1
|
Yano J, Kern J, Blankenship RE, Messinger J, Yachandra VK. Tribute to Kenneth Sauer (1931-2022): a mentor, a role-model, and an inspiration to all in the field of photosynthesis. PHOTOSYNTHESIS RESEARCH 2024; 162:103-138. [PMID: 39535662 PMCID: PMC11615026 DOI: 10.1007/s11120-024-01119-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/11/2024] [Indexed: 11/16/2024]
Abstract
Kenneth (Ken) Sauer was a mainstay of research in photosynthesis at the University of California, Berkeley and the Lawrence Berkeley National Laboratory (LBNL) for more than 50 years. Ken will be remembered by his colleagues, and other workers in the field of photosynthesis as well, for his pioneering work that introduced the physical techniques whose application have enriched our understanding of the basic reactions of oxygenic photosynthesis. His laboratory was a training ground for many students and postdocs who went on to success in the field of photosynthesis and many others. Trained as a physical chemist, he always brought that quantitative approach to research questions and used several spectroscopic methods in his research. His broad scientific interests concerned the role of manganese in oxygen evolution, electronic properties of chlorophylls, energy transport in antenna complexes, and electron transport reactions. He was also an enthusiastic teacher, an enormously successful mentor who leaves behind a legion of scientists as his abiding legacy, a lover of music and the outdoors with many interests beyond science, and a dedicated family man with a great sense of humility. In this tribute, we summarize some aspects of Ken Sauer's life and career, illustrated with selected research achievements, and describe his approach to research and life as we perceived it, which is complemented by reminiscences of several current researchers in photosynthesis and other fields. The supporting material includes Ken Sauers's CV and publication list, as well as a list of the graduate students and postdocs he trained and of researchers that spent a sabbatical in his lab.
Collapse
Affiliation(s)
- Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Robert E Blankenship
- Departments of Biology and Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Johannes Messinger
- Molecular Biomimetics, Department of Chemistry-Ångström Laboratory, Uppsala University, 75120, Uppsala, SE, Sweden.
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187, Umeå, SE, Sweden.
| | - Vittal K Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
2
|
Krysiak S, Burda K. The Effect of Removal of External Proteins PsbO, PsbP and PsbQ on Flash-Induced Molecular Oxygen Evolution and Its Biphasicity in Tobacco PSII. Curr Issues Mol Biol 2024; 46:7187-7218. [PMID: 39057069 PMCID: PMC11276211 DOI: 10.3390/cimb46070428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
The oxygen evolution within photosystem II (PSII) is one of the most enigmatic processes occurring in nature. It is suggested that external proteins surrounding the oxygen-evolving complex (OEC) not only stabilize it and provide an appropriate ionic environment but also create water channels, which could be involved in triggering the ingress of water and the removal of O2 and protons outside the system. To investigate the influence of these proteins on the rate of oxygen release and the efficiency of OEC function, we developed a measurement protocol for the direct measurement of the kinetics of oxygen release from PSII using a Joliot-type electrode. PSII-enriched tobacco thylakoids were used in the experiments. The results revealed the existence of slow and fast modes of oxygen evolution. This observation is model-independent and requires no specific assumptions about the initial distribution of the OEC states. The gradual removal of exogenous proteins resulted in a slowdown of the rapid phase (~ms) of O2 release and its gradual disappearance while the slow phase (~tens of ms) accelerated. The role of external proteins in regulating the biphasicity and efficiency of oxygen release is discussed based on observed phenomena and current knowledge.
Collapse
Affiliation(s)
| | - Kvetoslava Burda
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland;
| |
Collapse
|
3
|
Yano J, Kern J, Yachandra VK. Structure Function Studies of Photosystem II Using X-Ray Free Electron Lasers. Annu Rev Biophys 2024; 53:343-365. [PMID: 39013027 PMCID: PMC11321711 DOI: 10.1146/annurev-biophys-071723-102519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The structure and mechanism of the water-oxidation chemistry that occurs in photosystem II have been subjects of great interest. The advent of X-ray free electron lasers allowed the determination of structures of the stable intermediate states and of steps in the transitions between these intermediate states, bringing a new perspective to this field. The room-temperature structures collected as the photosynthetic water oxidation reaction proceeds in real time have provided important novel insights into the structural changes and the mechanism of the water oxidation reaction. The time-resolved measurements have also given us a view of how this reaction-which involves multielectron, multiproton processes-is facilitated by the interaction of the ligands and the protein residues in the oxygen-evolving complex. These structures have also provided a picture of the dynamics occurring in the channels within photosystem II that are involved in the transport of the substrate water to the catalytic center and protons to the bulk.
Collapse
Affiliation(s)
- Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA; , ,
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA; , ,
| | - Vittal K Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA; , ,
| |
Collapse
|
4
|
Wee S, Lian X, Vorobyeva E, Tayal A, Roddatis V, La Mattina F, Gomez Vazquez D, Shpigel N, Salanne M, Lukatskaya MR. Tuning MXene Properties through Cu Intercalation: Coupled Guest/Host Redox and Pseudocapacitance. ACS NANO 2024; 18:10124-10132. [PMID: 38511608 PMCID: PMC11008361 DOI: 10.1021/acsnano.3c12989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
MXenes are 2D transition metal carbides, nitrides, and/or carbonitrides that can be intercalated with cations through chemical or electrochemical pathways. While the insertion of alkali and alkaline earth cations into Ti3C2Tx MXenes is well studied, understanding of the intercalation of redox-active transition metal ions into MXenes and its impact on their electronic and electrochemical properties is lacking. In this work, we investigate the intercalation of Cu ions into Ti3C2Tx MXene and its effect on its electronic and electrochemical properties. Using X-ray absorption spectroscopy (XAS) and ab initio molecular dynamics (AIMD), we observe an unusual phenomenon whereby Cu2+ ions undergo partial reduction upon intercalation from the solution into the MXene. Furthermore, using in situ XAS, we reveal changes in the oxidation states of intercalated Cu ions and Ti atoms during charging. We show that the pseudocapacitive response of Cu-MXene originates from the redox of both the Cu intercalant and Ti3C2Tx host. Despite highly reducing potentials, Cu ions inside the MXene show an excellent stability against full reduction upon charging. Our findings demonstrate how electronic coupling between Cu ions and Ti3C2Tx modifies electrochemical and electronic properties of the latter, providing the framework for the rational design and utilization of transition metal intercalants for tuning the properties of MXenes for various electrochemical systems.
Collapse
Affiliation(s)
- Shianlin Wee
- Electrochemical
Energy Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Xiliang Lian
- Physicochimie
des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Evgeniya Vorobyeva
- Electrochemical
Energy Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Akhil Tayal
- Deutsches
Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg D-22607, Germany
| | - Vladimir Roddatis
- Helmholtz
Centre Potsdam, GFZ German Research Centre
for Geosciences, 14473 Potsdam, Germany
| | - Fabio La Mattina
- Empa
- Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Dario Gomez Vazquez
- Electrochemical
Energy Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Netanel Shpigel
- Department
of Chemical Science, Ariel University, Ariel 40700, Israel
| | - Mathieu Salanne
- Physicochimie
des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, Sorbonne Université, CNRS, F-75005 Paris, France
- Institut
Universitaire de France (IUF), 75231 Paris, France
| | - Maria R. Lukatskaya
- Electrochemical
Energy Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
5
|
Chrysina M, Drosou M, Castillo RG, Reus M, Neese F, Krewald V, Pantazis DA, DeBeer S. Nature of S-States in the Oxygen-Evolving Complex Resolved by High-Energy Resolution Fluorescence Detected X-ray Absorption Spectroscopy. J Am Chem Soc 2023; 145:25579-25594. [PMID: 37970825 PMCID: PMC10690802 DOI: 10.1021/jacs.3c06046] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 11/19/2023]
Abstract
Photosystem II, the water splitting enzyme of photosynthesis, utilizes the energy of sunlight to drive the four-electron oxidation of water to dioxygen at the oxygen-evolving complex (OEC). The OEC harbors a Mn4CaO5 cluster that cycles through five oxidation states Si (i = 0-4). The S3 state is the last metastable state before the O2 evolution. Its electronic structure and nature of the S2 → S3 transition are key topics of persisting controversy. Most spectroscopic studies suggest that the S3 state consists of four Mn(IV) ions, compared to the Mn(III)Mn(IV)3 of the S2 state. However, recent crystallographic data have received conflicting interpretations, suggesting either metal- or ligand-based oxidation, the latter leading to an oxyl radical or a peroxo moiety in the S3 state. Herein, we utilize high-energy resolution fluorescence detected (HERFD) X-ray absorption spectroscopy to obtain a highly resolved description of the Mn K pre-edge region for all S-states, paying special attention to use chemically unperturbed S3 state samples. In combination with quantum chemical calculations, we achieve assignment of specific spectroscopic features to geometric and electronic structures for all S-states. These data are used to confidently discriminate between the various suggestions concerning the electronic structure and the nature of oxidation events in all observable catalytic intermediates of the OEC. Our results do not support the presence of either peroxo or oxyl in the active configuration of the S3 state. This establishes Mn-centered storage of oxidative equivalents in all observable catalytic transitions and constrains the onset of the O-O bond formation until after the final light-driven oxidation event.
