1
|
Ultrasensitive amplicon barcoding for next-generation sequencing facilitating sequence error and amplification-bias correction. Sci Rep 2020; 10:10570. [PMID: 32601361 PMCID: PMC7324614 DOI: 10.1038/s41598-020-67290-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/01/2020] [Indexed: 11/08/2022] Open
Abstract
The ability to accurately characterize DNA variant proportions using PCR amplification is key to many genetic studies, including studying tumor heterogeneity, 16S microbiome, viral and immune receptor sequencing. We develop a novel generalizable ultrasensitive amplicon barcoding approach that significantly reduces the inflation/deflation of DNA variant proportions due to PCR amplification biases and sequencing errors. This method was applied to immune receptor sequencing, where it significantly improves the quality and estimation of diversity of the resulting library.
Collapse
|
2
|
Network properties derived from deep sequencing of human B-cell receptor repertoires delineate B-cell populations. Genome Res 2013; 23:1874-84. [PMID: 23742949 PMCID: PMC3814887 DOI: 10.1101/gr.154815.113] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The adaptive immune response selectively expands B- and T-cell clones following antigen recognition by B- and T-cell receptors (BCR and TCR), respectively. Next-generation sequencing is a powerful tool for dissecting the BCR and TCR populations at high resolution, but robust computational analyses are required to interpret such sequencing. Here, we develop a novel computational approach for BCR repertoire analysis using established next-generation sequencing methods coupled with network construction and population analysis. BCR sequences organize into networks based on sequence diversity, with differences in network connectivity clearly distinguishing between diverse repertoires of healthy individuals and clonally expanded repertoires from individuals with chronic lymphocytic leukemia (CLL) and other clonal blood disorders. Network population measures defined by the Gini Index and cluster sizes quantify the BCR clonality status and are robust to sampling and sequencing depths. BCR network analysis therefore allows the direct and quantifiable comparison of BCR repertoires between samples and intra-individual population changes between temporal or spatially separated samples and over the course of therapy.
Collapse
|
3
|
Somatic hypermutations and isotype restricted exceptionally long CDR3H contribute to antibody diversification in cattle. Vet Immunol Immunopathol 2008; 127:106-13. [PMID: 19012969 DOI: 10.1016/j.vetimm.2008.09.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 09/10/2008] [Accepted: 09/29/2008] [Indexed: 11/24/2022]
Abstract
Antibody diversification in IgM and IgG antibodies was analyzed in an 18-month old bovine (Bos taurus) suffering from naturally occurring chronic and recurrent infections due to bovine leukocyte adhesion deficiency (BLAD). The BLAD, involving impaired leukocyte beta2 integrin expression on leukocytes, develops due to a single point mutation in conserved region of the CD18 gene resulting in substitution of aspartic acid128 with glycine (D128G). Twenty four VDJCmu and 25 VDJCgamma recombinations from randomly constructed cDNA libraries, originating from peripheral blood lymphocytes, were examined for the variable-region structural characteristics in IgM and IgG antibody isotypes. These analyses led to conclude that: (a) expression of exceptionally long CDR3H is isotype restricted to cattle IgM antibody; (b) VDJ recombinations encoding IgM with exceptionally long CDR3H undergo clonal selection and affinity maturation via somatic mutations similar to conventional antibodies; (c) somatic mutations contribute significantly to both IgM and IgG antibody diversification but significant differences exist in the patterns of 'hot spot' in the FR1, FR3 and CDR1H and, also, position-dependant amino acid diversity; and (d) transition nucleotide substitutions predominate over transversions in both VDJCmu and VDJCgamma recombinations consistent with the evolutionary conservation of somatic mutation machinery. Overall, these studies suggest that both somatic mutations and exceptional CDR3H size generation contribute to IgM and IgG antibody diversification in cattle during the development of immune response to naturally occurring chronic and multiple microbial infections.
