1
|
Urui T, Das I, Mizuno M, Sheves M, Mizutani Y. Origin of a Double-Band Feature in the Ethylenic C═C Stretching Modes of the Retinal Chromophore in Heliorhodopsins. J Phys Chem B 2022; 126:8680-8688. [PMID: 36281583 DOI: 10.1021/acs.jpcb.2c04883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Photoreceptor proteins play a critical role in light utilization for energy conversion and environmental sensing. Rhodopsin is a prototypical photoreceptor protein containing a retinal group that functions as a light-receptive site. It is essential to characterize the structure of the retinal chromophore because the chromophore structure, along with retinal-protein interactions, regulates which wavelengths of light are absorbed. Resonance Raman spectroscopy is a powerful tool to characterize chromophore structures in proteins. The resonance Raman spectra of heliorhodopsins, a recently discovered rhodopsin family, were previously reported to exhibit two intense ethylenic C═C stretching bands never observed for type-1 rhodopsins. Here, we show that the double-band feature in the ethylenic C═C stretching modes is not due to structural inhomogeneity but rather to the retinal polyene chain's linear structure. It contrasts with bent all-trans chromophore in type-1 rhodopsins. The linear structure of the chromophore results from weak atomic contacts between the 13-methyl group and a nearby Trp side chain, which can slow thermal reisomerization in the photocycle. It is possible that the deceleration of reisomerization increases the lifetime of the signaling intermediate for photosensory function.
Collapse
Affiliation(s)
- Taito Urui
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Ishita Das
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76305, Israel
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Mordechai Sheves
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76305, Israel
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| |
Collapse
|
2
|
Das I, Pushkarev A, Sheves M. Light-Induced Conformational Alterations in Heliorhodopsin Triggered by the Retinal Excited State. J Phys Chem B 2021; 125:8797-8804. [PMID: 34342994 PMCID: PMC8389987 DOI: 10.1021/acs.jpcb.1c04551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Heliorhodopsins are a recently discovered
diverse retinal protein
family with an inverted topology of the opsin where the retinal protonated
Schiff base proton is facing the cell cytoplasmic side in contrast
to type 1 rhodopsins. To explore whether light-induced retinal double-bond
isomerization is a prerequisite for triggering protein conformational
alterations, we utilized the retinal oxime formation reaction and
thermal denaturation of a native heliorhodopsin of Thermoplasmatales archaeon SG8-52-1 (TaHeR) as well
as a trans-locked retinal analogue (TaHeRL) in which the critical C13=C14 double-bond
isomerization is prevented. We found that both reactions are light-accelerated
not only in the native but also in the “locked” pigment
despite lacking any isomerization. It is suggested that light-induced
charge redistribution in the retinal excited state polarizes the protein
and triggers protein conformational perturbations that thermally decay
in microseconds. The extracted activation energy and the frequency
factor for both the reactions reveal that the light enhancement of
TaHeR differs distinctly from the earlier studied type 1 microbial
rhodopsins.
Collapse
Affiliation(s)
- Ishita Das
- Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alina Pushkarev
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | | |
Collapse
|
3
|
Misra R, Hirshfeld A, Sheves M. Molecular mechanism for thermal denaturation of thermophilic rhodopsin. Chem Sci 2019; 10:7365-7374. [PMID: 31489158 PMCID: PMC6713869 DOI: 10.1039/c9sc00855a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/18/2019] [Indexed: 12/29/2022] Open
Abstract
Understanding the factors affecting the stability and function of proteins at the molecular level is of fundamental importance. In spite of their use in bioelectronics and optogenetics, factors influencing thermal stability of microbial rhodopsins, a class of photoreceptor protein ubiquitous in nature are not yet well-understood. Here we report on the molecular mechanism for thermal denaturation of microbial retinal proteins, including, a highly thermostable protein, thermophilic rhodopsin (TR). External stimuli-dependent thermal denaturation of TR, the proton pumping rhodopsin of Thermus thermophilus bacterium, and other microbial rhodopsins are spectroscopically studied to decipher the common factors guiding their thermal stability. The thermal denaturation process of the studied proteins is light-catalyzed and the apo-protein is thermally less stable than the corresponding retinal-covalently bound opsin. In addition, changes in structure of the retinal chromophore affect the thermal stability of TR. Our results indicate that the hydrolysis of the retinal protonated Schiff base (PSB) is the rate-determining step for denaturation of the TR as well as other retinal proteins. Unusually high thermal stability of TR multilayers, in which PSB hydrolysis is restricted due to lack of bulk water, strongly supports this proposal. Our results also show that the protonation state of the PSB counter-ion does not affect the thermal stability of the studied proteins. Thermal photo-bleaching of an artificial TR pigment derived from non-isomerizable trans-locked retinal suggests, rather counterintuitively, that the photoinduced retinal trans-cis isomerization is not a pre-requisite for light catalyzed thermal denaturation of TR. Protein conformation alteration triggered by light-induced retinal excited state formation is likely to facilitate the PSB hydrolysis.