Collapse
Affiliation(s)
- Maria Chrysina
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstr. 34-36, Mülheim
an der Ruhr 45470, Germany
- Institute
of Nanoscience & Nanotechnology, NCSR “Demokritos”, Athens 15310, Greece
| | - Maria Drosou
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Rebeca G. Castillo
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstr. 34-36, Mülheim
an der Ruhr 45470, Germany
- Laboratory
of Ultrafast Spectroscopy (LSU) and Lausanne Centre for Ultrafast
Science, École Polytechnique Fédérale
de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Michael Reus
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstr. 34-36, Mülheim
an der Ruhr 45470, Germany
| | - Frank Neese
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Vera Krewald
- Department
of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 4, Darmstadt 64287, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Serena DeBeer
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstr. 34-36, Mülheim
an der Ruhr 45470, Germany
| |
Collapse
|
6
|
Drosou M, Comas-Vilà G, Neese F, Salvador P, Pantazis DA. Does Serial Femtosecond Crystallography Depict State-Specific Catalytic Intermediates of the Oxygen-Evolving Complex? J Am Chem Soc 2023; 145:10604-10621. [PMID: 37137865 DOI: 10.1021/jacs.3c00489] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Recent advances in serial femtosecond crystallography (SFX) of photosystem II (PSII), enabled by X-ray free electron lasers (XFEL), provided the first geometric models of distinct intermediates in the catalytic S-state cycle of the oxygen-evolving complex (OEC). These models are obtained by flash-advancing the OEC from the dark-stable state (S1) to more oxidized intermediates (S2 and S3), eventually cycling back to the most reduced S0. However, the interpretation of these models is controversial because geometric parameters within the Mn4CaO5 cluster of the OEC do not exactly match those expected from coordination chemistry for the spectroscopically verified manganese oxidation states of the distinct S-state intermediates. Here we focus on the first catalytic transition, S1 → S2, which represents a one-electron oxidation of the OEC. Combining geometric and electronic structure criteria, including a novel effective oxidation state approach, we analyze existing 1-flash (1F) SFX-XFEL crystallographic models that should depict the S2 state of the OEC. We show that the 1F/S2 equivalence is not obvious, because the Mn oxidation states and total unpaired electron counts encoded in these models are not fully consistent with those of a pure S2 state and with the nature of the S1 → S2 transition. Furthermore, the oxidation state definition in two-flashed (2F) structural models is practically impossible to elucidate. Our results advise caution in the extraction of electronic structure information solely from the literal interpretation of crystallographic models and call for re-evaluation of structural and mechanistic interpretations that presume exact correspondence of such models to specific catalytic intermediates of the OEC.
Collapse
Affiliation(s)
- Maria Drosou
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Gerard Comas-Vilà
- Institute of Computational Chemistry and Catalysis, Chemistry Department, University of Girona, Montilivi Campus, Girona, Catalonia 17003, Spain
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Pedro Salvador
- Institute of Computational Chemistry and Catalysis, Chemistry Department, University of Girona, Montilivi Campus, Girona, Catalonia 17003, Spain
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
7
|
Ang AKR, Umena Y, Sato-Tomita A, Shibayama N, Happo N, Marumi R, Yamamoto Y, Kimura K, Kawamura N, Takano Y, Matsushita T, Sasaki YC, Shen JR, Hayashi K. Development of serial X-ray fluorescence holography for radiation-sensitive protein crystals. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:368-378. [PMID: 36891850 PMCID: PMC10000799 DOI: 10.1107/s1600577522011833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
X-ray fluorescence holography (XFH) is a powerful atomic resolution technique capable of directly imaging the local atomic structure around atoms of a target element within a material. Although it is theoretically possible to use XFH to study the local structures of metal clusters in large protein crystals, the experiment has proven difficult to perform, especially on radiation-sensitive proteins. Here, the development of serial X-ray fluorescence holography to allow the direct recording of hologram patterns before the onset of radiation damage is reported. By combining a 2D hybrid detector and the serial data collection used in serial protein crystallography, the X-ray fluorescence hologram can be directly recorded in a fraction of the measurement time needed for conventional XFH measurements. This approach was demonstrated by obtaining the Mn Kα hologram pattern from the protein crystal Photosystem II without any X-ray-induced reduction of the Mn clusters. Furthermore, a method to interpret the fluorescence patterns as real-space projections of the atoms surrounding the Mn emitters has been developed, where the surrounding atoms produce large dark dips along the emitter-scatterer bond directions. This new technique paves the way for future experiments on protein crystals that aim to clarify the local atomic structures of their functional metal clusters, and for other related XFH experiments such as valence-selective XFH or time-resolved XFH.
Collapse
Affiliation(s)
- Artoni Kevin R. Ang
- Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| | - Yasufumi Umena
- Synchrotron Radiation Research Center, Nagoya University, Furo, Chikusa, Nagoya 466-8603, Japan
| | - Ayana Sato-Tomita
- Division of Biophysics, Department of Physiology, Jichi Medical University, Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Naoya Shibayama
- Division of Biophysics, Department of Physiology, Jichi Medical University, Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Naohisa Happo
- Department of Computer and Network Engineering, Graduate School of Information Sciences, Hiroshima City University, Asa-Minami-ku, Hiroshima 731-3194, Japan
| | - Riho Marumi
- Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| | - Yuta Yamamoto
- Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| | - Koji Kimura
- Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| | - Naomi Kawamura
- Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyôgo 679-5198, Japan
| | - Yu Takano
- Graduate School of Information Sciences, Hiroshima City University, Asa-Minami-ku, Hiroshima 731-3194, Japan
| | - Tomohiro Matsushita
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Yuji C. Sasaki
- Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Tsushima Naka, Okayama 700-8530, Japan
| | - Kouichi Hayashi
- Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
- Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyôgo 679-5198, Japan
| |
Collapse
|
8
|
Lubitz W, Pantazis DA, Cox N. Water oxidation in oxygenic photosynthesis studied by magnetic resonance techniques. FEBS Lett 2023; 597:6-29. [PMID: 36409002 DOI: 10.1002/1873-3468.14543] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
The understanding of light-induced biological water oxidation in oxygenic photosynthesis is of great importance both for biology and (bio)technological applications. The chemically difficult multistep reaction takes place at a unique protein-bound tetra-manganese/calcium cluster in photosystem II whose structure has been elucidated by X-ray crystallography (Umena et al. Nature 2011, 473, 55). The cluster moves through several intermediate states in the catalytic cycle. A detailed understanding of these intermediates requires information about the spatial and electronic structure of the Mn4 Ca complex; the latter is only available from spectroscopic techniques. Here, the important role of Electron Paramagnetic Resonance (EPR) and related double resonance techniques (ENDOR, EDNMR), complemented by quantum chemical calculations, is described. This has led to the elucidation of the cluster's redox and protonation states, the valence and spin states of the manganese ions and the interactions between them, and contributed substantially to the understanding of the role of the protein surrounding, as well as the binding and processing of the substrate water molecules, the O-O bond formation and dioxygen release. Based on these data, models for the water oxidation cycle are developed.
