1
|
Jolma A, Laverty KU, Fathi A, Yang AW, Yellan I, Vorontsov IE, Inukai S, Kribelbauer-Swietek JF, Gralak AJ, Razavi R, Albu M, Brechalov A, Patel ZM, Nozdrin V, Meshcheryakov G, Kozin I, Abramov S, Boytsov A, Fornes O, Makeev VJ, Grau J, Grosse I, Bucher P, Deplancke B, Kulakovskiy IV, Hughes TR. Perspectives on Codebook: sequence specificity of uncharacterized human transcription factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.622097. [PMID: 39605729 PMCID: PMC11601247 DOI: 10.1101/2024.11.11.622097] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
We describe an effort ("Codebook") to determine the sequence specificity of 332 putative and largely uncharacterized human transcription factors (TFs), as well as 61 control TFs. Nearly 5,000 independent experiments across multiple in vitro and in vivo assays produced motifs for just over half of the putative TFs analyzed (177, or 53%), of which most are unique to a single TF. The data highlight the extensive contribution of transposable elements to TF evolution, both in cis and trans, and identify tens of thousands of conserved, base-level binding sites in the human genome. The use of multiple assays provides an unprecedented opportunity to benchmark and analyze TF sequence specificity, function, and evolution, as further explored in accompanying manuscripts. 1,421 human TFs are now associated with a DNA binding motif. Extrapolation from the Codebook benchmarking, however, suggests that many of the currently known binding motifs for well-studied TFs may inaccurately describe the TF's true sequence preferences.
Collapse
Affiliation(s)
- Arttu Jolma
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Kaitlin U. Laverty
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ali Fathi
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ally W.H. Yang
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Isaac Yellan
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ilya E. Vorontsov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991, Moscow, Russia
| | - Sachi Inukai
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Judith F. Kribelbauer-Swietek
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Antoni J. Gralak
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Rozita Razavi
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Mihai Albu
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | | | - Zain M. Patel
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Vladimir Nozdrin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Georgy Meshcheryakov
- Institute of Protein Research, Russian Academy of Sciences, 142290, Pushchino, Russia
| | - Ivan Kozin
- Institute of Protein Research, Russian Academy of Sciences, 142290, Pushchino, Russia
| | - Sergey Abramov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991, Moscow, Russia
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Alexandr Boytsov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991, Moscow, Russia
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | | | - Oriol Fornes
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Vsevolod J. Makeev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991, Moscow, Russia
| | - Jan Grau
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, 06099, Halle, Germany
| | - Ivo Grosse
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, 06099, Halle, Germany
| | - Philipp Bucher
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Ivan V. Kulakovskiy
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991, Moscow, Russia
- Institute of Protein Research, Russian Academy of Sciences, 142290, Pushchino, Russia
| | - Timothy R. Hughes
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
2
|
Zhang T, Tan S, Tang N, Li Y, Zhang C, Sun J, Guo Y, Gao H, Cai Y, Sun W, Wang C, Fu L, Ma H, Wu Y, Hu X, Zhang X, Gee P, Yan W, Zhao Y, Chen Q, Guo B, Wang H, Zhang YE. Heterologous survey of 130 DNA transposons in human cells highlights their functional divergence and expands the genome engineering toolbox. Cell 2024; 187:3741-3760.e30. [PMID: 38843831 DOI: 10.1016/j.cell.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/11/2024] [Accepted: 05/02/2024] [Indexed: 07/14/2024]
Abstract
Experimental studies on DNA transposable elements (TEs) have been limited in scale, leading to a lack of understanding of the factors influencing transposition activity, evolutionary dynamics, and application potential as genome engineering tools. We predicted 130 active DNA TEs from 102 metazoan genomes and evaluated their activity in human cells. We identified 40 active (integration-competent) TEs, surpassing the cumulative number (20) of TEs found previously. With this unified comparative data, we found that the Tc1/mariner superfamily exhibits elevated activity, potentially explaining their pervasive horizontal transfers. Further functional characterization of TEs revealed additional divergence in features such as insertion bias. Remarkably, in CAR-T therapy for hematological and solid tumors, Mariner2_AG (MAG), the most active DNA TE identified, largely outperformed two widely used vectors, the lentiviral vector and the TE-based vector SB100X. Overall, this study highlights the varied transposition features and evolutionary dynamics of DNA TEs and increases the TE toolbox diversity.
Collapse
Affiliation(s)
- Tongtong Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Shengjun Tan
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Na Tang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yuanqing Li
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chenze Zhang
- National Key Laboratory of Efficacy and Mechanism on Chinese Medicine for Metabolic Diseases, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jing Sun
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanyan Guo
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Gao
- Rengene Biotechnology Co., Ltd., Beijing 100036, China
| | - Yujia Cai
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen Sun
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Chenxin Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Liangzheng Fu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Huijing Ma
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yachao Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoxuan Hu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuechun Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Peter Gee
- MaxCyte Inc., Rockville, MD 20850, USA
| | - Weihua Yan
- Cold Spring Biotech Corp., Beijing 100031, China
| | - Yahui Zhao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiang Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Baocheng Guo
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
| | - Haoyi Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Yong E Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
3
|
Tang W, Liang P. The identification of retro-DNAs in primate genomes as DNA transposons mobilizing via retrotransposition. F1000Res 2024; 12:255. [PMID: 38915770 PMCID: PMC11195612 DOI: 10.12688/f1000research.130043.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/23/2024] [Indexed: 06/26/2024] Open
Abstract
Background Mobile elements (MEs) constitute a major portion of the genome in primates and other higher eukaryotes, and they play important role in genome evolution and gene function. MEs can be divided into two fundamentally different classes: DNA transposons which transpose in the genome in a "cut-and-paste" style, and retrotransposons which propagate in a "copy-and-paste" fashion via a process involving transcription and reverse-transcription. In primate genomes, DNA transposons are mostly dead, while many retrotransposons are still highly active. We report here the identification of a unique group of MEs, which we call "retro-DNAs", for their combined characteristics of these two fundamentally different ME classes. Methods A comparative computational genomic approach was used to analyze the reference genome sequences of 10 primate species consisting of five apes, four monkeys, and marmoset. Results From our analysis, we identified a total of 1,750 retro-DNAs, representing 748 unique insertion events in the genomes of ten primate species including human. These retro-DNAs contain sequences of DNA transposons but lack the terminal inverted repeats (TIRs), the hallmark of DNA transposons. Instead, they show characteristics of retrotransposons, such as polyA tails, longer target-site duplications (TSDs), and the "TT/AAAA" insertion site motif, suggesting the use of the L1-based target- primed reverse transcription (TPRT) mechanism. At least 40% of these retro-DNAs locate into genic regions, presenting potentials for impacting gene function. More interestingly, some retro-DNAs, as well as their parent sites, show certain levels of expression, suggesting that they have the potential to create more retro-DNA copies in the present primate genomes. Conclusions Although small in number, the identification of these retro-DNAs reveals a new mean for propagating DNA transposons in primate genomes without active canonical DNA transposon activity. Our data also suggest that the TPRT machinery may transpose a wider variety of DNA sequences in the genomes.
Collapse
Affiliation(s)
- Wangxiangfu Tang
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Ping Liang
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
- Centre of Biotechnology, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| |
Collapse
|
4
|
Zou J, Zhang H, Wu Z, Hu W, Zhang T, Xie H, Huang Y, Zhou H. TIGD1 Is an Independent Prognostic Factor that Promotes the Progression of Colon Cancer. Cancer Biother Radiopharm 2024; 39:223-235. [PMID: 36508261 DOI: 10.1089/cbr.2022.0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Trigger transposable element-derived 1 (TIGD1) is a human-specific gene, but no studies have been conducted to determine its mechanism of action. Our aim is to ascertain the function and mode of action of TIGD1 in the development of colon cancer. Materials and Methods: The authors used bioinformatics to analyze the relationship between TIGD1 and the clinical characteristics of colon cancer, as well as its prognosis. A series of cell assays were conducted to assess the function of TIGD1 in the proliferation and migration of colon cancer, and flow cytometry was used to explore its effects on apoptosis and the cell cycle. Results: The authors discovered that the expression of TIGD1 was remarkably elevated in colon cancer. Clinical correlation analysis demonstrated that TIGD1 expression was elevated in the tissues of advanced-stage patients, and it was remarkably elevated in individuals with both lymph node and distant metastasis. Further, the authors found that individuals showing elevated TIGD1 expression levels had a shortened survival time. Univariate and multivariate Cox regression analyses revealed that TIGD1 was an independent prognostic factor. Overexpression of the TIGD1 gene remarkedly enhances the proliferation and metastasis of colon cancer cells and suppresses apoptosis. In addition, the overexpression of TIGD1 can enhance the transition of tumor cells from the G1 toward the S phase. Western blot results suggested that TIGD1 may promote the malignant activity of colon cancer cells via the Wnt/β-catenin signaling pathway, Bcl-2, N-cadherin, BAX, E-cadherin, CDK6, and CyclinD1. Conclusions: TIGD1 may be an independent prognostic factor in the advancement of colon cancer, and therefore function as a therapeutic target.
Collapse
Affiliation(s)
- Junwei Zou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Hesong Zhang
- Department of Hepatobiliary Surgery, The Second People's Hospital of Wuhu, Wuhu, China
| | - Zhaoying Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Weichao Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Tingting Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Hao Xie
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Yong Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Hailang Zhou
- Department of Gastroenterology, Lianshui County People's Hospital, Huai'an, China
| |
Collapse
|
5
|
Oggenfuss U, Badet T, Croll D. A systematic screen for co-option of transposable elements across the fungal kingdom. Mob DNA 2024; 15:2. [PMID: 38245743 PMCID: PMC10799480 DOI: 10.1186/s13100-024-00312-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
How novel protein functions are acquired is a central question in molecular biology. Key paths to novelty include gene duplications, recombination or horizontal acquisition. Transposable elements (TEs) are increasingly recognized as a major source of novel domain-encoding sequences. However, the impact of TE coding sequences on the evolution of the proteome remains understudied. Here, we analyzed 1237 genomes spanning the phylogenetic breadth of the fungal kingdom. We scanned proteomes for evidence of co-occurrence of TE-derived domains along with other conventional protein functional domains. We detected more than 13,000 predicted proteins containing potentially TE-derived domain, of which 825 were identified in more than five genomes, indicating that many host-TE fusions may have persisted over long evolutionary time scales. We used the phylogenetic context to identify the origin and retention of individual TE-derived domains. The most common TE-derived domains are helicases derived from Academ, Kolobok or Helitron. We found putative TE co-options at a higher rate in genomes of the Saccharomycotina, providing an unexpected source of protein novelty in these generally TE depleted genomes. We investigated in detail a candidate host-TE fusion with a heterochromatic transcriptional silencing function that may play a role in TE and gene regulation in ascomycetes. The affected gene underwent multiple full or partial losses within the phylum. Overall, our work establishes a kingdom-wide view of putative host-TE fusions and facilitates systematic investigations of candidate fusion proteins.
