizontal transfer of LIPOR genes was detected. Conclusions We document a pattern of por gene acquisition and expansion as well as loss of LIPOR genes from many algal taxa, paralleling the presence of multiple por genes and lack of LIPOR genes in the angiosperms. These studies present an opportunity to compare the regulation and function of por gene families that have been acquired and expanded in patterns unique to each of various algal taxa. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0286-4) contains supplementary material, which is available to authorized users.
Collapse
|
27
|
Silva PJ. With or without light: comparing the reaction mechanism of dark-operative protochlorophyllide oxidoreductase with the energetic requirements of the light-dependent protochlorophyllide oxidoreductase. PeerJ 2014; 2:e551. [PMID: 25237602 PMCID: PMC4157233 DOI: 10.7717/peerj.551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/09/2014] [Indexed: 11/20/2022] Open
Abstract
The addition of two electrons and two protons to the C17=C18 bond in protochlorophyllide is catalyzed by a light-dependent enzyme relying on NADPH as electron donor, and by a light-independent enzyme bearing a (Cys)3Asp-ligated [4Fe–4S] cluster which is reduced by cytoplasmic electron donors in an ATP-dependent manner and then functions as electron donor to protochlorophyllide. The precise sequence of events occurring at the C17=C18 bond has not, however, been determined experimentally in the dark-operating enzyme. In this paper, we present the computational investigation of the reaction mechanism of this enzyme at the B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) level of theory. The reaction mechanism begins with single-electron reduction of the substrate by the (Cys)3Asp-ligated [4Fe–4S], yielding a negatively-charged intermediate. Depending on the rate of Fe–S cluster re-reduction, the reaction either proceeds through double protonation of the single-electron-reduced substrate, or by alternating proton/electron transfer. The computed reaction barriers suggest that Fe–S cluster re-reduction should be the rate-limiting stage of the process. Poisson–Boltzmann computations on the full enzyme–substrate complex, followed by Monte Carlo simulations of redox and protonation titrations revealed a hitherto unsuspected pH-dependence of the reaction potential of the Fe–S cluster. Furthermore, the computed distributions of protonation states of the His, Asp and Glu residues were used in conjuntion with single-point ONIOM computations to obtain, for the first time, the influence of all protonation states of an enzyme on the reaction it catalyzes. Despite exaggerating the ease of reduction of the substrate, these computations confirmed the broad features of the reaction mechanism obtained with the medium-sized models, and afforded valuable insights on the influence of the titratable amino acids on each reaction step. Additional comparisons of the energetic features of the reaction intermediates with those of common biochemical redox intermediates suggest a surprisingly simple explanation for the mechanistic differences between the dark-catalyzed and light-dependent enzyme reaction mechanisms.
Collapse
Affiliation(s)
- Pedro J Silva
- REQUIMTE, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa , Rua Carlos da Maia, Porto , Portugal
| |
Collapse
|
28
|
Dark-operative protochlorophyllide oxidoreductase generates substrate radicals by an iron-sulphur cluster in bacteriochlorophyll biosynthesis. Sci Rep 2014; 4:5455. [PMID: 24965831 PMCID: PMC4071322 DOI: 10.1038/srep05455] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 06/09/2014] [Indexed: 11/21/2022] Open
Abstract
Photosynthesis converts solar energy to chemical energy using chlorophylls (Chls). In a late stage of biosynthesis of Chls, dark-operative protochlorophyllide (Pchlide) oxidoreductase (DPOR), a nitrogenase-like enzyme, reduces the C17 = C18 double bond of Pchlide and drastically changes the spectral properties suitable for photosynthesis forming the parental chlorin ring for Chl a. We previously proposed that the spatial arrangement of the proton donors determines the stereospecificity of the Pchlide reduction based on the recently resolved structure of the DPOR catalytic component, NB-protein. However, it was not clear how the two-electron and two-proton transfer events are coordinated in the reaction. In this study, we demonstrate that DPOR initiates a single electron transfer reaction from a [4Fe-4S]-cluster (NB-cluster) to Pchlide, generating Pchlide anion radicals followed by a single proton transfer, and then, further electron/proton transfer steps transform the anion radicals into chlorophyllide (Chlide). Thus, DPOR is a unique iron-sulphur enzyme to form substrate radicals followed by sequential proton- and electron-transfer steps with the protein folding very similar to that of nitrogenase. This novel radical-mediated reaction supports the biosynthesis of Chl in a wide variety of photosynthetic organisms.