Collapse
|
4
|
Parsa JY, Basit W, Wang CL, Gommerman JL, Carlyle JR, Martin A. AID mutates a non-immunoglobulin transgene independent of chromosomal position. Mol Immunol 2007; 44:567-75. [PMID: 16542725 DOI: 10.1016/j.molimm.2006.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 02/07/2006] [Accepted: 02/09/2006] [Indexed: 01/31/2023]
Abstract
It is unknown how activation-induced cytidine deaminase (AID) targets immunoglobulin (Ig) genes during somatic hypermutation. Results to date are difficult to interpret: while some results argue that Ig genes have special sequences that mobilize AID, other work shows that non-Ig transgenes mutate. In this report, we have examined the effects of the intronic mu enhancer on the somatic hypermutation rates of a retroviral vector. For this analysis, we used centroblast-like Ramos cells to capture as much of the natural process as possible, used AIDhi and AIDlow Ramos variants to ensure that mutations are AID induced, and measured mutation of a GFP-provirus to achieve greater sensitivity. We found that mutation rates of the non-Ig provirus were AID-dependent, were similar at different genomic loci, but were approximately 10-fold lower than the V-region suggesting that AID can mutate non-Ig genes at low rates. However, the intronic mu enhancer did not increase the mutation rates of the provirus. Interestingly, exogenous over-expression of AID revealed that the V-region mutation rate can be saturated by lower levels of AID than the provirus, suggesting that selective mutation of Ig sequences is compromised in cells that over-express AID.
Collapse
Affiliation(s)
- Jahan-Yar Parsa
- Department of Immunology, University of Toronto, Medical Sciences Bldg., Toronto, Canada M5S 1A8
| | | | | | | | | | | |
Collapse
|
5
|
Druar C, Saini SS, Cossitt MA, Yu F, Qiu X, Geisbert TW, Jones S, Jahrling PB, Stewart DIH, Wiersma EJ. Analysis of the expressed heavy chain variable-region genes of Macaca fascicularis and isolation of monoclonal antibodies specific for the Ebola virus' soluble glycoprotein. Immunogenetics 2005; 57:730-8. [PMID: 16215733 DOI: 10.1007/s00251-005-0047-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 08/29/2005] [Indexed: 10/25/2022]
Abstract
The cynomolgus macaque, Macaca fascicularis, is frequently used in immunological and other biomedical research as a model for man; understanding it's antibody repertoire is, therefore, of fundamental interest. The expressed variable-region gene repertoire of a single M. fascicularis, which was immune to the Ebola virus, was studied. Using 5' rapid amplification of cDNA ends with immunoglobulin (Ig)G-specific primers, we obtained 30 clones encoding full-length variable, diversity, and joining domains. Similar to the human V(H) repertoire, the M. fascicularis repertoire utilized numerous immunoglobulin heavy variable (IGHV) gene fragments, with the V(H)3 (41%), V(H)4 (39%), and V(H)1 (14%) subgroups used more frequently than the V(H)5 (3.9%) or V(H)7 (1.7%) subgroups. Diverse immunoglobulin heavy joining (IGHJ) fragments also appeared to be utilized, including a putative homolog of JH5beta gene segment identified in the related species Macaca mulatta, Rhesus macaque, but not in humans. Although the diverse V region genes in the IgG antibody repertoire of M. fascicularis had likely undergone somatic hypermutations (SHMs), they nevertheless showed high nucleotide identity with the corresponding human germline genes, 80-89% for IGHV and 72-92% for IGHJ. M. fascicularis and human V(H) genes were also similar in other aspects: length of complementarity-determining regions and framework regions, and distribution of consensus sites for SHMs. Finally, we demonstrated that monoclonal antibodies (mAbs) specific for an Ebola protein could be obtained from M. fascicularis tissue samples by phage display technology. In summary, the study provides new insight into the M. fascicularis V region gene repertoire and further supports the idea that macaque-derived mAbs may be of therapeutic value to humans.
Collapse
Affiliation(s)
- Chris Druar
- Cangene Corporation, 3404 American Drive, Mississauga, Ontario L4V 1T4, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
It is generally believed that in cells undergoing Ig somatic hypermutation, more cell divisions result in more mutations. This is because DNA synthesis and replication is thought to play roles in the known mechanisms-cytidine deamination and subsequent conversion to thymidine, uracil-DNA glycosylase-mediated repair, mismatch repair, and DNA synthesis by error-prone polymerases. In this study, we manipulated the number of cell generations by varying the rate at which cultures of a mouse cell line were replenished with fresh medium. We found that the frequency of mutants does not necessarily increase with the number of cell generations. On the contrary, a greater number of divisions can lead to a lower frequency of mutants, indicating that cell division is not a rate-limiting step in the hypermutation process. Thus, when comparing mutation rates, we suggest that rates are more appropriately expressed as mutations per day than per cell generation.