Collapse
Affiliation(s)
- Ursula Oggenfuss
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
- Department of Microbiology and Immunology, University of Minnesota, Medical School, Minneapolis, Minnesota, United States of America
| | - Thomas Badet
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland.
| |
Collapse
|
6
|
Mendez-Dorantes C, Burns KH. LINE-1 retrotransposition and its deregulation in cancers: implications for therapeutic opportunities. Genes Dev 2023; 37:948-967. [PMID: 38092519 PMCID: PMC10760644 DOI: 10.1101/gad.351051.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Long interspersed element 1 (LINE-1) is the only protein-coding transposon that is active in humans. LINE-1 propagates in the genome using RNA intermediates via retrotransposition. This activity has resulted in LINE-1 sequences occupying approximately one-fifth of our genome. Although most copies of LINE-1 are immobile, ∼100 copies are retrotransposition-competent. Retrotransposition is normally limited via epigenetic silencing, DNA repair, and other host defense mechanisms. In contrast, LINE-1 overexpression and retrotransposition are hallmarks of cancers. Here, we review mechanisms of LINE-1 regulation and how LINE-1 may promote genetic heterogeneity in tumors. Finally, we discuss therapeutic strategies to exploit LINE-1 biology in cancers.
Collapse
Affiliation(s)
- Carlos Mendez-Dorantes
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA;
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Kathleen H Burns
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA;
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
7
|
Revisiting the Tigger Transposon Evolution Revealing Extensive Involvement in the Shaping of Mammal Genomes. BIOLOGY 2022; 11:biology11060921. [PMID: 35741442 PMCID: PMC9219625 DOI: 10.3390/biology11060921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Despite the discovery of the Tigger family of pogo transposons in the mammalian genome, the evolution profile of this family is still incomplete. Here, we conducted a systematic evolution analysis for Tigger in nature. The data revealed that Tigger was found in a broad variety of animals, and extensive invasion of Tigger was observed in mammal genomes. Common horizontal transfer events of Tigger elements were observed across different lineages of animals, including mammals, that may have led to their widespread distribution, while parasites and invasive species may have promoted Tigger HT events. Our results also indicate that the activity of Tigger transposons tends to be low in vertebrates; only one mammalian genome and fish genome may harbor active Tigger. Abstract The data of this study revealed that Tigger was found in a wide variety of animal genomes, including 180 species from 36 orders of invertebrates and 145 species from 29 orders of vertebrates. An extensive invasion of Tigger was observed in mammals, with a high copy number. Almost 61% of those species contain more than 50 copies of Tigger; however, 46% harbor intact Tigger elements, although the number of these intact elements is very low. Common HT events of Tigger elements were discovered across different lineages of animals, including mammals, that may have led to their widespread distribution, whereas Helogale parvula and arthropods may have aided Tigger HT incidences. The activity of Tigger seems to be low in the kingdom of animals, most copies were truncated in the mammal genomes and lost their transposition activity, and Tigger transposons only display signs of recent and current activities in a few species of animals. The findings suggest that the Tigger family is important in structuring mammal genomes.
Collapse
|
8
|
Mao D, Tao S, Li X, Gao D, Tang M, Liu C, Wu D, Bai L, He Z, Wang X, Yang L, Zhu Y, Zhang D, Zhang W, Chen C. The Harbinger transposon-derived gene PANDA epigenetically coordinates panicle number and grain size in rice. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1154-1166. [PMID: 35239255 PMCID: PMC9129072 DOI: 10.1111/pbi.13799] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/27/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Transposons significantly contribute to genome fractions in many plants. Although numerous transposon-related mutations have been identified, the evidence regarding transposon-derived genes regulating crop yield and other agronomic traits is very limited. In this study, we characterized a rice Harbinger transposon-derived gene called PANICLE NUMBER AND GRAIN SIZE (PANDA), which epigenetically coordinates panicle number and grain size. Mutation of PANDA caused reduced panicle number but increased grain size in rice, while transgenic plants overexpressing this gene showed the opposite phenotypic change. The PANDA-encoding protein can bind to the core polycomb repressive complex 2 (PRC2) components OsMSI1 and OsFIE2, and regulates the deposition of H3K27me3 in the target genes, thereby epigenetically repressing their expression. Among the target genes, both OsMADS55 and OsEMF1 were negative regulators of panicle number but positive regulators of grain size, partly explaining the involvement of PANDA in balancing panicle number and grain size. Moreover, moderate overexpression of PANDA driven by its own promoter in the indica rice cultivar can increase grain yield. Thus, our findings present a novel insight into the epigenetic control of rice yield traits by a Harbinger transposon-derived gene and provide its potential application for rice yield improvement.
Collapse
Affiliation(s)
- Donghai Mao
- Key Laboratory of Agro‐Ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesChangshaChina
| | - Shentong Tao
- State Key Laboratory for Crop Genetics and Germplasm EnhancementCollaborative Innovation Center for Modern Crop Production co‐sponsored by Province and Ministry (CIC‐MCP)Nanjing Agricultural UniversityNanjingChina
| | - Xin Li
- Key Laboratory of Agro‐Ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesChangshaChina
- University of Chinese Academy of SciencesBeijingChina
| | - Dongying Gao
- Small Grains and Potato Germplasm Research UnitUSDA ARSAberdeenIDUSA
| | - Mingfeng Tang
- Key Laboratory of Agro‐Ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesChangshaChina
| | - Chengbing Liu
- Key Laboratory of Agro‐Ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesChangshaChina
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research CenterChina Three Gorges UniversityYichangChina
| | - Dan Wu
- Key Laboratory of Agro‐Ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesChangshaChina
| | - Liangli Bai
- Key Laboratory of Agro‐Ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesChangshaChina
- College of Life SciencesHunan Normal UniversityChangshaChina
| | - Zhankun He
- Key Laboratory of Agro‐Ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesChangshaChina
- College of AgronomyHunan Agriculture UniversityChangshaChina
| | - Xiaodong Wang
- Key Laboratory of Agro‐Ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesChangshaChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lei Yang
- Key Laboratory of Agro‐Ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesChangshaChina
- Longping BranchGraduate School of Hunan UniversityChangshaChina
| | - Yuxing Zhu
- Key Laboratory of Agro‐Ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesChangshaChina
| | - Dechun Zhang
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research CenterChina Three Gorges UniversityYichangChina
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementCollaborative Innovation Center for Modern Crop Production co‐sponsored by Province and Ministry (CIC‐MCP)Nanjing Agricultural UniversityNanjingChina
| | - Caiyan Chen
- Key Laboratory of Agro‐Ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesChangshaChina
| |
Collapse
|
9
|
Hubley R, Wheeler TJ, Smit AFA. Accuracy of multiple sequence alignment methods in the reconstruction of transposable element families. NAR Genom Bioinform 2022; 4:lqac040. [PMID: 35591887 PMCID: PMC9112768 DOI: 10.1093/nargab/lqac040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 03/29/2022] [Accepted: 04/29/2022] [Indexed: 02/06/2023] Open
Abstract
The construction of a high-quality multiple sequence alignment (MSA) from copies of a transposable element (TE) is a critical step in the characterization of a new TE family. Most studies of MSA accuracy have been conducted on protein or RNA sequence families, where structural features and strong signals of selection may assist with alignment. Less attention has been given to the quality of sequence alignments involving neutrally evolving DNA sequences such as those resulting from TE replication. Transposable element sequences are challenging to align due to their wide divergence ranges, fragmentation, and predominantly-neutral mutation patterns. To gain insight into the effects of these properties on MSA accuracy, we developed a simulator of TE sequence evolution, and used it to generate a benchmark with which we evaluated the MSA predictions produced by several popular aligners, along with Refiner, a method we developed in the context of our RepeatModeler software. We find that MAFFT and Refiner generally outperform other aligners for low to medium divergence simulated sequences, while Refiner is uniquely effective when tasked with aligning high-divergent and fragmented instances of a family.
Collapse
Affiliation(s)
- Robert Hubley
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Travis J Wheeler
- Department of Computer Science, University of Montana, Missoula, MT 59801, USA
| | | |
Collapse
|
10
|
Lyanova BM, Kotnova AP, Makarova AA, Ilyin YV, Georgieva SG, Stepchenko AG, Pankratova EV. The Emergence of a New Isoform of POU2F1 in Primates through the Use of Egoistic Mobile Genetic Elements. DOKL BIOCHEM BIOPHYS 2022; 503:108-111. [PMID: 35538289 PMCID: PMC9090674 DOI: 10.1134/s1607672922020107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 11/25/2022]
Abstract
The emergence of new genes and functions is of paramount importance in the emergence of new animal species. For example, the insertion of the mobile element Tigger 2 into the sequence of the functional gene POU2F1 in primates led to the formation of a new chimeric primate-specific isoform POU2F1Z, the translation of which is activated under cellular stress. Its mRNA was found in all species of monkeys, starting with macaques. Analysis of the fragments of the Tigger2 copy corresponding to the human exon Z showed that the splicing sites of exon Z are homologous in humans and in most monkeys, with the exception of lemurs and galagos. The stop codon introduced into the mRNA by the Tigger2 sequence is present in all primates, starting with macaques. The internal ATG codon is also present in all primates, with the exception of lemurs and galagos. In the course of evolution, other MGEs, mainly of the SINE type, were inserted into the Tigger2 copy. In the course of evolution, both the location and the number of mobile SINE elements within the POU2F1 gene changed. Starting with macaques, the pattern of the arrangement of SINE elements within the Tigger2 copy in the studied region of the POU2F1 gene was fixed and then remained unchanged in other primates and humans, which may indicate its functional significance.