Collapse
|
29
|
Hermann G, Schmitt M, Dietzek B, Popp J. Response to the Comments by L. O. Björn on our Paper “Catalytic Efficiency of a Photoenzyme-An Adaptation to Natural Light Conditions”. Chemphyschem 2013; 14:2598-600. [DOI: 10.1002/cphc.201300374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Indexed: 11/11/2022]
|
30
|
Scrutton NS, Louise Groot M, Heyes DJ. Excited state dynamics and catalytic mechanism of the light-driven enzyme protochlorophyllide oxidoreductase. Phys Chem Chem Phys 2012; 14:8818-24. [DOI: 10.1039/c2cp23789j] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
|
32
|
Colindres-Rojas M, Wolf MMN, Gross R, Seidel S, Dietzek B, Schmitt M, Popp J, Hermann G, Diller R. Excited-state dynamics of protochlorophyllide revealed by subpicosecond infrared spectroscopy. Biophys J 2011; 100:260-7. [PMID: 21190679 DOI: 10.1016/j.bpj.2010.11.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Revised: 11/19/2010] [Accepted: 11/29/2010] [Indexed: 11/24/2022] Open
Abstract
To gain a better understanding of the light-induced reduction of protochlorophyllide (PChlide) to chlorophyllide as a key regulatory step in chlorophyll synthesis, we performed transient infrared absorption measurements on PChlide in d4-methanol. Excitation in the Q-band at 630 nm initiates dynamics characterized by three time constants: τ₁ = 3.6 ± 0.2, τ₂ = 38 ± 2, and τ₃ = 215 ± 8 ps. As indicated by the C13'=O carbonyl stretching mode in the electronic ground state at 1686 cm⁻¹, showing partial ground-state recovery, and in the excited electronic state at 1625 cm⁻¹, showing excited-state decay, τ₂ describes the formation of a state with a strong change in electronic structure, and τ₃ represents the partial recovery of the PChlide electronic ground state. Furthermore, τ₁ corresponds with vibrational energy relaxation. The observed kinetics strongly suggest a branched reaction scheme with a branching ratio of 0.5 for the path leading to the PChlide ground state on the 200 ps timescale and the path leading to a long-lived state (>>700 ps). The results clearly support a branched reaction scheme, as proposed previously, featuring the formation of an intramolecular charge transfer state with ∼25 ps, its decay into the PChlide ground state with 200 ps, and a parallel reaction path to the long-lived PChlide triplet state.
Collapse
|
33
|
Sytina OA, Alexandre MT, Heyes DJ, Hunter CN, Robert B, van Grondelle R, Groot ML. Enzyme activation and catalysis: characterisation of the vibrational modes of substrate and product in protochlorophyllide oxidoreductase. Phys Chem Chem Phys 2010; 13:2307-13. [PMID: 21103538 DOI: 10.1039/c0cp01686a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The light-dependent reduction of protochlorophyllide, a key step in the synthesis of chlorophyll, is catalyzed by the enzyme protochlorophyllide oxidoreductase (POR) and requires two photons (O. A. Sytina et al., Nature, 2008, 456, 1001-1008). The first photon activates the enzyme-substrate complex, a subsequent second photon initiates the photochemistry by triggering the formation of a catalytic intermediate. These two events are characterized by different spectral changes in the infra-red spectral region. Here, we investigate the vibrational frequencies of the POR-bound and unbound substrate, and product, and thus provide a detailed assignment of the spectral changes in the 1800-1250 cm(-1) region associated with the catalytic conversion of PChlide:NADPH:TyrOH into Chlide:NADP(+):TyrO(-). Fluorescence line narrowed spectra of the POR-bound Pchlide reveal a C=O keto group downshifted by more than 20 cm(-1) to a relatively low vibrational frequency of 1653 cm(-1), as compared to the unbound Pchlide, indicating that binding of the chromophore to the protein occurs via strong hydrogen bond(s). The frequencies of the C=C vibrational modes are consistent with a six-coordinated state of the POR-bound Pchlide, suggesting that there are two coordination interactions between the central Mg atom of the chromophore and protein residues, and/or a water molecule. The frequencies of the C=C vibrational modes of Chlide are consistent with a five-coordinated state, indicating a single interaction between the central Mg atom of the chromophore and a water molecule. Rapid-scan FTIR measurements on the Pchlide:POR:NADPH complex at 4 cm(-1) spectral resolution reveal a new band in the 1670 cm(-1) region. The FTIR spectra of the enzyme activation phase indicate involvement of a nucleotide-binding structural motif, and an increased exposure of the protein to solvent after activation.
