1
|
Jin L, Zhang S, Song Z, Heng X, Chen SJ. Kinetic pathway of HIV-1 TAR cotranscriptional folding. Nucleic Acids Res 2024; 52:6066-6078. [PMID: 38738640 PMCID: PMC11162800 DOI: 10.1093/nar/gkae362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/09/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024] Open
Abstract
The Trans-Activator Receptor (TAR) RNA, located at the 5'-end untranslated region (5' UTR) of the human immunodeficiency virus type 1 (HIV-1), is pivotal in the virus's life cycle. As the initial functional domain, it folds during the transcription of viral mRNA. Although TAR's role in recruiting the Tat protein for trans-activation is established, the detailed kinetic mechanisms at play during early transcription, especially at points of temporary transcriptional pausing, remain elusive. Moreover, the precise physical processes of transcriptional pause and subsequent escape are not fully elucidated. This study focuses on the folding kinetics of TAR and the biological implications by integrating computer simulations of RNA folding during transcription with nuclear magnetic resonance (NMR) spectroscopy data. The findings reveal insights into the folding mechanism of a non-native intermediate that triggers transcriptional pause, along with different folding pathways leading to transcriptional pause and readthrough. The profiling of the cotranscriptional folding pathway and identification of kinetic structural intermediates reveal a novel mechanism for viral transcriptional regulation, which could pave the way for new antiviral drug designs targeting kinetic cotranscriptional folding pathways in viral RNAs.
Collapse
Affiliation(s)
- Lei Jin
- Department of Physics and Institute of Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - Sicheng Zhang
- Department of Physics and Institute of Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - Zhenwei Song
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Xiao Heng
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Shi-Jie Chen
- Department of Physics and Institute of Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
2
|
Chen X, Liu W, Wang Q, Wang X, Ren Y, Qu X, Li W, Xu Y. Structural visualization of transcription initiation in action. Science 2023; 382:eadi5120. [PMID: 38127763 DOI: 10.1126/science.adi5120] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/11/2023] [Indexed: 12/23/2023]
Abstract
Transcription initiation is a complex process, and its mechanism is incompletely understood. We determined the structures of de novo transcribing complexes TC2 to TC17 with RNA polymerase II halted on G-less promoters when nascent RNAs reach 2 to 17 nucleotides in length, respectively. Connecting these structures generated a movie and a working model. As initially synthesized RNA grows, general transcription factors (GTFs) remain bound to the promoter and the transcription bubble expands. Nucleoside triphosphate (NTP)-driven RNA-DNA translocation and template-strand accumulation in a nearly sealed channel may promote the transition from initially transcribing complexes (ITCs) (TC2 to TC9) to early elongation complexes (EECs) (TC10 to TC17). Our study shows dynamic processes of transcription initiation and reveals why ITCs require GTFs and bubble expansion for initial RNA synthesis, whereas EECs need GTF dissociation from the promoter and bubble collapse for promoter escape.
Collapse
Affiliation(s)
- Xizi Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Weida Liu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Qianmin Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xinxin Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yulei Ren
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xuechun Qu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Wanjun Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Abstract
The transcription cycle can be roughly divided into three stages: initiation, elongation, and termination. Understanding the molecular events that regulate all these stages requires a dynamic view of the underlying processes. The development of techniques to visualize and quantify transcription in single living cells has been essential in revealing the transcription kinetics. They have revealed that (a) transcription is heterogeneous between cells and (b) transcription can be discontinuous within a cell. In this review, we discuss the progress in our quantitative understanding of transcription dynamics in living cells, focusing on all parts of the transcription cycle. We present the techniques allowing for single-cell transcription measurements, review evidence from different organisms, and discuss how these experiments have broadened our mechanistic understanding of transcription regulation.
Collapse
Affiliation(s)
- Tineke L Lenstra
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892;
| | - Joseph Rodriguez
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892;
| | - Huimin Chen
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892;
| | - Daniel R Larson
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892;
| |
Collapse
|
4
|
Crickard JB, Fu J, Reese JC. Biochemical Analysis of Yeast Suppressor of Ty 4/5 (Spt4/5) Reveals the Importance of Nucleic Acid Interactions in the Prevention of RNA Polymerase II Arrest. J Biol Chem 2016; 291:9853-70. [PMID: 26945063 DOI: 10.1074/jbc.m116.716001] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Indexed: 11/06/2022] Open
Abstract
RNA polymerase II (RNAPII) undergoes structural changes during the transitions from initiation, elongation, and termination, which are aided by a collection of proteins called elongation factors. NusG/Spt5 is the only elongation factor conserved in all domains of life. Although much information exists about the interactions between NusG/Spt5 and RNA polymerase in prokaryotes, little is known about how the binding of eukaryotic Spt4/5 affects the biochemical activities of RNAPII. We characterized the activities of Spt4/5 and interrogated the structural features of Spt5 required for it to interact with elongation complexes, bind nucleic acids, and promote transcription elongation. The eukaryotic specific regions of Spt5 containing the Kyrpides, Ouzounis, Woese domains are involved in stabilizing the association with the RNAPII elongation complex, which also requires the presence of the nascent transcript. Interestingly, we identify a region within the conserved NusG N-terminal (NGN) domain of Spt5 that contacts the non-template strand of DNA both upstream of RNAPII and in the transcription bubble. Mutating charged residues in this region of Spt5 did not prevent Spt4/5 binding to elongation complexes, but abrogated the cross-linking of Spt5 to DNA and the anti-arrest properties of Spt4/5, thus suggesting that contact between Spt5 (NGN) and DNA is required for Spt4/5 to promote elongation. We propose that the mechanism of how Spt5/NGN promotes elongation is fundamentally conserved; however, the eukaryotic specific regions of the protein evolved so that it can serve as a platform for other elongation factors and maintain its association with RNAPII as it navigates genomes packaged into chromatin.
Collapse
Affiliation(s)
- J Brooks Crickard
- From the Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, Penn State University, University Park, Pennsylvania 16802 and
| | - Jianhua Fu
- the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Joseph C Reese
- From the Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, Penn State University, University Park, Pennsylvania 16802 and
| |
Collapse
|
5
|
Poly(A) Signal-Dependent Transcription Termination Occurs through a Conformational Change Mechanism that Does Not Require Cleavage at the Poly(A) Site. Mol Cell 2015; 59:437-48. [PMID: 26166703 DOI: 10.1016/j.molcel.2015.06.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 04/24/2015] [Accepted: 06/03/2015] [Indexed: 12/18/2022]
Abstract
Transcription termination for genes encoding polyadenylated mRNAs requires a functional poly(A) signal (PAS) in the nascent pre-mRNA. Often called PAS-dependent termination, or PADT, it is widely assumed that the PAS requirement reflects an obligatory poly(A) site cleavage requirement for termination. Cleavage is thought to provide entry for a 5'-to-3' exonuclease that targets RNA polymerase II via the nascent transcript-i.e., the torpedo model. To assess the role of cleavage in PADT, we developed a PADT assay using HeLa nuclear extract. Here we examine the basal mechanism of PADT and show that cleavage at the poly(A) site is not required for PADT. Isolated elongation complexes undergo termination in a PAS-dependent manner when incubated in buffer, in the absence of extract, nucleotides, or cleavage at the poly(A) site. Thus, PADT-proficient complexes undergo a conformational change that triggers termination. PADT is inhibited by α-amanitin, which presumably blocks the required conformational change.