Collapse
Affiliation(s)
- B M Lyanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - A P Kotnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - A A Makarova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Yu V Ilyin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - S G Georgieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - A G Stepchenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - E V Pankratova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
11
|
Storer JM, Hubley R, Rosen J, Smit AFA. Methodologies for the De novo Discovery of Transposable Element Families. Genes (Basel) 2022; 13:709. [PMID: 35456515 PMCID: PMC9025800 DOI: 10.3390/genes13040709] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023] Open
Abstract
The discovery and characterization of transposable element (TE) families are crucial tasks in the process of genome annotation. Careful curation of TE libraries for each organism is necessary as each has been exposed to a unique and often complex set of TE families. De novo methods have been developed; however, a fully automated and accurate approach to the development of complete libraries remains elusive. In this review, we cover established methods and recent developments in de novo TE analysis. We also present various methodologies used to assess these tools and discuss opportunities for further advancement of the field.
Collapse
Affiliation(s)
| | | | | | - Arian F. A. Smit
- Institute for Systems Biology, Seattle, WA 98109, USA; (J.M.S.); (R.H.); (J.R.)
| |
Collapse
|
12
|
Abstract
Centromeres, the chromosomal loci where spindle fibers attach during cell division to segregate chromosomes, are typically found within satellite arrays in plants and animals. Satellite arrays have been difficult to analyze because they comprise megabases of tandem head-to-tail highly repeated DNA sequences. Much evidence suggests that centromeres are epigenetically defined by the location of nucleosomes containing the centromere-specific histone H3 variant cenH3, independently of the DNA sequences where they are located; however, the reason that cenH3 nucleosomes are generally found on rapidly evolving satellite arrays has remained unclear. Recently, long-read sequencing technology has clarified the structures of satellite arrays and sparked rethinking of how they evolve, and new experiments and analyses have helped bring both understanding and further speculation about the role these highly repeated sequences play in centromere identification.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| |
Collapse
|
13
|
Constitutive Heterochromatin in Eukaryotic Genomes: A Mine of Transposable Elements. Cells 2022; 11:cells11050761. [PMID: 35269383 PMCID: PMC8909793 DOI: 10.3390/cells11050761] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 12/22/2022] Open
Abstract
Transposable elements (TEs) are abundant components of constitutive heterochromatin of the most diverse evolutionarily distant organisms. TEs enrichment in constitutive heterochromatin was originally described in the model organism Drosophila melanogaster, but it is now considered as a general feature of this peculiar portion of the genomes. The phenomenon of TE enrichment in constitutive heterochromatin has been proposed to be the consequence of a progressive accumulation of transposable elements caused by both reduced recombination and lack of functional genes in constitutive heterochromatin. However, this view does not take into account classical genetics studies and most recent evidence derived by genomic analyses of heterochromatin in Drosophila and other species. In particular, the lack of functional genes does not seem to be any more a general feature of heterochromatin. Sequencing and annotation of Drosophila melanogaster constitutive heterochromatin have shown that this peculiar genomic compartment contains hundreds of transcriptionally active genes, generally larger in size than that of euchromatic ones. Together, these genes occupy a significant fraction of the genomic territory of heterochromatin. Moreover, transposable elements have been suggested to drive the formation of heterochromatin by recruiting HP1 and repressive chromatin marks. In addition, there are several pieces of evidence that transposable elements accumulation in the heterochromatin might be important for centromere and telomere structure. Thus, there may be more complexity to the relationship between transposable elements and constitutive heterochromatin, in that different forces could drive the dynamic of this phenomenon. Among those forces, preferential transposition may be an important factor. In this article, we present an overview of experimental findings showing cases of transposon enrichment into the heterochromatin and their positive evolutionary interactions with an impact to host genomes.
Collapse
|
14
|
Liu Y, Zong W, Diaby M, Lin Z, Wang S, Gao B, Ji T, Song C. Diversity and Evolution of pogo and Tc1/mariner Transposons in the Apoidea Genomes. BIOLOGY 2021; 10:940. [PMID: 34571816 PMCID: PMC8472432 DOI: 10.3390/biology10090940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022]
Abstract
Bees (Apoidea), the largest and most crucial radiation of pollinators, play a vital role in the ecosystem balance. Transposons are widely distributed in nature and are important drivers of species diversity. However, transposons are rarely reported in important pollinators such as bees. Here, we surveyed 37 bee genomesin Apoidea, annotated the pogo and Tc1/mariner transposons in the genome of each species, and performed a phylogenetic analysis and determined their overall distribution. The pogo and Tc1/mariner families showed high diversity and low abundance in the 37 species, and their proportion was significantly higher in solitary bees than in social bees. DD34D/mariner was found to be distributed in almost all species and was found in Apis mellifera, Apis mellifera carnica, Apis mellifera caucasia, and Apis mellifera mellifera, and Euglossa dilemma may still be active. Using horizontal transfer analysis, we found that DD29-30D/Tigger may have experienced horizontal transfer (HT) events. The current study displayed the evolution profiles (including diversity, activity, and abundance) of the pogo and Tc1/mariner transposons across 37 species of Apoidea. Our data revealed their contributions to the genomic variations across these species and facilitated in understanding of the genome evolution of this lineage.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chengyi Song
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.L.); (W.Z.); (M.D.); (Z.L.); (S.W.); (B.G.); (T.J.)
| |
Collapse
|
15
|
Lin L, Sharma A, Yu Q. Recent amplification of microsatellite-associated miniature inverted-repeat transposable elements in the pineapple genome. BMC PLANT BIOLOGY 2021; 21:424. [PMID: 34537020 PMCID: PMC8449440 DOI: 10.1186/s12870-021-03194-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Miniature inverted-repeat transposable elements (MITEs) are non-autonomous DNA transposable elements that play important roles in genome organization and evolution. Genome-wide identification and characterization of MITEs provide essential information for understanding genome structure and evolution. RESULTS We performed genome-wide identification and characterization of MITEs in the pineapple genome. The top two MITE families, accounting for 29.39% of the total MITEs and 3.86% of the pineapple genome, have insertion preference in (TA) n dinucleotide microsatellite regions. We therefore named these MITEs A. comosus microsatellite-associated MITEs (Ac-mMITEs). The two Ac-mMITE families, Ac-mMITE-1 and Ac-mMITE-2, shared sequence similarity in the terminal inverted repeat (TIR) regions, suggesting that these two Ac-mMITE families might be derived from a common or closely related autonomous elements. The Ac-mMITEs are frequently clustered via adjacent insertions. Among the 21,994 full-length Ac-mMITEs, 46.1% of them were present in clusters. By analyzing the Ac-mMITEs without (TA) n microsatellite flanking sequences, we found that Ac-mMITEs were likely derived from Mutator-like DNA transposon. Ac-MITEs showed highly polymorphic insertion sites between cultivated pineapples and their wild relatives. To better understand the evolutionary history of Ac-mMITEs, we filtered and performed comparative analysis on the two distinct groups of Ac-mMITEs, microsatellite-targeting MITEs (mt-MITEs) that are flanked by dinucleotide microsatellites on both sides and mutator-like MITEs (ml-MITEs) that contain 9/10 bp TSDs. Epigenetic analysis revealed a lower level of host-induced silencing on the mt-MITEs in comparison to the ml-MITEs, which partially explained the significantly higher abundance of mt-MITEs in pineapple genome. The mt-MITEs and ml-MITEs exhibited differential insertion preference to gene-related regions and RNA-seq analysis revealed their differential influences on expression regulation of nearby genes. CONCLUSIONS Ac-mMITEs are the most abundant MITEs in the pineapple genome and they were likely derived from Mutator-like DNA transposon. Preferential insertion in (TA) n microsatellite regions of Ac-mMITEs occurred recently and is likely the result of damage-limiting strategy adapted by Ac-mMITEs during co-evolution with their host. Insertion in (TA) n microsatellite regions might also have promoted the amplification of mt-MITEs. In addition, mt-MITEs showed no or negligible impact on nearby gene expression, which may help them escape genome control and lead to their amplification.
Collapse
Affiliation(s)
- Lianyu Lin
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX, 75252, USA
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Anupma Sharma
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX, 75252, USA
| | - Qingyi Yu
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX, 75252, USA.
| |
Collapse
|
16
|
Beckermann TM, Luo W, Wilson CM, Veach RA, Wilson M. Cognate restriction of transposition by piggyBac-like proteins. Nucleic Acids Res 2021; 49:8135-8144. [PMID: 34232995 PMCID: PMC8373079 DOI: 10.1093/nar/gkab578] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 06/16/2021] [Accepted: 06/26/2021] [Indexed: 11/14/2022] Open
Abstract
Mobile genetic elements have been harnessed for gene transfer for a wide variety of applications including generation of stable cell lines, recombinant protein production, creation of transgenic animals, and engineering cell and gene therapy products. The piggyBac transposon family includes transposase or transposase-like proteins from a variety of species including insect, bat and human. Recently, human piggyBac transposable element derived 5 (PGBD5) protein was reported to be able to transpose piggyBac transposons in human cells raising possible safety concerns for piggyBac-mediated gene transfer applications. We evaluated three piggyBac-like proteins across species including piggyBac (insect), piggyBat (bat) and PGBD5 (human) for their ability to mobilize piggyBac transposons in human cells. We observed a lack of cross-species transposition activity. piggyBac and piggyBat activity was restricted to their cognate transposons. PGBD5 was unable to mobilize piggyBac transposons based on excision, colony count and plasmid rescue analysis, and it was unable to bind piggyBac terminal repeats. Within the piggyBac family, we observed a lack of cross-species activity and found that PGBD5 was unable to bind, excise or integrate piggyBac transposons in human cells. Transposition activity appears restricted within species within the piggyBac family of mobile genetic elements.
Collapse
Affiliation(s)
- Thomas M Beckermann
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Veterans Affairs, Tennessee Valley Health Services, Nashville, TN 37212, USA
| | - Wentian Luo
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Veterans Affairs, Tennessee Valley Health Services, Nashville, TN 37212, USA
| | - Catherine M Wilson
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ruth Ann Veach
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Veterans Affairs, Tennessee Valley Health Services, Nashville, TN 37212, USA
| | - Matthew H Wilson
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Veterans Affairs, Tennessee Valley Health Services, Nashville, TN 37212, USA
- Departments of Pharmacology and Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
17
|
The role of the Cer1 transposon in horizontal transfer of transgenerational memory. Cell 2021; 184:4697-4712.e18. [PMID: 34363756 DOI: 10.1016/j.cell.2021.07.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/21/2021] [Accepted: 07/19/2021] [Indexed: 01/01/2023]
Abstract
Animals face both external and internal dangers: pathogens threaten from the environment, and unstable genomic elements threaten from within. C. elegans protects itself from pathogens by "reading" bacterial small RNAs, using this information to both induce avoidance and transmit memories for four generations. Here, we found that memories can be transferred from either lysed animals or from conditioned media to naive animals via Cer1 retrotransposon-encoded virus-like particles. Moreover, Cer1 functions internally at the step of transmission of information from the germline to neurons and is required for learned avoidance. The presence of the Cer1 retrotransposon in wild C. elegans strains correlates with the ability to learn and inherit small-RNA-induced pathogen avoidance. Together, these results suggest that C. elegans has co-opted a potentially dangerous retrotransposon to instead protect itself and its progeny from a common pathogen through its inter-tissue signaling ability, hijacking this genomic element for its own adaptive immunity benefit.