Collapse
Affiliation(s)
- Ramprasad Misra
- Department of Organic Chemistry , Weizmann Institute of Science , Rehovot 76100 , Israel .
| | - Amiram Hirshfeld
- Department of Organic Chemistry , Weizmann Institute of Science , Rehovot 76100 , Israel .
| | - Mordechai Sheves
- Department of Organic Chemistry , Weizmann Institute of Science , Rehovot 76100 , Israel .
| |
Collapse
|
4
|
Ghosh M, Jung KH, Sheves M. Protein conformational alterations induced by the retinal excited state in proton and sodium pumping rhodopsins. Phys Chem Chem Phys 2019; 21:9450-9455. [PMID: 31012470 DOI: 10.1039/c9cp00681h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Retinal proteins' biological activity is triggered by the retinal chromophore's light absorption, which initiates a photocycle. However, the mechanism by which retinal light excitation induces the protein's response is not completely understood. Recently, two new retinal proteins were discovered, namely, King Sejong 1-2 (KS1-2) and Nonlabens (Donghaeana) dokdonensis (DDR2), which exhibit H+ and Na+ pumping activities, respectively. To pinpoint whether protein conformation alterations can be achieved without light-induced retinal C13[double bond, length as m-dash]C14 double-bond isomerization, we utilized the hydroxylamine reaction, which cleaves the protonated Schiff base bond through which the retinal chromophore is covalently bound to the protein. The reaction is accelerated by light even though the cleavage is not a photochemical reaction. Therefore, the cleavage reaction may serve as a tool to detect protein conformation alterations. We discovered that in both KS1-2 and DDR2, the hydroxylamine reaction is light accelerated, even in artificial pigments derived from synthetic retinal in which the crucial C13[double bond, length as m-dash]C14 double-bond isomerization is prevented. Therefore, we propose that in both proteins the light-induced retinal charge redistribution taking place in the retinal excited state polarizes the protein, which, in turn, triggers protein conformation alterations. A further general possible application of the present finding is associated with other photoreceptor proteins having retinal or other non-retinal chromophores whose light excitation may affect the protein conformation.
Collapse
Affiliation(s)
- Mihir Ghosh
- Department of Organic Chemistry, Weizmann Institute of Science Rehovot, Israel.
| | | | | |
Collapse
|
5
|
The role of retinal light induced dipole in halorhodopsin structural alteration. FEBS Lett 2015; 589:3576-80. [PMID: 26467279 DOI: 10.1016/j.febslet.2015.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/05/2015] [Accepted: 10/02/2015] [Indexed: 11/20/2022]
Abstract
The present work studies the mechanism of light induced protein conformational changes in the over-expressed mutant of halorhodopsin (phR) from Natronomonas pharaonis. The catalytic effect of light is reflected in accelerating hydroxyl amine reaction rate of light adapted phR. Light catalysis was detected in native phR but also in artificial pigments derived from tailored retinal analogs locked at the crucial C13=C14 double bond. It is proposed that the photoexcited retinal chromophore induces protein concerted motion that decreases the energy gap between reactants ground and transition states. This energy gap is overcome by coupling to specific protein vibrations. Surprisingly, the rate constants show unusual decreasing trend following temperature increase both for native and artificial pigments.
Collapse
|
6
|
Rivalta I, Nenov A, Garavelli M. Modelling retinal chromophores photoisomerization: from minimal models in vacuo to ultimate bidimensional spectroscopy in rhodopsins. Phys Chem Chem Phys 2014; 16:16865-79. [DOI: 10.1039/c3cp55211j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modelling of retinal photoisomerization in different environments is reviewed and ultimate ultrafast electronic spectroscopy is proposed for obtaining new insights.
Collapse
Affiliation(s)
- Ivan Rivalta
- Université de Lyon
- CNRS
- 69364 Lyon, Cedex 07, France
- Dipartimento di Chimica “Giacomo Ciamician”
- Università di Bologna
| | - Artur Nenov
- Dipartimento di Chimica “Giacomo Ciamician”
- Università di Bologna
- 40126 Bologna, Italy
| | - Marco Garavelli
- Université de Lyon
- CNRS
- 69364 Lyon, Cedex 07, France
- Dipartimento di Chimica “Giacomo Ciamician”
- Università di Bologna
| |
Collapse
|
7
|
Schulten K, Humphrey W, Logunov I, Sheves M, Xu D. Molecular Dynamics Studies of Bacteriorhodopsin's Photocycles. Isr J Chem 2013. [DOI: 10.1002/ijch.199500042] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Althaus T, Eisfeld W, Lohrmann R, Stockburger M. Application of Raman Spectroscopy to Retinal Proteins. Isr J Chem 2013. [DOI: 10.1002/ijch.199500029] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Mathys J, De Cremer K, Timmermans P, Van Kerckhove S, Lievens B, Vanhaecke M, Cammue BPA, De Coninck B. Genome-Wide Characterization of ISR Induced in Arabidopsis thaliana by Trichoderma hamatum T382 Against Botrytis cinerea Infection. FRONTIERS IN PLANT SCIENCE 2012; 3:108. [PMID: 22661981 PMCID: PMC3362084 DOI: 10.3389/fpls.2012.00108] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/07/2012] [Indexed: 05/04/2023]
Abstract
In this study, the molecular basis of the induced systemic resistance (ISR) in Arabidopsis thaliana by the biocontrol fungus Trichoderma hamatum T382 against the phytopathogen Botrytis cinerea B05-10 was unraveled by microarray analysis both before (ISR-prime) and after (ISR-boost) additional pathogen inoculation. The observed high numbers of differentially expressed genes allowed us to classify them according to the biological pathways in which they are involved. By focusing on pathways instead of genes, a holistic picture of the mechanisms underlying ISR emerged. In general, a close resemblance is observed between ISR-prime and systemic acquired resistance, the systemic defense response that is triggered in plants upon pathogen infection leading to increased resistance toward secondary infections. Treatment with T. hamatum T382 primes the plant (ISR-prime), resulting in an accelerated activation of the defense response against B. cinerea during ISR-boost and a subsequent moderation of the B. cinerea induced defense response. Microarray results were validated for representative genes by qRT-PCR. The involvement of various defense-related pathways was confirmed by phenotypic analysis of mutants affected in these pathways, thereby proving the validity of our approach. Combined with additional anthocyanin analysis data these results all point to the involvement of the phenylpropanoid pathway in T. hamatum T382-induced ISR.