Collapse
Affiliation(s)
- Clifford L Wang
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, USA.
| | | |
Collapse
|
7
|
Martin A, Bardwell PD, Woo CJ, Fan M, Shulman MJ, Scharff MD. Activation-induced cytidine deaminase turns on somatic hypermutation in hybridomas. Nature 2002; 415:802-6. [PMID: 11823785 DOI: 10.1038/nature714] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The production of high-affinity protective antibodies requires somatic hypermutation (SHM) of the antibody variable (V)-region genes. SHM is characterized by a high frequency of point mutations that occur only during the centroblast stage of B-cell differentiation. Activation-induced cytidine deaminase (AID), which is expressed specifically in germinal-centre centroblasts, is required for this process, but its exact role is unknown. Here we show that AID is required for SHM in the centroblast-like Ramos cells, and that expression of AID is sufficient to induce SHM in hybridoma cells, which represent a later stage of B-cell differentiation that does not normally undergo SHM. In one hybridoma, mutations were exclusively in G*C base pairs that were mostly within RGYW or WRCY motifs, suggesting that AID has primary responsibility for mutations at these nucleotides. The activation of SHM in hybridomas indicates that AID does not require other centroblast-specific cofactors to induce SHM, suggesting either that it functions alone or that the factors it requires are expressed at other stages of B-cell differentiation.
Collapse
Affiliation(s)
- Alberto Martin
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue Chanin 403, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
8
|
Zhang W, Bardwell PD, Woo CJ, Poltoratsky V, Scharff MD, Martin A. Clonal instability of V region hypermutation in the Ramos Burkitt's lymphoma cell line. Int Immunol 2001; 13:1175-84. [PMID: 11526098 DOI: 10.1093/intimm/13.9.1175] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Affinity maturation of the humoral immune response is caused by single base changes that are introduced into the V regions of the Ig genes during a brief period of B cell differentiation. It has recently become possible to study V region mutation in some human Burkitt's lymphoma cell lines that mutate their V regions and express surface markers that suggest they arose from the malignant transformation of germinal center B cells. Ramos Burkitt's cells constitutively mutate their V regions at a rate of approximately 2 x 10(-5) mutations/bp/generation. However, the sequencing of unselected V regions suggested that our Ramos cell line was progressively losing its ability to undergo V region hypermutation. To accurately quantify this process, subclones with different nonsense mutations in the mu heavy chain V region were identified. Reversion analysis and sequencing of unselected V regions were used to examine the clonal stability of V region hypermutation. Even after only 1 month in culture, stable and unstable subclones could be identified. The identification of mutating and non-mutating subclones of Ramos provided a unique opportunity to identify factors involved in the mutational process. Differential gene expression between mutating and non-mutating Ramos clones was examined by RT-PCR and cDNA microarray analyses. We found that the expression of activation-induced cytidine deaminase (AID), a putative cytidine deaminase, correlated with mutation rates in Ramos subclones. These results suggest that the hypermutation phenotype is inherently unstable in Ramos and that long culture periods favor outgrowth of non-mutating cells that express lower levels of AID.