Collapse
|
6
|
Pearson EL, Moore CL. Dismantling promoter-driven RNA polymerase II transcription complexes in vitro by the termination factor Rat1. J Biol Chem 2013; 288:19750-9. [PMID: 23689372 DOI: 10.1074/jbc.m112.434985] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proper RNA polymerase II (Pol II) transcription termination is essential to generate stable transcripts, to prevent interference at downstream loci, and to recycle Pol II back to the promoter (1-3). As such, termination is an intricately controlled process that is tightly regulated by a variety of different cis- and trans-acting factors (4, 5). Although many eukaryotic termination factors have been identified to date, the details of the precise molecular mechanisms governing termination remain to be elucidated. We devised an in vitro transcription system to study specific Pol II termination. We show for the first time that the exonucleolytic Rat1·Rai1 complex can elicit the release of stalled Pol II in vitro and can do so in the absence of other factors. We also find that Rtt103, which interacts with the Pol II C-terminal domain (CTD) and with Rat1, can rescue termination activity of an exonucleolytically deficient Rat1 mutant. In light of our findings, we posit a model whereby functional nucleolytic activity is not the feature of Rat1 that ultimately promotes termination. Degradation of the nascent transcript allows Rat1 to pursue Pol II in a guided fashion and arrive at the site of RNA exit from Pol II. Upon this arrival, however, it is perhaps the specific and direct contact between Rat1 and Pol II that transmits the signal to terminate transcription.
Collapse
Affiliation(s)
- Erika L Pearson
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
7
|
Luse DS. Promoter clearance by RNA polymerase II. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:63-8. [PMID: 22982364 DOI: 10.1016/j.bbagrm.2012.08.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/17/2012] [Accepted: 08/29/2012] [Indexed: 12/17/2022]
Abstract
Many changes must occur to the RNA polymerase II (pol II) transcription complex as it makes the transition from initiation into transcript elongation. During this intermediate phase of transcription, contact with initiation factors is lost and stable association with the nascent transcript is established. These changes collectively comprise promoter clearance. Once the transcript elongation complex has reached a point where its properties are indistinguishable from those of complexes with much longer transcripts, promoter clearance is complete. The clearance process for pol II consists of a number of steps and it extends for a surprisingly long distance downstream of transcription start. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Donal S Luse
- Department of Molecular Genetics, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
8
|
Nascent RNA structure modulates the transcriptional dynamics of RNA polymerases. Proc Natl Acad Sci U S A 2012; 109:8948-53. [PMID: 22615360 DOI: 10.1073/pnas.1205063109] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA polymerase pausing represents an important mechanism of transcriptional regulation. In this study, we use a single-molecule transcription assay to investigate the effect of template base-pair composition on pausing by RNA polymerase II and the evolutionarily distinct mitochondrial polymerase Rpo41. For both enzymes, pauses are shorter and less frequent on GC-rich templates. Significantly, incubation with RNase abolishes the template dependence of pausing. A kinetic model, wherein the secondary structure of the nascent RNA poses an energetic barrier to pausing by impeding backtracking along the template, quantitatively predicts the pause densities and durations observed. The energy barriers extracted from the data correlate well with RNA folding energies obtained from cotranscriptional folding simulations. These results reveal that RNA secondary structures provide a cis-acting mechanism by which sequence modulates transcriptional elongation.
Collapse
|
9
|
Li J, Gilmour DS. Promoter proximal pausing and the control of gene expression. Curr Opin Genet Dev 2011; 21:231-5. [PMID: 21324670 DOI: 10.1016/j.gde.2011.01.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 01/18/2011] [Indexed: 12/18/2022]
Abstract
The advent of methods for mapping the location of specific proteins across genomes is substantially enlightening our understanding of gene regulation. One recent discovery is that Pol II is concentrated at the 5' end of thousands of genes in mammalian and Drosophila cells. Before this, much research had focused on understanding how sequence-specific, DNA-binding proteins orchestrate the actions of regulators of chromatin structure and the general transcriptional machinery to control transcription initiation. The concentration of Pol II at the 5' ends of genes indicates that key steps regulating transcription occur after Pol II has associated with a gene's promoter.
Collapse
Affiliation(s)
- Jian Li
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States
| | | |
Collapse
|
10
|
Missra A, Gilmour DS. Interactions between DSIF (DRB sensitivity inducing factor), NELF (negative elongation factor), and the Drosophila RNA polymerase II transcription elongation complex. Proc Natl Acad Sci U S A 2010; 107:11301-6. [PMID: 20534440 PMCID: PMC2895096 DOI: 10.1073/pnas.1000681107] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Negative elongation factor (NELF) and 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole sensitivity-inducing factor (DSIF) are involved in pausing RNA Polymerase II (Pol II) in the promoter-proximal region of the hsp70 gene in Drosophila, before heat shock induction. Such blocks in elongation are widespread in the Drosophila genome. However, the mechanism by which DSIF and NELF participate in setting up the paused Pol II remains unclear. We analyzed the interactions among DSIF, NELF, and a reconstituted Drosophila Pol II elongation complex to gain insight into the mechanism of pausing. Our results show that DSIF and NELF require a nascent transcript longer than 18 nt to stably associate with the Pol II elongation complex. Protein-RNA cross-linking reveals that Spt5, the largest subunit of DSIF, contacts the nascent RNA as the RNA emerges from the elongation complex. Taken together, these results provide a possible model by which DSIF binds the elongation complex via association with the nascent transcript and subsequently recruits NELF. Although DSIF and NELF were both required for inhibition of transcription, we did not detect a NELF-RNA contact when the nascent transcript was between 22 and 31 nt long, which encompasses the region where promoter-proximal pausing occurs on many genes in Drosophila. This raises the possibility that RNA binding by NELF is not necessary in promoter-proximal pausing.
Collapse
Affiliation(s)
- Anamika Missra
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
| | - David S. Gilmour
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
11
|
Dengl S, Cramer P. Torpedo nuclease Rat1 is insufficient to terminate RNA polymerase II in vitro. J Biol Chem 2009; 284:21270-9. [PMID: 19535338 PMCID: PMC2755851 DOI: 10.1074/jbc.m109.013847] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 04/28/2009] [Indexed: 11/06/2022] Open
Abstract
Termination of RNA polymerase (pol) II transcription in vivo requires the 5'-RNA exonuclease Rat1. It was proposed that Rat1 degrades RNA from the 5'-end that is created by transcript cleavage, catches up with elongating pol II, and acts like a Torpedo that removes pol II from DNA. Here we test the Torpedo model in an in vitro system based on bead-coupled pol II elongation complexes (ECs). Recombinant Rat1 complexes with Rai1, and with Rai1 and Rtt103, degrade RNA extending from the EC until they reach the polymerase surface but fail to terminate pol II. Instead, the EC retains an approximately 18-nucleotide RNA that remains with its 3'-end at the active site and can be elongated. Thus, pol II termination apparently requires a factor or several factors in addition to Rat1, Rai1, and Rtt103, post-translational modifications of these factors, or unusual reaction conditions.
Collapse
Affiliation(s)
- Stefan Dengl
- From the Gene Center and Center for Integrated Protein Science Munich, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Patrick Cramer
- From the Gene Center and Center for Integrated Protein Science Munich, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| |
Collapse
|
12
|
Richard P, Manley JL. Transcription termination by nuclear RNA polymerases. Genes Dev 2009; 23:1247-69. [PMID: 19487567 DOI: 10.1101/gad.1792809] [Citation(s) in RCA: 252] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Gene transcription in the cell nucleus is a complex and highly regulated process. Transcription in eukaryotes requires three distinct RNA polymerases, each of which employs its own mechanisms for initiation, elongation, and termination. Termination mechanisms vary considerably, ranging from relatively simple to exceptionally complex. In this review, we describe the present state of knowledge on how each of the three RNA polymerases terminates and how mechanisms are conserved, or vary, from yeast to human.
Collapse
Affiliation(s)
- Patricia Richard
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
13
|
Gilmour DS. Promoter proximal pausing on genes in metazoans. Chromosoma 2008; 118:1-10. [PMID: 18830703 DOI: 10.1007/s00412-008-0182-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 09/14/2008] [Accepted: 09/14/2008] [Indexed: 10/21/2022]
Abstract
The past two decades of research into transcriptional control of protein-encoding genes in eukaryotes have focused on regulatory mechanisms that act by controlling the recruitment of Pol II to a gene's promoter. Recent genome-wide analyses of the distribution of Pol II indicates that Pol II is concentrated in the promoter regions of thousands of genes in human and Drosophila cells. In many cases, Pol II may have initiated transcription but paused in the promoter proximal region. Hence, release of Pol II from the promoter region into the body of a gene is now recognized as a common rate-limiting step in the control of gene expression. Notably, most genes with paused Pol II are expressed indicating that the pause can be transient. What causes Pol II to concentrate in the promoter region and how it is released to transcribe a gene are the focus of this review.
