1
|
Kobayashi K, Tanaka T, Kozawa T. Kinetics of the Oxidation of the [2Fe-2S] Cluster in SoxR by Redox-Active Compounds as Studied by Pulse Radiolysis. Biochemistry 2025; 64:895-902. [PMID: 39884751 DOI: 10.1021/acs.biochem.4c00679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
SoxR containing a [2Fe-2S] cluster required for its transcription activity functions as a bacterial stress-response sensor that is activated through oxidation by redox-active compounds (RACs). SoxR from Escherichia coli (EcSoxR) is activated by nearly all RACs nonspecifically. In contrast, nonenteric SoxRs such as Pseudomonas aeruginosa (PaSoxR), and Streptomyces coelicolor (ScSoxR) activate their target genes in response to RAC including endogenously produced metabolites. To investigate the determinants of SoxR's activity, the endogenous or various synthetic RACs-mediated oxidation of the [2Fe-2S] cluster of EcSoxR, PaSoxR, and ScSoxR were measured by pulse radiolysis. Radiolytically generated hydrated electrons (eaq-) very rapidly reduced the oxidized form of the [2Fe-2S] cluster of SoxR. In the presence of RAC, a subsequent increase in absorption in the visible region corresponding to reoxidation of the [2Fe-2S] cluster was observed on a time scale of milliseconds. Both EcSoxR and PaSoxR reacted very rapidly (2.0 × 108 to 2.0 × 109 M-1 s-1) with various RACs, including viologen, phenazines, and quinones. No differences in kinetic behaviors were evident between EcSoxR and PaSoxR, whereas ScSoxR reacted with a limited range of RACs.
Collapse
Affiliation(s)
- Kazuo Kobayashi
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Osaka, Ibaraki 567-0047, Japan
| | - Takahiro Tanaka
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Osaka, Ibaraki 567-0047, Japan
| | - Takahiro Kozawa
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Osaka, Ibaraki 567-0047, Japan
| |
Collapse
|
2
|
Bak DW, Weerapana E. Proteomic strategies to interrogate the Fe-S proteome. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119791. [PMID: 38925478 PMCID: PMC11365765 DOI: 10.1016/j.bbamcr.2024.119791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/23/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Iron‑sulfur (Fe-S) clusters, inorganic cofactors composed of iron and sulfide, participate in numerous essential redox, non-redox, structural, and regulatory biological processes within the cell. Though structurally and functionally diverse, the list of all proteins in an organism capable of binding one or more Fe-S clusters is referred to as its Fe-S proteome. Importantly, the Fe-S proteome is highly dynamic, with continuous cluster synthesis and delivery by complex Fe-S cluster biogenesis pathways. This cluster delivery is balanced out by processes that can result in loss of Fe-S cluster binding, such as redox state changes, iron availability, and oxygen sensitivity. Despite continued expansion of the Fe-S protein catalogue, it remains a challenge to reliably identify novel Fe-S proteins. As such, high-throughput techniques that can report on native Fe-S cluster binding are required to both identify new Fe-S proteins, as well as characterize the in vivo dynamics of Fe-S cluster binding. Due to the recent rapid growth in mass spectrometry, proteomics, and chemical biology, there has been a host of techniques developed that are applicable to the study of native Fe-S proteins. This review will detail both the current understanding of the Fe-S proteome and Fe-S cluster biology as well as describing state-of-the-art proteomic strategies for the study of Fe-S clusters within the context of a native proteome.
Collapse
Affiliation(s)
- Daniel W Bak
- Department of Chemistry, Boston College, Chestnut Hill, MA, United States of America.
| | - Eranthie Weerapana
- Department of Chemistry, Boston College, Chestnut Hill, MA, United States of America.
| |
Collapse
|
3
|
Tikhomirova A, Rahman MM, Kidd SP, Ferrero RL, Roujeinikova A. Cysteine and resistance to oxidative stress: implications for virulence and antibiotic resistance. Trends Microbiol 2024; 32:93-104. [PMID: 37479622 DOI: 10.1016/j.tim.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/23/2023]
Abstract
Reactive oxygen species (ROS), including the superoxide radical anion (O2•-), hydrogen peroxide (H2O2), and the hydroxyl radical (•HO), are inherent components of bacterial metabolism in an aerobic environment. Bacteria also encounter exogenous ROS, such as those produced by the host cells during the respiratory burst. As ROS have the capacity to damage bacterial DNA, proteins, and lipids, detoxification of ROS is critical for bacterial survival. It has been recently recognised that low-molecular-weight (LMW) thiols play a central role in this process. Here, we review the emerging role of cysteine in bacterial resistance to ROS with a link to broader elements of bacterial lifestyle closely associated with cysteine-mediated oxidative stress response, including virulence and antibiotic resistance.
Collapse
Affiliation(s)
- Alexandra Tikhomirova
- Monash University, Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia
| | - Mohammad M Rahman
- University of Kentucky, Department of Microbiology, Immunology and Molecular Genetics, Lexington, KY, USA
| | - Stephen P Kidd
- University of Adelaide, Department of Molecular and Biomedical Sciences, School of Biological Sciences, Adelaide, SA 5005, Australia; University of Adelaide, Research Centre for Infectious Disease (RCID) and Australian Centre for Antimicrobial Resistance Ecology (ACARE), Adelaide, SA 5005, Australia
| | - Richard L Ferrero
- Monash University, Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia; Hudson Institute of Medical Research, Centre for Innate Immunity and Infectious Diseases, Melbourne, VIC 3168, Australia; Monash University, Department of Molecular and Translational Science, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia
| | - Anna Roujeinikova
- Monash University, Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia; Monash University, Department of Biochemistry and Molecular Biology, Melbourne, VIC 3800, Australia.
| |
Collapse
|
4
|
Iron–Sulfur Clusters toward Stresses: Implication for Understanding and Fighting Tuberculosis. INORGANICS 2022. [DOI: 10.3390/inorganics10100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tuberculosis (TB) remains the leading cause of death due to a single pathogen, accounting for 1.5 million deaths annually on the global level. Mycobacterium tuberculosis, the causative agent of TB, is persistently exposed to stresses such as reactive oxygen species (ROS), reactive nitrogen species (RNS), acidic conditions, starvation, and hypoxic conditions, all contributing toward inhibiting bacterial proliferation and survival. Iron–sulfur (Fe-S) clusters, which are among the most ancient protein prosthetic groups, are good targets for ROS and RNS, and are susceptible to Fe starvation. Mtb holds Fe-S containing proteins involved in essential biological process for Mtb. Fe-S cluster assembly is achieved via complex protein machineries. Many organisms contain several Fe-S assembly systems, while the SUF system is the only one in some pathogens such as Mtb. The essentiality of the SUF machinery and its functionality under the stress conditions encountered by Mtb underlines how it constitutes an attractive target for the development of novel anti-TB.
Collapse
|
5
|
Fontenot CR, Ding H. Ferric uptake regulators (Fur) from Vibrio cholerae and Helicobacter pylori bind a [2Fe-2S] cluster in response to elevation of intracellular free iron content. Biometals 2022; 35:591-600. [PMID: 35353296 DOI: 10.1007/s10534-022-00390-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/14/2022] [Indexed: 11/28/2022]
Abstract
Intracellular iron homeostasis in bacteria is primarily regulated by ferric uptake regulator (Fur). Since its discovery, Fur has been assumed to bind ferrous iron and regulate expression of target genes. However, the iron-bound Fur has never been isolated from any bacteria. In previous studies, we have shown that Escherichia coli Fur and Haemophilus influenzae Fur bind a [2Fe-2S] cluster via the conserved Cys-93 and Cys-96 when expressed in the E. coli mutant cells in which intracellular free iron content is elevated. Here we report that Fur homologs from Vibrio cholerae and Helicobacter pylori which contain Cys-93 and Cys-96 can also bind a [2Fe-2S] cluster. On the other hand, Fur homolog from Magnetospirillum gryphiswaldense MSR-1 which has no cysteine residues fails to bind any [2Fe-2S] clusters. Interestingly, different Fur proteins with the conserved Cys-93 and Cys-96 have distinct binding activities for the [2Fe-2S] cluster, with H. influenzae Fur having the highest, followed by E. coli Fur, V. cholera Fur, and H. pylori Fur. Binding of the [2Fe-2S] cluster in the Fur proteins is significantly decreased when expressed in wild-type E. coli cells, indicating that binding of the [2Fe-2S] clusters in Fur proteins is regulated by the levels of intracellular free iron content. Finally, unlike the [2Fe-2S] clusters in E. coli ferredoxin, the [2Fe-2S] clusters in the Fur proteins are not stable and quickly release ferrous iron when the clusters are reduced, suggesting that Fur may undergo reversible binding of the [2Fe-2S] cluster in response to intracellular free iron content in bacteria.