Collapse
Affiliation(s)
- Olga A Sytina
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
34
|
Reinbothe C, El Bakkouri M, Buhr F, Muraki N, Nomata J, Kurisu G, Fujita Y, Reinbothe S. Chlorophyll biosynthesis: spotlight on protochlorophyllide reduction. TRENDS IN PLANT SCIENCE 2010; 15:614-24. [PMID: 20801074 DOI: 10.1016/j.tplants.2010.07.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/14/2010] [Accepted: 07/22/2010] [Indexed: 05/21/2023]
Abstract
Photosynthetic organisms require chlorophyll or bacteriochlorophyll for their light trapping and energy transduction activities. The biosynthetic pathways of chlorophyll and bacteriochlorophyll are similar in most of their early steps, except for the reduction of protochlorophyllide (Pchlide) to chlorophyllide. Whereas angiosperms make use of a light-dependent enzyme, cyanobacteria, algae, bryophytes, pteridophytes and gymnosperms contain an additional, light-independent enzyme dubbed dark-operative Pchlide oxidoreductase (DPOR). Anoxygenic photosynthetic bacteria such as Rhodobacter capsulatus and Rhodobacter sphaeroides rely solely on DPOR. Recent atomic resolution of reductase and catalytic components of DPOR from R. sphaeroides and R. capsulatus, respectively, have revealed their similarity to nitrogenase components. In this review, we discuss the two fundamentally different mechanisms of Pchlide reduction in photosynthetic organisms.
Collapse
Affiliation(s)
- Christiane Reinbothe
- Lehrstuhl für Pflanzenphysiologie, Universität Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Muraki N, Nomata J, Ebata K, Mizoguchi T, Shiba T, Tamiaki H, Kurisu G, Fujita Y. X-ray crystal structure of the light-independent protochlorophyllide reductase. Nature 2010; 465:110-4. [PMID: 20400946 DOI: 10.1038/nature08950] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 05/06/2010] [Accepted: 02/22/2010] [Indexed: 11/09/2022]
Abstract
Photosynthetic organisms adopt two different strategies for the reduction of the C17 = C18 double bond of protochlorophyllide (Pchlide) to form chlorophyllide a, the direct precursor of chlorophyll a (refs 1-4). The first involves the activity of the light-dependent Pchlide oxidoreductase, and the second involves the light-independent (dark-operative) Pchlide oxidoreductase (DPOR). DPOR is a nitrogenase-like enzyme consisting of two components, L-protein (a BchL dimer) and NB-protein (a BchN-BchB heterotetramer), which are structurally related to nitrogenase Fe protein and MoFe protein, respectively. Here we report the crystal structure of the NB-protein of DPOR from Rhodobacter capsulatus at a resolution of 2.3A. As expected, the overall structure is similar to that of nitrogenase MoFe protein: each catalytic BchN-BchB unit contains one Pchlide and one iron-sulphur cluster (NB-cluster) coordinated uniquely by one aspartate and three cysteines. Unique aspartate ligation is not necessarily needed for the cluster assembly but is essential for the catalytic activity. Specific Pchlide-binding accompanies the partial unwinding of an alpha-helix that belongs to the next catalytic BchN-BchB unit. We propose a unique trans-specific reduction mechanism in which the distorted C17-propionate of Pchlide and an aspartate from BchB serve as proton donors for C18 and C17 of Pchlide, respectively. Intriguingly, the spatial arrangement of the NB-cluster and Pchlide is almost identical to that of the P-cluster and FeMo-cofactor in nitrogenase MoFe-protein, illustrating that a common architecture exists to reduce chemically stable multibonds of porphyrin and dinitrogen.
Collapse
Affiliation(s)
- Norifumi Muraki
- Department of Life Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
In a new light: The NADPH:protochlorophyllide (Pchlide) oxidoreductase (POR; see structure, green Pchlide, yellow NADPH) is a good model to investigate catalytical processes in enzymes, as its light activation allows an immediate start of the catalyzed reaction. By irradiation with weak, short laser pulses it is possible to detect conformation changes during the reaction and thus to uncover the elementary steps of the catalytic process.