Collapse
Affiliation(s)
- David S Gilmour
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
14
|
NELF and GAGA factor are linked to promoter-proximal pausing at many genes in Drosophila. Mol Cell Biol 2008; 28:3290-300. [PMID: 18332113 DOI: 10.1128/mcb.02224-07] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recent analyses of RNA polymerase II (Pol II) revealed that Pol II is concentrated at the promoters of many active and inactive genes. NELF causes Pol II to pause in the promoter-proximal region of the hsp70 gene in Drosophila melanogaster. In this study, genome-wide location analysis (chromatin immunoprecipitation-microarray chip [ChIP-chip] analysis) revealed that NELF is concentrated at the 5' ends of 2,111 genes in Drosophila cells. Permanganate genomic footprinting was used to determine if paused Pol II colocalized with NELF. Forty-six of 56 genes with NELF were found to have paused Pol II. Pol II pauses 30 to 50 nucleotides downstream from transcription start sites. Analysis of DNA sequences in the vicinity of paused Pol II identified a conserved DNA sequence that probably associates with TFIID but detected no evidence of RNA secondary structures or other conserved sequences that might directly control elongation. ChIP-chip experiments indicate that GAGA factor associates with 39% of the genes that have NELF. Surprisingly, NELF associates with almost one-half of the most highly expressed genes, indicating that NELF is not necessarily a repressor of gene expression. NELF-associated pausing of Pol II might be an obligatory but sometimes transient checkpoint during the transcription cycle.
Collapse
|
15
|
West S, Proudfoot NJ. Human Pcf11 enhances degradation of RNA polymerase II-associated nascent RNA and transcriptional termination. Nucleic Acids Res 2008; 36:905-14. [PMID: 18086705 PMCID: PMC2241900 DOI: 10.1093/nar/gkm1112] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 11/22/2007] [Accepted: 11/28/2007] [Indexed: 11/13/2022] Open
Abstract
The poly(A) (pA) signal possesses a dual function in 3' end processing of pre-mRNA and in transcriptional termination of RNA polymerase II (Pol II) for most eukaryotic protein-coding genes. A key protein factor in yeast and Drosophila Pol II transcriptional termination is the 3'-end processing factor, Pcf11. In vitro studies suggest that Pcf11 is capable of promoting the dissociation of Pol II elongation complexes from DNA. Moreover, several mutant alleles of yeast Pcf11 effect termination in vivo. However, functions of human Pcf11 (hPcf11) in Pol II termination have not been explored. Here we show that depletion of hPcf11 from HeLa cells reduces termination efficiency. Furthermore, we provide evidence that hPcf11 is required for the efficient degradation of the 3' product of pA site cleavage. Finally, we show that these functions of hPcf11 require an intact pA signal.
Collapse
|
16
|
Affiliation(s)
- David S Gilmour
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | |
Collapse
|
17
|
Richter SN, Bélanger F, Zheng P, Rana TM. Dynamics of nascent mRNA folding and RNA-protein interactions: an alternative TAR RNA structure is involved in the control of HIV-1 mRNA transcription. Nucleic Acids Res 2006; 34:4278-92. [PMID: 16920743 PMCID: PMC1616951 DOI: 10.1093/nar/gkl499] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
HIV-1 Tat protein regulates transcription elongation by binding to the 59 nt TAR RNA stem–loop structure transcribed from the HIV-1 5′ long terminal repeat (5′-LTR). This established Tat–TAR interaction was used to investigate mRNA folding and RNA–protein interactions during early transcription elongation from the HIV-1 5′-LTR. Employing a new site-specific photo-cross-linking strategy to isolate transcription elongation complexes at early steps of elongation, we found that Tat interacts with HIV-1 transcripts before the formation of full-length TAR (TAR59). Analysis of RNA secondary structure by free energy profiling and ribonuclease digestion indicated that nascent transcripts folded into an alternative TAR RNA structure (TAR31), which requires only 31 nt to form and includes an analogous Tat-binding bulge structure. Functionally, TAR31, similar to TAR59, acts as a transcriptional terminator in vitro, and mRNA expression from TAR31-deficient HIV-1 5′-LTR mutant promoters is significantly decreased. Our results support a role for TAR31 in the control of HIV-1 mRNA transcription and we propose that this structure is important to stabilize the short early transcripts before the transcription complex commits for processive elongation. Overall, this study demonstrates that RNA folding during HIV-1 transcription is dynamic and that as the nascent RNA chain grows during transcription, it folds into a number of conformations that function to regulate gene expression. Finally, our results provide a new experimental strategy for studying mRNA conformation changes during transcription that can be applied to investigate the folding and function of nascent RNA structures transcribed from other promoters.
Collapse
Affiliation(s)
| | | | | | - Tariq M. Rana
- To whom correspondence should be addressed. Tel: +1 508 856 6216; Fax: +1 508 856 6696;
| |
Collapse
|
18
|
Luo W, Johnson AW, Bentley DL. The role of Rat1 in coupling mRNA 3'-end processing to transcription termination: implications for a unified allosteric-torpedo model. Genes Dev 2006; 20:954-65. [PMID: 16598041 PMCID: PMC1472303 DOI: 10.1101/gad.1409106] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The torpedo model of transcription termination by RNA polymerase II proposes that a 5'-3' RNA exonuclease enters at the poly(A) cleavage site, degrades the nascent RNA, and eventually displaces polymerase from the DNA. Cotranscriptional degradation of nascent RNA has not been directly demonstrated, however. Here we report that two exonucleases, Rat1 and Xrn1, both contribute to cotranscriptional degradation of nascent RNA, but this degradation is not sufficient to cause polymerase release. Unexpectedly, Rat1 functions in both 3'-end processing and termination by enhancing recruitment of 3'-end processing factors, including Pcf11 and Rna15. In addition, the cleavage factor Pcf11 reciprocally aids in recruitment of Rat1 to the elongation complex. Our results suggest a unified allosteric/torpedo model in which Rat1 is not a dedicated termination factor, but is an integrated component of the cleavage/polyadenylation apparatus.
Collapse
Affiliation(s)
- Weifei Luo
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, University of Colorado Health Sciences Center at Fitzsimons, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|
19
|
Ujvári A, Luse DS. RNA emerging from the active site of RNA polymerase II interacts with the Rpb7 subunit. Nat Struct Mol Biol 2005; 13:49-54. [PMID: 16327806 DOI: 10.1038/nsmb1026] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Accepted: 10/25/2005] [Indexed: 01/22/2023]
Abstract
Structural studies of RNA polymerase II have suggested two possible exit paths for the nascent RNA: groove 1, which points toward the subcomplex of subunits Rpb4 and Rpb7, and groove 2, which points toward Rpb8. These alternatives could not be distinguished previously because less than 10 nucleotides (nt) of transcript were resolved in the structures. We have approached this question by UV cross-linking nascent RNA to components of the transcription complex through uridine analogs located within the first six nucleotides of the RNA. We find that the emerging transcript cross-links to the Rpb7 subunit of RNA polymerase II in various complexes containing 26- to 32-nt transcripts. This interaction is greatly reduced in complexes with 41- or 43-nt RNAs and absent when the transcript is 125 nt. Our results are consistent with groove 1 being the exit path for nascent RNA.