Collapse
Affiliation(s)
- Chelsey R Fontenot
- Department of Biological Sciences Building, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Huangen Ding
- Department of Biological Sciences Building, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
6
|
Daer S, Goodwill JE, Ikuma K. Effect of ferrate and monochloramine disinfection on the physiological and transcriptomic response of Escherichia coli at late stationary phase. WATER RESEARCH 2021; 189:116580. [PMID: 33166917 DOI: 10.1016/j.watres.2020.116580] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/08/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Biological mechanisms of disinfection not only vary by disinfectant but also remain not well understood. We investigated the physiological and transcriptomic response of Escherichia coli at late stationary phase to ferrate and monochloramine in amended lake water. Although ferrate and monochloramine treatments similarly reduced culturable cell concentrations by 3-log10, 64% and 11% of treated cells were viable following monochloramine and ferrate treatment, respectively. This observed induction of viable but non-culturable (VBNC) state following monochloramine treatment but not ferrate is attributed to slower monochloramine disinfection kinetics (by 2.8 times) compared to ferrate. Transcriptomic analysis of E. coli at 15 min of exposure revealed that 3 times as many genes related to translation and transcription were downregulated by monochloramine compared to ferrate, suggesting that monochloramine treatment may be inducing VBNC through reduced protein synthesis and metabolism. Downregulation of universal stress response genes (rpoS, uspA) was attributed to growth-related physiological stressors during late stationary phase which may have contributed to the elevated expression levels of general stress responses pre-disinfection and, subsequently, their significant downregulation post-disinfection. Both disinfectants upregulated oxidative stress response genes (trxC, grxA, soxS), although levels of upregulation were time sensitive. This work shows that bacterial inactivation responses to disinfectants is mediated by complex molecular and growth-related responses.
Collapse
Affiliation(s)
- Sahar Daer
- Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA, United States; Environmental Sciences Interdepartmental Graduate Program, Iowa State University, Ames, IA, United States
| | - Joseph E Goodwill
- Department of Civil and Environmental Engineering, University of Rhode Island, United States
| | - Kaoru Ikuma
- Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA, United States; Environmental Sciences Interdepartmental Graduate Program, Iowa State University, Ames, IA, United States; Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States.
| |
Collapse
|
7
|
Akhova AV, Sekatskaya PA, Tkachenko AG. Formation of Associated Oxidative Stress in Cells of Escherichia coli Exposed to Different Environmental Stressors. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819060036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Wang Y, Lee J, Ding H. Light-induced release of nitric oxide from the nitric oxide-bound CDGSH-type [2Fe-2S] clusters in mitochondrial protein Miner2. Nitric Oxide 2019; 89:96-103. [PMID: 31150776 DOI: 10.1016/j.niox.2019.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/17/2019] [Accepted: 05/26/2019] [Indexed: 01/06/2023]
Abstract
Human mitochondrial matrix protein Miner2 hosts two [2Fe-2S] clusters via two CDGSH (Cys-Asp-Gly-Ser-His) motifs. Unlike other iron-sulfur clusters in proteins, the reduced CDGSH-type [2Fe-2S] clusters in Miner2 are able to bind nitric oxide (NO) and form stable NO-bound [2Fe-2S] clusters without disruption of the clusters. Here we report that the NO-bound Miner2 [2Fe-2S] clusters can quickly release NO upon the visible light excitation. The UV-visible and Electron Paramagnetic Resonance (EPR) measurements show that the NO-bound Miner2 [2Fe-2S] clusters are converted to the reduced Miner2 [2Fe-2S] clusters upon the light excitation under anaerobic conditions, suggesting that NO binding in the reduced Miner2 [2Fe-2S] clusters is reversible. Additional studies reveal that binding of NO effectively inhibits the redox transition of the Miner2 [2Fe-2S] clusters, indicating that NO may modulate the physiological activity of Miner2 in mitochondria by directly binding to the CDGSH-type [2Fe-2S] clusters in the protein.
Collapse
Affiliation(s)
- Yiming Wang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Jeonghoon Lee
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Huangen Ding
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
9
|
Aono S, Nakajima H. Transcriptional Regulation of Gene Expression by Metalloproteins. PROGRESS IN REACTION KINETICS AND MECHANISM 2019. [DOI: 10.3184/007967400103165128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
FNR and SoxR are transcriptional regulators containing an iron–sulfur cluster. The iron–sulfur cluster in FNR acts as an oxygen sensor by reacting with oxygen. The structural change of the iron–sulfur cluster takes place when FNR senses oxygen, which regulates the transcriptional regulator activity of FNR through the change of the quaternary structure. SoxR contains the [2Fe–2S] cluster that regulates the transcriptional activator activity of SoxR. Only the oxidized SoxR containing the [2Fe–2S]2+ cluster is active as the transcriptional activator. CooA is a transcriptional activator containing a protoheme that acts as a CO sensor. CO is a physiological effector of CooA and regulates the transcriptional activator activity of CooA. In this review, the biochemical and biophysical properties of FNR, SoxR, and CooA are described.
Collapse
Affiliation(s)
- Shigetoshi Aono
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Tatsunokuchi, Ishikawa 923-1292, Japan
| | - Hiroshi Nakajima
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Tatsunokuchi, Ishikawa 923-1292, Japan
| |
Collapse
|
10
|
Liu PH, Tsai FT, Chen BH, Hsu IJ, Hsieh HH, Liaw WF. Insight into chalcogenolate-bound {Fe(NO)2}9 dinitrosyl iron complexes (DNICs): covalent character versus ionic character. Dalton Trans 2019; 48:6040-6050. [DOI: 10.1039/c8dt04670k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The synthesis, characterization and transformation of the thermally unstable {Fe(NO)2}9 dinitrosyl iron complex (DNIC) [(OMe)2Fe(NO)2]− (2) were investigated.
Collapse
Affiliation(s)
- Pai-Heng Liu
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Fu-Te Tsai
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Bo-Hao Chen
- National Synchrotron Radiation Research Center (NSRRC)
- Hsinchu 30076
- Taiwan
| | - I-Jui Hsu
- Research and Development Center for Smart Textile Technology
- Department of Molecular Science and Engineering
- National Taipei University of Technology
- Taipei 10608
- Taiwan
| | - Hung-Hsi Hsieh
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Wen-Feng Liaw
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| |
Collapse
|
11
|
Abstract
From the very first discovery of biological iron-sulfur clusters with EPR, the spectroscopy has been used to study not only purified proteins but also complex systems such as respiratory complexes, membrane particles and, later, whole cells. In recent times, the emphasis of iron-sulfur biochemistry has moved from characterization of individual proteins to the systems biology of iron-sulfur biosynthesis, regulation, degradation, and implications for human health. Although this move would suggest a blossoming of System-EPR as a specific, non-invasive monitor of Fe/S (dys)homeostasis in whole cells, a review of the literature reveals limited success possibly due to technical difficulties in adherence to EPR spectroscopic and biochemical standards. In an attempt to boost application of System-EPR the required boundary conditions and their practical applications are explicitly and comprehensively formulated.