Collapse
Affiliation(s)
- Wolfgang Gärtner
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim, Germany.
| |
Collapse
|
37
|
Menon BRK, Waltho JP, Scrutton NS, Heyes DJ. Cryogenic and laser photoexcitation studies identify multiple roles for active site residues in the light-driven enzyme protochlorophyllide oxidoreductase. J Biol Chem 2009; 284:18160-6. [PMID: 19439417 PMCID: PMC2709359 DOI: 10.1074/jbc.m109.020719] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 05/13/2009] [Indexed: 11/06/2022] Open
Abstract
The light-activated enzyme NADPH-protochlorophyllide oxidoreductase (POR) catalyzes the trans addition of hydrogen across the C-17-C-18 double bond of protochlorophyllide (Pchlide), a key step in chlorophyll biosynthesis. Similar to other members of the short chain alcohol dehydrogenase/reductase family of enzymes, POR contains a conserved Tyr and Lys residue in the enzyme active site, which are implicated in a proposed reaction mechanism involving proton transfer from the Tyr hydoxyl group to Pchlide. We have analyzed a number of POR variant enzymes altered in these conserved residues using a combination of steady-state turnover, laser photoexcitation studies, and low temperature fluorescence spectroscopy. None of the mutations completely abolished catalytic activity. We demonstrate their importance to catalysis by defining multiple roles in the overall reaction pathway. Mutation of either residue impairs formation of the ground state ternary enzyme-substrate complex, pointing to a key role in substrate binding. By analyzing the most active variant (Y193F), we show that Tyr-193 participates in proton transfer to Pchlide and stabilizes the Pchlide excited state, enabling hydride transfer from NADPH to Pchilde. Thus, in addition to confirming the probable identity of the proton donor in Pchlide reduction, our work defines additional roles for these residues in facilitating hydride transfer through stabilization of the ground and excited states of the ternary enzyme complex.
Collapse
Affiliation(s)
- Binuraj R. K. Menon
- From the Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Jonathan P. Waltho
- From the Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Nigel S. Scrutton
- From the Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Derren J. Heyes
- From the Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
38
|
Heyes DJ, Sakuma M, Scrutton NS. Solvent-slaved protein motions accompany proton but not hydride tunneling in light-activated protochlorophyllide oxidoreductase. Angew Chem Int Ed Engl 2009; 48:3850-3. [PMID: 19373814 DOI: 10.1002/anie.200900086] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
H(+) but not H(-): The reduction reaction of protochlorophyllide catalyzed by protochlorophyllide oxidoreductase features solvent-slaved motions that control the proton- but not the hydride-tunneling mechanism. These motions imply a long-range dynamic network from the solvent to the enzyme active site that facilitate proton transfer (see picture, left). Motions for hydride transfer are more localized and are not slaved by the solvent (see picture, right).
Collapse
Affiliation(s)
- Derren J Heyes
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | | | | |
Collapse
|
39
|
|
40
|
Heyes D, Sakuma M, Scrutton N. Solvent-Slaved Protein Motions Accompany Proton but Not Hydride Tunneling in Light-Activated Protochlorophyllide Oxidoreductase. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200900086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Ultrafast catalytic processes and conformational changes in the light-driven enzyme protochlorophyllide oxidoreductase (POR). Biochem Soc Trans 2009; 37:387-91. [DOI: 10.1042/bst0370387] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The enzyme POR (protochlorophyllide oxidoreductase), from the family of alcohol dehydrogenases, reduces protochlorophyllide into chlorophyllide on the absorption of light. The reduction involves the transfer of two protons and two electrons and is an important regulatory step in the biosynthesis of chlorophyll. In recent years, due to the availability of large quantities of the pure enzyme, much of the catalytic reaction has been unravelled by using a variety of spectroscopic methods, including ultrafast initial events in catalysis. In addition, it has been demonstrated that a light-activated conformational change of the protein is necessary to activate catalysis. This makes POR a very important model system to study the relationship between structural changes of enzymes and functionality.
Collapse
|
42
|
Conformational changes in the catalytic cycle of protochlorophyllide oxidoreductase: what lessons can be learnt from dihydrofolate reductase? Biochem Soc Trans 2009; 37:354-7. [DOI: 10.1042/bst0370354] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In chlorophyll biosynthesis, the light-activated enzyme, POR (protochlorophyllide oxidoreductase), has been shown to be an excellent model system for studying the role of protein motions during catalysis. The catalytic cycle of POR is understood in detail and comprises an initial photochemical reaction, which is followed by a number of ‘dark’ steps. The latter steps in the reaction cycle have been shown to involve a series of ordered product release and substrate rebinding events and are known to require conformational changes in the protein in order to proceed. However, owing to the current lack of any structural information on the enzyme, the nature of these conformational rearrangements remains poorly understood. By contrast, there is a wealth of structural and kinetic information available on the closely related enzyme dihydrofolate reductase, which is known to have a similar catalytic mechanism to POR. Dihydrofolate reductase is able to adopt an ‘occluded’ and a ‘closed’ structure, depending on which ligand is bound in the active site, and as a result, the catalytic cycle is controlled by a ‘switching’ between these two conformations. By analogy, we suggest that a similar cycling between different conformations may be operating in POR.