Collapse
Affiliation(s)
- Janick Mathys
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | - Kaat De Cremer
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | - Pieter Timmermans
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | | | - Bart Lievens
- Scientia Terrae Research InstituteSint-Katelijne-Waver, Belgium
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Consortium for Industrial Microbiology and Biotechnology (CIMB), Department of Microbial and Molecular Systems, Katholieke Universiteit Leuven AssociationSint-Katelijne-Waver, Belgium
| | - Mieke Vanhaecke
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | - Bruno P. A. Cammue
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | - Barbara De Coninck
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| |
Collapse
|
10
|
Pfannkuche J, Lubecki L, Schmidt H, Kowalewska G, Kronfeldt HD. The use of surface-enhanced Raman scattering (SERS) for detection of PAHs in the Gulf of Gdańsk (Baltic Sea). MARINE POLLUTION BULLETIN 2012; 64:614-626. [PMID: 22248648 DOI: 10.1016/j.marpolbul.2011.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 11/27/2011] [Accepted: 12/08/2011] [Indexed: 05/31/2023]
Abstract
A field operable surface enhanced Raman scattering (SERS) sensor system was applied for the first time under real conditions for the detection of polycyclic aromatic hydrocarbons (PAHs) as markers for petroleum hydrocarbons in the Gulf of Gdańsk (Baltic Sea). At six stations, seawater samples were taken, and the sensor system was applied in situ simultaneously. These measurements were compared to the results of conventional GC/MS laboratory analysis of the PAH concentrations in the seawater samples. For a PAH concentration above 150 ng(12PAH)l(-1), there was agreement between the SERS sensor and the GC/MS determinations. A standard addition experiment yielded a PAH concentration of 900 ng l(-1) at the Gdańsk Harbor, which was of the same order as the GC/MS determinations of 12PAHs (200 ng(12PAH)l(-1)). The high SERS detection limit for seawater samples is explained by the competition for PAHs between the sensor membrane and particulate matter surfaces. Thus, the SERS sensor can be applied, e.g., as a non-quantitative alarm sensor for relatively high PAH concentrations in heavily polluted waters. The spectral unmixing procedure applied for Gdańsk Harbor water confirmed the presence of phenanthrene at the highest concentration ([Phe]=140 ngl(-1)) and of Chr (2.7 ng l(-1)), but it did not detect the other PAHs present in the Gdańsk Harbor water, as determined by GC/MS. When compared to the past literature and databases, the SERS spectra indicated the presence of a mixture of molecules consisting of carotenoids, n-alkanes, amines or fatty acids, and benzimidazoles at the coastal station ZN2. The spectra in the offshore direction indicated carboxylic acids. Interpretation of the farthest offshore in situ SERS measurements is difficult, principally due to the limited availability of reference spectra. The detection of the lower PAH concentrations commonly found in Baltic coastal water needs further research and development to obtain better sensitivity of the SERS sensor. However, the high analytical specificity of the SERS sensor also allows the detection of other chemical species that require the development of a SERS/Raman library for specific in situ spectral interpretation.
Collapse
Affiliation(s)
- Jens Pfannkuche
- Institute of Optics and Atomic Physics, Technical University of Berlin, Germany.
| | | | | | | | | |
Collapse
|
11
|
van Verk MC, Neeleman L, Bol JF, Linthorst HJM. Tobacco Transcription Factor NtWRKY12 Interacts with TGA2.2 in vitro and in vivo. FRONTIERS IN PLANT SCIENCE 2011; 2:32. [PMID: 22639590 PMCID: PMC3355607 DOI: 10.3389/fpls.2011.00032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 07/07/2011] [Indexed: 05/29/2023]
Abstract
The promoter of the salicylic acid-inducible PR-1a gene of Nicotiana tabacum contains binding sites for transcription factor NtWRKY12 (WK-box at position -564) and TGA factors (as-1-like element at position -592). Transactivation experiments in Arabidopsis protoplasts derived from wild type, npr1-1, tga256, and tga2356 mutant plants revealed that NtWRKY12 alone was able to induce a PR-1a::β-glucuronidase (GUS) reporter gene to high levels, independent of co-expressed tobacco NtNPR1, TGA2.1, TGA2.2, or endogenous Arabidopsis NPR1, TGA2/3/5/6. By in vitro pull-down assays with GST and Strep fusion proteins and by Fluorescence Resonance Energy Transfer assays with protein-CFP and protein-YFP fusions in transfected protoplasts, it was shown that NtWRKY12 and TGA2.2 could interact in vitro and in vivo. Interaction of NtWRKY12 with TGA1a or TGA2.1 was not detectable by these techniques. A possible mechanism for the role of NtWRKY12 and TGA2.2 in PR-1a gene expression is discussed.