Collapse
Affiliation(s)
- Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim/Ruhr, Germany
| | | | - Nicholas Cox
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
9
|
Hayakawa T, Arakawa M, Minamikawa K, Fujimoto S, Kawano T, Terasaki A. Oxidation-state analysis of manganese-oxide clusters, Mn O+ (x = 4, y = 4–7), by X-ray absorption spectroscopy. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Han G, Chernev P, Styring S, Messinger J, Mamedov F. Molecular basis for turnover inefficiencies (misses) during water oxidation in photosystem II. Chem Sci 2022; 13:8667-8678. [PMID: 35974765 PMCID: PMC9337725 DOI: 10.1039/d2sc00854h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Photosynthesis stores solar light as chemical energy and efficiency of this process is highly important. The electrons required for CO2 reduction are extracted from water in a reaction driven by light-induced charge separations in the Photosystem II reaction center and catalyzed by the CaMn4O5-cluster. This cyclic process involves five redox intermediates known as the S0–S4 states. In this study, we quantify the flash-induced turnover efficiency of each S state by electron paramagnetic resonance spectroscopy. Measurements were performed in photosystem II membrane preparations from spinach in the presence of an exogenous electron acceptor at selected temperatures between −10 °C and +20 °C and at flash frequencies of 1.25, 5 and 10 Hz. The results show that at optimal conditions the turnover efficiencies are limited by reactions occurring in the water oxidizing complex, allowing the extraction of their S state dependence and correlating low efficiencies to structural changes and chemical events during the reaction cycle. At temperatures 10 °C and below, the highest efficiency (i.e. lowest miss parameter) was found for the S1 → S2 transition, while the S2 → S3 transition was least efficient (highest miss parameter) over the whole temperature range. These electron paramagnetic resonance results were confirmed by measurements of flash-induced oxygen release patterns in thylakoid membranes and are explained on the basis of S state dependent structural changes at the CaMn4O5-cluster that were determined recently by femtosecond X-ray crystallography. Thereby, possible “molecular errors” connected to the e− transfer, H+ transfer, H2O binding and O2 release are identified. Temperature dependence of the transition inefficiencies (misses) for the water oxidation process in photosystem II were studied by EPR spectroscopy and are explained on the basis of S state dependent structural changes at the CaMn4O5-cluster.![]()
Collapse
Affiliation(s)
- Guangye Han
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Petko Chernev
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Stenbjörn Styring
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Johannes Messinger
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| |
Collapse
|
11
|
Mandal M, Saito K, Ishikita H. Requirement of Chloride for the Downhill Electron Transfer Pathway from the Water-Splitting Center in Natural Photosynthesis. J Phys Chem B 2021; 126:123-131. [PMID: 34955014 DOI: 10.1021/acs.jpcb.1c09176] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In photosystem II (PSII), Cl- is a prerequisite for the second flash-induced oxidation of the Mn4CaO5 cluster (the S2 to S3 transition). We report proton transfer from the substrate water molecule via D1-Asp61 and electron transfer via redox-active D1-Tyr161 (TyrZ) to the chlorophyll pair in Cl--depleted PSII using a quantum mechanical/molecular mechanical approach. The low-barrier H-bond formation between the substrate water molecule and D1-Asp61 remained unaffected upon the depletion of Cl-. However, the binding site, D2-Lys317, formed a salt bridge with D1-Asp61, leading to the inhibition of the subsequent proton transfer. Remarkably, the redox potential (Em) of S2/S3 increased significantly, making electron transfer from S2 to TyrZ energetically uphill, as observed in Ca2+-depleted PSII. The uphill electron transfer pathway was induced by the significant increase in Em(S2/S3) caused by the loss of charge compensation for D2-Lys317 upon the depletion of Cl-, whereas it was induced by the significant decrease in Em(TyrZ) caused by the rearrangement of the water molecules at the Ca2+ binding moiety upon the depletion of Ca2+.
Collapse
Affiliation(s)
- Manoj Mandal
- Department of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, West Bengal 700106, India
| | - Keisuke Saito
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.,Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.,Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| |
Collapse
|
12
|
Mandal M, Saito K, Ishikita H. Two Distinct Oxygen-Radical Conformations in the X-ray Free Electron Laser Structures of Photosystem II. J Phys Chem Lett 2021; 12:4032-4037. [PMID: 33881870 DOI: 10.1021/acs.jpclett.1c00814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report the existence of two distinct oxygen-radical-containing Mn4CaO5/6 conformations with short O···O bonds in the crystal structures of the oxygen-evolving enzyme photosystem II (PSII), obtained using an X-ray free electron laser (XFEL). A short O···O distance of <2.3 Å between the O4 site of the Mn4CaO5 complex and the adjacent water molecule (W539) in the proton-conducting O4-water chain was observed in the second flash-induced (2F) XFEL structure (2F-XFEL), which may correspond to S3. By use of a quantum mechanical/molecular mechanical approach, the OH• formation at W539 and the short O4···OW539 distance (<2.3 Å) were reproduced in S2 and S3 with reduced Mn1(III), which lacks the additional sixth water molecule O6. As the O•- formation at O6 and the short O5···O6 distance (1.9 Å) have been reported in another 2F-XFEL structure with reduced Mn4(III), two distinct oxygen-radical conformations exist in the 2F-XFEL crystals.
Collapse
Affiliation(s)
- Manoj Mandal
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Keisuke Saito
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| |
Collapse
|
13
|
Mandal M, Saito K, Ishikita H. The Nature of the Short Oxygen-Oxygen Distance in the Mn 4CaO 6 Complex of Photosystem II Crystals. J Phys Chem Lett 2020; 11:10262-10268. [PMID: 33210928 DOI: 10.1021/acs.jpclett.0c02868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The O···O distance for a typical H-bond is ∼2.8 Å, whereas the radiation-damage-free structures of photosystem II (PSII), obtained using the X-ray free electron laser (XFEL), shows remarkably short O···O distances of ∼2 Å in the oxygen-evolving Mn4CaO5/6 complex. Herein, we report the protonation/oxidation states of the short O···O atoms in the XFEL structures using a quantum mechanical/molecular mechanical approach. The O5···O6 distance of 1.9 Å is reproduced only when O6 is an unprotonated O radical (O•-) with Mn(IV)3Mn(III), i.e., the S3 state. The potential energy profile shows a barrier-less energy minimum region when O5···O6 = 1.90-2.05 Å (O•- ↓) or 2.05-2.20 Å (O•- ↑). Formation of such a short O5···O6 distance is not possible when O6 is OH- with Mn(IV)4. In the case in which the O5···O6 distance is 1.9 Å, it seems likely that the O radical species exists in the oxygen-evolving complex of the XFEL-S3 crystals.