Collapse
Affiliation(s)
- Andrea Ujvári
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
20
|
Zhang Z, Fu J, Gilmour DS. CTD-dependent dismantling of the RNA polymerase II elongation complex by the pre-mRNA 3'-end processing factor, Pcf11. Genes Dev 2005; 19:1572-80. [PMID: 15998810 PMCID: PMC1172063 DOI: 10.1101/gad.1296305] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Pcf11 is one of numerous proteins involved in pre-mRNA 3'-end processing and transcription termination. Using elongation complexes (ECs) formed from purified yeast RNA polymerase II (Pol II), we show that a 140-amino acid polypeptide from yeast Pcf11 is capable of dismantling the EC in vitro. This action depends on the C-terminal domain (CTD) of the largest subunit of Pol II and the CTD-interaction domain (CID) of Pcf11. Our experiments reveal a novel termination mechanism whereby Pcf11 bridges the CTD to the nascent transcript and causes dissociation of both Pol II and the nascent transcript from the DNA in the absence of nucleotide hydrolysis. We posit that conformational changes in the CTD are transduced through Pcf11 to the nascent transcript to cause termination.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
21
|
Abstract
Three recent papers reveal a fascinating link between pol II termination and ribonucleolytic decay of the nascent transcript by a 5'-3' exonuclease (yeast Rat1 and human Xrn2). The exonuclease travels with pol II and gains access to the nascent RNA after endonucleolytic cleavage at the poly(A) site or at a second cotranscriptional cleavage site (CoTC). It is then thought to track in a 5'-3' direction like a guided torpedo that ultimately helps dissociate the RNA polymerase elongation complex.
Collapse
Affiliation(s)
- Weifei Luo
- Department Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center at Fitzsimons, Aurora, CO 80045, USA
| | | |
Collapse
|
22
|
Lange U, Hausner W. Transcriptional fidelity and proofreading in Archaea and implications for the mechanism of TFS-induced RNA cleavage. Mol Microbiol 2004; 52:1133-43. [PMID: 15130130 DOI: 10.1111/j.1365-2958.2004.04039.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We have addressed the question whether TFS, a protein that stimulates the intrinsic cleavage activity of the archaeal RNA polymerase, is able to improve the fidelity of transcription in Methanococcus. Using non-specific transcription experiments, we could demonstrate that misincorporation of non-templated nucleotides is reduced in the presence of TFS. A more detailed analysis revealed that elongation complexes containing a misincorporated nucleotide were arrested, but could be reactivated by TFS. RNase as well as exonuclease III footprinting experiments demonstrated that this arrest was not combined with extended backtracking. Analysis of paused elongation complexes demonstrated that TFS is able to induce a cleavage resynthesis cycle in such complexes, which resulted in the accumulation of dinucleotides corresponding to the last two nucleotides of the transcript. Further analysis of cleavage products revealed that, even under conditions that strongly promote misincorporation, still 50% of the released dinucleotides were correctly incorporated. Therefore, we assume that pausing of elongation complexes is an important determinant of TFS-induced RNA cleavage from the 3' end. As the incorporation rate of wrong nucleotides is about 700-fold reduced, it is possible that this delay also provides an appropriate time window for cleavage induction in order to maintain transcriptional fidelity by preventing misincorporation.
Collapse
Affiliation(s)
- Udo Lange
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | | |
Collapse
|
23
|
Ujvári A, Luse DS. Newly Initiated RNA encounters a factor involved in splicing immediately upon emerging from within RNA polymerase II. J Biol Chem 2004; 279:49773-9. [PMID: 15377657 DOI: 10.1074/jbc.m409087200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We employed RNA-protein cross-linking to map the path of the nascent RNA as it emerges from within RNA polymerase II. A UV-cross-linkable uridine analog was incorporated at two positions within the first five nucleotides of the transcript. Only the two largest subunits of RNA polymerase II cross-linked to the transcript in complexes containing 17-24-nucleotide (nt) RNAs. Extension of the RNA to 26 or 28 nt revealed an additional strong cross-link to the splicing factor U2AF65. In U17 complexes, in which the RNA is still contained within the polymerase, U2AF65 is tightly bound. In contrast, U2AF65 is more loosely bound in C28 transcription complexes, in which about 10 nt of transcript have emerged from the RNA polymerase. Cross-linking of U2AF65 to RNA in a C28 complex was eliminated by the addition of an excess of an RNA oligonucleotide containing the consensus U2AF65 binding site, but U2AF65 was not displaced by a nonconsensus RNA. These findings indicate that U2AF65 shifts from protein-protein to protein-RNA interactions as the RNA emerges from the polymerase. During transcription of one particular template at low UTP concentration, RNA polymerase II pauses just after synthesizing a transcript segment that is a U2AF65 binding site. Dwell time of the polymerase at this pause site was significantly and specifically reduced by the addition of recombinant U2AF65 to the transcription reaction. Therefore, the association of U2AF65 with RNA polymerase II may function not only to deliver U2AF65 to the nascent transcript but also to modulate efficient transcript elongation.
Collapse
Affiliation(s)
- Andrea Ujvári
- Department of Molecular Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
24
|
Affiliation(s)
- Patrick Cramer
- Institute of Biochemistry and Gene Center, University of Munich, 81377 Munich, Germany
| |
Collapse
|
25
|
Fish RN, Kane CM. Promoting elongation with transcript cleavage stimulatory factors. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:287-307. [PMID: 12213659 DOI: 10.1016/s0167-4781(02)00459-1] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Transcript elongation by RNA polymerase is a dynamic process, capable of responding to a number of intrinsic and extrinsic signals. A number of elongation factors have been identified that enhance the rate or efficiency of transcription. One such class of factors facilitates RNA polymerase transcription through blocks to elongation by stimulating the polymerase to cleave the nascent RNA transcript within the elongation complex. These cleavage factors are represented by the Gre factors from prokaryotes, and TFIIS and TFIIS-like factors found in archaea and eukaryotes. High-resolution structures of RNA polymerases and the cleavage factors in conjunction with biochemical investigations and genetic analyses have provided insights into the mechanism of action of these elongation factors. However, there are yet many unanswered questions regarding the regulation of these factors and their effects on target genes.
Collapse
Affiliation(s)
- Rachel N Fish
- Department of Molecular and Cell Biology, University of California-Berkeley, 401 Barker Hall, Berkeley, CA 94720-3202, USA
| | | |
Collapse
|
26
|
Ujvári A, Pal M, Luse DS. RNA polymerase II transcription complexes may become arrested if the nascent RNA is shortened to less than 50 nucleotides. J Biol Chem 2002; 277:32527-37. [PMID: 12087087 DOI: 10.1074/jbc.m201145200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A significant fraction of RNA polymerase II transcription complexes become arrested when halted within a particular initially transcribed region after the synthesis of 23-32-nucleotide RNAs. If polymerases are halted within the same sequence at a promoter-distal location, they remain elongation-competent. However, when the RNAs within these promoter-distal complexes are truncated to between 21 and 48 nucleotides, many of the polymerases become arrested. The degree of the arrest correlates very well with the length of the RNA in both the promoter-proximal and -distal complexes. This effect is also observed when comparing promoter-proximal and promoter-distal complexes halted over a completely different sequence. The unusual propensity of many promoter-proximal RNA polymerase II complexes to arrest may therefore be recreated in promoter-distal complexes simply by shortening the nascent RNA. Thus, the transition to full elongation competence by RNA polymerase II is dependent on the synthesis of about 50 nt of RNA, and this transition is reversible. We also found that arrest is facilitated in promoter-distal complexes by the hybridization of oligonucleotides to the transcript between 30 and 45 bases upstream of the 3'-end.
Collapse
Affiliation(s)
- Andrea Ujvári
- Department of Molecular Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
27
|
Pal M, Luse DS. Strong natural pausing by RNA polymerase II within 10 bases of transcription start may result in repeated slippage and reextension of the nascent RNA. Mol Cell Biol 2002; 22:30-40. [PMID: 11739720 PMCID: PMC134219 DOI: 10.1128/mcb.22.1.30-40.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2001] [Revised: 08/09/2001] [Accepted: 09/17/2001] [Indexed: 11/20/2022] Open
Abstract
We find that immediately following transcript initiation, RNA polymerase II pauses at several locations even in the presence of relatively high (200 microM) levels of nucleoside triphosphates. Strong pauses with half-lives of >30 s were observed at +7, +18/19, and about +25 on the template used in these experiments. We show that the strong pause at +7, after the synthesis of 5'-ACUCUCU, leads to repeated cycles of upstream slippage of the RNA-DNA hybrid followed by re-pairing with the DNA and continued RNA synthesis. The resulting transcripts are 2, 4, and 6 bases longer than predicted by the template sequence. Slippage is efficient when transcription is primed with the +1/+2 (ApC) dinucleotide, and it occurs at even higher levels with the +2/+3 primer (CpU). Slippage can occur at high levels with ATP initiation, but priming with CpA (-1/+1) supports very little slippage. This latter result is not simply an effect of transcript length at the point of pausing. Slippage can also occur with a second template on which the polymerase can be paused after synthesizing ACUCU. Slippage is not reduced by an ATP analog that blocks promoter escape, but it is inhibited by substitution of 5Br-U for U in the RNA. Our results reveal an unexpected flexibility of RNA polymerase II ternary complexes during the very early stage of transcription, and they suggest that initiation at different locations within the same promoter gives rise to transcription complexes with different properties.