Collapse
Affiliation(s)
- Marcel C. van Verk
- Sylvius Laboratory, Institute of Biology, Leiden UniversityLeiden, Netherlands
| | - Lyda Neeleman
- Sylvius Laboratory, Institute of Biology, Leiden UniversityLeiden, Netherlands
| | - John F. Bol
- Sylvius Laboratory, Institute of Biology, Leiden UniversityLeiden, Netherlands
| | | |
Collapse
|
12
|
Gross R, Wolf MMN, Schumann C, Friedman N, Sheves M, Li L, Engelhard M, Trentmann O, Neuhaus HE, Diller R. Primary photoinduced protein response in bacteriorhodopsin and sensory rhodopsin II. J Am Chem Soc 2010; 131:14868-78. [PMID: 19778046 DOI: 10.1021/ja904218n] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Essential for the biological function of the light-driven proton pump, bacteriorhodopsin (BR), and the light sensor, sensory rhodopsin II (SRII), is the coupling of the activated retinal chromophore to the hosting protein moiety. In order to explore the dynamics of this process we have performed ultrafast transient mid-infrared spectroscopy on isotopically labeled BR and SRII samples. These include SRII in D(2)O buffer, BR in H(2)(18)O medium, SRII with (15)N-labeled protein, and BR with (13)C(14)(13)C(15)-labeled retinal chromophore. Via observed shifts of infrared difference bands after photoexcitation and their kinetics we provide evidence for nonchromophore bands in the amide I and the amide II region of BR and SRII. A band around 1550 cm(-1) is very likely due to an amide II vibration. In the amide I region, contributions of modes involving exchangeable protons and modes not involving exchangeable protons can be discerned. Observed bands in the amide I region of BR are not due to bending vibrations of protein-bound water molecules. The observed protein bands appear in the amide I region within the system response of ca. 0.3 ps and in the amide II region within 3 ps, and decay partially in both regions on a slower time scale of 9-18 ps. Similar observations have been presented earlier for BR5.12, containing a nonisomerizable chromophore (R. Gross et al. J. Phys. Chem. B 2009, 113, 7851-7860). Thus, the results suggest a common mechanism for ultrafast protein response in the artificial and the native system besides isomerization, which could be induced by initial chromophore polarization.
Collapse
Affiliation(s)
- Ruth Gross
- University of Kaiserslautern, Department of Physics, Erwin-Schrodinger-Strasse, 67663 Kaiserslautern, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Gross R, Schumann C, Wolf MMN, Herbst J, Diller R, Friedman N, Sheves M. Ultrafast Protein Conformational Alterations in Bacteriorhodopsin and Its Locked Analogue BR5.12. J Phys Chem B 2009; 113:7851-60. [PMID: 19422251 DOI: 10.1021/jp810042f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ruth Gross
- Department of Physics, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Christian Schumann
- Department of Physics, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Matthias M. N. Wolf
- Department of Physics, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Johannes Herbst
- Department of Physics, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Rolf Diller
- Department of Physics, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Noga Friedman
- Department of Physics, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Mordechai Sheves
- Department of Physics, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
14
|
Wu Y, Zhong S, Ai X, Hu K, Zhang J. Ultrafast isomerization dynamics of retinal in bacteriorhodopsin as revealed by femtosecond absorption spectroscopy. Sci Bull (Beijing) 2008. [DOI: 10.1007/s11434-008-0283-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Jin Y, Friedman N, Sheves M, He T, Cahen D. Bacteriorhodopsin (bR) as an electronic conduction medium: current transport through bR-containing monolayers. Proc Natl Acad Sci U S A 2006; 103:8601-6. [PMID: 16731629 PMCID: PMC1482626 DOI: 10.1073/pnas.0511234103] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Indexed: 11/18/2022] Open
Abstract
Studying electron transport (ET) through proteins is hampered by achieving reproducible experimental configurations, particularly electronic contacts to the proteins. The transmembrane protein bacteriorhodopsin (bR), a natural light-activated proton pump in purple membranes of Halobacterium salinarum, is well studied for biomolecular electronics because of its sturdiness over a wide range of conditions. To date, related studies of dry bR systems focused on photovoltage generation and photoconduction with multilayers, rather than on the ET ability of bR, which is understandable because ET across 5-nm-thick, apparently insulating membranes is not obvious. Here we show that electronic current passes through bR-containing artificial lipid bilayers in solid "electrode-bilayer-electrode" structures and that the current through the protein is more than four orders of magnitude higher than would be estimated for direct tunneling through 5-nm, water-free peptides. We find that ET occurs only if retinal or a close analogue is present in the protein. As long as the retinal can isomerize after light absorption, there is a photo-ET effect. The contribution of light-driven proton pumping to the steady-state photocurrents is negligible. Possible implications in view of the suggested early evolutionary origin of halobacteria are noted.