Collapse
Affiliation(s)
- Wilfred R Hagen
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, The Netherlands.
| |
Collapse
|
12
|
Fujikawa M, Kobayashi K, Tsutsui Y, Tanaka T, Kozawa T. Rational Tuning of Superoxide Sensitivity in SoxR, the [2Fe-2S] Transcription Factor: Implications of Species-Specific Lysine Residues. Biochemistry 2017; 56:403-410. [DOI: 10.1021/acs.biochem.6b01096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mayu Fujikawa
- The Institute of Scientific
and Industrial Research, Osaka University, Mihogaoka 8-1, Osaka, Ibaraki 567-0047, Japan
| | - Kazuo Kobayashi
- The Institute of Scientific
and Industrial Research, Osaka University, Mihogaoka 8-1, Osaka, Ibaraki 567-0047, Japan
| | - Yuko Tsutsui
- The Institute of Scientific
and Industrial Research, Osaka University, Mihogaoka 8-1, Osaka, Ibaraki 567-0047, Japan
| | - Takahiro Tanaka
- The Institute of Scientific
and Industrial Research, Osaka University, Mihogaoka 8-1, Osaka, Ibaraki 567-0047, Japan
| | - Takahiro Kozawa
- The Institute of Scientific
and Industrial Research, Osaka University, Mihogaoka 8-1, Osaka, Ibaraki 567-0047, Japan
| |
Collapse
|
13
|
The small iron-sulfur protein from the ORP operon binds a [2Fe-2S] cluster. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1422-1429. [DOI: 10.1016/j.bbabio.2016.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 05/17/2016] [Accepted: 05/24/2016] [Indexed: 11/21/2022]
|
14
|
Abstract
The ancestors of Escherichia coli and Salmonella ultimately evolved to thrive in air-saturated liquids, in which oxygen levels reach 210 μM at 37°C. However, in 1976 Brown and colleagues reported that some sensitivity persists: growth defects still become apparent when hyperoxia is imposed on cultures of E. coli. This residual vulnerability was important in that it raised the prospect that normal levels of oxygen might also injure bacteria, albeit at reduced rates that are not overtly toxic. The intent of this article is both to describe the threat that molecular oxygen poses for bacteria and to detail what we currently understand about the strategies by which E. coli and Salmonella defend themselves against it. E. coli mutants that lack either superoxide dismutases or catalases and peroxidases exhibit a variety of growth defects. These phenotypes constitute the best evidence that aerobic cells continually generate intracellular superoxide and hydrogen peroxide at potentially lethal doses. Superoxide has reduction potentials that allow it to serve in vitro as either a weak univalent reductant or a stronger univalent oxidant. The addition of micromolar hydrogen peroxide to lab media will immediately block the growth of most cells, and protracted exposure will result in the loss of viability. The need for inducible antioxidant systems seems especially obvious for enteric bacteria, which move quickly from the anaerobic gut to fully aerobic surface waters or even to ROS-perfused phagolysosomes. E. coli and Salmonella have provided two paradigmatic models of oxidative-stress responses: the SoxRS and OxyR systems.
Collapse
|
15
|
Abstract
Bacteria live in a toxic world in which their competitors excrete hydrogen peroxide or superoxide-generating redox-cycling compounds. They protect themselves by activating regulons controlled by the OxyR, PerR, and SoxR transcription factors. OxyR and PerR sense peroxide when it oxidizes key thiolate or iron moieties, respectively; they then induce overlapping sets of proteins that defend their vulnerable metalloenzymes. An additional role for OxyR in detecting electrophilic compounds is possible. In some nonenteric bacteria, SoxR appears to control the synthesis and export of redox-cycling compounds, whereas in the enteric bacteria it defends the cell against the same agents. When these compounds oxidize its iron-sulfur cluster, SoxR induces proteins that exclude, excrete, or modify them. It also induces enzymes that defend the cell against the superoxide that such compounds make. Recent work has brought new insight into the biochemistry and physiology of these responses, and comparative studies have clarified their evolutionary histories.
Collapse
Affiliation(s)
- James A Imlay
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801;
| |
Collapse
|
16
|
Juttukonda LJ, Skaar EP. Manganese homeostasis and utilization in pathogenic bacteria. Mol Microbiol 2015; 97:216-28. [PMID: 25898914 DOI: 10.1111/mmi.13034] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2015] [Indexed: 01/08/2023]
Abstract
Manganese (Mn) is a required cofactor for all forms of life. Given the importance of Mn to bacteria, the host has devised strategies to sequester Mn from invaders. In the macrophage phagosome, NRAMP1 removes Mn and other essential metals to starve intracellular pathogens; in the extracellular space, calprotectin chelates Mn and Zn. Calprotectin-mediated Mn sequestration is a newly appreciated host defense mechanism, and recent findings are highlighted herein. In order to acquire Mn when extracellular concentrations are low, bacteria have evolved efficient Mn acquisition systems that are under elegant transcriptional control. To counteract Mn overload, some bacteria possess Mn-specific export systems that are important in vivo, presumably for control of intracellular Mn levels. Mn transporters, their transcriptional regulators and some Mn-requiring enzymes are necessary for virulence of certain bacterial pathogens, as revealed by animal models of infection. Furthermore, Mn is an important facet of the cellular response to oxidative stress, a host antibacterial strategy. The battle for Mn between host and pathogen is now appreciated to be a major determinant of the outcome of infection. In this MicroReview, the contribution of Mn to the host-pathogen interaction is reviewed, and key questions are proposed for future study.
Collapse
Affiliation(s)
- Lillian J Juttukonda
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| |
Collapse
|
17
|
Kobayashi K, Fujikawa M, Kozawa T. Binding of promoter DNA to SoxR protein decreases the reduction potential of the [2Fe-2S] cluster. Biochemistry 2014; 54:334-9. [PMID: 25490746 DOI: 10.1021/bi500931w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The [2Fe-2S] transcriptional factor SoxR, a member of the MerR family, functions as a sensor of oxidative stress in Escherichia coli. The transcriptional activity of SoxR is regulated by the reversible oxidation and reduction of [2Fe-2S] clusters. Electrochemistry measurements on DNA-modified electrodes have shown a dramatic shift in the reduction potential of SoxR from -290 to +200 mV with the promoter DNA-bound [ Gorodetsky , A. A. , Dietrich , L. E. P. , Lee , P. E. , Demple , B. , , Newman , D. K. , and Barton , J. K. ( 2008 ) DNA binding shifts the reduction potential of the transcription factor SoxR , Proc. Natl. Acad. Sci. U.S.A. 105 , 3684 - 3689 ]. To determine the change of the SoxR reduction potential using the new condition, the one-electron oxidation-reduction properties of [2Fe-2S] cluster in SoxR were investigated in the absence and presence of the DNA. The [2Fe-2S] cluster of SoxR was completely reduced by nicotinamide adenine dinucleotide phosphate (NADPH)-cytochrome P450 reductase (CRP) in the presence of a NADPH generating system (glucose 6-dehydrogenase and glucose-6 phosphate), indicating that CRP can serve as an NADPH-dependent electron carrier for SoxR. The reduction potential of SoxR was measured from equilibrium data coupled with NADPH and CRP in the presence of electron mediators. The reduction potentials of DNA-bound and DNA-free states of SoxR were -320 and -293 mV versus NHE (normal hydrogen electrode), respectively. These results indicate that DNA binding causes a moderate shift in the reduction potential of SoxR.