Collapse
Affiliation(s)
- W Zhang
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
9
|
Bachl J, Carlson C, Gray-Schopfer V, Dessing M, Olsson C. Increased transcription levels induce higher mutation rates in a hypermutating cell line. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:5051-7. [PMID: 11290786 DOI: 10.4049/jimmunol.166.8.5051] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Somatic hypermutation, in addition to V(D)J recombination, is the other major mechanism that generates the vast diversity of the Ab repertoire. Point mutations are introduced in the variable region of the Ig genes at a million-fold higher rate than in the rest of the genome. We have used a green fluorescent protein (GFP)-based reversion assay to determine the role of transcription in the mutation mechanism of the hypermutating cell line 18-81. A GFP transgene containing a premature stop codon is transcribed from the inducible tet-on operon. Using the inducible promoter enables us to study the mutability of the GFP transgene at different transcription levels. By analyzing stable transfectants of a hypermutating cell line with flow cytometry, the mutation rate at the premature stop codon can be measured by the appearance of GFP-positive revertant cells. Here we show that the mutation rate of the GFP transgene correlates with its transcription level. Increased transcription levels of the GFP transgene caused an increased point mutation rate at the premature stop codon. Treating a hypermutating transfection clone with trichostatin A, a specific inhibitor of histone deacetylase, caused an additional 2-fold increase in the mutation rate. Finally, using Northern blot analysis we show that the activation-induced cytidine deaminase, an essential trans-factor for the in vivo hypermutation mechanism, is transcribed in the hypermutating cell line 18-81.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Clone Cells
- Codon, Terminator/genetics
- Codon, Terminator/immunology
- Cytidine Deaminase/genetics
- Doxycycline/pharmacology
- Enhancer Elements, Genetic/drug effects
- Enhancer Elements, Genetic/immunology
- Flow Cytometry
- Genes, Reporter/drug effects
- Genes, Reporter/immunology
- Genetic Vectors/immunology
- Green Fluorescent Proteins
- Hydroxamic Acids/pharmacology
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/metabolism
- Introns/genetics
- Introns/immunology
- Luminescent Proteins/biosynthesis
- Luminescent Proteins/genetics
- Lymphocyte Activation/genetics
- Mice
- Mutagenesis, Site-Directed/drug effects
- Mutagens/pharmacology
- Transcription, Genetic/drug effects
- Transcription, Genetic/immunology
- Transfection
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/immunology
- Tumor Cells, Cultured/metabolism
Collapse
Affiliation(s)
- J Bachl
- Basel Institute for Immunology, Basel, Switzerland.
| | | | | | | | | |
Collapse
|
10
|
Zan H, Cerutti A, Dramitinos P, Schaffer A, Li Z, Casali P. Induction of Ig Somatic Hypermutation and Class Switching in a Human Monoclonal IgM+ IgD+ B Cell Line In Vitro: Definition of the Requirements and Modalities of Hypermutation. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.6.3437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Partly because of the lack of a suitable in vitro model, the trigger(s) and the mechanism(s) of somatic hypermutation in Ig genes are largely unknown. We have analyzed the hypermutation potential of human CL-01 lymphocytes, our monoclonal model of germinal center B cell differentiation. These cells are surface IgM+ IgD+ and, in the absence of T cells, switch to IgG, IgA, and IgE in response to CD40:CD40 ligand engagement and exposure to appropriate cytokines. We show here that CL-01 cells can be induced to effectively mutate the expressed VHDJH-Cμ, VHDJH-Cδ, VHDJH-Cγ, VHDJH-Cα, VHDJH-Cε, and VλJλ-Cλ transcripts before and after Ig class switching in a stepwise fashion. In these cells, induction of somatic mutations required cross-linking of the surface receptor for Ag and T cell contact through CD40:CD40 ligand and CD80:CD28 coengagement. The induced mutations showed intrinsic features of Ig V(D)J hypermutation in that they comprised 110 base substitutions (97 in the heavy chain and 13 in the λ-chain) and only 2 deletions and targeted V(D)J, virtually sparing CH and Cλ. These mutations were more abundant in secondary VHDJH-Cγ than primary VHDJH-Cμ transcripts and in V(D)J-C than VλJλ-Cλ transcripts. These mutations were also associated with coding DNA strand polarity and showed an overall rate of 2.42 × 10−4 base changes/cell division in VHDJH-CH transcripts. Transitions were favored over transversions, and G nucleotides were preferentially targeted, mainly in the context of AG dinucleotides. Thus, in CL-01 cells, Ig somatic hypermutation is readily inducible by stimuli different from those required for class switching and displays discrete base substitution modalities.