Collapse
Affiliation(s)
| | | | | | - Tao He
- Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | - David Cahen
- Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
16
|
Zgrablić G, Voïtchovsky K, Kindermann M, Haacke S, Chergui M. Ultrafast excited state dynamics of the protonated Schiff base of all-trans retinal in solvents. Biophys J 2005; 88:2779-88. [PMID: 15792984 PMCID: PMC1305373 DOI: 10.1529/biophysj.104.046094] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present a comparative study of the ultrafast photophysics of all-trans retinal in the protonated Schiff base form in solvents with different polarities and viscosities. Steady-state spectra of retinal in the protonated Schiff base form show large absorption-emission Stokes shifts (6500-8100 cm(-1)) for both polar and nonpolar solvents. Using a broadband fluorescence up-conversion experiment, the relaxation kinetics of fluorescence is investigated with 120 fs time resolution. The time-zero spectra already exhibit a Stokes-shift of approximately 6000 cm(-1), indicating depopulation of the Franck-Condon region in < or =100 fs. We attribute it to relaxation along skeletal stretching. A dramatic spectral narrowing is observed on a 150 fs timescale, which we assign to relaxation from the S(2) to the S(1) state. Along with the direct excitation of S(1), this relaxation populates different quasistationary states in S(1), as suggested from the existence of three distinct fluorescence decay times with different decay associated spectra. A 0.5-0.65 ps decay component is observed, which may reflect the direct repopulation of the ground state, in line with the small isomerization yield in solvents. Two longer decay components are observed and are attributed to torsional motion leading to photo-isomerization. The various decay channels show little or no dependence with respect to the viscosity or dielectric constant of the solvents. This suggests that in the protein, the bond selectivity of isomerization is mainly governed by steric effects.
Collapse
Affiliation(s)
- Goran Zgrablić
- Laboratoire de Spectroscopie Ultrarapide, Ecole Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, FSB-BSP, CH-1015 Lausanne-Dorigny, Switzerland
| | | | | | | | | |
Collapse
|
17
|
Zadok U, Klare JP, Engelhard M, Sheves M. The hydroxylamine reaction of sensory rhodopsin II: light-induced conformational alterations with C13=C14 nonisomerizable pigment. Biophys J 2005; 89:2610-7. [PMID: 16085771 PMCID: PMC1366761 DOI: 10.1529/biophysj.105.065631] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sensory rhodopsin II, a repellent phototaxis receptor from Natronomonas (Natronobacterium) pharaonis (NpSRII), forms a complex with its cognate transducer (NpHtrII). In micelles the two proteins form a 1:1 heterodimer, whereas in membranes they assemble to a 2:2 complex. Similarly to other retinal proteins, sensory rhodopsin II undergoes a bleaching reaction with hydroxylamine in the dark which is markedly catalyzed by light. The reaction involves cleavage of the protonated Schiff base bond which covalently connects the retinal chromophore to the protein. The light acceleration reflects protein conformation alterations, at least in the retinal binding site, and thus allows for detection of these changes in various conditions. In this work we have followed the hydroxylamine reaction at different temperatures with and without the cognate transducer. We have found that light irradiation reduces the activation energy of the hydroxylamine reaction as well as the frequency factor. A similar effect was found previously for bacteriorhodopsin. The interaction with the transducer altered the light effect both in detergent and membranes. The transducer interaction decreased the apparent light effect on the energy of activation and the frequency factor in detergent but increased it in membranes. In addition, we have employed an artificial pigment derived from a retinal analog in which the critical C13=C14 double bond is locked by a rigid ring structure preventing its isomerization. We have observed light enhancement of the reaction rate and reduction of the energy of activation as well as the frequency factor, despite the fact that this pigment does not experience C13=C14 double bond isomerization. It is suggested that retinal excited state polarization caused by light absorption of the "locked" pigment polarizes the protein and triggers relatively long-lived protein conformational alterations.
Collapse
Affiliation(s)
- U Zadok
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
18
|
Primary events in the bacteriorhodopsin photocycle: Torsional vibrational dephasing in the first excited electronic state. Chem Phys 2005. [DOI: 10.1016/j.chemphys.2004.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Terentis AC, Zhou Y, Atkinson GH, Ujj L. Picosecond Time-Resolved Coherent Anti-Stokes Raman Spectroscopy of the Artificial Bacteriorhodopsin Pigment, BR6.11. J Phys Chem A 2003. [DOI: 10.1021/jp030612g] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrew C. Terentis
- Department of Chemistry and Optical Sciences Center, University of Arizona, Tucson, Arizona 85721
| | - Yidong Zhou
- Department of Chemistry and Optical Sciences Center, University of Arizona, Tucson, Arizona 85721
| | - George H. Atkinson
- Department of Chemistry and Optical Sciences Center, University of Arizona, Tucson, Arizona 85721
| | - Laszlo Ujj
- Department of Physics, University of West Florida, Pensacola, Florida 32514
| |
Collapse
|
20
|
Aharoni A, Khatchatouriants A, Manevitch A, Lewis A, Sheves M. Protein−β-Ionone Ring Interactions Enhance the Light-Induced Dipole of the Chromophore in Bacteriorhodopsin. J Phys Chem B 2003. [DOI: 10.1021/jp027702q] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amir Aharoni
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel, and Department of Applied Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Artium Khatchatouriants
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel, and Department of Applied Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Alexandra Manevitch
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel, and Department of Applied Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Aaron Lewis
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel, and Department of Applied Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Mordechai Sheves
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel, and Department of Applied Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
21
|
Fan G, Siebert F, Sheves M, Vogel R. Rhodopsin with 11-cis-locked chromophore is capable of forming an active state photoproduct. J Biol Chem 2002; 277:40229-34. [PMID: 12177057 DOI: 10.1074/jbc.m205033200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The visual pigment rhodopsin is characterized by an 11-cis retinal chromophore bound to Lys-296 via a protonated Schiff base. Following light absorption the C(11)=C(12) double bond isomerizes to trans configuration and triggers protein conformational alterations. These alterations lead to the formation of an active intermediate (Meta II), which binds and activates the visual G protein, transducin. We have examined by UV-visible and Fourier transform IR spectroscopy the photochemistry of a rhodopsin analogue with an 11-cis-locked chromophore, where cis to trans isomerization around the C(11)=C(12) double bond is prevented by a 6-member ring structure (Rh(6.10)). Despite this lock, the pigment was found capable of forming an active photoproduct with a characteristic protein conformation similar to that of native Meta II. This intermediate is further characterized by a protonated Schiff base and protonated Glu-113, as well as by its ability to bind a transducin-derived peptide previously shown to interact efficiently with native Meta II. The yield of this active photointermediate is pH-dependent and decreases with increasing pH. This study shows that with the C(11)=C(12) double bond being locked, isomerization around the C(9)=C(10) or the C(13)=C(14) double bonds may well lead to an activation of the receptor. Additionally, prolonged illumination at pH 7.5 produces a new photoproduct absorbing at 385 nm, which, however, does not exhibit the characteristic active protein conformation.