Collapse
Affiliation(s)
- Manoj Mandal
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Keisuke Saito
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| |
Collapse
|
14
|
Water-oxidizing complex in Photosystem II: Its structure and relation to manganese-oxide based catalysts. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213183] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
|
16
|
Abstract
AbstractCyanobacteria and plants carry out oxygenic photosynthesis. They use water to generate the atmospheric oxygen we breathe and carbon dioxide to produce the biomass serving as food, feed, fibre and fuel. This paper scans the emergence of structural and mechanistic understanding of oxygen evolution over the past 50 years. It reviews speculative concepts and the stepped insight provided by novel experimental and theoretical techniques. Driven by sunlight photosystem II oxidizes the catalyst of water oxidation, a hetero-metallic Mn4CaO5(H2O)4 cluster. Mn3Ca are arranged in cubanoid and one Mn dangles out. By accumulation of four oxidizing equivalents before initiating dioxygen formation it matches the four-electron chemistry from water to dioxygen to the one-electron chemistry of the photo-sensitizer. Potentially harmful intermediates are thereby occluded in space and time. Kinetic signatures of the catalytic cluster and its partners in the photo-reaction centre have been resolved, in the frequency domain ranging from acoustic waves via infra-red to X-ray radiation, and in the time domain from nano- to milli-seconds. X-ray structures to a resolution of 1.9 Å are available. Even time resolved X-ray structures have been obtained by clocking the reaction cycle by flashes of light and diffraction with femtosecond X-ray pulses. The terminal reaction cascade from two molecules of water to dioxygen involves the transfer of four electrons, two protons, one dioxygen and one water. A rigorous mechanistic analysis is challenging because of the kinetic enslaving at millisecond duration of six partial reactions (4e−, 1H+, 1O2). For the time being a peroxide-intermediate in the reaction cascade to dioxygen has been in focus, both experimentally and by quantum chemistry. Homo sapiens has relied on burning the products of oxygenic photosynthesis, recent and fossil. Mankind's total energy consumption amounts to almost one-fourth of the global photosynthetic productivity. If the average power consumption equalled one of those nations with the highest consumption per capita it was four times greater and matched the total productivity. It is obvious that biomass should be harvested for food, feed, fibre and platform chemicals rather than for fuel.
Collapse
|
17
|
Shamsipur M, Pashabadi A. Latest advances in PSII features and mechanism of water oxidation. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Affiliation(s)
- Dimitrios A. Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
19
|
Hazari AS, Indra A, Lahiri GK. Mixed valency in ligand-bridged diruthenium frameworks: divergences and perspectives. RSC Adv 2018; 8:28895-28908. [PMID: 35547993 PMCID: PMC9084559 DOI: 10.1039/c8ra03206h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 08/01/2018] [Indexed: 11/21/2022] Open
Abstract
Emerging fundamental issues involving intramolecular electron transfer at the mixed valent diruthenium frameworks and its application prospects have been highlighted.
Collapse
Affiliation(s)
| | - Arindam Indra
- Department of Chemistry
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi
- India
| | - Goutam Kumar Lahiri
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| |
Collapse
|
20
|
Schuth N, Liang Z, Schönborn M, Kussicke A, Assunção R, Zaharieva I, Zilliges Y, Dau H. Inhibitory and Non-Inhibitory NH 3 Binding at the Water-Oxidizing Manganese Complex of Photosystem II Suggests Possible Sites and a Rearrangement Mode of Substrate Water Molecules. Biochemistry 2017; 56:6240-6256. [PMID: 29086556 DOI: 10.1021/acs.biochem.7b00743] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The identity and rearrangements of substrate water molecules in photosystem II (PSII) water oxidation are of great mechanistic interest and addressed herein by comprehensive analysis of NH4+/NH3 binding. Time-resolved detection of O2 formation and recombination fluorescence as well as Fourier transform infrared (FTIR) difference spectroscopy on plant PSII membrane particles reveals the following. (1) Partial inhibition in NH4Cl buffer occurs with a pH-independent binding constant of ∼25 mM, which does not result from decelerated O2 formation, but from complete blockage of a major PSII fraction (∼60%) after reaching the Mn(IV)4 (S3) state. (2) The non-inhibited PSII fraction advances through the reaction cycle, but modified nuclear rearrangements are suggested by FTIR difference spectroscopy. (3) Partial inhibition can be explained by anticooperative (mutually exclusive) NH3 binding to one inhibitory and one non-inhibitory site; these two sites may correspond to two water molecules terminally bound to the "dangling" Mn ion. (4) Unexpectedly strong modifications of the FTIR difference spectra suggest that in the non-inhibited PSII, ammonia binding obliterates the need for some of the nuclear rearrangements occurring in the S2-S3 transition as well as their reversal in the O2 formation transition, in line with the carousel mechanism [Askerka, M., et al. (2015) Biochemistry 54, 5783]. (5) We observe the same partial inhibition of PSII by NH4Cl also for thylakoid membranes prepared from mesophilic and thermophilic cyanobacteria, suggesting that the results described above are valid for plant and cyanobacterial PSII.
Collapse
Affiliation(s)
- Nils Schuth
- Freie Universität Berlin , Department of Physics, 14195 Berlin, Germany
| | - Zhiyong Liang
- Freie Universität Berlin , Department of Physics, 14195 Berlin, Germany
| | | | - André Kussicke
- Freie Universität Berlin , Department of Physics, 14195 Berlin, Germany
| | - Ricardo Assunção
- Freie Universität Berlin , Department of Physics, 14195 Berlin, Germany
| | - Ivelina Zaharieva
- Freie Universität Berlin , Department of Physics, 14195 Berlin, Germany
| | - Yvonne Zilliges
- Freie Universität Berlin , Department of Physics, 14195 Berlin, Germany
| | - Holger Dau
- Freie Universität Berlin , Department of Physics, 14195 Berlin, Germany
| |
Collapse
|
21
|
Najafpour MM, Heidari S, Balaghi SE, Hołyńska M, Sadr MH, Soltani B, Khatamian M, Larkum AW, Allakhverdiev SI. Proposed mechanisms for water oxidation by Photosystem II and nanosized manganese oxides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:156-174. [DOI: 10.1016/j.bbabio.2016.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/05/2016] [Accepted: 11/08/2016] [Indexed: 12/18/2022]
|
22
|
Nakamura S, Noguchi T. Quantum mechanics/molecular mechanics simulation of the ligand vibrations of the water-oxidizing Mn 4CaO 5 cluster in photosystem II. Proc Natl Acad Sci U S A 2016; 113:12727-12732. [PMID: 27729534 PMCID: PMC5111704 DOI: 10.1073/pnas.1607897113] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During photosynthesis, the light-driven oxidation of water performed by photosystem II (PSII) provides electrons necessary to fix CO2, in turn supporting life on Earth by liberating molecular oxygen. Recent high-resolution X-ray images of PSII show that the water-oxidizing center (WOC) is composed of an Mn4CaO5 cluster with six carboxylate, one imidazole, and four water ligands. FTIR difference spectroscopy has shown significant structural changes of the WOC during the S-state cycle of water oxidation, especially within carboxylate groups. However, the roles that these carboxylate groups play in water oxidation as well as how they should be properly assigned in spectra are unresolved. In this study, we performed a normal mode analysis of the WOC using the quantum mechanics/molecular mechanics (QM/MM) method to simulate FTIR difference spectra on the S1 to S2 transition in the carboxylate stretching region. By evaluating WOC models with different oxidation and protonation states, we determined that models of high-oxidation states, Mn(III)2Mn(IV)2, satisfactorily reproduced experimental spectra from intact and Ca-depleted PSII compared with low-oxidation models. It is further suggested that the carboxylate groups bridging Ca and Mn ions within this center tune the reactivity of water ligands bound to Ca by shifting charge via their π conjugation.
Collapse
Affiliation(s)
- Shin Nakamura
- Division of Material Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Takumi Noguchi
- Division of Material Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
23
|
Zaharieva I, Chernev P, Berggren G, Anderlund M, Styring S, Dau H, Haumann M. Room-Temperature Energy-Sampling Kβ X-ray Emission Spectroscopy of the Mn4Ca Complex of Photosynthesis Reveals Three Manganese-Centered Oxidation Steps and Suggests a Coordination Change Prior to O2 Formation. Biochemistry 2016; 55:4197-211. [PMID: 27377097 DOI: 10.1021/acs.biochem.6b00491] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In oxygenic photosynthesis, water is oxidized and dioxygen is produced at a Mn4Ca complex bound to the proteins of photosystem II (PSII). Valence and coordination changes in its catalytic S-state cycle are of great interest. In room-temperature (in situ) experiments, time-resolved energy-sampling X-ray emission spectroscopy of the Mn Kβ1,3 line after laser-flash excitation of PSII membrane particles was applied to characterize the redox transitions in the S-state cycle. The Kβ1,3 line energies suggest a high-valence configuration of the Mn4Ca complex with Mn(III)3Mn(IV) in S0, Mn(III)2Mn(IV)2 in S1, Mn(III)Mn(IV)3 in S2, and Mn(IV)4 in S3 and, thus, manganese oxidation in each of the three accessible oxidizing transitions of the water-oxidizing complex. There are no indications of formation of a ligand radical, thus rendering partial water oxidation before reaching the S4 state unlikely. The difference spectra of both manganese Kβ1,3 emission and K-edge X-ray absorption display different shapes for Mn(III) oxidation in the S2 → S3 transition when compared to Mn(III) oxidation in the S1 → S2 transition. Comparison to spectra of manganese compounds with known structures and oxidation states and varying metal coordination environments suggests a change in the manganese ligand environment in the S2 → S3 transition, which could be oxidation of five-coordinated Mn(III) to six-coordinated Mn(IV). Conceivable options for the rearrangement of (substrate) water species and metal-ligand bonding patterns at the Mn4Ca complex in the S2 → S3 transition are discussed.