Collapse
|
18
|
Idiopathic Infertility as a Feature of Genome Instability. Life (Basel) 2021; 11:life11070628. [PMID: 34209597 PMCID: PMC8307193 DOI: 10.3390/life11070628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022] Open
Abstract
Genome instability may play a role in severe cases of male infertility, with disrupted spermatogenesis being just one manifestation of decreased general health and increased morbidity. Here, we review the data on the association of male infertility with genetic, epigenetic, and environmental alterations, the causes and consequences, and the methods for assessment of genome instability. Male infertility research has provided evidence that spermatogenic defects are often not limited to testicular dysfunction. An increased incidence of urogenital disorders and several types of cancer, as well as overall reduced health (manifested by decreased life expectancy and increased morbidity) have been reported in infertile men. The pathophysiological link between decreased life expectancy and male infertility supports the notion of male infertility being a systemic rather than an isolated condition. It is driven by the accumulation of DNA strand breaks and premature cellular senescence. We have presented extensive data supporting the notion that genome instability can lead to severe male infertility termed “idiopathic oligo-astheno-teratozoospermia.” We have detailed that genome instability in men with oligo-astheno-teratozoospermia (OAT) might depend on several genetic and epigenetic factors such as chromosomal heterogeneity, aneuploidy, micronucleation, dynamic mutations, RT, PIWI/piRNA regulatory pathway, pathogenic allelic variants in repair system genes, DNA methylation, environmental aspects, and lifestyle factors.
Collapse
|
19
|
Puzakov MV, Puzakova LV, Cheresiz SV, Sang Y. The IS630/Tc1/mariner transposons in three ctenophore genomes. Mol Phylogenet Evol 2021; 163:107231. [PMID: 34133948 DOI: 10.1016/j.ympev.2021.107231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/31/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
Transposable elements (TEs) exert a significant effect on the structure and functioning of the genomes and also serve as a source of the new genes. The study of the TE diversity and evolution in different taxa is indispensable for the fundamental understanding of their roles in the genomes. IS630/Tc1/mariner (ITm) transposable elements represent the most prevalent and diverse group of DNA transposons. In this work, we studied the diversity, evolutionary dynamics and the phylogenetic relationships of the ITm transposons found in three ctenophore species: Mnemiopsis leidyi, Pleurobrachia bachei, Beroe ovata. We identified 29 ITm transposons, seven of which possess the terminal inverted repeats (TIRs) and an intact transposase, and, thus, are, presumably, active. Four other ITm transposons have the features of domesticated TEs. According to the results of the phylogenetic analysis, the ITm transposons of the ctenophores represent five groups - MLE/DD34D, TLE/DD34-38E, mosquito/DD37E, Visiror/DD41D and pogo/DDxD. Pogo/DDxD superfamily turnes out to be the most diverse and prevalent, since it accounts for more than 40% of the TEs identified. The data obtained in this research will fill the gap of knowledge of the diversity and evolution of the ITm transposons in the multicellular genomes and will lay the ground for the study of the TE effects on the evolution of the ctenophores.
Collapse
Affiliation(s)
- Mikhail V Puzakov
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Nakhimov av., 2, Sevastopol 299011, Russia.
| | - Ludmila V Puzakova
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Nakhimov av., 2, Sevastopol 299011, Russia
| | - Sergey V Cheresiz
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, Pirogova st., 1, Novosibirsk 630090, Russia; State Scientific Research Institute of Physiology and Basic Medicine, P.O. Box 237, Novosibirsk 630117, Russia
| | - Yatong Sang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
20
|
Kulski JK, Suzuki S, Shiina T. Haplotype Shuffling and Dimorphic Transposable Elements in the Human Extended Major Histocompatibility Complex Class II Region. Front Genet 2021; 12:665899. [PMID: 34122517 PMCID: PMC8193847 DOI: 10.3389/fgene.2021.665899] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/12/2021] [Indexed: 12/26/2022] Open
Abstract
The major histocompatibility complex (MHC) on chromosome 6p21 is one of the most single-nucleotide polymorphism (SNP)-dense regions of the human genome and a prime model for the study and understanding of conserved sequence polymorphisms and structural diversity of ancestral haplotypes/conserved extended haplotypes. This study aimed to follow up on a previous analysis of the MHC class I region by using the same set of 95 MHC haplotype sequences downloaded from a publicly available BioProject database at the National Center for Biotechnology Information to identify and characterize the polymorphic human leukocyte antigen (HLA)-class II genes, the MTCO3P1 pseudogene alleles, the indels of transposable elements as haplotypic lineage markers, and SNP-density crossover (XO) loci at haplotype junctions in DNA sequence alignments of different haplotypes across the extended class II region (∼1 Mb) from the telomeric PRRT1 gene in class III to the COL11A2 gene at the centromeric end of class II. We identified 42 haplotypic indels (20 Alu, 7 SVA, 13 LTR or MERs, and 2 indels composed of a mosaic of different transposable elements) linked to particular HLA-class II alleles. Comparative sequence analyses of 136 haplotype pairs revealed 98 unique XO sites between SNP-poor and SNP-rich genomic segments with considerable haplotype shuffling located in the proximity of putative recombination hotspots. The majority of XO sites occurred across various regions including in the vicinity of MTCO3P1 between HLA-DQB1 and HLA-DQB3, between HLA-DQB2 and HLA-DOB, between DOB and TAP2, and between HLA-DOA and HLA-DPA1, where most XOs were within a HERVK22 sequence. We also determined the genomic positions of the PRDM9-recombination suppression sequence motif ATCCATG/CATGGAT and the PRDM9 recombination activation partial binding motif CCTCCCCT/AGGGGAG in the class II region of the human reference genome (NC_ 000006) relative to published meiotic recombination positions. Both the recombination and anti-recombination PRDM9 binding motifs were widely distributed throughout the class II genomic regions with 50% or more found within repeat elements; the anti-recombination motifs were found mostly in L1 fragmented repeats. This study shows substantial haplotype shuffling between different polymorphic blocks and confirms the presence of numerous putative ancestral recombination sites across the class II region between various HLA class II genes.
Collapse
Affiliation(s)
- Jerzy K Kulski
- Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, Australia.,Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Shingo Suzuki
- Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Takashi Shiina
- Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
21
|
Wang S, Diaby M, Puzakov M, Ullah N, Wang Y, Danley P, Chen C, Wang X, Gao B, Song C. Divergent evolution profiles of DD37D and DD39D families of Tc1/mariner transposons in eukaryotes. Mol Phylogenet Evol 2021; 161:107143. [PMID: 33713798 DOI: 10.1016/j.ympev.2021.107143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 11/29/2022]
Abstract
DNA transposons play a significant role in shaping the size and structure of eukaryotic genomes. The Tc1/mariner transposons are the most diverse and widely distributed superfamily of DNA transposons and the structure and distribution of several Tc1/mariner families, such as DD35E/TR, DD36E/IC, DD37E/TRT, and DD41D/VS, have been well studied. Nonetheless, a greater understanding of the structure and diversity of Tc1/mariner transposons will provide insight into the evolutionary history of eukaryotic genomes. Here, we conducted further analysis of DD37D/maT and DD39D (named Guest, GT), which were identified by the specific catalytic domains DD37D and DD39D. Most transposons of the maT family have a total length of approximately 1.3 kb and harbor a single open reading frame encoding a ~ 346 amino acid (range 302-398 aa) transposase protein, flanked by short terminal inverted repeats (TIRs) (13-48 base pairs, bp). In contrast, GTs transposons were longer (2.0-5.8 kb), encoded a transposase protein of ~400 aa (range 140-592 aa), and were flanked by short TIRs (19-41 bp). Several conserved motifs, including two helix-turn-helix (HTH) motifs, a GRPR (GRKR) motif, a nuclear localization sequence, and a DDD domain, were also identified in maT and GT transposases. Phylogenetic analyses of the DDD domain showed that the maT and GT families each belong to a monophyletic clade and appear to be closely related to DD41D/VS and DD34D/mariner. In addition, maTs are mainly distributed in invertebrates (144 species), whereas GTs are mainly distributed in land plants through a small number of GTs are present in Chromista and animals. Sequence identity and phylogenetic analysis revealed that horizontal transfer (HT) events of maT and GT might occur between kingdoms and phyla of eukaryotes; however, pairwise distance comparisons between host genes and transposons indicated that HT events involving maTs might be less frequent between invertebrate species and HT events involving GTs may be less frequent between land plant species. Overall, the DD37D/maT and DD39D/GT families display significantly different distribution and tend to be identified in more ancient evolutionary families. The discovery of intact transposases, perfect TIRs, and target site duplications (TSD) of maTs and GTs illustrates that the DD37D/maT and DD39D/GT families may be active. Together, these findings improve our understanding of the diversity of Tc1/mariner transposons and their impact on eukaryotic genome evolution.
Collapse
Affiliation(s)
- Saisai Wang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Mohamed Diaby
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Mikhail Puzakov
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Nakhimov av., 2, Sevastopol 299011, Russia
| | - Numan Ullah
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yali Wang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Patrick Danley
- University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Cai Chen
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaoyan Wang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Bo Gao
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Chengyi Song
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
22
|
Storer J, Hubley R, Rosen J, Wheeler TJ, Smit AF. The Dfam community resource of transposable element families, sequence models, and genome annotations. Mob DNA 2021; 12:2. [PMID: 33436076 PMCID: PMC7805219 DOI: 10.1186/s13100-020-00230-y] [Citation(s) in RCA: 344] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/28/2020] [Indexed: 02/02/2023] Open
Abstract
Dfam is an open access database of repetitive DNA families, sequence models, and genome annotations. The 3.0-3.3 releases of Dfam ( https://dfam.org ) represent an evolution from a proof-of-principle collection of transposable element families in model organisms into a community resource for a broad range of species, and for both curated and uncurated datasets. In addition, releases since Dfam 3.0 provide auxiliary consensus sequence models, transposable element protein alignments, and a formalized classification system to support the growing diversity of organisms represented in the resource. The latest release includes 266,740 new de novo generated transposable element families from 336 species contributed by the EBI. This expansion demonstrates the utility of many of Dfam's new features and provides insight into the long term challenges ahead for improving de novo generated transposable element datasets.