Collapse
Affiliation(s)
- Hong Zan
- *Division of Molecular Immunology, Department of Pathology, Weill Medical College of Cornell University, and
| | - Andrea Cerutti
- *Division of Molecular Immunology, Department of Pathology, Weill Medical College of Cornell University, and
| | - Patricia Dramitinos
- *Division of Molecular Immunology, Department of Pathology, Weill Medical College of Cornell University, and
| | - András Schaffer
- *Division of Molecular Immunology, Department of Pathology, Weill Medical College of Cornell University, and
- †The Immunology Program, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021
| | - Zongdong Li
- *Division of Molecular Immunology, Department of Pathology, Weill Medical College of Cornell University, and
| | - Paolo Casali
- *Division of Molecular Immunology, Department of Pathology, Weill Medical College of Cornell University, and
- †The Immunology Program, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021
| |
Collapse
|
11
|
Zan H, Cerutti A, Dramitinos P, Schaffer A, Li Z, Casali P. Induction of Ig somatic hypermutation and class switching in a human monoclonal IgM+ IgD+ B cell line in vitro: definition of the requirements and modalities of hypermutation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 1999; 162:3437-47. [PMID: 10092799 PMCID: PMC4623562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Partly because of the lack of a suitable in vitro model, the trigger(s) and the mechanism(s) of somatic hypermutation in Ig genes are largely unknown. We have analyzed the hypermutation potential of human CL-01 lymphocytes, our monoclonal model of germinal center B cell differentiation. These cells are surface IgM+ IgD+ and, in the absence of T cells, switch to IgG, IgA, and IgE in response to CD40:CD40 ligand engagement and exposure to appropriate cytokines. We show here that CL-01 cells can be induced to effectively mutate the expressed VHDJH-C mu, VHDJH-C delta, VHDJH-C gamma, VHDJH-C alpha, VHDJH-C epsilon, and V lambda J lambda-C lambda transcripts before and after Ig class switching in a stepwise fashion. In these cells, induction of somatic mutations required cross-linking of the surface receptor for Ag and T cell contact through CD40:CD40 ligand and CD80: CD28 coengagement. The induced mutations showed intrinsic features of Ig V(D)J hypermutation in that they comprised 110 base substitutions (97 in the heavy chain and 13 in the lambda-chain) and only 2 deletions and targeted V(D)J, virtually sparing CH and C lambda. These mutations were more abundant in secondary VHDJH-C gamma than primary VHDJH-C mu transcripts and in V(D)J-C than V lambda J lambda-C lambda transcripts. These mutations were also associated with coding DNA strand polarity and showed an overall rate of 2.42 x 10(-4) base changes/cell division in VHDJH-CH transcripts. Transitions were favored over transversions, and G nucleotides were preferentially targeted, mainly in the context of AG dinucleotides. Thus, in CL-01 cells, Ig somatic hypermutation is readily inducible by stimuli different from those required for class switching and displays discrete base substitution modalities.
Collapse
Affiliation(s)
- Hong Zan
- Division of Molecular Immunology, Department of Pathology, Weill Medical College of Cornell University, New York, NY 10021
| | - Andrea Cerutti
- Division of Molecular Immunology, Department of Pathology, Weill Medical College of Cornell University, New York, NY 10021
| | - Patricia Dramitinos
- Division of Molecular Immunology, Department of Pathology, Weill Medical College of Cornell University, New York, NY 10021
| | - András Schaffer
- Division of Molecular Immunology, Department of Pathology, Weill Medical College of Cornell University, New York, NY 10021
- The Immunology Program, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021
| | - Zongdong Li
- Division of Molecular Immunology, Department of Pathology, Weill Medical College of Cornell University, New York, NY 10021
| | - Paolo Casali
- Division of Molecular Immunology, Department of Pathology, Weill Medical College of Cornell University, New York, NY 10021
- The Immunology Program, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021
- Address correspondence and reprint request to: Dr. Paolo Casali, Division of Molecular Immunology, Department of Pathology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021.