Collapse
Affiliation(s)
- Kazuo Kobayashi
- The Institute of Scientific and Industrial Research, Osaka University , Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | | | | |
Collapse
|
18
|
Fujikawa M, Kobayashi K, Kozawa T. Redox-dependent DNA distortion in a SoxR protein-promoter complex studied using fluorescent probes. J Biochem 2014; 157:389-97. [PMID: 25520038 DOI: 10.1093/jb/mvu085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/12/2014] [Indexed: 11/13/2022] Open
Abstract
The [2Fe-2S] transcriptional factor SoxR, a member of the MerR family, is regulated by the reversible oxidation and reduction of [2Fe-2S] clusters and functions as a sensor of oxidative stress in Escherichia coli. In the oxidized state, distortion of the target DNA promoter region initiates transcription by RNA polymerase, thereby activating transcription. The inactive reduced state of the protein has remained uncharacterized. Here, we directly observed redox-dependent conformational changes in the promoter DNA by site-specifically replacing selected adenine (A) and cytosine (C) bases in the promoter oligonucleotide with the fluorescent probes 2-aminopurine (2Ap) and pyrrolocytosine (pyrrolo-dC), respectively. Reduction of the [2Fe-2S] cluster in the SoxR-DNA complex dramatically weakened the fluorescence intensity of the 2Ap moieties incorporated into the central part of the DNA. In contrast, the fluorescence of 2Ap moieties incorporated at A in other regions and the fluorescence of pyrrolo-dC moieties in the central region of the DNA (C3 and C3') were only slightly decreased by the reduction. These results strongly suggest that the redox change causes a large conformational change within a region confined to the central A-T base pairs in the promoter region of the DNA.
Collapse
Affiliation(s)
- Mayu Fujikawa
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Kazuo Kobayashi
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Takahiro Kozawa
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
19
|
Fujikawa M, Kobayashi K, Kozawa T. Mechanistic studies on formation of the dinitrosyl iron complex of the [2Fe-2S] cluster of SoxR protein. J Biochem 2014; 156:163-72. [DOI: 10.1093/jb/mvu029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
20
|
Akhova AV, Tkachenko AG. ATP/ADP alteration as a sign of the oxidative stress development in Escherichia coli cells under antibiotic treatment. FEMS Microbiol Lett 2014; 353:69-76. [PMID: 24612220 DOI: 10.1111/1574-6968.12405] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/21/2014] [Accepted: 02/17/2014] [Indexed: 11/28/2022] Open
Abstract
The extensively discussed idea of oxidative stress development under antibiotic treatment was confirmed using an antioxidant gene expression (soxRS-, oxyR-regulon) approach, including microaerobic cultivation conditions. The killing action of antibiotics and their ability to cause peroxide oxidative stress in Escherichia coli cells was comparable to a similar hydrogen peroxide capacity; therefore, the involvement of intracellular hydrogen peroxide production in the killing action of antibiotics seems plausible under conditions studied. The temporary increase of ATP/ADP (which returned to untreated levels in 10 min) and the intensification of respiration preceded the development of oxidative stress. The sharp rise in ATP/ADP was due to the accumulation of ATP with a slight increase in the ADP content. We proposed that ATP accumulation was not a result of increased respiration but was due to the inhibition of energy-consuming processes. The association of reactive oxygen species formation under antibiotic treatment with the inhibition of direct electron flow pathway along the respiratory chain, and a possible role of a sharp rise in ATP/ADP in this process is hypothesized.
Collapse
Affiliation(s)
- Anna V Akhova
- Institute of Ecology and Genetics of Microorganisms, Perm, Russia
| | | |
Collapse
|
21
|
Landry AP, Ding H. Redox control of human mitochondrial outer membrane protein MitoNEET [2Fe-2S] clusters by biological thiols and hydrogen peroxide. J Biol Chem 2014; 289:4307-15. [PMID: 24403080 DOI: 10.1074/jbc.m113.542050] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human mitochondrial outer membrane protein mitoNEET is a novel target of the type II diabetes drug pioglitazone. The C-terminal cytosolic domain of mitoNEET hosts a redox-active [2Fe-2S] cluster via an unusual ligand arrangement of three cysteine residues and one histidine residue. Here we report that human mitoNEET [2Fe-2S] clusters are fully reduced when expressed in Escherichia coli cells. In vitro studies show that purified mitoNEET [2Fe-2S] clusters can be partially reduced by monothiols such as reduced glutathione, L-cysteine or N-acetyl-L-cysteine and fully reduced by dithiothreitol or the E. coli thioredoxin/thioredoxin reductase system under anaerobic conditions. Importantly, thiol-reduced mitoNEET [2Fe-2S] clusters can be reversibly oxidized by hydrogen peroxide without disruption of the clusters in vitro and in E. coli cells, indicating that mitoNEET may act as a sensor of oxidative signals to regulate mitochondrial functions via its [2Fe-2S] clusters. Furthermore, the binding of the type II diabetes drug pioglitazone in mitoNEET effectively inhibits the thiol-mediated reduction of [2Fe-2S] clusters, suggesting that pioglitazone may modulate the function of mitoNEET by blocking the thiol-mediated reduction of [2Fe-2S] clusters in the protein.
Collapse
Affiliation(s)
- Aaron P Landry
- From the Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | | |
Collapse
|
22
|
|
23
|
Kobayashi K, Fujikawa M, Kozawa T. Oxidative stress sensing by the iron-sulfur cluster in the transcription factor, SoxR. J Inorg Biochem 2013; 133:87-91. [PMID: 24332474 DOI: 10.1016/j.jinorgbio.2013.11.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 11/28/2022]
Abstract
All bacteria are continuously exposed to environmental and/or endogenously active oxygen and nitrogen compounds and radicals. To reduce the deleterious effects of these reactive species, most bacteria have evolved specific sensor proteins that regulate the expression of enzymes that detoxify these species and repair proteins. Some bacterial transcriptional regulators containing an iron-sulfur cluster are involved in coordinating these physiological responses. Mechanistic and structural information can show how these regulators function, in particular, how chemical interactions at the cluster drive subsequent regulatory responses. The [2Fe-2S] transcription factor SoxR (superoxide response) functions as a bacterial sensor of oxidative stress and nitric oxide (NO). This review focuses on the mechanisms by which SoxR proteins respond to oxidative stress.
Collapse
Affiliation(s)
- Kazuo Kobayashi
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
| | - Mayu Fujikawa
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Takahiro Kozawa
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
24
|
Singh AK, Shin JH, Lee KL, Imlay JA, Roe JH. Comparative study of SoxR activation by redox-active compounds. Mol Microbiol 2013; 90:983-96. [PMID: 24112649 DOI: 10.1111/mmi.12410] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2013] [Indexed: 12/27/2022]
Abstract
SoxR from Escherichia coli and related enterobacteria is activated by a broad range of redox-active compounds through oxidation or nitrosylation of its [2Fe-2S] cluster. Activated SoxR then induces SoxS, which subsequently activates more than 100 genes in response. In contrast, non-enteric SoxRs directly activate their target genes in response to redox-active compounds that include endogenously produced metabolites. We compared the responsiveness of SoxRs from Streptomyces coelicolor (ScSoxR), Pseudomonas aeruginosa (PaSoxR) and E. coli (EcSoxR), all expressed in S. coelicolor, towards natural or synthetic redox-active compounds. EcSoxR responded to all compounds examined, whereas ScSoxR was insensitive to oxidants such as paraquat (Eh -440 mV) and menadione sodium bisulphite (Eh -45 mV) and to NO generators. PaSoxR was insensitive only to some NO generators. Whole-cell EPR analysis of SoxRs expressed in E. coli revealed that the [2Fe-2S](1+) of ScSoxR was not oxidizable by paraquat, differing from EcSoxR and PaSoxR. The mid-point redox potential of purified ScSoxR was determined to be -185 ± 10 mV, higher by approximately 100 mV than those of EcSoxR and PaSoxR, supporting its limited response to paraquat. The overall sensitivity profile indicates that both redox potential and kinetic reactivity determine the differential responses of SoxRs towards various oxidants.