Collapse
Affiliation(s)
- Mahadeb Pal
- Department of Molecular Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
28
|
Tran DP, Kim SJ, Park NJ, Jew TM, Martinson HG. Mechanism of poly(A) signal transduction to RNA polymerase II in vitro. Mol Cell Biol 2001; 21:7495-508. [PMID: 11585929 PMCID: PMC99921 DOI: 10.1128/mcb.21.21.7495-7508.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2001] [Accepted: 07/26/2001] [Indexed: 11/20/2022] Open
Abstract
Termination of transcription by RNA polymerase II usually requires the presence of a functional poly(A) site. How the poly(A) site signals its presence to the polymerase is unknown. All models assume that the signal is generated after the poly(A) site has been extruded from the polymerase, but this has never been tested experimentally. It is also widely accepted that a "pause" element in the DNA stops the polymerase and that cleavage at the poly(A) site then signals termination. These ideas also have never been tested. The lack of any direct tests of the poly(A) signaling mechanism reflects a lack of success in reproducing the poly(A) signaling phenomenon in vitro. Here we describe a cell-free transcription elongation assay that faithfully recapitulates poly(A) signaling in a crude nuclear extract. The assay requires the use of citrate, an inhibitor of RNA polymerase II carboxyl-terminal domain phosphorylation. Using this assay we show the following. (i) Wild-type but not mutant poly(A) signals instruct the polymerase to stop transcription on downstream DNA in a manner that parallels true transcription termination in vivo. (ii) Transcription stops without the need of downstream elements in the DNA. (iii) cis-antisense inhibition blocks signal transduction, indicating that the signal to stop transcription is generated following extrusion of the poly(A) site from the polymerase. (iv) Signaling can be uncoupled from processing, demonstrating that signaling does not require cleavage at the poly(A) site.
Collapse
Affiliation(s)
- D P Tran
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California 90095-1569, USA
| | | | | | | | | |
Collapse
|
29
|
Palangat M, Landick R. Roles of RNA:DNA hybrid stability, RNA structure, and active site conformation in pausing by human RNA polymerase II. J Mol Biol 2001; 311:265-82. [PMID: 11478860 DOI: 10.1006/jmbi.2001.4842] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human RNA polymerase II recognizes a strong transcriptional pause signal in the initially transcribed region of HIV-1. We report the use of a limited-step transcription assay to dissect the mechanism underlying recognition of and escape from this HIV-1 pause. Our results suggest that the primary determinant of transcriptional pausing is a relatively weak RNA:DNA hybrid that triggers backtracking of RNA polymerase II along the RNA and DNA chains and displaces the RNA 3' OH from the active site. In contrast, two alternative RNA secondary structures, TAR and anti-TAR, are not required for pausing and affect it only indirectly, rather than through direct interaction with RNA polymerase II. TAR accelerates escape from the pause, but anti-TAR inhibits formation of TAR prior to pause escape. The behavior of RNA polymerase II at a mutant pause signal supports a two-step, non-equilibrium mechanism in which the rate-determining step is a conformational change in the enzyme, rather than the changes in nucleic-acid base-pairing that accompany backtracking.
Collapse
MESH Headings
- Base Pairing
- Base Sequence
- Binding Sites
- DNA, Viral/chemistry
- DNA, Viral/genetics
- DNA, Viral/metabolism
- HIV Long Terminal Repeat/genetics
- HIV-1/genetics
- Humans
- Isomerism
- Kinetics
- Models, Genetic
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Nucleic Acid Heteroduplexes/chemistry
- Nucleic Acid Heteroduplexes/genetics
- Nucleic Acid Heteroduplexes/metabolism
- RNA Polymerase II/metabolism
- RNA Stability
- RNA, Viral/biosynthesis
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Templates, Genetic
- Thermodynamics
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- M Palangat
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI 53706, USA
| | | |
Collapse
|
30
|
Cramer P, Bushnell DA, Kornberg RD. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 2001; 292:1863-76. [PMID: 11313498 DOI: 10.1126/science.1059493] [Citation(s) in RCA: 954] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Structures of a 10-subunit yeast RNA polymerase II have been derived from two crystal forms at 2.8 and 3.1 angstrom resolution. Comparison of the structures reveals a division of the polymerase into four mobile modules, including a clamp, shown previously to swing over the active center. In the 2.8 angstrom structure, the clamp is in an open state, allowing entry of straight promoter DNA for the initiation of transcription. Three loops extending from the clamp may play roles in RNA unwinding and DNA rewinding during transcription. A 2.8 angstrom difference Fourier map reveals two metal ions at the active site, one persistently bound and the other possibly exchangeable during RNA synthesis. The results also provide evidence for RNA exit in the vicinity of the carboxyl-terminal repeat domain, coupling synthesis to RNA processing by enzymes bound to this domain.
Collapse
MESH Headings
- Amino Acid Sequence
- Binding Sites
- Conserved Sequence
- Crystallography, X-Ray
- DNA, Fungal/chemistry
- DNA, Fungal/metabolism
- Fourier Analysis
- Hydrogen Bonding
- Magnesium/metabolism
- Metals/metabolism
- Models, Molecular
- Molecular Sequence Data
- Promoter Regions, Genetic
- Protein Conformation
- Protein Structure, Quaternary
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Protein Subunits
- RNA Polymerase II/chemistry
- RNA Polymerase II/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Fungal/biosynthesis
- RNA, Fungal/chemistry
- RNA, Fungal/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- P Cramer
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | | | | |
Collapse
|
31
|
Gnatt AL, Cramer P, Fu J, Bushnell DA, Kornberg RD. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution. Science 2001; 292:1876-82. [PMID: 11313499 DOI: 10.1126/science.1059495] [Citation(s) in RCA: 725] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The crystal structure of RNA polymerase II in the act of transcription was determined at 3.3 A resolution. Duplex DNA is seen entering the main cleft of the enzyme and unwinding before the active site. Nine base pairs of DNA-RNA hybrid extend from the active center at nearly right angles to the entering DNA, with the 3' end of the RNA in the nucleotide addition site. The 3' end is positioned above a pore, through which nucleotides may enter and through which RNA may be extruded during back-tracking. The 5'-most residue of the RNA is close to the point of entry to an exit groove. Changes in protein structure between the transcribing complex and free enzyme include closure of a clamp over the DNA and RNA and ordering of a series of "switches" at the base of the clamp to create a binding site complementary to the DNA-RNA hybrid. Protein-nucleic acid contacts help explain DNA and RNA strand separation, the specificity of RNA synthesis, "abortive cycling" during transcription initiation, and RNA and DNA translocation during transcription elongation.