Collapse
Affiliation(s)
- Guibao Fan
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
22
|
Schenkl S, Portuondo E, Zgrablić G, Chergui M, Haacke S, Friedman N, Sheves M. Ultrafast energy relaxation in bacteriorhodopsin studied by time-integrated fluorescence. Phys Chem Chem Phys 2002. [DOI: 10.1039/b205453a] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Haacke S, Vinzani S, Schenkl S, Chergui M. Spectral and Kinetic Fluorescence Properties of Native and Nonisomerizing Retinal in Bacteriorhodopsin. Chemphyschem 2001; 2:310-5. [DOI: 10.1002/1439-7641(20010518)2:5<310::aid-cphc310>3.0.co;2-c] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2000] [Indexed: 11/11/2022]
|
24
|
Aharoni A, Weiner L, Ottolenghi M, Sheves M. Bacteriorhodpsin experiences light-induced conformational alterations in nonisomerizable C(13)=C(14) pigments. A study with EPR. J Biol Chem 2000; 275:21010-6. [PMID: 10801804 DOI: 10.1074/jbc.m001208200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism by which bacteriorhodopsin is activated following light absorption is not completely clear. We have detected protein conformational alterations following light absorption by retinal-based chromophores in the bacteriorhodopsin binding site by monitoring the rate of reduction-oxidation reactions of covalently attached spin labels, using EPR spectroscopy. It was found that the reduction reaction with hydroxylamine is light-catalyzed in the A103C-labeled pigment but not in E74C or M163C. The reaction is light-catalyzed even when isomerization of the C(13)=C(14) bond of the retinal chromophore is prevented. The reverse oxidation reaction with molecular oxygen is effective only in apomembrane derived from the mutant A103C. This reaction is light-accelerated following light absorption of the retinal oxime, which occupies the binding site. The light-induced acceleration is evident also in "locked" bacteriorhodopsin in which isomerization around the C(13)=C(14) bond is prevented. It is evident that the chromophore-protein covalent bond is not a prerequisite for protein response. In contrast to the case of the retinal oxime, a reduced C=N bond A103C-labeled pigment did not exhibit acceleration of the oxidation reaction following light absorption. Acceleration was observed, however, following substitution of the polyene by groups that modify the excited state charge delocalization. It is suggested that protein conformational alterations are induced by charge redistribution along the retinal polyene following light absorption.
Collapse
Affiliation(s)
- A Aharoni
- Departments of Organic Chemistry and Chemical Services, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
25
|
Haupts U, Tittor J, Oesterhelt D. Closing in on bacteriorhodopsin: progress in understanding the molecule. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1999; 28:367-99. [PMID: 10410806 DOI: 10.1146/annurev.biophys.28.1.367] [Citation(s) in RCA: 437] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteriorhodopsin is the best understood ion transport protein and has become a paradigm for membrane proteins in general and transporters in particular. Models up to 2.5 A resolution of bacteriorhodopsin's structure have been published during the last three years and are basic for understanding its function. Thus one focus of this review is to summarize and to compare these models in detail. Another focus is to follow the protein through its catalytic cycle in summarizing more recent developments. We focus on literature published since 1995; a comprehensive series of reviews was published in 1995 (112).