Collapse
Affiliation(s)
- Atul K Singh
- Laboratory of Molecular Microbiology, School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul, 151-747, Korea
| | | | | | | | | |
Collapse
|
25
|
Couvé S, Ishchenko AA, Fedorova OS, Ramanculov EM, Laval J, Saparbaev M. Direct DNA Lesion Reversal and Excision Repair in Escherichia coli. EcoSal Plus 2013; 5. [PMID: 26442931 DOI: 10.1128/ecosalplus.7.2.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Indexed: 06/05/2023]
Abstract
Cellular DNA is constantly challenged by various endogenous and exogenous genotoxic factors that inevitably lead to DNA damage: structural and chemical modifications of primary DNA sequence. These DNA lesions are either cytotoxic, because they block DNA replication and transcription, or mutagenic due to the miscoding nature of the DNA modifications, or both, and are believed to contribute to cell lethality and mutagenesis. Studies on DNA repair in Escherichia coli spearheaded formulation of principal strategies to counteract DNA damage and mutagenesis, such as: direct lesion reversal, DNA excision repair, mismatch and recombinational repair and genotoxic stress signalling pathways. These DNA repair pathways are universal among cellular organisms. Mechanistic principles used for each repair strategies are fundamentally different. Direct lesion reversal removes DNA damage without need for excision and de novo DNA synthesis, whereas DNA excision repair that includes pathways such as base excision, nucleotide excision, alternative excision and mismatch repair, proceeds through phosphodiester bond breakage, de novo DNA synthesis and ligation. Cell signalling systems, such as adaptive and oxidative stress responses, although not DNA repair pathways per se, are nevertheless essential to counteract DNA damage and mutagenesis. The present review focuses on the nature of DNA damage, direct lesion reversal, DNA excision repair pathways and adaptive and oxidative stress responses in E. coli.
Collapse
|
26
|
Sheplock R, Recinos DA, Mackow N, Dietrich LEP, Chander M. Species-specific residues calibrate SoxR sensitivity to redox-active molecules. Mol Microbiol 2013; 87:368-81. [PMID: 23205737 PMCID: PMC3545107 DOI: 10.1111/mmi.12101] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2012] [Indexed: 12/20/2022]
Abstract
In enterics, the transcription factor SoxR triggers a global stress response by sensing a broad spectrum of redox-cycling compounds. In the non-enteric bacteria Pseudomonas aeruginosa and Streptomyces coelicolor, SoxR is activated by endogenous redox-active small molecules and only regulates a small set of genes. We investigated if the more general response in enterics is reflected in the ability of SoxR to sense a wider range of redox-cycling compounds. Indeed, while Escherichia coli SoxR is tuned to structurally diverse compounds that span a redox range of -450 to +80 mV, P. aeruginosa and S. coelicolor SoxR are less sensitive to viologens, which have redox potentials below -350 mV. Using a mutagenic approach, we pinpointed three amino acids that contribute to the reduced sensitivity of P. aeruginosa and S. coelicolor SoxR. Notably these residues are not conserved in homologues of the Enterobacteriaceae. We further identified a motif within the sensor domain that tunes the activity of SoxR from enterics - inhibiting constitutive activity while allowing sensitivity to drugs with low redox potentials. Our findings highlight how small alterations in structure can lead to the evolution of proteins with distinct specificities for redox-active small molecules.
Collapse
Affiliation(s)
- Rebecca Sheplock
- Department of Biology, Bryn Mawr College, 101 North Merion Avenue, Bryn Mawr, PA 19010
| | - David A. Recinos
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027
| | - Natalie Mackow
- Department of Biology, Bryn Mawr College, 101 North Merion Avenue, Bryn Mawr, PA 19010
| | - Lars E. P. Dietrich
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027
| | - Monica Chander
- Department of Biology, Bryn Mawr College, 101 North Merion Avenue, Bryn Mawr, PA 19010
| |
Collapse
|
27
|
Tsai FT, Lee YC, Chiang MH, Liaw WF. Nitrate-to-Nitrite-to-Nitric Oxide Conversion Modulated by Nitrate-Containing {Fe(NO)2}9 Dinitrosyl Iron Complex (DNIC). Inorg Chem 2012; 52:464-73. [DOI: 10.1021/ic3023437] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Fu-Te Tsai
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Ching Lee
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ming-Hsi Chiang
- Institute of Chemistry, Academic Sinica, NanKang, Taipei 115, Taiwan
| | - Wen-Feng Liaw
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
28
|
Bachi A, Dalle-Donne I, Scaloni A. Redox Proteomics: Chemical Principles, Methodological Approaches and Biological/Biomedical Promises. Chem Rev 2012. [DOI: 10.1021/cr300073p] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Angela Bachi
- Biological Mass Spectrometry Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| |
Collapse
|
29
|
Bhat SA, Singh N, Trivedi A, Kansal P, Gupta P, Kumar A. The mechanism of redox sensing in Mycobacterium tuberculosis. Free Radic Biol Med 2012; 53:1625-41. [PMID: 22921590 DOI: 10.1016/j.freeradbiomed.2012.08.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 08/03/2012] [Accepted: 08/03/2012] [Indexed: 12/25/2022]
Abstract
Tuberculosis epidemics have defied constraint despite the availability of effective treatment for the past half-century. Mycobacterium tuberculosis, the causative agent of TB, is continually exposed to a number of redox stressors during its pathogenic cycle. The mechanisms used by Mtb to sense redox stress and to maintain redox homeostasis are central to the success of Mtb as a pathogen. Careful analysis of the Mtb genome has revealed that Mtb lacks classical redox sensors such as FNR, FixL, and OxyR. Recent studies, however, have established that Mtb is equipped with various sophisticated redox sensors that can detect diverse types of redox stress, including hypoxia, nitric oxide, carbon monoxide, and the intracellular redox environment. Some of these sensors, such as heme-based DosS and DosT, are unique to mycobacteria, whereas others, such as the WhiB proteins and anti-σ factor RsrA, are unique to actinobacteria. This article provides a comprehensive review of the literature on these redox-sensory modules in the context of TB pathogenesis.
Collapse
Affiliation(s)
- Shabir Ahmad Bhat
- Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India
| | | | | | | | | | | |
Collapse
|
30
|
Fujikawa M, Kobayashi K, Kozawa T. Direct oxidation of the [2Fe-2S] cluster in SoxR protein by superoxide: distinct differential sensitivity to superoxide-mediated signal transduction. J Biol Chem 2012; 287:35702-35708. [PMID: 22908228 PMCID: PMC3471711 DOI: 10.1074/jbc.m112.395079] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/17/2012] [Indexed: 11/06/2022] Open
Abstract
The [2Fe-2S] transcription factor SoxR is activated by reversible one-electron oxidation of its [2Fe-2S] cluster, leading to enhanced production of various antioxidant proteins through induction of the soxRS regulon in Escherichia coli. Recently, there has been considerable debate about whether superoxide (O(2)(•)) activates SoxR directly. To elucidate the underlying activation mechanism, we investigated SoxR interaction with O(2)(•) using pulse radiolysis. Radiolytically generated hydrated electrons reduced the oxidized form of the [2Fe-2S] cluster of SoxR within 2 μs. A subsequent increase in absorption in the visible region corresponding to reoxidation of the [2Fe-2S] cluster was observed on a time scale of milliseconds. Addition of human copper/zinc superoxide dismutase inhibited this delayed oxidation in a concentration-dependent fashion (I(50) = 1.0 μm), indicating that O(2)(•) oxidized the reduced form of SoxR directly. The second-order rate constant of this process was estimated to be 5 × 10(8) m(-1) s(-1). A similar result was observed after pulse radiolysis of Pseudomonas aeruginosa SoxR. However, superoxide dismutase inhibited the oxidation of reduced SoxR much more effectively in P. aeruginosa, even at a lower concentration (I(50) = 80 nm), indicating that the soxRS response is much more sensitive to O(2)(•) in E. coli than in P. aeruginosa. These results suggest that SoxR proteins play a distinct regulatory role in the activation of O(2)(•).