Collapse
Affiliation(s)
- Ivelina Zaharieva
- Freie Universität Berlin , Department of Physics, 14195 Berlin, Germany
| | - Petko Chernev
- Freie Universität Berlin , Department of Physics, 14195 Berlin, Germany
| | - Gustav Berggren
- Uppsala University , Department of Chemistry, Ångström Laboratory, 75120 Uppsala, Sweden
| | - Magnus Anderlund
- Uppsala University , Department of Chemistry, Ångström Laboratory, 75120 Uppsala, Sweden
| | - Stenbjörn Styring
- Uppsala University , Department of Chemistry, Ångström Laboratory, 75120 Uppsala, Sweden
| | - Holger Dau
- Freie Universität Berlin , Department of Physics, 14195 Berlin, Germany
| | - Michael Haumann
- Freie Universität Berlin , Department of Physics, 14195 Berlin, Germany
| |
Collapse
|
24
|
Gerey B, Gouré E, Fortage J, Pécaut J, Collomb MN. Manganese-calcium/strontium heterometallic compounds and their relevance for the oxygen-evolving center of photosystem II. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Krewald V, Retegan M, Neese F, Lubitz W, Pantazis DA, Cox N. Spin State as a Marker for the Structural Evolution of Nature’s Water-Splitting Catalyst. Inorg Chem 2015; 55:488-501. [DOI: 10.1021/acs.inorgchem.5b02578] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Vera Krewald
- Max Planck Institute for Chemical Energy Conversion, Stiftstr.
34–36, Mülheim an der Ruhr 45470, Germany
| | - Marius Retegan
- Max Planck Institute for Chemical Energy Conversion, Stiftstr.
34–36, Mülheim an der Ruhr 45470, Germany
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion, Stiftstr.
34–36, Mülheim an der Ruhr 45470, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstr.
34–36, Mülheim an der Ruhr 45470, Germany
| | - Dimitrios A. Pantazis
- Max Planck Institute for Chemical Energy Conversion, Stiftstr.
34–36, Mülheim an der Ruhr 45470, Germany
| | - Nicholas Cox
- Max Planck Institute for Chemical Energy Conversion, Stiftstr.
34–36, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
26
|
Sproviero EM, Gascón JA, McEvoy JP, Brudvig GW, Batista VS. QM/MM Models of the O2-Evolving Complex of Photosystem II. J Chem Theory Comput 2015; 2:1119-34. [PMID: 26633071 DOI: 10.1021/ct060018l] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This paper introduces structural models of the oxygen-evolving complex of photosystem II (PSII) in the dark-stable S1 state, as well as in the reduced S0 and oxidized S2 states, with complete ligation of the metal-oxo cluster by amino acid residues, water, hydroxide, and chloride. The models are developed according to state-of-the-art quantum mechanics/molecular mechanics (QM/MM) hybrid methods, applied in conjunction with the X-ray crystal structure of PSII from the cyanobacterium Thermosynechococcus elongatus, recently reported at 3.5 Å resolution. Manganese and calcium ions are ligated consistently with standard coordination chemistry assumptions, supported by biochemical and spectroscopic data. Furthermore, the calcium-bound chloride ligand is found to be bound in a position consistent with pulsed electron paramagnetic resonance data obtained from acetate-substituted PSII. The ligation of protein ligands includes monodentate coordination of D1-D342, CP43-E354, and D1-D170 to Mn(1), Mn(3), and Mn(4), respectively; η(2) coordination of D1-E333 to both Mn(3) and Mn(2); and ligation of D1-E189 and D1-H332 to Mn(2). The resulting QM/MM structural models are consistent with available mechanistic data and also are compatible with X-ray diffraction models and extended X-ray absorption fine structure measurements of PSII. It is, therefore, conjectured that the proposed QM/MM models are particularly relevant to the development and validation of catalytic water-oxidation intermediates.
Collapse
Affiliation(s)
- Eduardo M Sproviero
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107
| | - José A Gascón
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107
| | - James P McEvoy
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107
| | - Gary W Brudvig
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107
| | - Victor S Batista
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107
| |
Collapse
|
27
|
Isobe H, Shoji M, Shen JR, Yamaguchi K. Strong Coupling between the Hydrogen Bonding Environment and Redox Chemistry during the S2 to S3 Transition in the Oxygen-Evolving Complex of Photosystem II. J Phys Chem B 2015; 119:13922-33. [DOI: 10.1021/acs.jpcb.5b05740] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Hiroshi Isobe
- Photosynthesis
Research Center, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
- The Institute
of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Mitsuo Shoji
- Graduate School
of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Jian-Ren Shen
- Photosynthesis
Research Center, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Kizashi Yamaguchi
- The Institute
of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
- Institute for
NanoScience Design, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
28
|
Krewald V, Neese F, Pantazis DA. Resolving the Manganese Oxidation States in the Oxygen-evolving Catalyst of Natural Photosynthesis. Isr J Chem 2015. [DOI: 10.1002/ijch.201500051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
29
|
Lohmiller T, Shelby ML, Long X, Yachandra VK, Yano J. Removal of Ca(2+) from the Oxygen-Evolving Complex in Photosystem II Has Minimal Effect on the Mn4O5 Core Structure: A Polarized Mn X-ray Absorption Spectroscopy Study. J Phys Chem B 2015; 119:13742-54. [PMID: 25989608 DOI: 10.1021/acs.jpcb.5b03559] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ca(2+)-depleted and Ca(2+)-reconstituted spinach photosystem II was studied using polarized X-ray absorption spectroscopy of oriented PS II preparations to investigate the structural and functional role of the Ca(2+) ion in the Mn4O5Ca cluster of the oxygen-evolving complex (OEC). Samples were prepared by low pH/citrate treatment as one-dimensionally ordered membrane layers and poised in the Ca(2+)-depleted S1 (S1') and S2 (S2') states, the S2'YZ(•) state, at which point the catalytic cycle of water oxidation is inhibited, and the Ca(2+)-reconstituted S1 state. Polarized Mn K-edge XANES and EXAFS spectra exhibit pronounced dichroism. Polarized EXAFS data of all states of Ca(2+)-depleted PS II investigated show only minor changes in distances and orientations of the Mn-Mn vectors compared to the Ca(2+)-containing OEC, which may be attributed to some loss of rigidity of the core structure. Thus, removal of the Ca(2+) ion does not lead to fundamental distortion or rearrangement of the tetranuclear Mn cluster, which indicates that the Ca(2+) ion in the OEC is not critical for structural maintenance of the cluster, at least in the S1 and S2 states, but fulfills a crucial catalytic function in the mechanism of the water oxidation reaction. On the basis of this structural information, reasons for the inhibitory effect of Ca(2+) removal are discussed, attributing to the Ca(2+) ion a fundamental role in organizing the surrounding (substrate) water framework and in proton-coupled electron transfer to YZ(•) (D1-Tyr161).