Collapse
Affiliation(s)
| | - Robert Hubley
- Institute for Systems Biology, Seattle, WA, 98109, USA.
| | - Jeb Rosen
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | | | - Arian F Smit
- Institute for Systems Biology, Seattle, WA, 98109, USA.
| |
Collapse
|
23
|
Etchegaray E, Naville M, Volff JN, Haftek-Terreau Z. Transposable element-derived sequences in vertebrate development. Mob DNA 2021; 12:1. [PMID: 33407840 PMCID: PMC7786948 DOI: 10.1186/s13100-020-00229-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Transposable elements (TEs) are major components of all vertebrate genomes that can cause deleterious insertions and genomic instability. However, depending on the specific genomic context of their insertion site, TE sequences can sometimes get positively selected, leading to what are called "exaptation" events. TE sequence exaptation constitutes an important source of novelties for gene, genome and organism evolution, giving rise to new regulatory sequences, protein-coding exons/genes and non-coding RNAs, which can play various roles beneficial to the host. In this review, we focus on the development of vertebrates, which present many derived traits such as bones, adaptive immunity and a complex brain. We illustrate how TE-derived sequences have given rise to developmental innovations in vertebrates and how they thereby contributed to the evolutionary success of this lineage.
Collapse
Affiliation(s)
- Ema Etchegaray
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France.
| | - Magali Naville
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Jean-Nicolas Volff
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Zofia Haftek-Terreau
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| |
Collapse
|
24
|
Ge X, Liu Z, Jiao X, Yin X, Wang X, Li G. Establishment and Validation of a Gene Signature-Based Prognostic Model to Improve Survival Prediction in Adrenocortical Carcinoma Patients. Int J Endocrinol 2021; 2021:2077633. [PMID: 34858497 PMCID: PMC8632466 DOI: 10.1155/2021/2077633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The current guideline for the management of adrenocortical carcinoma (ACC) is insufficient for accurate risk prediction to guide adjuvant therapy. Given frequent and severe therapeutic side effects, a better estimate of survival is warranted for risk-specific assignment to adjuvant treatment. We attempted to construct an integrated model based on a prognostic gene signature and clinicopathological features to improve risk stratification and survival prediction in ACC. METHODS Using a series of bioinformatic and statistical approaches, a gene-expression signature was established and validated in two independent cohorts. By combining the signature with clinicopathological features, a decision tree was generated to improve risk stratification, and a nomogram was constructed to personalize risk prediction. Time-dependent receiver operating characteristic (tROC) and calibration analysis were performed to evaluate the predictive power and accuracy. RESULTS A three-gene signature could discriminate high-risk patients well in both training and validation cohorts. Multivariate regression analysis demonstrated the signature to be an independent predictor of overall survival. The decision tree could identify risk subgroups powerfully, and the nomogram showed high accuracy of survival prediction. Particularly, expression of a gene hitherto unknown to be dysregulated in ACC, TIGD1, was shown to be prognostically relevant. CONCLUSION We propose a novel gene signature to guide decision-making about adjuvant therapy in ACC. The score shows unprecedented survival prediction and hence constitutes a huge step towards personalized management. As a secondary important finding, we report the discovery and validation of a new oncogene, TIGD1, which was consistently overexpressed in ACC. TIGD1 might shed further light on the biology of ACC and might give rise to targeted therapies that not only apply to ACC but potentially also to other malignancies.
Collapse
Affiliation(s)
- Xiaoqin Ge
- Department of Endocrinology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, China
| | - Zhenzhen Liu
- Department of Endocrinology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Xuehua Jiao
- Department of Endocrinology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Xueyan Yin
- Department of Endocrinology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Xiujie Wang
- Department of Endocrinology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Gengxu Li
- Department of Endocrinology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| |
Collapse
|
25
|
Gao B, Zong W, Miskey C, Ullah N, Diaby M, Chen C, Wang X, Ivics Z, Song C. Intruder (DD38E), a recently evolved sibling family of DD34E/Tc1 transposons in animals. Mob DNA 2020; 11:32. [PMID: 33303022 PMCID: PMC7731502 DOI: 10.1186/s13100-020-00227-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND A family of Tc1/mariner transposons with a characteristic DD38E triad of catalytic amino acid residues, named Intruder (IT), was previously discovered in sturgeon genomes, but their evolutionary landscapes remain largely unknown. RESULTS Here, we comprehensively investigated the evolutionary profiles of ITs, and evaluated their cut-and-paste activities in cells. ITs exhibited a narrow taxonomic distribution pattern in the animal kingdom, with invasions into two invertebrate phyla (Arthropoda and Cnidaria) and three vertebrate lineages (Actinopterygii, Agnatha, and Anura): very similar to that of the DD36E/IC family. Some animal orders and species seem to be more hospitable to Tc1/mariner transposons, one order of Amphibia and seven Actinopterygian orders are the most common orders with horizontal transfer events and have been invaded by all four families (DD38E/IT, DD35E/TR, DD36E/IC and DD37E/TRT) of Tc1/mariner transposons, and eight Actinopterygii species were identified as the major hosts of these families. Intact ITs have a total length of 1.5-1.7 kb containing a transposase gene flanked by terminal inverted repeats (TIRs). The phylogenetic tree and sequence identity showed that IT transposases were most closely related to DD34E/Tc1. ITs have been involved in multiple events of horizontal transfer in vertebrates and have invaded most lineages recently (< 5 million years ago) based on insertion age analysis. Accordingly, ITs presented high average sequence identity (86-95%) across most vertebrate species, suggesting that some are putatively active. ITs can transpose in human HeLa cells, and the transposition efficiency of consensus TIRs was higher than that of the TIRs of natural isolates. CONCLUSIONS We conclude that DD38E/IT originated from DD34E/Tc1 and can be detected in two invertebrate phyla (Arthropoda and Cnidaria), and in three vertebrate lineages (Actinopterygii, Agnatha and Anura). IT has experienced multiple HT events in animals, dominated by recent amplifications in most species and has high identity among vertebrate taxa. Our reconstructed IT transposon vector designed according to the sequence from the "cat" genome showed high cut-and-paste activity. The data suggest that IT has been acquired recently and is active in many species. This study is meaningful for understanding the evolution of the Tc1/mariner superfamily members and their hosts.
Collapse
Affiliation(s)
- Bo Gao
- College of Animal Science & Technology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China.,Division of Medical Biotechnology, Paul Ehrlich Institute, 63225, Langen, Germany
| | - Wencheng Zong
- College of Animal Science & Technology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China
| | - Csaba Miskey
- Division of Medical Biotechnology, Paul Ehrlich Institute, 63225, Langen, Germany
| | - Numan Ullah
- College of Animal Science & Technology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China
| | - Mohamed Diaby
- College of Animal Science & Technology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China
| | - Cai Chen
- College of Animal Science & Technology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China
| | - Xiaoyan Wang
- College of Animal Science & Technology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, 63225, Langen, Germany
| | - Chengyi Song
- College of Animal Science & Technology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
26
|
Abstract
Multicellular eukaryotic genomes show enormous differences in size. A substantial part of this variation is due to the presence of transposable elements (TEs). They contribute significantly to a cell's mass of DNA and have the potential to become involved in host gene control. We argue that the suppression of their activities by methylation of the C-phosphate-G (CpG) dinucleotide in DNA is essential for their long-term accommodation in the host genome and, therefore, to its expansion. An inevitable consequence of cytosine methylation is an increase in C-to-T transition mutations via deamination, which causes CpG loss. Cytosine deamination is often needed for TEs to take on regulatory functions in the host genome. Our study of the whole-genome sequences of 53 organisms showed a positive correlation between the size of a genome and the percentage of TEs it contains, as well as a negative correlation between size and the CpG observed/expected (O/E) ratio in both TEs and the host DNA. TEs are seldom found at promoters and transcription start sites, but they are found more at enhancers, particularly after they have accumulated C-to-T and other mutations. Therefore, the methylation of TE DNA allows for genome expansion and also leads to new opportunities for gene control by TE-based regulatory sites.
Collapse
|
27
|
Gao B, Wang Y, Diaby M, Zong W, Shen D, Wang S, Chen C, Wang X, Song C. Evolution of pogo, a separate superfamily of IS630-Tc1-mariner transposons, revealing recurrent domestication events in vertebrates. Mob DNA 2020; 11:25. [PMID: 32742312 PMCID: PMC7386202 DOI: 10.1186/s13100-020-00220-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Tc1/mariner and Zator, as two superfamilies of IS630-Tc1-mariner (ITm) group, have been well-defined. However, the molecular evolution and domestication of pogo transposons, once designated as an important family of the Tc1/mariner superfamily, are still poorly understood. RESULTS Here, phylogenetic analysis show that pogo transposases, together with Tc1/mariner, DD34E/Gambol, and Zator transposases form four distinct monophyletic clades with high bootstrap supports (> = 74%), suggesting that they are separate superfamilies of ITm group. The pogo superfamily represents high diversity with six distinct families (Passer, Tigger, pogoR, Lemi, Mover, and Fot/Fot-like) and wide distribution with an expansion spanning across all the kingdoms of eukaryotes. It shows widespread occurrences in animals and fungi, but restricted taxonomic distribution in land plants. It has invaded almost all lineages of animals-even mammals-and has been domesticated repeatedly in vertebrates, with 12 genes, including centromere-associated protein B (CENPB), CENPB DNA-binding domain containing 1 (CENPBD1), Jrk helix-turn-helix protein (JRK), JRK like (JRKL), pogo transposable element derived with KRAB domain (POGK), and with ZNF domain (POGZ), and Tigger transposable element-derived 2 to 7 (TIGD2-7), deduced as originating from this superfamily. Two of them (JRKL and TIGD2) seem to have been co-domesticated, and the others represent independent domestication events. Four genes (TIGD3, TIGD4, TIGD5, and POGZ) tend to represent ancient domestications in vertebrates, while the others only emerge in mammals and seem to be domesticated recently. Significant structural variations including target site duplication (TSD) types and the DDE triad signatures (DD29-56D) were observed for pogo transposons. Most domesticated genes are derived from the complete transposase genes; but CENPB, POGK, and POGZ are chimeric genes fused with additional functional domains. CONCLUSIONS This is the first report to systematically reveal the evolutionary profiles of the pogo transposons, suggesting that pogo and Tc1/Mariner are two separate superfamilies of ITm group, and demonstrating the repeated domestications of pogo in vertebrates. These data indicate that pogo transposons have played important roles in shaping the genome and gene evolution of fungi and animals. This study expands our understanding of the diversity of pogo transposons and updates the classification of ITm group.