Collapse
MESH Headings
- Base Pairing
- Base Sequence
- Binding Sites
- Crystallography, X-Ray
- DNA, Fungal/chemistry
- DNA, Fungal/metabolism
- Metals/metabolism
- Models, Genetic
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Conformation
- Protein Structure, Quaternary
- Protein Structure, Secondary
- Protein Structure, Tertiary
- RNA Polymerase II/chemistry
- RNA Polymerase II/metabolism
- RNA, Fungal/biosynthesis
- RNA, Fungal/chemistry
- RNA, Fungal/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- A L Gnatt
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | | | | | | | | |
Collapse
|
32
|
Kireeva ML, Komissarova N, Kashlev M. Overextended RNA:DNA hybrid as a negative regulator of RNA polymerase II processivity. J Mol Biol 2000; 299:325-35. [PMID: 10860741 DOI: 10.1006/jmbi.2000.3755] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An eight nucleotide RNA:DNA hybrid at the 3' end of the transcript is required for the stability of the elongation complex (EC) of RNA polymerase II. A non-template DNA strand is not needed for the stability of the EC, which contains this minimal hybrid. Here, we apply a recently developed method for promoter-independent assembly of functional EC of RNA polymerase II from synthetic RNA and DNA oligonucleotides to study the minimal composition of the nucleic acid array required for stability of the complex with RNA longer than eight nucleotides. We found that upon RNA extension beyond 14-16 nt in the course of transcription, non-template DNA becomes essential for maintaining a stable EC. Our data suggest that the overextended RNA:DNA hybrid formed in the absence the non-template DNA acts as a negative regulator of EC stability. The dissociation of the EC correlates with the backsliding of the polymerase along the overextended hybrid. The dual role of the hybrid provides a mechanism for the control of a correct nucleic acid architecture in the EC and of RNA polymerase II processivity.
Collapse
MESH Headings
- Animals
- Base Pair Mismatch/genetics
- Base Pairing/genetics
- Base Sequence
- Binding Sites
- Catalysis
- DNA/chemistry
- DNA/genetics
- DNA/metabolism
- DNA, Single-Stranded/chemistry
- DNA, Single-Stranded/genetics
- DNA, Single-Stranded/metabolism
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/metabolism
- Enzyme Stability
- Models, Genetic
- Molecular Sequence Data
- Nucleic Acid Heteroduplexes/chemistry
- Nucleic Acid Heteroduplexes/genetics
- Nucleic Acid Heteroduplexes/metabolism
- Oligonucleotides/chemistry
- Oligonucleotides/genetics
- Oligonucleotides/metabolism
- Potassium Permanganate/metabolism
- Promoter Regions, Genetic/genetics
- Protein Binding
- RNA/biosynthesis
- RNA/chemistry
- RNA/genetics
- RNA/metabolism
- RNA Polymerase II/antagonists & inhibitors
- RNA Polymerase II/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins/antagonists & inhibitors
- RNA-Binding Proteins/metabolism
- Templates, Genetic
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- M L Kireeva
- ABL-Basic Research Program, NCI - Frederick Cancer Research and Development Center, Bldg. 539, Room 222, Frederick, MD, 21702-1201, USA
| | | | | |
Collapse
|
33
|
Kireeva ML, Komissarova N, Waugh DS, Kashlev M. The 8-nucleotide-long RNA:DNA hybrid is a primary stability determinant of the RNA polymerase II elongation complex. J Biol Chem 2000; 275:6530-6. [PMID: 10692458 DOI: 10.1074/jbc.275.9.6530] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sliding clamp model of transcription processivity, based on extensive studies of Escherichia coli RNA polymerase, suggests that formation of a stable elongation complex requires two distinct nucleic acid components: an 8-9-nt transcript-template hybrid, and a DNA duplex immediately downstream from the hybrid. Here, we address the minimal composition of the processive elongation complex in the eukaryotes by developing a method for promoter-independent assembly of functional elongation complex of S. cerevisiae RNA polymerase II from synthetic DNA and RNA oligonucleotides. We show that only one of the nucleic acid components, the 8-nt RNA:DNA hybrid, is necessary for the formation of a stable elongation complex with RNA polymerase II. The double-strand DNA upstream and downstream of the hybrid does not affect stability of the elongation complex. This finding reveals a significant difference in processivity determinants of RNA polymerase II and E. coli RNA polymerase. In addition, using the imperfect RNA:DNA hybrid disturbed by the mismatches in the RNA, we show that nontemplate DNA strand may reduce the elongation complex stability via the reduction of the RNA:DNA hybrid length. The structure of a "minimal stable" elongation complex suggests a key role of the RNA:DNA hybrid in RNA polymerase II processivity.
Collapse
Affiliation(s)
- M L Kireeva
- Advanced BioScience Laboratories, Inc.-Basic Research Program, NCI-Frederick Cancer Research and Development Center, National Institutes of Health, Frederick, Maryland 21702-1201, USA
| | | | | | | |
Collapse
|
34
|
|
35
|
Abstract
Activation of cellular genes typically involves control of transcription initiation by DNA-binding regulatory proteins. The human immunodeficiency virus transactivator protein, Tat, provides the first example of the regulation of viral gene expression through control of elongation by RNA polymerase II. In the absence of Tat, initiation from the long terminal repeat is efficient, but transcription is impaired because the promoter engages poorly processive polymerases that disengage from the DNA template prematurely. Activation of transcriptional elongation occurs following the recruitment of Tat to the transcription machinery via a specific interaction with an RNA regulatory element called TAR, a 59-residue RNA leader sequence that folds into a specific stem-loop structure. After binding to TAR RNA, Tat stimulates a specific protein kinase called TAK (Tat-associated kinase). This results in hyperphosphorylation of the large subunit of the RNA polymerase II carboxyl- terminal domain. The kinase subunit of TAK, CDK9, is analogous to a component of a positive acting elongation factor isolated from Drosophila called pTEFb. Direct evidence for the role of TAK in transcriptional regulation of the HIV long terminal repeat comes from experiments using inactive mutants of the CDK9 kinase expressed in trans to inhibit transcription. A critical role for TAK in HIV transcription is also demonstrated by selective inhibition of Tat activity by low molecular mass kinase inhibitors. A second link between TAK and transactivation is the observation that the cyclin component of TAK, cyclin T1, also participates in TAR RNA recognition. It has been known for several years that mutations in the apical loop region of TAR RNA abolish Tat activity, yet this region of TAR is not required for binding by recombinant Tat protein in vitro, suggesting that the loop region acts as a binding site for essential cellular co-factors. Tat is able to form a ternary complex with TAR RNA and cyclin T1 only when a functional loop sequence is present on TAR.
Collapse
Affiliation(s)
- J Karn
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK.
| |
Collapse
|
36
|
Fu J, Gnatt AL, Bushnell DA, Jensen GJ, Thompson NE, Burgess RR, David PR, Kornberg RD. Yeast RNA polymerase II at 5 A resolution. Cell 1999; 98:799-810. [PMID: 10499797 DOI: 10.1016/s0092-8674(00)81514-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Appropriate treatment of X-ray diffraction from an unoriented 18-heavy atom cluster derivative of a yeast RNA polymerase II crystal gave significant phase information to 5 A resolution. The validity of the phases was shown by close similarity of a 6 A electron density map to a 16 A molecular envelope of the polymerase from electron crystallography. Comparison of the 6 A X-ray map with results of electron crystallography of a paused transcription elongation complex suggests functional roles for two mobile protein domains: the tip of a flexible arm forms a downstream DNA clamp; and a hinged domain may serve as an RNA clamp, enclosing the transcript from about 8-18 residues upstream of the 3'-end in a tunnel.
Collapse
Affiliation(s)
- J Fu
- Department of Structural Biology, Stanford University School of Medicine, Fairchild Science Center, California 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Poglitsch CL, Meredith GD, Gnatt AL, Jensen GJ, Chang WH, Fu J, Kornberg RD. Electron crystal structure of an RNA polymerase II transcription elongation complex. Cell 1999; 98:791-8. [PMID: 10499796 DOI: 10.1016/s0092-8674(00)81513-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The structure of an actively transcribing complex, containing yeast RNA polymerase II with associated template DNA and product RNA, was determined by electron crystallography. Nucleic acid, in all likelihood the "transcription bubble" at the active center of the enzyme, occupies a previously noted 25 A channel in the protein structure. Details are indicative of a roughly 90 degrees bend of the DNA between upstream and downstream regions. The DNA apparently lies entirely on one face of the polymerase, rather than passing through a hole to the opposite side, as previously suggested.