Collapse
Affiliation(s)
- Thomas Lohmiller
- Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720-5230, United States
| | - Megan L Shelby
- Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720-5230, United States
| | - Xi Long
- Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720-5230, United States
| | - Vittal K Yachandra
- Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720-5230, United States
| | - Junko Yano
- Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720-5230, United States
| |
Collapse
|
30
|
Petrie S, Stranger R, Pace RJ. Rationalising the Geometric Variation between the A and B Monomers in the 1.9 Å Crystal Structure of Photosystem II. Chemistry 2015; 21:6780-92. [DOI: 10.1002/chem.201406419] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Indexed: 11/12/2022]
|
31
|
Krewald V, Retegan M, Cox N, Messinger J, Lubitz W, DeBeer S, Neese F, Pantazis DA. Metal oxidation states in biological water splitting. Chem Sci 2015; 6:1676-1695. [PMID: 29308133 PMCID: PMC5639794 DOI: 10.1039/c4sc03720k] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/31/2014] [Indexed: 12/20/2022] Open
Abstract
A central question in biological water splitting concerns the oxidation states of the manganese ions that comprise the oxygen-evolving complex of photosystem II.
A central question in biological water splitting concerns the oxidation states of the manganese ions that comprise the oxygen-evolving complex of photosystem II. Understanding the nature and order of oxidation events that occur during the catalytic cycle of five Si states (i = 0–4) is of fundamental importance both for the natural system and for artificial water oxidation catalysts. Despite the widespread adoption of the so-called “high-valent scheme”—where, for example, the Mn oxidation states in the S2 state are assigned as III, IV, IV, IV—the competing “low-valent scheme” that differs by a total of two metal unpaired electrons (i.e. III, III, III, IV in the S2 state) is favored by several recent studies for the biological catalyst. The question of the correct oxidation state assignment is addressed here by a detailed computational comparison of the two schemes using a common structural platform and theoretical approach. Models based on crystallographic constraints were constructed for all conceivable oxidation state assignments in the four (semi)stable S states of the oxygen evolving complex, sampling various protonation levels and patterns to ensure comprehensive coverage. The models are evaluated with respect to their geometric, energetic, electronic, and spectroscopic properties against available experimental EXAFS, XFEL-XRD, EPR, ENDOR and Mn K pre-edge XANES data. New 2.5 K 55Mn ENDOR data of the S2 state are also reported. Our results conclusively show that the entire S state phenomenology can only be accommodated within the high-valent scheme by adopting a single motif and protonation pattern that progresses smoothly from S0 (III, III, III, IV) to S3 (IV, IV, IV, IV), satisfying all experimental constraints and reproducing all observables. By contrast, it was impossible to construct a consistent cycle based on the low-valent scheme for all S states. Instead, the low-valent models developed here may provide new insight into the over-reduced S states and the states involved in the assembly of the catalytically active water oxidizing cluster.
Collapse
Affiliation(s)
- Vera Krewald
- Max Planck Institute for Chemical Energy Conversion , Stiftstr. 34-38 , 45470 Mülheim an der Ruhr , Germany .
| | - Marius Retegan
- Max Planck Institute for Chemical Energy Conversion , Stiftstr. 34-38 , 45470 Mülheim an der Ruhr , Germany .
| | - Nicholas Cox
- Max Planck Institute for Chemical Energy Conversion , Stiftstr. 34-38 , 45470 Mülheim an der Ruhr , Germany .
| | - Johannes Messinger
- Department of Chemistry , Chemical Biological Center (KBC) , Umeå University , 90187 Umeå , Sweden
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion , Stiftstr. 34-38 , 45470 Mülheim an der Ruhr , Germany .
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion , Stiftstr. 34-38 , 45470 Mülheim an der Ruhr , Germany .
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion , Stiftstr. 34-38 , 45470 Mülheim an der Ruhr , Germany .
| | - Dimitrios A Pantazis
- Max Planck Institute for Chemical Energy Conversion , Stiftstr. 34-38 , 45470 Mülheim an der Ruhr , Germany .
| |
Collapse
|
32
|
Abstract
Nature relies on a unique and intricate biochemical setup to achieve sunlight-driven water splitting. Combined experimental and computational efforts have produced significant insights into the structural and functional principles governing the operation of the water-oxidizing enzyme Photosystem II in general, and of the oxygen-evolving manganese-calcium cluster at its active site in particular. Here we review the most important aspects of biological water oxidation, emphasizing current knowledge on the organization of the enzyme, the geometric and electronic structure of the catalyst, and the role of calcium and chloride cofactors. The combination of recent experimental work on the identification of possible substrate sites with computational modeling have considerably limited the possible mechanistic pathways for the critical O-O bond formation step. Taken together, the key features and principles of natural photosynthesis may serve as inspiration for the design, development, and implementation of artificial systems.
Collapse
|
33
|
Jin K, Park J, Lee J, Yang KD, Pradhan GK, Sim U, Jeong D, Jang HL, Park S, Kim D, Sung NE, Kim SH, Han S, Nam KT. Hydrated Manganese(II) Phosphate (Mn3(PO4)2·3H2O) as a Water Oxidation Catalyst. J Am Chem Soc 2014; 136:7435-43. [DOI: 10.1021/ja5026529] [Citation(s) in RCA: 279] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Donghun Kim
- Division
of Materials Science, Korea Basic Science Institute, Daejeon 305-333, Korea
| | - Nark-Eon Sung
- Pohang Accelerator
Laboratory, POSTECH, Pohang 790-784, South Korea
| | - Sun Hee Kim
- Division
of Materials Science, Korea Basic Science Institute, Daejeon 305-333, Korea
| | | | | |
Collapse
|
34
|
Yano J, Yachandra V. Mn4Ca cluster in photosynthesis: where and how water is oxidized to dioxygen. Chem Rev 2014; 114:4175-205. [PMID: 24684576 PMCID: PMC4002066 DOI: 10.1021/cr4004874] [Citation(s) in RCA: 490] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Indexed: 12/25/2022]
Affiliation(s)
- Junko Yano
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Vittal Yachandra
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
35
|
Yamaguchi K, Yamanaka S, Shoji M, Isobe H, Kitagawa Y, Kawakami T, Yamada S, Okumura M. Theory of chemical bonds in metalloenzymes XIX: labile manganese oxygen bonds of the CaMn4O5cluster in oxygen evolving complex of photosystem II. Mol Phys 2013. [DOI: 10.1080/00268976.2013.842009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Abstract
Photosystem II (PSII), a multisubunit pigment-protein supercomplex found in cyanobacteria, algae, and plants, catalyzes a unique reaction in nature: the light-driven oxidation of water. Remarkable recent advances in the structural analysis of PSII now give a detailed picture of the static supercomplex on the molecular level. These data provide a solid foundation for future functional studies, in particular the mechanism of water oxidation and oxygen release. The catalytic core of the PSII is a tetramanganese-calcium cluster (Mn₄O₅Ca), commonly referred to as the oxygen-evolving complex (OEC). The function of the OEC rests on its ability to cycle through five metastable states (Si, i = 0-4), transiently storing four oxidizing equivalents, and in so doing, facilitates the four electron water splitting reaction. While the latest crystallographic model of PSII gives an atomic picture of the OEC, the exact connectivity within the inorganic core and the S-state(s) that the X-ray model represents remain uncertain. In this Account, we describe our joint experimental and theoretical efforts to eliminate these ambiguities by combining the X-ray data with spectroscopic constraints and introducing computational modeling. We are developing quantum chemical methods to predict electron paramagnetic resonance (EPR) parameters for transition metal clusters, especially focusing on spin-projection approaches combined with density functional theory (DFT) calculations. We aim to resolve the geometric and electronic structures of all S-states, correlating their structural features with spectroscopic observations to elucidate reactivity. The sequence of manganese oxidations and concomitant charge compensation events via proton transfer allow us to rationalize the multielectron S-state cycle. EPR spectroscopy combined with theoretical calculations provides a unique window into the tetramangenese complex, in particular its protonation states and metal ligand sphere evolution, far beyond the scope of static techniques such as X-ray crystallography. This approach has led, for example, to a detailed understanding of the EPR signals in the S₂-state of the OEC in terms of two interconvertible, isoenergetic structures. These two structures differ in their valence distribution and spin multiplicity, which has important consequences for substrate binding and may explain its low barrier exchange with solvent water. New experimental techniques and innovative sample preparations are beginning to unravel the complex sequence of substrate uptake/inclusion, which is coupled to proton release. The introduction of specific site perturbations, such as replacing Ca²⁺ with Sr²⁺, provides discrete information about the ligand environment of the individual Mn ions. In this way, we have identified a potential open coordination site for one Mn center, which may serve as a substrate binding site in the higher S-states, such as S₃ and S₄. In addition, we can now monitor the binding of the substrate water in the lower S-states (S₁ and S₂) using new EPR-detected NMR spectroscopies. These studies provided the first evidence that one of the substrates is subsumed into the complex itself and forms an oxo-bridge between two Mn ions. This result places important new restrictions on the mechanism of O-O bond formation. These new insights from nature's water splitting catalyst provide important criteria for the rational design of bioinspired synthetic catalysts.