Collapse
Affiliation(s)
- Bo Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Yali Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Mohamed Diaby
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Wencheng Zong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Dan Shen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Saisai Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Cai Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Xiaoyan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Chengyi Song
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| |
Collapse
|
28
|
Dupeyron M, Baril T, Bass C, Hayward A. Phylogenetic analysis of the Tc1/mariner superfamily reveals the unexplored diversity of pogo-like elements. Mob DNA 2020; 11:21. [PMID: 32612713 PMCID: PMC7325037 DOI: 10.1186/s13100-020-00212-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/08/2020] [Indexed: 01/18/2023] Open
Abstract
Background Tc1/mariner transposons are widespread DNA transposable elements (TEs) that have made important contributions to the evolution of host genomic complexity in metazoans. However, the evolution and diversity of the Tc1/mariner superfamily remains poorly understood. Following recent developments in genome sequencing and the availability of a wealth of new genomes, Tc1/mariner TEs have been identified in many new taxa across the eukaryotic tree of life. To date, the majority of studies focussing on Tc1/mariner elements have considered only a single host lineage or just a small number of host lineages. Thus, much remains to be learnt about the evolution of Tc1/mariner TEs by performing analyses that consider elements that originate from across host diversity. Results We mined the non-redundant database of NCBI using BLASTp searches, with transposase sequences from a diverse set of reference Tc1/mariner elements as queries. A total of 5158 Tc1/mariner elements were retrieved and used to reconstruct evolutionary relationships within the superfamily. The resulting phylogeny is well resolved and includes several new groups of Tc1/mariner elements. In particular, we identify a new family of plant-genome restricted Tc1/mariner elements, which we call PlantMar. We also show that the pogo family is much larger and more diverse than previously appreciated, and we review evidence for a potential revision of its status to become a separate superfamily. Conclusions Our study provides an overview of Tc1-mariner phylogeny and summarises the impressive diversity of Tc1-mariner TEs among sequenced eukaryotes. Tc1/mariner TEs are successful in a wide range of eukaryotes, especially unikonts (the taxonomic supergroup containing Amoebozoa, Opisthokonta, Breviatea, and Apusomonadida). In particular, ecdysozoa, and especially arthropods, emerge as important hosts for Tc1/mariner elements (except the PlantMar family). Meanwhile, the pogo family, which is by far the largest Tc1/mariner family, also includes many elements from fungal and chordate genomes. Moreover, there is evidence of the repeated exaptation of pogo elements in vertebrates, including humans, in addition to the well-known example of CENP-B. Collectively, our findings provide a considerable advancement in understanding of Tc1/mariner elements, and more generally they suggest that much work remains to improve understanding of the diversity and evolution of DNA TEs.
Collapse
Affiliation(s)
- Mathilde Dupeyron
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE UK
| | - Tobias Baril
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE UK
| | - Chris Bass
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE UK
| | - Alexander Hayward
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE UK
| |
Collapse
|
29
|
Burns KH. Our Conflict with Transposable Elements and Its Implications for Human Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 15:51-70. [PMID: 31977294 DOI: 10.1146/annurev-pathmechdis-012419-032633] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our genome is a historic record of successive invasions of mobile genetic elements. Like other eukaryotes, we have evolved mechanisms to limit their propagation and minimize the functional impact of new insertions. Although these mechanisms are vitally important, they are imperfect, and a handful of retroelement families remain active in modern humans. This review introduces the intrinsic functions of transposons, the tactics employed in their restraint, and the relevance of this conflict to human pathology. The most straightforward examples of disease-causing transposable elements are germline insertions that disrupt a gene and result in a monogenic disease allele. More enigmatic are the abnormal patterns of transposable element expression in disease states. Changes in transposon regulation and cellular responses to their expression have implicated these sequences in diseases as diverse as cancer, autoimmunity, and neurodegeneration. Distinguishing their epiphenomenal from their pathogenic effects may provide wholly new perspectives on our understanding of disease.
Collapse
Affiliation(s)
- Kathleen H Burns
- Department of Pathology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
| |
Collapse
|
30
|
Gamba R, Fachinetti D. From evolution to function: Two sides of the same CENP-B coin? Exp Cell Res 2020; 390:111959. [DOI: 10.1016/j.yexcr.2020.111959] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/07/2020] [Accepted: 03/12/2020] [Indexed: 10/24/2022]
|
31
|
Maxwell PH. Diverse transposable element landscapes in pathogenic and nonpathogenic yeast models: the value of a comparative perspective. Mob DNA 2020; 11:16. [PMID: 32336995 PMCID: PMC7175516 DOI: 10.1186/s13100-020-00215-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Genomics and other large-scale analyses have drawn increasing attention to the potential impacts of transposable elements (TEs) on their host genomes. However, it remains challenging to transition from identifying potential roles to clearly demonstrating the level of impact TEs have on genome evolution and possible functions that they contribute to their host organisms. I summarize TE content and distribution in four well-characterized yeast model systems in this review: the pathogens Candida albicans and Cryptococcus neoformans, and the nonpathogenic species Saccharomyces cerevisiae and Schizosaccharomyces pombe. I compare and contrast their TE landscapes to their lifecycles, genomic features, as well as the presence and nature of RNA interference pathways in each species to highlight the valuable diversity represented by these models for functional studies of TEs. I then review the regulation and impacts of the Ty1 and Ty3 retrotransposons from Saccharomyces cerevisiae and Tf1 and Tf2 retrotransposons from Schizosaccharomyces pombe to emphasize parallels and distinctions between these well-studied elements. I propose that further characterization of TEs in the pathogenic yeasts would enable this set of four yeast species to become an excellent set of models for comparative functional studies to address outstanding questions about TE-host relationships.
Collapse
|
32
|
Ohzeki JI, Otake K, Masumoto H. Human artificial chromosome: Chromatin assembly mechanisms and CENP-B. Exp Cell Res 2020; 389:111900. [PMID: 32044309 DOI: 10.1016/j.yexcr.2020.111900] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022]
Abstract
The centromere is a specialized chromosomal locus required for accurate chromosome segregation. Heterochromatin also assembles around centromere chromatin and forms a base that supports sister chromatid cohesion until anaphase begins. Both centromere chromatin and heterochromatin assemble on a centromeric DNA sequence, a highly repetitive sequence called alphoid DNA (α-satellite DNA) in humans. Alphoid DNA can form a de novo centromere and subsequent human artificial chromosome (HAC) when introduced into the human culture cells HT1080. HAC is maintained stably as a single chromosome independent of other human chromosomes. For de novo centromere assembly and HAC formation, the centromere protein CENP-B and its binding sites, CENP-B boxes, are required in the repeating units of alphoid DNA. CENP-B has multiple roles in de novo centromere chromatin assembly and stabilization and in heterochromatin formation upon alphoid DNA introduction into the cells. Here we review recent progress in human artificial chromosome construction and centromere/heterochromatin assembly and maintenance, focusing on the involvement of human centromere DNA and CENP-B protein.
Collapse
Affiliation(s)
- Jun-Ichirou Ohzeki
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, 292-0818, Japan
| | - Koichiro Otake
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, 292-0818, Japan
| | - Hiroshi Masumoto
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, 292-0818, Japan.
| |
Collapse
|
33
|
Gao B, Sang Y, Zong W, Diaby M, Shen D, Wang S, Wang Y, Chen C, Song C. Evolution and domestication of Tc1/mariner transposons in the genome of African coelacanth ( Latimeria chalumnae). Genome 2020; 63:375-386. [PMID: 32268072 DOI: 10.1139/gen-2019-0216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Here, we comprehensively analysed the abundance, diversity, and activity of Tc1/mariner transposons in African coelacanth (Latimeria chalumnae). Fifteen Tc1/mariner autonomous transposons were identified and grouped into six clades: DD34E/Tc1, DD34D/mariner, DD35D/Fot, DD31D/pogo, DD30-31D/pogo-like, and DD32-36D/Tigger, belonging to three known families: DD34E/Tc1, DD34D/mariner, and DD×D/pogo (DD35D/Fot, DD31D/pogo, DD30-31D/pogo-like, and DD32-36D/Tigger). Thirty-one miniature inverted-repeat transposable element (MITE) transposons of Tc1/mariner were also identified, and 20 of them display similarity to the identified autonomous transposons. The structural organization of these full Tc1/mariner elements includes a transposase gene flanked by terminal inverted repeats (TIRs) with TA dinucleotides. The transposases contain N-terminal DNA binding domain and a C-terminal catalytic domain characterized by the presence of a conservative D(Asp)DE(Glu)/D triad that is essential for transposase activity. The Tc1/mariner superfamily in coelacanth exhibited very low genome coverage (0.3%), but it experienced an extraordinary difference of proliferation dynamics among the six clades identified; moreover, most of them exhibited a very recent and current proliferation, suggesting that some copies of these transposons are putatively active. Additionally, at least four functional genes derived from Tc1/mariner transposons were found. We provide an up-to-date overview of Tc1/mariner in coelacanth, which may be helpful in determining genome and gene evolution in this living fossil.