Collapse
Affiliation(s)
- U Haupts
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | |
Collapse
|
26
|
Rousso I, Gat Y, Lewis A, Sheves M, Ottolenghi M. Effective light-induced hydroxylamine reactions occur with C13 = C14 nonisomerizable bacteriorhodopsin pigments. Biophys J 1998; 75:413-7. [PMID: 9649399 PMCID: PMC1299711 DOI: 10.1016/s0006-3495(98)77526-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The light-driven proton pump bacteriorhodopsin (bR) undergoes a bleaching reaction with hydroxylamine in the dark, which is markedly catalyzed by light. The reaction involves cleavage of the (protonated) Schiff base bond, which links the retinyl chromophore to the protein. The catalytic light effect is currently attributed to the conformational changes associated with the photocycle of all-trans bR, which is responsible for its proton pump mechanism and is initiated by the all-trans --> 13-cis isomerization. This hypothesis is now being tested in a series of experiments, at various temperatures, using three artificial bR molecules in which the essential C13==C14 bond is locked by a rigid ring structure into an all-trans or 13-cis configuration. In all three cases we observe an enhancement of the reaction by light despite the fact that, because of locking of the C13==C14 bond, these molecules do not exhibit a photocycle, or any proton-pump activity. An analysis of the rate parameters excludes the possibility that the light-catalyzed reaction takes place during the approximately 20-ps excited state lifetimes of the locked pigments. It is concluded that the reaction is associated with a relatively long-lived (micros-ms) light-induced conformational change that is not reflected by changes in the optical spectrum of the retinyl chromophore. It is plausible that analogous changes (coupled to those of the photocycle) are also operative in the cases of native bR and visual pigments. These conclusions are discussed in view of the light-induced conformational changes recently detected in native and artificial bR with an atomic force sensor.
Collapse
Affiliation(s)
- I Rousso
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | |
Collapse
|
27
|
Cordfunke R, Kort R, Pierik A, Gobets B, Koomen GJ, Verhoeven JW, Hellingwerf KJ. Trans/cis (Z/E) photoisomerization of the chromophore of photoactive yellow protein is not a prerequisite for the initiation of the photocycle of this photoreceptor protein. Proc Natl Acad Sci U S A 1998; 95:7396-401. [PMID: 9636160 PMCID: PMC22629 DOI: 10.1073/pnas.95.13.7396] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The chromophore of photoactive yellow protein (PYP) (i.e., 4-hydroxycinnamic acid) has been replaced by an analogue with a triple bond, rather than a double bond (by using 4-hydroxyphenylpropiolic acid in the reconstitution, yielding hybrid I) and by a "locked" chromophore (through reconstitution with 7-hydroxycoumarin-3-carboxylic acid, in which a covalent bridge is present across the vinyl bond, resulting in hybrid II). These hybrids absorb maximally at 464 and 443 nm, respectively, which indicates that in both hybrids the deprotonated chromophore does fit into the chromophore-binding pocket. Because the triple bond cannot undergo cis/trans (or E/Z) photoisomerization and because of the presence of the lock across the vinyl double bond in hybrid II, it was predicted that these two hybrids would not be able to photocycle. Surprisingly, both are able. We have demonstrated this ability by making use of transient absorption, low-temperature absorption, and Fourier-transform infrared (FTIR) spectroscopy. Both hybrids, upon photoexcitation, display authentic photocycle signals in terms of a red-shifted intermediate; hybrid I, in addition, goes through a blue-shifted-like intermediate state, with very slow kinetics. We interpret these results as further evidence that rotation of the carbonyl group of the thioester-linked chromophore of PYP, proposed in a previous FTIR study and visualized in recent time-resolved x-ray diffraction experiments, is of critical importance for photoactivation of PYP.
Collapse
Affiliation(s)
- R Cordfunke
- Laboratory for Microbiology, E.C. Slater Institute, BioCentrum, Achtergracht 127, 1018 WS Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
28
|
Gai F, Hasson KC, McDonald JC, Anfinrud PA. Chemical dynamics in proteins: the photoisomerization of retinal in bacteriorhodopsin. Science 1998; 279:1886-91. [PMID: 9506931 DOI: 10.1126/science.279.5358.1886] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Chemical dynamics in proteins are discussed, with bacteriorhodopsin serving as a model system. Ultrafast time-resolved methods used to probe the chemical dynamics of retinal photoisomerization in bacteriorhodopsin are discussed, along with future prospects for ultrafast time-resolved crystallography. The photoisomerization of retinal in bacteriorhodopsin is far more selective and efficient than in solution, the origins of which are discussed in the context of a three-state model for the photoisomerization reaction coordinate. The chemical dynamics are complex, with the excited-state relaxation exhibiting a multiexponential decay with well-defined rate constants. Possible origins for the two major components are also discussed.
Collapse
Affiliation(s)
- F Gai
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
29
|
Rousso I, Khachatryan E, Gat Y, Brodsky I, Ottolenghi M, Sheves M, Lewis A. Microsecond atomic force sensing of protein conformational dynamics: implications for the primary light-induced events in bacteriorhodopsin. Proc Natl Acad Sci U S A 1997; 94:7937-41. [PMID: 9223291 PMCID: PMC21533 DOI: 10.1073/pnas.94.15.7937] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In this paper a new atomic force sensing technique is presented for dynamically probing conformational changes in proteins. The method is applied to the light-induced changes in the membrane-bound proton pump bacteriorhodopsin (bR). The microsecond time-resolution of the method, as presently implemented, covers many of the intermediates of the bR photocycle which is well characterized by spectroscopical methods. In addition to the native pigment, we have studied bR proteins substituted with chemically modified retinal chromophores. These synthetic chromophores were designed to restrict their ability to isomerize, while maintaining the basic characteristic of a large light-induced charge redistribution in the vertically excited Franck-Condon state. An analysis of the atomic force sensing signals lead us to conclude that protein conformational changes in bR can be initiated as a result of a light-triggered redistribution of electronic charge in the retinal chromophore, even when isomerization cannot take place. Although the coupling mechanism of such changes to the light-induced proton pump is still not established, our data question the current working hypothesis which attributes all primary events in retinal proteins to an initial trans<==>cis isomerization.