Collapse
Affiliation(s)
- Nicholas Cox
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Dimitrios A. Pantazis
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
37
|
Brena B, Siegbahn PEM, Ågren H. Modeling Near-Edge Fine Structure X-ray Spectra of the Manganese Catalytic Site for Water Oxidation in Photosystem II. J Am Chem Soc 2012; 134:17157-67. [DOI: 10.1021/ja306794p] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Barbara Brena
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden
| | - Per E. M. Siegbahn
- Department of Physics, Alba
Nova, and Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Hans Ågren
- School of Biotechnology, Theoretical
Chemistry and Biology, Royal Institute of Technology, S-106 91 Stockholm, Sweden
| |
Collapse
|
38
|
Kondaveeti SK, Vaddypally S, Lam C, Hirai D, Ni N, Cava RJ, Zdilla MJ. Synthesis, Structure, and Magnetic Studies of Manganese–Oxygen Clusters of Reduced Coordination Number, Featuring an Unchelated, 5-Coordinate Octanuclear Manganese Cluster with Water-Derived Oxo Ligands. Inorg Chem 2012; 51:10095-104. [DOI: 10.1021/ic202448c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sandeep K. Kondaveeti
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia,
Pennsylvania 19122, United States
| | - Shivaiah Vaddypally
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia,
Pennsylvania 19122, United States
| | - Carol Lam
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia,
Pennsylvania 19122, United States
| | - Daigorou Hirai
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544,
United States
| | - Ni Ni
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544,
United States
| | - Robert J. Cava
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544,
United States
| | - Michael J. Zdilla
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia,
Pennsylvania 19122, United States
| |
Collapse
|
39
|
Which oxidation state is preferable at S0 state in oxygen-evolving complex, Mn4(II, III, IV, IV) or Mn4(III, III, III, IV)? A B3LYP study. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
What are the oxidation states of manganese required to catalyze photosynthetic water oxidation? Biophys J 2012; 103:313-22. [PMID: 22853909 DOI: 10.1016/j.bpj.2012.05.031] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 05/04/2012] [Accepted: 05/08/2012] [Indexed: 11/22/2022] Open
Abstract
Photosynthetic O(2) production from water is catalyzed by a cluster of four manganese ions and a tyrosine residue that comprise the redox-active components of the water-oxidizing complex (WOC) of photosystem II (PSII) in all known oxygenic phototrophs. Knowledge of the oxidation states is indispensable for understanding the fundamental principles of catalysis by PSII and the catalytic mechanism of the WOC. Previous spectroscopic studies and redox titrations predicted the net oxidation state of the S(0) state to be (Mn(III))(3)Mn(IV). We have refined a previously developed photoassembly procedure that directly determines the number of oxidizing equivalents needed to assemble the Mn(4)Ca core of WOC during photoassembly, starting from free Mn(II) and the Mn-depleted apo-WOC complex. This experiment entails counting the number of light flashes required to produce the first O(2) molecules during photoassembly. Unlike spectroscopic methods, this process does not require reference to synthetic model complexes. We find the number of photoassembly intermediates required to reach the lowest oxidation state of the WOC, S(0), to be three, indicating a net oxidation state three equivalents above four Mn(II), formally (Mn(III))(3)Mn(II), whereas the O(2) releasing state, S(4), corresponds formally to (Mn(IV))(3)Mn(III). The results from this study have major implications for proposed mechanisms of photosynthetic water oxidation.
Collapse
|
41
|
Han G, Mamedov F, Styring S. Misses during water oxidation in photosystem II are S state-dependent. J Biol Chem 2012; 287:13422-9. [PMID: 22374999 DOI: 10.1074/jbc.m112.342543] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The period of four oscillation of the S state intermediates of the water oxidizing complex in Photosystem II (PSII) is commonly analyzed by the Kok parameters. The important miss factor determines the efficiency for each S transition. Commonly, an equal miss factor has been used in the analysis. We have used EPR signals which probe all S states in the same sample during S cycle advancement. This allows, for the first time, to measure directly the miss parameter for each S state transition. Experiments were performed in PSII membrane preparations from spinach in the presence of electron acceptor at 1 °C and 20 °C. The data show that the miss parameter is different in different transitions and shows different temperature dependence. We found no misses at 1 °C and 10% misses at 20 °C during the S(1)→S(2) transition. The highest miss factor was found in the S(2)→S(3) transition which decreased from 23% to 16% with increasing temperature. For the S(3)→S(0) transition the miss parameter was found to be 7% at 1 °C and decreased to 3% at 20 °C. For the S(0)→S(1) transition the miss parameter was found to be approximately 10% at both temperatures. The contribution from the acceptor side in the form of recombination reactions as well as from the donor side of PSII to the uneven misses is discussed. It is suggested that the different transition efficiency in each S transition partly reflects the chemistry at the CaMn(4)O(5) cluster. That consequently contributes to the uneven misses during S cycle turnover in PSII.
Collapse
Affiliation(s)
- Guangye Han
- Photochemistry and Molecular Science, the Department of Chemistry-Ångström, Box 523, Uppsala University, 751 20 Uppsala, Sweden
| | | | | |
Collapse
|
42
|
Chen G, Han G, Göransson E, Mamedov F, Styring S. Stability of the S3 and S2 State Intermediates in Photosystem II Directly Probed by EPR Spectroscopy. Biochemistry 2011; 51:138-48. [PMID: 22112168 DOI: 10.1021/bi200627j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guiying Chen
- Molecular
Biomimetics, Department of Photochemistry
and Molecular Science, Ångström Laboratory, Box 523, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Guangye Han
- Molecular
Biomimetics, Department of Photochemistry
and Molecular Science, Ångström Laboratory, Box 523, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Erik Göransson
- Molecular
Biomimetics, Department of Photochemistry
and Molecular Science, Ångström Laboratory, Box 523, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Fikret Mamedov
- Molecular
Biomimetics, Department of Photochemistry
and Molecular Science, Ångström Laboratory, Box 523, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Stenbjörn Styring
- Molecular
Biomimetics, Department of Photochemistry
and Molecular Science, Ångström Laboratory, Box 523, Uppsala University, SE-751 20 Uppsala, Sweden
| |
Collapse
|
43
|
Grundmeier A, Dau H. Structural models of the manganese complex of photosystem II and mechanistic implications. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:88-105. [PMID: 21787743 DOI: 10.1016/j.bbabio.2011.07.004] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 07/06/2011] [Accepted: 07/08/2011] [Indexed: 11/29/2022]
Abstract
Photosynthetic water oxidation and O₂ formation are catalyzed by a Mn₄Ca complex bound to the proteins of photosystem II (PSII). The catalytic site, including the inorganic Mn₄CaO(n)H(x) core and its protein environment, is denoted as oxygen-evolving complex (OEC). Earlier and recent progress in the endeavor to elucidate the structure of the OEC is reviewed, with focus on recent results obtained by (i) X−ray spectroscopy (specifically by EXAFS analyses), and (ii) X-ray diffraction (XRD, protein crystallography). Very recently, an impressive resolution of 1.9Å has been achieved by XRD. Most likely however, all XRD data on the Mn₄CaO(n)H(x) core of the OEC are affected by X-ray induced modifications (radiation damage). Therefore and to address (important) details of the geometric and electronic structure of the OEC, a combined analysis of XRD and XAS data has been approached by several research groups. These efforts are reviewed and extended using an especially comprehensive approach. Taking into account XRD results on the protein environment of the inorganic core of the Mn complex, 12 alternative OEC models are considered and evaluated by quantitative comparison to (i) extended-range EXAFS data, (ii) polarized EXAFS of partially oriented PSII membrane particles, and (iii) polarized EXAFS of PSII crystals. We conclude that there is a class of OEC models that is in good agreement with both the recent crystallographic models and the XAS data. On these grounds, mechanistic implications for the O−O bond formation chemistry are discussed. This article is part of a Special Issue entitled: Photosystem II.