| |
Collapse
|
12
|
Krawczak M, Ball EV, Cooper DN. Neighboring-nucleotide effects on the rates of germ-line single-base-pair substitution in human genes. Am J Hum Genet 1998; 63:474-88. [PMID: 9683596 PMCID: PMC1377306 DOI: 10.1086/301965] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The spectrum of single-base-pair substitutions logged in The Human Gene Mutation Database (HGMD), comprising 7,271 different lesions in the coding regions of 547 different human genes, was analyzed for nearest-neighbor effects on relative mutation rates. Owing to its retrospective nature, HGMD allows mutation rates to be estimated only in relative terms. Therefore, a novel methodology was devised in order to obtain these estimates in iterative fashion, correcting, at the same time, for the confounding effects of differential codon usage and for the fact that different types of amino acid replacement come to clinical attention with different probabilities. Over and above the hypermutability of CpG dinucleotides, reflected in transition rates five times the base mutation rate, only a subtle and locally confined influence of the surrounding DNA sequence on relative single-base-pair substitution rates was observed, which extended no farther than 2 bp from the substitution site. A disparity between the two DNA strands was evidenced by the fact that, when substitution rates were estimated conditional on the 5' and 3' flanking nucleotides, a significant rate difference emerged for 10 of 96 possible pairs of complementary substitutional events. Mutational bias, favoring substitutions toward flanking bases, a phenomenon reminiscent of misalignment mutagenesis, was apparent and exhibited both directionality and reading-frame sensitivity. No specific preponderance of repeat-sequence motifs was observed in the vicinity of nucleotide substitutions, but a moderate correlation between the relative mutability and thermodynamic stability of DNA triplets emerged, suggesting either inefficient DNA replication in regions of high stability or the transient stabilization of misaligned intermediates.
Collapse
Affiliation(s)
- M Krawczak
- Institute of Medical Genetics, University of Wales College of Medicine,Cardiff CF4 4XN, United Kingdom.
| | | | | |
Collapse
|
13
|
Abstract
Examples of somatic hypermutation of antigen receptor genes can be seen in most lineages of vertebrates, including the cartilaginous fish. Analysis of the phylogenetic data reveals that two distinctive features of the mechanism are shared by most species studied: the mutation hot spot sequence AGY, and a preponderance of point mutations. These data suggest that some of the components of the machinery are shared between ectotherms and mammals. However, unique characters in particular species may have occurred by independent recruitment of novel factors onto the mechanism. A spotty phylogenetic distribution of gene conversion has also been revealed and can be explained if the two mechanisms share some characteristics. Both mutation and conversion require transcription-related sequences and/or factors. We theorized that targeting to V genes can be attained by a paused replication fork that has collided with a transcription complex stalled by a defective Ig transcription activator; the paused replication fork results in recruitment of an error-prone translesion synthesis DNA polymerase (somatic hypermutation) or of DNA repair mechanisms with homologous recombination (gene conversion). In addition, the pathway recruited in different species may be directed by the degree of homology among V genes.
Collapse
Affiliation(s)
- M Diaz
- Department of Microbiology and Immunology, University of Miami School of Medicine, Florida, USA
| | | |
Collapse
|
14
|
Abstract
Studies of endogenous and engineered Ig genes in mice have begun to reveal some of the cis-acting regions that are involved in the somatic hypermutation of variable regions in vivo. These studies suggest that the initiation of transcription plays a role in this process. However, it will be difficult to identify and manipulate the individual genetic elements and the trans-acting proteins that regulate and target the mutational events using solely in vivo assays. These studies would be greatly facilitated if constructs containing the genetic elements that are essential for V-region mutation could be transfected into cultured cells and undergo high rates of V-region mutation in vitro, and if permissive and non-permissive cell lines could be identified. Such in vitro systems would also allow a detailed molecular and biochemical analysis of this process. Here, we discuss some of the in vitro systems that have been developed and use data from our own studies in cultured cells to illustrate the potential benefits of studying V-region hypermutation in model in vitro systems.
Collapse
Affiliation(s)
- N S Green
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | |
Collapse
|
15
|
Abstract
In the course of an immune response, antibodies undergo affinity maturation in order to increase their efficiency in neutralizing foreign invaders. Affinity maturation occurs by the introduction of multiple point mutations in the variable region gene that encodes the antigen binding site. This somatic hypermutation is restricted to immunoglobulin genes and occurs at very high rates. The precise molecular basis of this process remains obscure. However, recent studies using a variety of in vivo and in vitro systems have revealed important regulatory regions, base motifs that are preferred targets of mutation and evidence that transcription may play an active role in hypermutation.
Collapse
Affiliation(s)
- N S Green
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | |
Collapse
|