Collapse
Affiliation(s)
- Bo Gao
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yatong Sang
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Wencheng Zong
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Mohamed Diaby
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Dan Shen
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Saisai Wang
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yali Wang
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Cai Chen
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Chengyi Song
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| |
Collapse
|
34
|
Luchetti A, Lomiento M, Mantovani B. Riding the Wave: The SINE-Specific V Highly-Conserved Domain Spread into Mammalian Genomes Exploiting the Replication Burst of the MER6 DNA Transposon. Int J Mol Sci 2019; 20:ijms20225607. [PMID: 31717545 PMCID: PMC6887750 DOI: 10.3390/ijms20225607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023] Open
Abstract
Transposable elements are widely distributed within genomes where they may significantly impact their evolution and cell functions. Short interspersed elements (SINEs) are non-autonomous, fast-evolving elements, but some of them carry a highly conserved domain (HCD), whose sequence remained substantially unchanged throughout the metazoan evolution. SINEs carrying the HCD called V are absent in amniote genomes, but V-like sequences were found within the miniature inverted-repeat transposable element (MITE) MER6 in Homo sapiens. In the present work, the genomic distribution and evolution of MER6 are investigated, in order to reconstruct the origin of human V domain and to envisage its possible functional role. The analysis of 85 tetrapod genomes revealed that MER6 and its variant MER6A are found in primates, while only the MER6A variant was found in bats and eulipotyphlans. These MITEs appeared no longer active, in line with literature data on mammalian DNA transposons. Moreover, they appeared to have originated from a Mariner element found in turtles and from a V-SINE from bony fishes. MER6 insertions were found within genes and conserved in mRNAs: in line with previous hypothesis on functional role of HCDs, the MER6 V domain may be important for cell function also in mammals.
Collapse
Affiliation(s)
- Andrea Luchetti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy;
- Correspondence: ; Tel.: +39-051-209-4165
| | - Mariana Lomiento
- Sant’Orsola Malpighi Hospital, University of Bologna, 40138 Bologna Italy;
| | - Barbara Mantovani
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
35
|
|
36
|
Puzakov MV, Puzakova LV. leidyi Is a New Group of DD41D Transposons in Mnemiopsis leidyi Genome. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419070123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Zhang F, Zhang Y, Lv X, Xu B, Zhang H, Yan J, Li H, Wu L. Evolution of an X-Linked miRNA Family Predominantly Expressed in Mammalian Male Germ Cells. Mol Biol Evol 2019; 36:663-678. [PMID: 30649414 PMCID: PMC6445303 DOI: 10.1093/molbev/msz001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are important posttranscriptional regulators of gene expression. However, comprehensive expression profiles of miRNAs during mammalian spermatogenesis are lacking. Herein, we sequenced small RNAs in highly purified mouse spermatogenic cells at different stages. We found that a family of X-linked miRNAs named spermatogenesis-related miRNAs (spermiRs) is predominantly expressed in the early meiotic phases and has a conserved testis-specific high expression pattern in different mammals. We identified one spermiR homolog in opossum; this homolog might originate from THER1, a retrotransposon that is active in marsupials but extinct in current placental mammals. SpermiRs have expanded rapidly with mammalian evolution and are diverged into two clades, spermiR-L and spermiR-R, which are likely to have been generated at least in part by tandem duplication mediated by flanking retrotransposable elements. Notably, despite having undergone highly frequent lineage-specific duplication events, the sequences encoding all spermiR family members are strictly located between two protein-coding genes, Slitrk2 and Fmr1. Moreover, spermiR-Ls and spermiR-Rs have evolved different expression patterns during spermatogenesis in different mammals. Intriguingly, the seed sequences of spermiRs, which are critical for the recognition of target genes, are highly divergent within and among mammals, whereas spermiR target genes largely overlap. When miR-741, the most highly expressed spermiR, is knocked out in cultured mouse spermatogonial stem cells (SSCs), another spermiR, miR-465a-5p, is dramatically upregulated and becomes the most abundant miRNA. Notably, miR-741−/− SSCs grow normally, and the genome-wide expression levels of mRNAs remain unchanged. All these observations indicate functional compensation between spermiR family members and strong coevolution between spermiRs and their targets.
Collapse
Affiliation(s)
- Fengjuan Zhang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Ying Zhang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaolong Lv
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Beiying Xu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Hongdao Zhang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Jun Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Haipeng Li
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ligang Wu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
38
|
Tang Y, Ma X, Zhao S, Xue W, Zheng X, Sun H, Gu P, Zhu Z, Sun C, Liu F, Tan L. Identification of an active miniature inverted-repeat transposable element mJing in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:639-653. [PMID: 30689248 PMCID: PMC6850418 DOI: 10.1111/tpj.14260] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/01/2019] [Accepted: 01/18/2019] [Indexed: 05/27/2023]
Abstract
Miniature inverted-repeat transposable elements (MITEs) are structurally homogeneous non-autonomous DNA transposons with high copy numbers that play important roles in genome evolution and diversification. Here, we analyzed the rice high-tillering dwarf (htd) mutant in an advanced backcross population between cultivated and wild rice, and identified an active MITE named miniature Jing (mJing). The mJing element belongs to the PIF/Harbinger superfamily. japonica rice var. Nipponbare and indica var. 93-11 harbor 72 and 79 mJing family members, respectively, have undergone multiple rounds of amplification bursts during the evolution of Asian cultivated rice (Oryza sativa L.). A heterologous transposition experiment in Arabidopsis thaliana indicated that the autonomous element Jing is likely to have provides the transposase needed for mJing mobilization. We identified 297 mJing insertion sites and their presence/absence polymorphism among 71 rice samples through targeted high-throughput sequencing. The results showed that the copy number of mJing varies dramatically among Asian cultivated rice (O. sativa), its wild ancestor (O. rufipogon), and African cultivated rice (O. glaberrima) and that some mJing insertions are subject to directional selection. These findings suggest that the amplification and removal of mJing elements have played an important role in rice genome evolution and species diversification.
Collapse
Affiliation(s)
- Yanyan Tang
- State Key Laboratory of Plant Physiology and BiochemistryChina Agricultural UniversityBeijing100193China
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Xin Ma
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Shuangshuang Zhao
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Wei Xue
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Xu Zheng
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Hongying Sun
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Ping Gu
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Zuofeng Zhu
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Chuanqing Sun
- State Key Laboratory of Plant Physiology and BiochemistryChina Agricultural UniversityBeijing100193China
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Fengxia Liu
- State Key Laboratory of Plant Physiology and BiochemistryChina Agricultural UniversityBeijing100193China
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Lubin Tan
- National Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| |
Collapse
|
39
|
Liu Y, Tahir Ul Qamar M, Feng JW, Ding Y, Wang S, Wu G, Ke L, Xu Q, Chen LL. Comparative analysis of miniature inverted-repeat transposable elements (MITEs) and long terminal repeat (LTR) retrotransposons in six Citrus species. BMC PLANT BIOLOGY 2019; 19:140. [PMID: 30987586 PMCID: PMC6466647 DOI: 10.1186/s12870-019-1757-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 04/04/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Miniature inverted-repeat transposable elements (MITEs) and long terminal repeat (LTR) retrotransposons are ubiquitous in plants genomes, and highly important in their evolution and diversity. However, their mechanisms of insertion/amplification and roles in Citrus genome's evolution/diversity are still poorly understood. RESULTS To address this knowledge gap, we developed different computational pipelines to analyze, annotate and classify MITEs and LTR retrotransposons in six different sequenced Citrus species. We identified 62,010 full-length MITEs from 110 distinguished families. We observed MITEs tend to insert in gene related regions and enriched in promoters. We found that DTM63 is possibly an active Mutator-like MITE family in the traceable past and may still be active in Citrus. The insertion of MITEs resulted in massive polymorphisms and played an important role in Citrus genome diversity and gene structure variations. In addition, 6630 complete LTR retrotransposons and 13,371 solo-LTRs were identified. Among them, 12 LTR lineages separated before the differentiation of mono- and dicotyledonous plants. We observed insertion and deletion of LTR retrotransposons was accomplished with a dynamic balance, and their half-life in Citrus was ~ 1.8 million years. CONCLUSIONS These findings provide insights into MITEs and LTR retrotransposons and their roles in genome diversity in different Citrus genomes.
Collapse
Affiliation(s)
- Yan Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Muhammad Tahir Ul Qamar
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jia-Wu Feng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yuduan Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shuo Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Guizhi Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Lingjun Ke
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ling-Ling Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
40
|
Arancio W. Progerin expression induces a significant downregulation of transcription from human repetitive sequences in iPSC-derived dopaminergic neurons. GeroScience 2019; 41:39-49. [PMID: 30623286 DOI: 10.1007/s11357-018-00050-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/26/2018] [Indexed: 12/15/2022] Open
Abstract
Repetitive DNA sequences represent about half of the human genome. They have a central role in human biology, especially neurobiology, but are notoriously difficult to study. The purpose of this study was to quantify the transcription from repetitive sequences in a progerin-expressing cellular model of neuronal aging. Progerin is a nuclear protein causative of the Hutchinson-Gilford progeria syndrome that is also incrementally expressed during the normal aging process. A dedicated pipeline of analysis allowed to quantify transcripts containing repetitive sequences from RNAseq datasets oblivious of their genomic localization, tolerating a sufficient degree of mutational noise, all with low computational requirements. The pipeline has been applied to a published panel of RNAseq datasets derived from a well-established and well-described cellular model of aging of dopaminergic neurons. Progerin expression strongly downregulated the transcription from all the classes of repetitive sequences: satellites, long and short interspersed nuclear elements, human endogenous retroviruses, and DNA transposon. The Alu element represented by far the principal source of transcript originating either from repetitive sequences or from canonical coding genes; it was expressed on average at 192,493.5 reads per kilobase million (RPKM) (SE = 21,081.3) in the control neurons and dropped to 43,760.1 RPKM (SE = 5315.0) in the progerin-expressing neurons, being significant downregulated (p = 0.0005). The results highlighted a global perturbation of transcripts derived from repetitive sequences in a cellular model of aging and provided a direct link between progerin expression and alteration of transcription from human repetitive elements.