Collapse
MESH Headings
- Crystallography
- DNA, Fungal/chemistry
- DNA, Fungal/ultrastructure
- Image Processing, Computer-Assisted
- Microscopy, Electron
- Models, Molecular
- RNA Polymerase II/chemistry
- RNA Polymerase II/ultrastructure
- RNA, Fungal/chemistry
- RNA, Fungal/ultrastructure
- RNA, Messenger/chemistry
- RNA, Messenger/ultrastructure
- Saccharomyces cerevisiae/enzymology
- Streptavidin/chemistry
- Streptavidin/ultrastructure
- Transcription, Genetic
Collapse
Affiliation(s)
- C L Poglitsch
- Department of Structural Biology, Stanford University School of Medicine, California 94305, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Luse DS, Samkurashvili I. The transition from initiation to elongation by RNA polymerase II. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:289-300. [PMID: 10384293 DOI: 10.1101/sqb.1998.63.289] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- D S Luse
- Department of Molecular Biology, Lerner Research Institute, Cleveland Clinic Foundation, Ohio 44195, USA
| | | |
Collapse
|
39
|
Affiliation(s)
- R Landick
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
40
|
Abstract
A ternary complex composed of RNA polymerase (RNAP), DNA template, and RNA transcript is the central intermediate in the transcription cycle responsible for the elongation of the RNA chain. Although the basic biochemistry of RNAP functioning is well understood, little is known about the underlying structural determinants. The absence of high- resolution structural data has hampered our understanding of RNAP mechanism. However, recent work suggests a structure-function model of the ternary elongation complex, if not at a defined structural level, then at least as a conceptual view, such that key components of RNAP are defined operationally on the basis of compelling biochemical, protein chemical, and genetic data. The model has important implications for mechanisms of transcription elongation and also for initiation and termination.
Collapse
Affiliation(s)
- E Nudler
- Department of Biochemistry, New York University Medical Center, New York, NY 10016, USA.
| |
Collapse
|
41
|
Komissarova N, Kashlev M. Functional topography of nascent RNA in elongation intermediates of RNA polymerase. Proc Natl Acad Sci U S A 1998; 95:14699-704. [PMID: 9843952 PMCID: PMC24512 DOI: 10.1073/pnas.95.25.14699] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To determine the dynamics of transcript extrusion from Escherichia coli RNA polymerase (RNAP), we used degradation of the RNA by RNases T1 and A in a series of consecutive elongation complexes (ECs). In intact ECs, even extremely high doses of the RNases were unable to cut the RNA closer than 14-16 nt from the 3' end. Our results prove that all of the cuts detected within the 14-nt zone are derived from the EC that is denatured during inactivation of the RNases. The protected zone monotonously translocates along the RNA after addition of new nucleotides to the transcript. The upstream region of the RNA heading toward the 5' end is cleaved and dissociated from the EC, with no effect on the stability and activity of the EC. Most of the current data suggest that an 8- to 10-nt RNA.DNA hybrid is formed in the EC. Here, we show that an 8- to 10-nt RNA obtained by truncating the RNase-generated products further with either GreB or pyrophosphate is sufficient for the high stability and activity of the EC. This result suggests that the transcript-RNAP interaction that is required for holding the EC together can be limited to the RNA region involved in the 8- to 10-nt RNA.DNA hybrid.
Collapse
Affiliation(s)
- N Komissarova
- Advanced BioScience Laboratories-Basic Research Program, National Cancer Institute, Frederick Cancer Research and Development Center, Frederick, MD 21702-1201, USA
| | | |
Collapse
|
42
|
Moreland RJ, Hanas JS, Conaway JW, Conaway RC. Mechanism of action of RNA polymerase II elongation factor Elongin. Maximal stimulation of elongation requires conversion of the early elongation complex to an Elongin-activable form. J Biol Chem 1998; 273:26610-7. [PMID: 9756900 DOI: 10.1074/jbc.273.41.26610] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously identified and purified Elongin by its ability to stimulate the rate of elongation by RNA polymerase II in vitro (Bradsher, J. N., Jackson, K. W., Conaway, R. C., and Conaway, J. W. (1993) J. Biol. Chem. 268, 25587-25593). In this report, we present evidence that stimulation of elongation by Elongin requires that the early RNA polymerase II elongation complex undergoes conversion to an Elongin-activable form. We observe (i) that Elongin does not detectably stimulate the rate of promoter-specific transcription initiation by the fully assembled preinitiation complex and (ii) that early RNA polymerase II elongation intermediates first become susceptible to stimulation by Elongin after synthesizing 8-9-nucleotide-long transcripts. Furthermore, we show that the relative inability of Elongin to stimulate elongation by early elongation intermediates correlates not with the lengths of their associated transcripts but, instead, with the presence of transcription factor IIF (TFIIF) in transcription reactions. By exploiting adenovirus 2 major late promoter derivatives that contain premelted transcriptional start sites and do not require TFIIF, TFIIE, or TFIIH for transcription initiation, we observe (i) that Elongin is capable of strongly stimulating the rate of synthesis of trinucleotide transcripts by a subcomplex of RNA polymerase II, TBP, and TFIIB and (ii) that the ability of Elongin to stimulate synthesis of these short transcripts is substantially reduced by addition of TFIIF to transcription reactions. Here we present these findings, which are consistent with the model that maximal stimulation of elongation by Elongin requires that early elongation intermediates undergo a structural transition that includes loss of TFIIF.
Collapse
Affiliation(s)
- R J Moreland
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | | | |
Collapse
|
43
|
Abstract
On 5'-template strand protruding templates, promoter-initiated run-off transcription by RNA polymerase II generates discrete, 15-16-nucleotide (nt) longer than expected products whose production is abrogated by elongation factor SII (Parsons, M. A., Sinden, R. R., and Izban, M. G. (1998) J. Biol. Chem. 273, 26998-27008). We demonstrate that template terminal complexes produce these RNAs and that transcript extension is a general and salt-sensitive (250 mM) feature of run-off transcription. On 5'-overhung templates the extended run-off transcripts appear to be retained within an RNA-DNA-enzyme ternary complex, and SII facilitates resumption of transcript elongation via a dinucleotide truncation intermediate. Moreover, on one of the 5-overhung templates, the initially extended complexes spontaneously resumed transcript extension and were uniquely resistant to salt (250 mM) challenge. However, SII did not facilitate this long distance extension on all template ends. Run-off transcripts on a blunt-ended template were initially extended by 2-11 nt (roughly in 2-nt increments); SII addition either before or after extension resulted in the accumulation of a 4-5-nt extension product. Based on these findings, we propose that the initial and continuously extended RNAs reflect intermediates and successful completion of template end-to-end transposition (template switching) by RNA polymerase II, respectively. Both the template end sequence and structure influenced the success of such an event.
Collapse
Affiliation(s)
- M G Izban
- Department of Obstetrics and Gynecology, Sealy Center for Molecular Science, the University of Texas Medical Branch, Galveston, Texas 77555-1062, USA.
| | | | | |
Collapse
|
44
|
Parsons MA, Sinden RR, Izban MG. Transcriptional properties of RNA polymerase II within triplet repeat-containing DNA from the human myotonic dystrophy and fragile X loci. J Biol Chem 1998; 273:26998-7008. [PMID: 9756950 DOI: 10.1074/jbc.273.41.26998] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expansion of a (CTG)n segment within the 3'-untranslated region of the myotonic dystrophy protein kinase gene alters mRNA production. The inherent ability of RNA polymerase II to transcribe (CTG)17-255 tracts corresponding to DNA from normal, unstable, and affected individuals, and the normal (CGG)54 fragile X repeat tract, was analyzed using a synchronized in vitro transcription system. Core RNA polymerase II transcribed all repeat units irrespective of repeat length or orientation. However, approximately 50% of polymerases transiently halted transcription (with a half-life of approximately 10 +/- 1 s) within the first and second CTG repeat unit and a more transient barrier to elongation was observed roughly centered within repeats 6-9. Transcription within the remainder of the CTG tracts and within the CCG, CGG, and CAG tracts appeared uniform with average transcription rates of 170, 250, 300, and 410 nucleotides/min, respectively. These differences correlated with changes in the sequence-specific transient pausing pattern within the CNG repeat tracts; individual incorporation rates were slower after incorporation of pyrimidine residues. Unexpectedly, approximately 4% of the run-off transcripts were, depending on the repeat sequence, either 15 or 18 nucleotides longer than expected. However, these products were not produced by transcriptional slippage within the repeat tract.