Collapse
|
44
|
Application of computational chemistry to understanding the structure and mechanism of the Mn catalytic site in photosystem II – A review. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:80-93. [DOI: 10.1016/j.jphotobiol.2011.02.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 01/28/2011] [Accepted: 02/05/2011] [Indexed: 11/22/2022]
|
45
|
Kusunoki M. S1-state Mn4Ca complex of Photosystem II exists in equilibrium between the two most-stable isomeric substates: XRD and EXAFS evidence. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:100-10. [DOI: 10.1016/j.jphotobiol.2011.03.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/21/2011] [Accepted: 03/02/2011] [Indexed: 10/18/2022]
|
46
|
Jaszewski AR, Petrie S, Pace RJ, Stranger R. Toward the Assignment of the Manganese Oxidation Pattern in the Water-Oxidizing Complex of Photosystem II: A Time-Dependent DFT Study of XANES Energies. Chemistry 2011; 17:5699-713. [DOI: 10.1002/chem.201001996] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 12/23/2010] [Indexed: 11/10/2022]
|
47
|
Jaszewski AR, Stranger R, Pace RJ. Structural and Electronic Models of the Water Oxidizing Complex in the S0 State of Photosystem II: A Density Functional Study. J Phys Chem B 2011; 115:4484-99. [DOI: 10.1021/jp200053n] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Adrian R. Jaszewski
- Research School of Chemistry, College of Science, Australian National University, Canberra ACT 0200, Australia
| | - Rob Stranger
- Research School of Chemistry, College of Science, Australian National University, Canberra ACT 0200, Australia
| | - Ronald J. Pace
- Research School of Chemistry, College of Science, Australian National University, Canberra ACT 0200, Australia
| |
Collapse
|
48
|
Cox N, Rapatskiy L, Su JH, Pantazis DA, Sugiura M, Kulik L, Dorlet P, Rutherford AW, Neese F, Boussac A, Lubitz W, Messinger J. Effect of Ca2+/Sr2+ substitution on the electronic structure of the oxygen-evolving complex of photosystem II: a combined multifrequency EPR, 55Mn-ENDOR, and DFT study of the S2 state. J Am Chem Soc 2011; 133:3635-48. [PMID: 21341708 DOI: 10.1021/ja110145v] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electronic structures of the native Mn(4)O(x)Ca cluster and the biosynthetically substituted Mn(4)O(x)Sr cluster of the oxygen evolving complex (OEC) of photosystem II (PSII) core complexes isolated from Thermosynechococcus elongatus, poised in the S(2) state, were studied by X- and Q-band CW-EPR and by pulsed Q-band (55)Mn-ENDOR spectroscopy. Both wild type and tyrosine D less mutants grown photoautotrophically in either CaCl(2) or SrCl(2) containing media were measured. The obtained CW-EPR spectra of the S(2) state displayed the characteristic, clearly noticeable differences in the hyperfine pattern of the multiline EPR signal [Boussac et al. J. Biol. Chem.2004, 279, 22809-22819]. In sharp contrast, the manganese ((55)Mn) ENDOR spectra of the Ca and Sr forms of the OEC were remarkably similar. Multifrequency simulations of the X- and Q-band CW-EPR and (55)Mn-pulsed ENDOR spectra using the Spin Hamiltonian formalism were performed to investigate this surprising result. It is shown that (i) all four manganese ions contribute to the (55)Mn-ENDOR spectra; (ii) only small changes are seen in the fitted isotropic hyperfine values for the Ca(2+) and Sr(2+) containing OEC, suggesting that there is no change in the overall spin distribution (electronic coupling scheme) upon Ca(2+)/Sr(2+) substitution; (iii) the changes in the CW-EPR hyperfine pattern can be explained by a small decrease in the anisotropy of at least two hyperfine tensors. It is proposed that modifications at the Ca(2+) site may modulate the fine structure tensor of the Mn(III) ion. DFT calculations support the above conclusions. Our data analysis also provides strong support for the notion that in the S(2) state the coordination of the Mn(III) ion is square-pyramidal (5-coordinate) or octahedral (6-coordinate) with tetragonal elongation. In addition, it is shown that only one of the currently published OEC models, the Siegbahn structure [Siegbahn, P. E. M. Acc. Chem. Res.2009, 42, 1871-1880, Pantazis, D. A. et al. Phys. Chem. Chem. Phys.2009, 11, 6788-6798], is consistent with all data presented here. These results provide important information for the structure of the OEC and the water-splitting mechanism. In particular, the 5-coordinate Mn(III) is a potential site for substrate 'water' (H(2)O, OH(-)) binding. Its location within the cuboidal structural unit, as opposed to the external 'dangler' position, may have important consequences for the mechanism of O-O bond formation.
Collapse
Affiliation(s)
- Nicholas Cox
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Stich TA, Whittaker JW, Britt RD. Multifrequency EPR studies of manganese catalases provide a complete description of proteinaceous nitrogen coordination. J Phys Chem B 2010; 114:14178-88. [PMID: 20055466 PMCID: PMC3418057 DOI: 10.1021/jp908064y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Pulse electron paramagnetic resonance (EPR) spectroscopy is employed at two very different excitation frequencies, 9.77 and 30.67 GHz, in the study of the nitrogen coordination environment of the Mn(III)Mn(IV) state of the dimanganese-containing catalases from Lactobacillus plantarum and Thermus thermophilus. Consistent with previous studies, the lower-frequency results reveal one unique histidine nitrogen-Mn cluster interaction. For the first time, a second, more strongly hyperfine-coupled (14)N atom is unambiguously observed through the use of higher frequency/higher field EPR spectroscopy. The low excitation frequency spectral features are rationalized as arising from the interaction of a histidine nitrogen that is bound to the Mn(IV) ion, and the higher excitation frequency features are attributed to the histidine nitrogen bound to the Mn(III) ion. These results allow for the computation of intrinsic hyperfine coupling constants, which range from 2.2 to 2.9 MHz, for sp(2)-hybridized nitrogens coordinating equatorially to high-valence Mn ions. The relevance of these findings is discussed in the context of recent results from analogous higher frequency EPR studies of the Mn cluster in photosystem II and other exchange-coupled, transition metal-containing systems.
Collapse
Affiliation(s)
- Troy A. Stich
- Department of Chemistry, University of California–Davis, One Shields Avenue, Davis, CA 95616
| | - James W. Whittaker
- Department of Science and Engineering, School of Medicine, Oregon Health and Science University, 20000 N.W. Walker Road, Beaverton, OR 97006
| | - R. David Britt
- Department of Chemistry, University of California–Davis, One Shields Avenue, Davis, CA 95616
| |
Collapse
|
50
|
Dau H, Limberg C, Reier T, Risch M, Roggan S, Strasser P. The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological Catalysis. ChemCatChem 2010. [DOI: 10.1002/cctc.201000126] [Citation(s) in RCA: 1320] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|