Collapse
|
43
|
Sytina OA, Heyes DJ, Hunter CN, Alexandre MT, van Stokkum IHM, van Grondelle R, Groot ML. Conformational changes in an ultrafast light-driven enzyme determine catalytic activity. Nature 2009; 456:1001-4. [PMID: 19092933 DOI: 10.1038/nature07354] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 08/15/2008] [Indexed: 11/09/2022]
Abstract
The role of conformational changes in explaining the huge catalytic power of enzymes is currently one of the most challenging questions in biology. Although it is now widely regarded that enzymes modulate reaction rates by means of short- and long-range protein motions, it is almost impossible to distinguish between conformational changes and catalysis. We have solved this problem using the chlorophyll biosynthetic enzyme NADPH:protochlorophyllide (Pchlide) oxidoreductase, which catalyses a unique light-driven reaction involving hydride and proton transfers. Here we report that prior excitation of the enzyme-substrate complex with a laser pulse induces a more favourable conformation of the active site, enabling the coupled hydride and proton transfer reactions to occur. This effect, which is triggered during the Pchlide excited-state lifetime and persists on a long timescale, switches the enzyme into an active state characterized by a high rate and quantum yield of formation of a catalytic intermediate. The corresponding spectral changes in the mid-infrared following the absorption of one photon reveal significant conformational changes in the enzyme, illustrating the importance of flexibility and dynamics in the structure of enzymes for their function.
Collapse
Affiliation(s)
- Olga A Sytina
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Heyes DJ, Menon BRK, Sakuma M, Scrutton NS. Conformational events during ternary enzyme-substrate complex formation are rate limiting in the catalytic cycle of the light-driven enzyme protochlorophyllide oxidoreductase. Biochemistry 2008; 47:10991-8. [PMID: 18798649 DOI: 10.1021/bi801521c] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The light-driven enzyme, protochlorophyllide oxidoreductase (POR), has proven to be an excellent model system for studying the role of protein motions during catalysis. POR catalyzes the trans addition of hydrogen across the C17-C18 double bond of protochlorophyllide (Pchlide), which is a key step in chlorophyll biosynthesis. While we currently have a detailed understanding of the initial photochemical events and the subsequent hydrogen transfer reactions, there remains a lack of information about the slower substrate binding events leading to the formation of the catalytically active ternary complex. As POR is light-activated, it is relatively straightforward to isolate the ternary enzyme-substrate complex in the dark prior to catalysis, which has facilitated the use of a variety of spectroscopic and kinetic probes to study the binding of both substrates. Herein, we provide a detailed kinetic and thermodynamic description of these processes and show that the binding events are complex, involving multiple conformational states en route to the formation of a ternary complex that is primed for photoactivation. The initial binding of NADPH involves three distinct steps, which appear to be necessary for the optimal alignment of the cofactor in the enzyme active site. This is followed by the binding of the Pchlide substrate and subsequent substrate-induced conformational changes within the enzyme that occur prior to the formation of the final "poised" conformational state. These studies, which provide important information on the formation of the reactive conformation, reveal that ternary complex formation is the rate-limiting step in the overall reaction and is controlled by slow conformational changes in the protein.
Collapse
Affiliation(s)
- Derren J Heyes
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | | | | | | |
Collapse
|
46
|
Photoprotective role of NADPH:protochlorophyllide oxidoreductase A. Proc Natl Acad Sci U S A 2008; 105:12629-34. [PMID: 18723681 DOI: 10.1073/pnas.0803950105] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A homology model of NADPH:protochlorophyllide (Pchlide) oxidoreductase A (POR; E.C. 1.3.33.1) of barley is developed and verified by site-directed mutagenesis. PORA is considered a globular protein consisting of nine alpha-helices and seven beta-strands. The model predicts the presence of two functionally distinctive Pchlide binding sites where the pigment is coordinated by cysteine residues. The pigment bound to the first, high-affinity Pchlide binding site is used for the formation of the photoactive state of the enzyme. The pigment bound to the second, low-affinity Pchlide binding site is involved in the PORA:PORB interaction, allowing for resonance energy transfer between the neighboring PORs in the complex. In the in vitro reconstituted light-harvesting POR:Pchlide complex (LHPP), light absorbed by PORA-bound Pchlide b is transferred to PORB-bound Pchlide a. That induces the conversion of Pchlide a to chlorophyllide (Chlide) a. This energy transfer eliminates the possibility of Pchlide b photoreduction and prevents that excited triplet states of either Pchlides a or b accumulate and provoke singlet oxygen production. Together, our results provide a photoprotective role of PORA during greening.