Collapse
Affiliation(s)
- Walter Arancio
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STeBiCeF), Viale delle Scienze, University of Palermo, Ed. 16, 90128, Palermo, PA, Italy.
| |
Collapse
|
41
|
Black EM, Giunta S. Repetitive Fragile Sites: Centromere Satellite DNA As a Source of Genome Instability in Human Diseases. Genes (Basel) 2018; 9:E615. [PMID: 30544645 PMCID: PMC6315641 DOI: 10.3390/genes9120615] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 12/31/2022] Open
Abstract
Maintenance of an intact genome is essential for cellular and organismal homeostasis. The centromere is a specialized chromosomal locus required for faithful genome inheritance at each round of cell division. Human centromeres are composed of large tandem arrays of repetitive alpha-satellite DNA, which are often sites of aberrant rearrangements that may lead to chromosome fusions and genetic abnormalities. While the centromere has an essential role in chromosome segregation during mitosis, the long and repetitive nature of the highly identical repeats has greatly hindered in-depth genetic studies, and complete annotation of all human centromeres is still lacking. Here, we review our current understanding of human centromere genetics and epigenetics as well as recent investigations into the role of centromere DNA in disease, with a special focus on cancer, aging, and human immunodeficiency⁻centromeric instability⁻facial anomalies (ICF) syndrome. We also highlight the causes and consequences of genomic instability at these large repetitive arrays and describe the possible sources of centromere fragility. The novel connection between alpha-satellite DNA instability and human pathological conditions emphasizes the importance of obtaining a truly complete human genome assembly and accelerating our understanding of centromere repeats' role in physiology and beyond.
Collapse
Affiliation(s)
- Elizabeth M Black
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | - Simona Giunta
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
42
|
Henssen AG, Kentsis A. Emerging functions of DNA transposases and oncogenic mutators in childhood cancer development. JCI Insight 2018; 3:123172. [PMID: 30333322 DOI: 10.1172/jci.insight.123172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Our understanding of the molecular pathogenesis of childhood cancers has advanced substantially, but their fundamental causes remain poorly understood. Recently, multiple mechanisms of DNA damage and repair have been associated with mutations observed in human cancers. Here, we review the physiologic functions and oncogenic activities of transposable genetic elements. In particular, we focus on the recent studies implicating DNA transposases RAG1/2 and PGBD5 as oncogenic mutators that promote genomic rearrangements in childhood leukemias and solid tumors. We outline future studies that will be needed to define the contributions of transposons to mutational processes that become dysregulated in cancer cells. In addition, we discuss translational approaches, including synthetic lethal strategies, for identifying and developing improved clinical therapies to target oncogenic transposons and transposases.
Collapse
Affiliation(s)
- Anton G Henssen
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin, Berlin, Germany.,German Cancer Consortium, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Alex Kentsis
- Departments of Pediatrics, Pharmacology, and Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York, USA.,Sloan Kettering Institute, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
43
|
An Analysis of IS630/Tc1/mariner Transposons in the Genome of a Pacific Oyster, Crassostrea gigas. J Mol Evol 2018; 86:566-580. [PMID: 30283979 DOI: 10.1007/s00239-018-9868-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022]
Abstract
Transposable elements represent the DNA fragments capable of increasing their copy number and moving within the genome. Class II mobile elements represents the DNA transposons, which transpose via excision and the subsequent reinsertion at random genomic loci. The increase of their copy number occurs only when the transposition event is coupled with the replication. IS630/Tc1/mariner DNA transposon superfamily is one of the largest and widely distributed among the Class II elements. In this work, we provide a detailed analysis of IS630/Tc1/mariner DNA transposons from the Pacific oyster, Crassostrea gigas. IS630/Tc1/mariner transposons represented in the genome of the Pacific oyster belong to four families, Tc1 (DD34E), mariner (DD34D), pogo (DDxD), and rosa (DD41D). More than a half of IS630/Tc1/mariner elements from C. gigas belong to Tc1 family. Furthermore, Mariner-31_CGi element was shown to represent a new and previously unknown family with DD37E signature. We also discovered the full-size transcripts of eight elements from Tc1, mariner, and pogo families, three of which can, presumably, retain their transposition activity.
Collapse
|
44
|
Swapna LS, Molinaro AM, Lindsay-Mosher N, Pearson BJ, Parkinson J. Comparative transcriptomic analyses and single-cell RNA sequencing of the freshwater planarian Schmidtea mediterranea identify major cell types and pathway conservation. Genome Biol 2018; 19:124. [PMID: 30143032 PMCID: PMC6109357 DOI: 10.1186/s13059-018-1498-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 08/01/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In the Lophotrochozoa/Spiralia superphylum, few organisms have as high a capacity for rapid testing of gene function and single-cell transcriptomics as the freshwater planaria. The species Schmidtea mediterranea in particular has become a powerful model to use in studying adult stem cell biology and mechanisms of regeneration. Despite this, systematic attempts to define gene complements and their annotations are lacking, restricting comparative analyses that detail the conservation of biochemical pathways and identify lineage-specific innovations. RESULTS In this study we compare several transcriptomes and define a robust set of 35,232 transcripts. From this, we perform systematic functional annotations and undertake a genome-scale metabolic reconstruction for S. mediterranea. Cross-species comparisons of gene content identify conserved, lineage-specific, and expanded gene families, which may contribute to the regenerative properties of planarians. In particular, we find that the TRAF gene family has been greatly expanded in planarians. We further provide a single-cell RNA sequencing analysis of 2000 cells, revealing both known and novel cell types defined by unique signatures of gene expression. Among these are a novel mesenchymal cell population as well as a cell type involved in eye regeneration. Integration of our metabolic reconstruction further reveals the extent to which given cell types have adapted energy and nucleotide biosynthetic pathways to support their specialized roles. CONCLUSIONS In general, S. mediterranea displays a high level of gene and pathway conservation compared with other model systems, rendering it a viable model to study the roles of these pathways in stem cell biology and regeneration.
Collapse
Affiliation(s)
| | - Alyssa M Molinaro
- Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Nicole Lindsay-Mosher
- Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Bret J Pearson
- Hospital for Sick Children, Toronto, ON, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada. .,Ontario Institute for Cancer Research, Toronto, ON, Canada.
| | - John Parkinson
- Hospital for Sick Children, Toronto, ON, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada. .,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
45
|
Klein SJ, O'Neill RJ. Transposable elements: genome innovation, chromosome diversity, and centromere conflict. Chromosome Res 2018; 26:5-23. [PMID: 29332159 PMCID: PMC5857280 DOI: 10.1007/s10577-017-9569-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 12/21/2022]
Abstract
Although it was nearly 70 years ago when transposable elements (TEs) were first discovered “jumping” from one genomic location to another, TEs are now recognized as contributors to genomic innovations as well as genome instability across a wide variety of species. In this review, we illustrate the ways in which active TEs, specifically retroelements, can create novel chromosome rearrangements and impact gene expression, leading to disease in some cases and species-specific diversity in others. We explore the ways in which eukaryotic genomes have evolved defense mechanisms to temper TE activity and the ways in which TEs continue to influence genome structure despite being rendered transpositionally inactive. Finally, we focus on the role of TEs in the establishment, maintenance, and stabilization of critical, yet rapidly evolving, chromosome features: eukaryotic centromeres. Across centromeres, specific types of TEs participate in genomic conflict, a balancing act wherein they are actively inserting into centromeric domains yet are harnessed for the recruitment of centromeric histones and potentially new centromere formation.
Collapse
Affiliation(s)
- Savannah J Klein
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Rachel J O'Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
46
|
Peccoud J, Cordaux R, Gilbert C. Analyzing Horizontal Transfer of Transposable Elements on a Large Scale: Challenges and Prospects. Bioessays 2017; 40. [DOI: 10.1002/bies.201700177] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/22/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Jean Peccoud
- UMR CNRS 7267; Ecologie et Biologie des Interactions; Equipe Ecologie Evolution Symbiose; Université de Poitiers; 86000 Poitiers France
| | - Richard Cordaux
- UMR CNRS 7267; Ecologie et Biologie des Interactions; Equipe Ecologie Evolution Symbiose; Université de Poitiers; 86000 Poitiers France
| | - Clément Gilbert
- UMR CNRS 9191; UMR 247 IRD Laboratoire Evolution, Génomes, Comportement, Écologie; Université Paris-Sud,; 91198 Gif-sur-Yvette France
| |
Collapse
|
47
|
Puzakova LV, Puzakov MV. The Tc1/mariner DNA transposons in the genome of mollusk Littorina saxatilis. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417120110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Jangam D, Feschotte C, Betrán E. Transposable Element Domestication As an Adaptation to Evolutionary Conflicts. Trends Genet 2017; 33:817-831. [PMID: 28844698 DOI: 10.1016/j.tig.2017.07.011] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 12/26/2022]
Abstract
Transposable elements (TEs) are selfish genetic units that typically encode proteins that enable their proliferation in the genome and spread across individual hosts. Here we review a growing number of studies that suggest that TE proteins have often been co-opted or 'domesticated' by their host as adaptations to a variety of evolutionary conflicts. In particular, TE-derived proteins have been recurrently repurposed as part of defense systems that protect prokaryotes and eukaryotes against the proliferation of infectious or invasive agents, including viruses and TEs themselves. We argue that the domestication of TE proteins may often be the only evolutionary path toward the mitigation of the cost incurred by their own selfish activities.
Collapse
Affiliation(s)
- Diwash Jangam
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| | - Cédric Feschotte
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA; Present address: Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| | - Esther Betrán
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA.
| |
Collapse
|
49
|
Abstract
Selfishness is pervasive and manifests at all scales of biology, from societies, to individuals, to genetic elements within a genome. The relentless struggle to seek evolutionary advantages drives perpetual cycles of adaptation and counter-adaptation, commonly referred to as Red Queen interactions. In this review, we explore insights gleaned from molecular and genetic studies of such genetic conflicts, both extrinsic (between genomes) and intrinsic (within genomes or cells). We argue that many different characteristics of selfish genetic elements can be distilled into two types of advantages: an over-replication advantage (e.g. mobile genetic elements in genomes) and a transmission distortion advantage (e.g. meiotic drivers in populations). These two general categories may help classify disparate types of selfish genetic elements.
Collapse
Affiliation(s)
- Richard N McLaughlin
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA .,Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
50
|
Abstract
Transposable elements give rise to interspersed repeats, sequences that comprise most of our genomes. These mobile DNAs have been historically underappreciated - both because they have been presumed to be unimportant, and because their high copy number and variability pose unique technical challenges. Neither impediment now seems steadfast. Interest in the human mobilome has never been greater, and methods enabling its study are maturing at a fast pace. This Review describes the activity of transposable elements in human cancers, particularly long interspersed element-1 (LINE-1). LINE-1 sequences are self-propagating, protein-coding retrotransposons, and their activity results in somatically acquired insertions in cancer genomes. Altered expression of transposable elements and animation of genomic LINE-1 sequences appear to be hallmarks of cancer, and can be responsible for driving mutations in tumorigenesis.
Collapse
Affiliation(s)
- Kathleen H Burns
- Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|