Collapse
Affiliation(s)
- M A Parsons
- Center for Genome Research, Institute of Biosciences and Technology, Department of Biochemistry and Biophysics, Texas A & M University, Houston, Texas 77030-0030, USA
| | | | | |
Collapse
|
45
|
Samkurashvili I, Luse DS. Structural changes in the RNA polymerase II transcription complex during transition from initiation to elongation. Mol Cell Biol 1998; 18:5343-54. [PMID: 9710618 PMCID: PMC109119 DOI: 10.1128/mcb.18.9.5343] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/1998] [Accepted: 06/26/1998] [Indexed: 11/20/2022] Open
Abstract
We obtained exonuclease III (exoIII) footprints for a series of RNA polymerase II transcription complexes stalled between positions +20 to +51. Downstream advance of the exoIII footprint is normally tightly coordinated with RNA synthesis. However, arrested RNA polymerases slide back along the template, as indicated by exoIII footprints in which the last transcribed base is abnormally close to the downstream edge of the footprint. None of the polymerase II complexes stalled between +20 and +51 were arrested. Nevertheless, the exoIII footprints of complexes with 20-, 23-, or 25-nucleotide RNAs resembled those of arrested complexes, with the last transcribed base very close to the footprint's front edge. The exoIII footprint of the +27 complex was displaced downstream by 17 bp compared to the footprint of the +25 complex. Many complexes between +27 and +42 also showed evidence of sliding back along the template. We compared the effects of template sequence and transcript length by constructing a new template in which the initial transcribed sequence was duplicated beginning at +98. The exoIII footprints of transcription complexes stalled between +122 to +130 on this DNA did not resemble those of arrested complexes, in contrast to the footprints of analogous complexes stalled over the same DNA sequences early in transcription. Our results indicate that the RNA polymerase II transcription complex passes through a major, sequence-independent structural transition about 25 bases downstream of the starting point of transcription. The fully mature form of the elongation complex may not appear until more than 40 bonds have been made.
Collapse
Affiliation(s)
- I Samkurashvili
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | | |
Collapse
|
46
|
Mote J, Reines D. Recognition of a human arrest site is conserved between RNA polymerase II and prokaryotic RNA polymerases. J Biol Chem 1998; 273:16843-52. [PMID: 9642244 PMCID: PMC3371603 DOI: 10.1074/jbc.273.27.16843] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA sequences that arrest transcription by either eukaryotic RNA polymerase II or Escherichia coli RNA polymerase have been identified previously. Elongation factors SII and GreB are RNA polymerase-binding proteins that enable readthrough of arrest sites by these enzymes, respectively. This functional similarity has led to general models of elongation applicable to both eukaryotic and prokaryotic enzymes. Here we have transcribed with phage and bacterial RNA polymerases, a human DNA sequence previously defined as an arrest site for RNA polymerase II. The phage and bacterial enzymes both respond efficiently to the arrest signal in vitro at limiting levels of nucleoside triphosphates. The E. coli polymerase remains in a template-engaged complex for many hours, can be isolated, and is potentially active. The enzyme displays a relatively slow first-order loss of elongation competence as it dwells at the arrest site. Bacterial RNA polymerase arrested at the human site is reactivated by GreB in the same way that RNA polymerase II arrested at this site is stimulated by SII. Very efficient readthrough can be achieved by phage, bacterial, and eukaryotic RNA polymerases in the absence of elongation factors if 5-Br-UTP is substituted for UTP. These findings provide additional and direct evidence for functional similarity between prokaryotic and eukaryotic transcription elongation and readthrough mechanisms.
Collapse
Affiliation(s)
| | - Daniel Reines
- To whom correspondence should be addressed. Tel.: 404-727-3361; Fax: 404-727-3452;
| |
Collapse
|
47
|
Mooney RA, Artsimovitch I, Landick R. Information processing by RNA polymerase: recognition of regulatory signals during RNA chain elongation. J Bacteriol 1998; 180:3265-75. [PMID: 9642176 PMCID: PMC107278 DOI: 10.1128/jb.180.13.3265-3275.1998] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- R A Mooney
- Department of Bacteriology, University of Wisconsin, Madison 53706-1567, USA
| | | | | |
Collapse
|
48
|
Palangat M, Meier TI, Keene RG, Landick R. Transcriptional pausing at +62 of the HIV-1 nascent RNA modulates formation of the TAR RNA structure. Mol Cell 1998; 1:1033-42. [PMID: 9651586 DOI: 10.1016/s1097-2765(00)80103-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A strong transcriptional pause delays human RNA polymerase II three nt after the last potentially paired base in HIV-1 TAR, the RNA structure that binds the transactivator protein Tat. We report here that the HIV-1 pause depends in part on an alternative RNA structure (the HIV-1 pause hairpin) that competes with formation of TAR. By probing the nascent RNA structure in halted transcription complexes, we found that the transcript folds as the pause hairpin before and at the pause, and rearranges to TAR concurrent with or just after escape from the pause. The pause signal triggers a 2 nt reverse translocation by RNA polymerase that may block the active site and be counteracted by formation of TAR. Thus, the HIV-1 pause site modulates nascent RNA rearrangement from a structure that favors pausing to one that both recruits Tat and promotes escape from the pause.
Collapse
Affiliation(s)
- M Palangat
- Department of Bacteriology, University of Wisconsin-Madison 53706, USA
| | | | | | | |
Collapse
|
49
|
Keen NJ, Churcher MJ, Karn J. Transfer of Tat and release of TAR RNA during the activation of the human immunodeficiency virus type-1 transcription elongation complex. EMBO J 1997; 16:5260-72. [PMID: 9311986 PMCID: PMC1170158 DOI: 10.1093/emboj/16.17.5260] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The HIV-1 trans-activator protein, Tat, is a potent activator of transcriptional elongation. Tat is recruited to the elongating RNA polymerase during its transit through the trans-activation response region (TAR) because of its ability to bind directly to TAR RNA expressed on the nascent RNA chain. We have shown that transcription complexes that have acquired Tat produce 3-fold more full-length transcripts than complexes not exposed to Tat. Western blotting experiments demonstrated that Tat is tightly associated with the paused polymerases. To determine whether TAR RNA also becomes attached to the transcription complex, DNA oligonucleotides were annealed to the nascent chains on the arrested complexes and the RNA was cleaved by RNase H. After cleavage, the 5' end of the nascent chain, carrying TAR RNA, is quantitatively removed, but the 3' end of the transcript remains associated with the transcription complex. Even after the removal of TAR RNA, transcription complexes that have been activated by Tat show enhanced processivity. We conclude that Tat, together with cellular co-factors, becomes attached to the transcription complex and stimulates processivity, whereas TAR RNA does not play a direct role in the activation of elongation and is used simply to recruit Tat and cellular co-factors.
Collapse
Affiliation(s)
- N J Keen
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | |
Collapse
|
50
|
Reines D, Dvir A, Conaway JW, Conaway RC. Assays for investigating transcription by RNA polymerase II in vitro. Methods 1997; 12:192-202. [PMID: 9237163 DOI: 10.1006/meth.1997.0471] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
With the availability of the general initiation factors (TFIIB, TFIID, TFIIE, TFIIF, and TFIIH), it is now possible to investigate aspects of the mechanism of eukaryotic messenger RNA synthesis in purified, reconstituted RNA polymerase II transcription systems. Rapid progress in these investigations has been spurred by use of a growing number of assays that are proving valuable not only for dissecting the molecular mechanisms of transcription initiation and elongation by RNA polymerase II, but also for identifying and purifying novel transcription factors that regulate polymerase activity. Here we describe a variety of these assays and discuss their utility in the analysis of transcription by RNA polymerase II.
Collapse
Affiliation(s)
- D Reines
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|