Collapse
|
47
|
Belyaeva OB, Litvin FF. Photoactive pigment—enzyme complexes of chlorophyll precursor in plant leaves. BIOCHEMISTRY (MOSCOW) 2007; 72:1458-77. [DOI: 10.1134/s0006297907130044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Heyes DJ, Sakuma M, Scrutton NS. Laser excitation studies of the product release steps in the catalytic cycle of the light-driven enzyme, protochlorophyllide oxidoreductase. J Biol Chem 2007; 282:32015-20. [PMID: 17848549 DOI: 10.1074/jbc.m706098200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The latter stages of the catalytic cycle of the light-driven enzyme, protochlorophyllide oxidoreductase, have been investigated using novel laser photoexcitation methods. The formation of the ternary product complex was initiated with a 6-ns laser pulse, which allowed the product release steps to be kinetically accessed for the first time. Subsequent absorbance changes associated with the release of the NADP+ and chlorophyllide products from the enzyme could be followed on a millisecond timescale. This has facilitated a detailed kinetic and thermodynamic characterization for the interconversion of all the various bound and unbound product species. Initially, NADP+ is released from the enzyme in a biphasic process with rate constants of 1210 and 237 s(-1). The rates of both phases show a significant dependence on the viscosity of the solvent and become considerably slower at higher glycerol concentrations. The fast phase of this process exhibits no dependence on NADP+ concentration, suggesting that conformational changes are required prior to NADP+ release. Following NADP+ release, the NADPH rebinds to the enzyme with a maximum rate constant of approximately 72 s(-1). At elevated temperatures (>298 K) chlorophyllide is released from the enzyme to yield the free product with a maximum rate constant of 20 s(-1). The temperature dependencies of the rates of each of these steps were measured, and enthalpies and entropies of activation were calculated using the Eyring equation. A comprehensive kinetic and thermodynamic scheme for these final stages of the reaction mechanism is presented.
Collapse
Affiliation(s)
- Derren J Heyes
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.
| | | | | |
Collapse
|
49
|
Dietzek B, Kiefer W, Yartsev A, Sundström V, Schellenberg P, Grigaravicius P, Hermann G, Popp J, Schmitt M. The excited-state chemistry of protochlorophyllide a: a time-resolved fluorescence study. Chemphyschem 2007; 7:1727-33. [PMID: 16841352 DOI: 10.1002/cphc.200600172] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The excited-state processes of protochlorophyllide a, the precursor of chlorophyll a in chlorophyll biosynthesis, are studied using picosecond time-resolved fluorescence spectroscopy. Following excitation into the Soret band, two distinct fluorescence components, with emission maxima at 640 and 647 nm, are observed. The 640 nm emitting component appears within the time resolution of the experiment and then decays with a time constant of 27 ps. In contrast, the 647 nm emitting component is built up with a 3.5 ps rise time and undergoes a subsequent decay with a time constant of 3.5 ns. The 3.5 ps rise kinetics are attributed to relaxations in the electronically excited state preceding the nanosecond fluorescence, which is ascribed to emission out of the thermally equilibrated S(1) state. The 27 ps fluorescence, which appears within the experimental response of the streak camera, is suggested to originate from a second minimum on the excited-state potential-energy surface. The population of the secondary excited state is suggested to reflect a very fast motion out of the Franck-Condon region along a reaction coordinate different from the one connecting the Franck-Condon region with the S(1) potential-energy minimum. The 27 ps-component is an emissive intermediate on the reactive excited-state pathway, as its decay yields the intermediate photoproduct, which has been identified previously (J. Phys. Chem. B 2006, 110, 4399-4406). No emission of the photoproduct is observed. The results of the time-resolved fluorescence study allow a detailed spectral characterization of the emission of the excited states in protochlorophyllide a, and the refinement of the kinetic model deduced from ultrafast absorption measurements.
Collapse
Affiliation(s)
- Benjamin Dietzek
- Institut für Physikalische Chemie, Bayerische Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
|