Collapse
Affiliation(s)
- I Rousso
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
30
|
Akiyama R, Yoshimori A, Kakitani T, Imamoto Y, Shichida Y, Hatano Y. Analysis of the Excited-State Dynamics of 13-trans-locked-Bacteriorhodopsin. J Phys Chem A 1997. [DOI: 10.1021/jp961580i] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ryo Akiyama
- Department of Physics, Faculty of Science, Nagoya University, Chikusa-ku, Nagoya 464-01, Japan
| | - Akira Yoshimori
- Department of Physics, Faculty of Science, Nagoya University, Chikusa-ku, Nagoya 464-01, Japan
| | - Toshiaki Kakitani
- Department of Physics, Faculty of Science, Nagoya University, Chikusa-ku, Nagoya 464-01, Japan
| | - Yasushi Imamoto
- Department of Earth and Space Science, Faculty of Science, Osaka University, Toyonaka, Osaka 560, Japan
| | - Yoshinori Shichida
- Department of Biophysics, Faculty of Science, Kyoto University, Sakyo-ku, Kyoto 606, Japan
| | - Yasuyo Hatano
- School of Computer and Cognitive Science, Chukyo University, Toyota, Aichi 470-03, Japan
| |
Collapse
|
31
|
Kroon AR, Hoff WD, Fennema HP, Gijzen J, Koomen GJ, Verhoeven JW, Crielaard W, Hellingwerf KJ. Spectral tuning, fluorescence, and photoactivity in hybrids of photoactive yellow protein, reconstituted with native or modified chromophores. J Biol Chem 1996; 271:31949-56. [PMID: 8943241 DOI: 10.1074/jbc.271.50.31949] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Photoactive yellow proteins (PYPs) constitute a new class of eubacterial photoreceptors, containing a deprotonated thiol ester-linked 4-hydroxycinnamic acid chromophore. Interactions with the protein dramatically change the (photo)chemical properties of this cofactor. Here we describe the reconstitution of apoPYP with anhydrides of various chromophore analogues. The resulting hybrid PYPs, their acid-denatured states, and corresponding model compounds were characterized with respect to their absorption spectrum, pK for chromophore deprotonation, fluorescence quantum yield, and Stokes shift. Three factors contributing to the tuning of the absorption of the hybrid PYPs were quantified: (i) thiol ester bond formation, (ii) chromophore deprotonation, and (iii) specific chromophore-protein interactions. Analogues lacking the 4-hydroxy substituent lack both contributions (chromophore deprotonation and specific chromophore-protein interactions), confirming the importance of this substituent in optical tuning of PYP. Hydroxy and methoxy substituents in the 3- and/or 5-position do not disrupt strong interactions with the protein but increase their pK for protonation and the fluorescence quantum yield. Both deprotonation and binding to apoPYP strongly decrease the Stokes shift of chromophore fluorescence. Therefore, coupling of the chromophore to the apoprotein not only reduces the energy gap between its ground and excited state but also the extent of reorganization between these two states. Two of the PYP hybrids show photoactivity comparable with native PYP, although with retarded recovery of the initial state.
Collapse
Affiliation(s)
- A R Kroon
- Laboratory for Microbiology, E. C. Slater Institute, BioCentrum Amsterdam, Nieuwe Achtergracht 127, 1018 WS, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Xu D, Martin C, Schulten K. Molecular dynamics study of early picosecond events in the bacteriorhodopsin photocycle: dielectric response, vibrational cooling and the J, K intermediates. Biophys J 1996; 70:453-60. [PMID: 8770221 PMCID: PMC1224943 DOI: 10.1016/s0006-3495(96)79588-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Molecular dynamics simulations have been carried out to study the J625 and K590 intermediates of bacteriorhodopsin's (bRs) photocycle starting from a refined structure of bR568. The coupling between the electronic states of retinal and the protein matrix is characterized by the energy difference delta E(t) between the excited state and the ground state to which the protein contributes through the Coulomb interaction. Our simulations indicate that the J625 intermediate is related to a polarization of the protein matrix due to the brief (200 fs) change of retinal's charge distribution in going to the excited state and back to the ground state, and that the rise time of the K590 intermediate is determined by vibrational cooling of retinal.
Collapse
Affiliation(s)
- D Xu
- Beckman Institute, University of Illinois at Urbana-Champaign 61801, USA
| | | | | |
Collapse
|
33
|
Zhong Q, Ruhman S, Ottolenghi M, Sheves M, Friedman N, Atkinson GH, Delaney JK. Reexamining the Primary Light-Induced Events in Bacteriorhodopsin Using a Synthetic C13C14-Locked Chromophore. J Am Chem Soc 1996. [DOI: 10.1021/ja961058+] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Xu D, Phillips JC, Schulten K. Protein Response to External Electric Fields: Relaxation, Hysteresis, and Echo. ACTA ACUST UNITED AC 1996. [DOI: 10.1021/jp960076a] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
|