Collapse
Affiliation(s)
- Mayu Fujikawa
- Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Kazuo Kobayashi
- Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
| | - Takahiro Kozawa
- Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
31
|
New members of a class of dinitrosyliron complexes (DNICs): The characteristic EPR signal of the six-coordinate and five-coordinate {Fe(NO)2}9 DNICs. J Inorg Biochem 2012; 113:83-93. [DOI: 10.1016/j.jinorgbio.2012.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 03/16/2012] [Accepted: 03/21/2012] [Indexed: 11/22/2022]
|
32
|
Lo FC, Lee JF, Liaw WF, Hsu IJ, Tsai YF, Chan SI, Yu SSF. The Metal Core Structures in the Recombinant Escherichia coli Transcriptional Factor SoxR. Chemistry 2012; 18:2565-77. [DOI: 10.1002/chem.201100838] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 09/14/2011] [Indexed: 11/10/2022]
|
33
|
Haley KP, Skaar EP. A battle for iron: host sequestration and Staphylococcus aureus acquisition. Microbes Infect 2011; 14:217-27. [PMID: 22123296 DOI: 10.1016/j.micinf.2011.11.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/31/2011] [Accepted: 11/02/2011] [Indexed: 12/21/2022]
Abstract
The use of iron as an enzymatic cofactor is pervasive in biological systems. Consequently most living organisms, including pathogenic bacteria, require iron to survive and replicate. To combat infection vertebrates have evolved sophisticated iron sequestration systems against which, pathogenic bacteria have concomitantly evolved equally elaborate iron acquisition mechanisms.
Collapse
Affiliation(s)
- Kathryn P Haley
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, 1161 21st Ave., South, A5102 MCN, Nashville, TN 37232-2363, USA
| | | |
Collapse
|
34
|
Zafar MA, Sanchez-Alberola N, Wolf RE. Genetic evidence for a novel interaction between transcriptional activator SoxS and region 4 of the σ(70) subunit of RNA polymerase at class II SoxS-dependent promoters in Escherichia coli. J Mol Biol 2011; 407:333-53. [PMID: 21195716 PMCID: PMC3070153 DOI: 10.1016/j.jmb.2010.12.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 12/22/2010] [Accepted: 12/23/2010] [Indexed: 11/30/2022]
Abstract
Escherichia coli SoxS activates transcription of the genes of the soxRS regulon, which provide the cell's defense against oxidative stress. In response to this stress, SoxS is synthesized de novo. Because the DNA binding site of SoxS is highly degenerate, SoxS efficiently activates transcription by the mechanism of prerecruitment. In prerecruitment, newly synthesized SoxS first forms binary complexes with RNA polymerase. These complexes then scan the chromosome for class I and II SoxS-dependent promoters, using the specific DNA-recognition properties of SoxS and σ(70) to distinguish SoxS-dependent promoters from the vast excess of sequence-equivalent soxboxes that do not reside in promoters. Previously, we determined that SoxS interacts with RNA polymerase in two ways: by making protein-protein interactions with the DNA-binding determinant of the α subunit and by interacting with σ(70) region 4 (σ(70) R4) both "on-DNA" and "off-DNA." Here, we address the question of how SoxS and σ(70) R4 coexist at class II promoters, where the binding site for SoxS either partially or completely overlaps the -35 region of the promoter, which is usually bound by σ(70) R4. To do so, we created a tri-alanine scanning library that covers all of σ(70) R4. We determined that interactions between σ(70) R4 and the DNA in the promoter's -35 region are required for activation of class I promoters, where the binding site lies upstream of the -35 hexamer, but they are not required at class II promoters. In contrast, specific three-amino-acid stretches are required for activation of class I (lac) and class II (galP1) cyclic AMP receptor protein-dependent promoters. We conclude from these data that SoxS and σ(70) R4 interact with each other in a novel way at class II SoxS-dependent promoters such that the two proteins do not accommodate one another in the -35 region but instead SoxS binding there occludes the binding of σ(70) R4.
Collapse
Affiliation(s)
| | - Neus Sanchez-Alberola
- Department of Biological Sciences University of Maryland Baltimore County Baltimore, MD 21250
| | - Richard E. Wolf
- Department of Biological Sciences University of Maryland Baltimore County Baltimore, MD 21250
| |
Collapse
|
35
|
Abstract
In all organisms, oxidation threatens the integrity of the genome. DNA-mediated charge transport (CT) may play an important role in the generation and repair of this oxidative damage. In studies involving long-range CT from intercalating Ru and Rh complexes to 5'-GG-3' sites, we have examined the efficiency of CT as a function of distance, temperature, and the electronic coupling of metal oxidants bound to the base stack. Most striking is the shallow distance dependence and the sensitivity of DNA CT to how the metal complexes are stacked in the helix. Experiments with cyclopropylamine-modified bases have revealed that charge occupation occurs at all sites along the bridge. Using Ir complexes, we have seen that the process of DNA-mediated reduction is very similar to that of DNA-mediated oxidation. Studies involving metalloproteins have, furthermore, shown that their redox activity is DNA-dependent and can be DNA-mediated. Long range DNA-mediated CT can facilitate the oxidation of DNA-bound base excision repair proteins to initiate a redox-active search for DNA lesions. DNA CT can also activate the transcription factor SoxR, triggering a cellular response to oxidative stress. Indeed, these studies show that within the cell, redox-active proteins may utilize the same chemistry as that of synthetic metal complexes in vitro, and these proteins may harness DNA-mediated CT to reduce damage to the genome and regulate cellular processes.
Collapse
Affiliation(s)
- Jacqueline K. Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Eric D. Olmon
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Pamela A. Sontz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
36
|
Abstract
Cysteine is notable among the universal, proteinogenic amino acids for its facile redox chemistry. Cysteine thiolates are readily modified by reactive oxygen species (ROS), reactive electrophilic species (RES), and reactive nitrogen species (RNS). Although thiol switches are commonly triggered by disulfide bond formation, they can also be controlled by S-thiolation, S-alkylation, or modification by RNS. Thiol-based switches are common in both prokaryotic and eukaryotic organisms and activate functions that detoxify reactive species and restore thiol homeostasis while repressing functions that would be deleterious if expressed under oxidizing conditions. Here, we provide an overview of the best-understood examples of thiol-based redox switches that affect gene expression. Intra- or intermolecular disulfide bond formation serves as a direct regulatory switch for several bacterial transcription factors (OxyR, OhrR/2-Cys, Spx, YodB, CrtJ, and CprK) and indirectly regulates others (the RsrA anti-σ factor and RegB sensory histidine kinase). In eukaryotes, thiol-based switches control the yeast Yap1p transcription factor, the Nrf2/Keap1 electrophile and oxidative stress response, and the Chlamydomonas NAB1 translational repressor. Collectively, these regulators reveal a remarkable range of chemical modifications exploited by Cys residues to effect changes in gene expression.
Collapse
Affiliation(s)
- Haike Antelmann
- Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald, Greifswald, Germany.
| | | |
Collapse
|
37
|
Gu M, Imlay JA. The SoxRS response of Escherichia coli is directly activated by redox-cycling drugs rather than by superoxide. Mol Microbiol 2011; 79:1136-50. [PMID: 21226770 PMCID: PMC3071027 DOI: 10.1111/j.1365-2958.2010.07520.x] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
When Escherichia coli is exposed to redox-cycling drugs, its SoxR transcription factor is activated by oxidation of its [2Fe-2S] cluster. In aerobic cells these drugs generate superoxide, and because superoxide dismutase (SOD) is a member of the SoxRS regulon, superoxide was initially thought to be the activator of SoxR. Its many-gene regulon was therefore believed to comprise a defence against superoxide stress. However, we found that abundant superoxide did not effectively activate SoxR in an SOD⁻ mutant, that overproduced SOD could not suppress activation by redox-cycling drugs, and that redox-cycling drugs were able to activate SoxR in anaerobic cells as long as alternative respiratory acceptors were provided. Thus superoxide is not the signal that SoxR senses. Indeed, redox-cycling drugs directly oxidized the cluster of purified SoxR in vitro, while superoxide did not. Redox-cycling drugs are excreted by both bacteria and plants. Their toxicity does not require superoxide, as they poisoned E. coli under anaerobic conditions, in part by oxidizing dehydratase iron-sulfur clusters. Under these conditions SoxRS induction was protective. Thus it is physiologically appropriate that the SoxR protein directly senses redox-cycling drugs rather than superoxide.
Collapse
Affiliation(s)
- Mianzhi Gu
- Department of Microbiology, University of Illinois, Urbana, IL 61801
| | - James A. Imlay
- Department of Microbiology, University of Illinois, Urbana, IL 61801
| |
Collapse
|
38
|
Expression of the Streptomyces coelicolor SoxR regulon is intimately linked with actinorhodin production. J Bacteriol 2010; 192:6428-38. [PMID: 20952574 DOI: 10.1128/jb.00916-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The [2Fe-2S]-containing transcription factor SoxR is conserved in diverse bacteria. SoxR is traditionally known as the regulator of a global oxidative stress response in Escherichia coli, but recent studies suggest that this function may be restricted to enteric bacteria. In the vast majority of nonenterics, SoxR is predicted to mediate a response to endogenously produced redox-active metabolites. We have examined the regulation and function of the SoxR regulon in the model antibiotic-producing filamentous bacterium Streptomyces coelicolor. Unlike the E. coli soxR deletion mutant, the S. coelicolor equivalent is not hypersensitive to oxidants, indicating that SoxR does not potentiate antioxidant defense in the latter. SoxR regulates five genes in S. coelicolor, including those encoding a putative ABC transporter, two oxidoreductases, a monooxygenase, and a possible NAD-dependent epimerase/dehydratase. Expression of these genes depends on the production of the benzochromanequinone antibiotic actinorhodin and requires intact [2Fe-2S] clusters in SoxR. These data indicate that actinorhodin, or a redox-active precursor, modulates SoxR activity in S. coelicolor to stimulate the production of a membrane transporter and proteins with homology to actinorhodin-tailoring enzymes. While the role of SoxR in S. coelicolor remains under investigation, these studies support the notion that SoxR has been adapted to perform distinct physiological functions to serve the needs of organisms that occupy different ecological niches and face different environmental challenges.
Collapse
|
39
|
Zafar MA, Shah IM, Wolf RE. Protein-protein interactions between sigma(70) region 4 of RNA polymerase and Escherichia coli SoxS, a transcription activator that functions by the prerecruitment mechanism: evidence for "off-DNA" and "on-DNA" interactions. J Mol Biol 2010; 401:13-32. [PMID: 20595001 PMCID: PMC2917807 DOI: 10.1016/j.jmb.2010.05.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 05/12/2010] [Accepted: 05/21/2010] [Indexed: 10/19/2022]
Abstract
According to the prerecruitment hypothesis, Escherichia coli SoxS activates the transcription of the genes of the SoxRS regulon by forming binary complexes with RNA polymerase (RNAP) that scan the chromosome for class I and class II SoxS-dependent promoters. We showed previously that the alpha subunit's C-terminal domain plays a role in activating both classes of promoter by making protein-protein contacts with SoxS; some of these contacts are made in solution in the absence of promoter DNA, a critical prediction of the prerecruitment hypothesis. Here, we identified seven single-alanine substitutions of the region 4 of sigma(70) (sigma(70) R4) of RNAP that reduce SoxS activation of class II promoters. With genetic epistasis tests between these sigma(70) R4 mutants and positive control mutants of SoxS, we identified 10 pairs of amino acids that interact with each other in E. coli. Using the yeast two-hybrid system and affinity immobilization assays, we showed that SoxS and sigma(70) R4 can interact in solution (i.e., "off-DNA"). The interaction requires amino acids of the class I/II (but not the class II) positive control surface of SoxS, and five amino acids of sigma(70) R4 that reduce activation in E. coli also reduce the SoxS-sigma(70) R4 interaction in yeast. One of the epistatic interactions that occur in E. coli also occurs in the yeast two-hybrid system (i.e., off-DNA). Importantly, we infer that the five epistatic interactions occurring in E. coli that require an amino acid of the class II surface occur "on-DNA" at class II promoters. Finding that SoxS contacts sigma(70) R4 both off-DNA and on-DNA is consistent with the prerecruitment hypothesis. Moreover, SoxS is now the first example of an E. coli transcriptional activator that uses a single positive control surface to make specific protein-protein contacts with two different subunits of RNAP.
Collapse
Affiliation(s)
- M. Ammar Zafar
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250
| | | | - Richard E. Wolf
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250
| |
Collapse
|
40
|
Genereux JC, Boal AK, Barton JK. DNA-mediated charge transport in redox sensing and signaling. J Am Chem Soc 2010; 132:891-905. [PMID: 20047321 PMCID: PMC2902267 DOI: 10.1021/ja907669c] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The transport of charge through the DNA base-pair stack offers a route to carry out redox chemistry at a distance. Here we describe characteristics of this chemistry that have been elucidated and how this chemistry may be utilized within the cell. The shallow distance dependence associated with these redox reactions permits DNA-mediated signaling over long molecular distances in the genome and facilitates the activation of redox-sensitive transcription factors globally in response to oxidative stress. The long-range funneling of oxidative damage to sites of low oxidation potential in the genome also may provide a means of protection within the cell. Furthermore, the sensitivity of DNA charge transport to perturbations in base-pair stacking, as may arise with base lesions and mismatches, may be used as a route to scan the genome for damage as a first step in DNA repair. Thus, the ability of double-helical DNA in mediating redox chemistry at a distance provides a natural mechanism for redox sensing and signaling in the genome.
Collapse
Affiliation(s)
- Joseph C. Genereux
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125,
| | - Amie K. Boal
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125,
| | - Jacqueline K. Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125,
| |
Collapse
|
41
|
The PqrR transcriptional repressor of Pseudomonas aeruginosa transduces redox signals via an iron-containing prosthetic group. J Bacteriol 2009; 191:6709-21. [PMID: 19717597 DOI: 10.1128/jb.00932-09] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inducible defenses against oxidative stress are coordinated by redox-sensitive transcription factors that transduce oxidative damage into differential gene expression. The opportunistic human pathogen Pseudomonas aeruginosa has evolved under physiological and host-derived sources of oxidative stress. Previous work showed that the pqrABC and pqrR genes of P. aeruginosa, all lacking known functions, were induced by treatment of three different isolates of P. aeruginosa with paraquat (PQ), a superoxide-producing agent. Insertional mutation of the pqrABCR genes resulted in hypersensitive phenotypes to a variety of oxidants, although the hypersensitivity to PQ was marginal. Mutation of pqrR and complementation assays showed that PqrR regulated the pqrABC genes in response to PQ. PqrR, a member of the MarR family of transcriptional regulators, contains a C-terminal region with four conserved cysteines, which suggested redox-regulated transcriptional activity. Purified PqrR bound to two discrete sites at the pqrA and pqrR regulatory regions. The in vitro DNA binding activity of PqrR was decreased by exposure to air and reconstituted by treatment with dl-dithiothreitol. Elemental analysis and preliminary electron paramagnetic resonance experiments showed that PqrR contains iron. Interestingly, site-directed mutagenesis of C-terminal cysteines demonstrated that the four conserved cysteine residues are essential for in vivo redox sensing by PqrR.
Collapse
|
42
|
Ballmann J, Dechert S, Demeshko S, Meyer F. Tuning Electronic Properties of Biomimetic [2Fe-2S] Clusters by Ligand Variations. Eur J Inorg Chem 2009. [DOI: 10.1002/ejic.200900101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Hydrogen peroxide-induced response in E. coli and S. cerevisiae: different stages of the flow of the genetic information. Open Life Sci 2009. [DOI: 10.2478/s11535-009-0005-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
AbstractAdaptation to oxidative stress is a major topic in basic and applied research. Cell response to stressful changes is realized through coordinated reorganization of gene expression. E. coli and S. cerevisiae are extremely amenable to genetic or molecular biological and biochemical approaches, which make these microorganisms suitable models to study stress response at a molecular level in prokaryotes and eukaryotes, respectively. The main focus of this review is (i) to discuss transcriptional control of global response to hydrogen peroxide in E. coli and S. cerevisiae, (ii) to summarize recent literature data on E. coli and S. cerevisiae adaptive response to oxidative stress at different stages of the flow of the genetic information: from transcription and translation to functionally active proteins and (iii) to discuss possible reasons for a lack of correlation between the expression of certain antioxidant genes at different levels of cellular organization.
Collapse
|
44
|
Tan G, Lu J, Bitoun JP, Huang H, Ding H. IscA/SufA paralogues are required for the [4Fe-4S] cluster assembly in enzymes of multiple physiological pathways in Escherichia coli under aerobic growth conditions. Biochem J 2009; 420:463-72. [PMID: 19309314 PMCID: PMC2776711 DOI: 10.1042/bj20090206] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
IscA/SufA paralogues are the members of the iron-sulfur cluster assembly machinery in Escherichia coli. Whereas deletion of either IscA or SufA has only a mild effect on cell growth, deletion of both IscA and SufA results in a null-growth phenotype in minimal medium under aerobic growth conditions. Here we report that cell growth of the iscA/sufA double mutant (E. coli strain in which both iscA and sufA had been in-frame-deleted) can be partially restored by supplementing with BCAAs (branched-chain amino acids) and thiamin. We further demonstrate that deletion of IscA/SufA paralogues blocks the [4Fe-4S] cluster assembly in IlvD (dihydroxyacid dehydratase) of the BCAA biosynthetic pathway in E. coli cells under aerobic conditions and that addition of the iron-bound IscA/SufA efficiently promotes the [4Fe-4S] cluster assembly in IlvD and restores the enzyme activity in vitro, suggesting that IscA/SufA may act as an iron donor for the [4Fe-4S] cluster assembly under aerobic conditions. Additional studies reveal that IscA/SufA are also required for the [4Fe-4S] cluster assembly in enzyme ThiC of the thiamin-biosynthetic pathway, aconitase B of the citrate acid cycle and endonuclease III of the DNA-base-excision-repair pathway in E. coli under aerobic conditions. Nevertheless, deletion of IscA/SufA does not significantly affect the [2Fe-2S] cluster assembly in the redox transcription factor SoxR, ferredoxin and the siderophore-iron reductase FhuF. The results suggest that the biogenesis of the [4Fe-4S] clusters and the [2Fe-2S] clusters may have distinct pathways and that IscA/SufA paralogues are essential for the [4Fe-4S] cluster assembly, but are dispensable for the [2Fe-2S] cluster assembly in E. coli under aerobic conditions.
Collapse
Affiliation(s)
- Guoqiang Tan
- Zhejiang Provincial Key laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, Zhejiang, 325035, P. R. China
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Jianxin Lu
- Zhejiang Provincial Key laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jacob P. Bitoun
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Hao Huang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Huangen Ding
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 USA
| |
Collapse
|
45
|
Griffith KL, Fitzpatrick MM, Keen EF, Wolf RE. Two functions of the C-terminal domain of Escherichia coli Rob: mediating "sequestration-dispersal" as a novel off-on switch for regulating Rob's activity as a transcription activator and preventing degradation of Rob by Lon protease. J Mol Biol 2009; 388:415-30. [PMID: 19289129 PMCID: PMC2728042 DOI: 10.1016/j.jmb.2009.03.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 03/08/2009] [Accepted: 03/09/2009] [Indexed: 11/30/2022]
Abstract
In Escherichia coli, Rob activates transcription of the SoxRS/MarA/Rob regulon. Previous work revealed that Rob resides in three to four immunostainable foci, that dipyridyl and bile salts are inducers of its activity, and that inducers bind to Rob's C-terminal domain (CTD). We propose that sequestration inactivates Rob by blocking its access to the transcriptional machinery and that inducers activate Rob by mediating its dispersal, allowing interaction with RNA polymerase. To test "sequestration-dispersal" as a new mechanism for regulating the activity of transcriptional activators, we fused Rob's CTD to SoxS and used indirect immunofluorescence microscopy to determine the effect of inducers on SoxS-Rob's cellular localization. Unlike native SoxS, which is uniformly distributed throughout the cell, SoxS-Rob is sequestered without an inducer, but is rapidly dispersed when cells are treated with an inducer. In this manner, Rob's CTD serves as an anti-sigma factor in regulating the co-sigma-factor-like activity of SoxS when fused to it. Rob's CTD also protects its N-terminus from Lon protease, since Lon's normally rapid degradation of SoxS is blocked in the chimera. Accordingly, Rob's CTD has novel regulatory properties that can be bestowed on another E. coli protein.
Collapse
Affiliation(s)
- Kevin L Griffith
- University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | | | | | | |
Collapse
|
46
|
Abstract
By virtue of its unique electrochemical properties, iron makes an ideal redox active cofactor for many biologic processes. In addition to its important role in respiration, central metabolism, nitrogen fixation, and photosynthesis, iron also is used as a sensor of cellular redox status. Iron-based sensors incorporate Fe-S clusters, heme, and mononuclear iron sites to act as switches to control protein activity in response to changes in cellular redox balance. Here we provide an overview of iron-based redox sensor proteins, in both prokaryotes and eukaryotes, that have been characterized at the biochemical level. Although this review emphasizes redox sensors containing Fe-S clusters, proteins that use heme or novel iron sites also are discussed.
Collapse
Affiliation(s)
- F Wayne Outten
- Department of Chemistry and Biochemistry, The University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, USA.
| | | |
Collapse
|
47
|
Backiel J, Juárez O, Zagorevski DV, Wang Z, Nilges MJ, Barquera B. Covalent binding of flavins to RnfG and RnfD in the Rnf complex from Vibrio cholerae. Biochemistry 2008; 47:11273-84. [PMID: 18831535 PMCID: PMC2643342 DOI: 10.1021/bi800920j] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enzymes of the Rnf family are believed to be bacterial redox-driven ion pumps, coupling an oxidoreduction process to the translocation of Na+ across the cell membrane. Here we show for the first time that Rnf is a flavoprotein, with FMN covalently bound to threonine-175 in RnfG and a second flavin bound to threonine-187 in RnfD. Rnf subunits D and G are homologous to subunits B and C of Na+-NQR, respectively. Each of these Na+-NQR subunits includes a conserved S(T)GAT motif, with FMN covalently bound to the final threonine. RnfD and RnfG both contain the same motif, suggesting that they bind flavins in a similar way. In order to investigate this, the genes for RnfD and RnfG from Vibrio cholerae were cloned and expressed individually in that organism. In both cases the produced protein fluoresced under UV illumination on an SDS gel, further indicating the presence of flavin. However, analysis of the mutants RnfG-T175L, RnfD-T278L, and RnfD-T187V showed that RnfG-T175 and RnfD-T187 are the likely flavin ligands. This indicates that, in the case of RnfD, the flavin is bound, not to the SGAT sequence but to the final residues of a TMAT sequence, a novel variant of the flavin binding motif. In the case of RnfG, flavin analysis, followed by MALDI-TOF-TOF mass spectrometry, showed that an FMN is covalently attached to threonine-175, the final threonine of the S(T)GAT sequence. Studies by visible, EPR, and ENDOR spectroscopy showed that, upon partial reduction, the isolated RnfG produces a neutral semiquinone intermediate. The semiquinone species disappeared upon full reduction and was not observed in the denatured protein. A topological analysis combining reporter protein fusion and computer predictions indicated that the flavins in RnfG and RnfD are localized in the periplasmic space. In contrast, in NqrC and NqrB the flavins are located in a cytoplasmic loop. This topological analysis suggests that there may be mechanistic differences between the Rnf and Na+-NQR complexes.
Collapse
Affiliation(s)
| | | | | | | | | | - Blanca Barquera
- Author to whom correspondence should be addressed at the Center for Biotechnology and Interdisciplinary Studies, Room 2239, Rensselaer Polytechnic Institute. E-mail: . Fax: (518) 276-2851. Phone: (518) 276-3861
| |
Collapse
|
48
|
Abstract
Life evolved in an anaerobic world; therefore, fundamental enzymatic mechanisms and biochemical pathways were refined and integrated into metabolism in the absence of any selective pressure to avoid reactivity with oxygen. After photosystem II appeared, environmental oxygen levels rose very slowly. During this time, microorganisms acquired oxygen tolerance by jettisoning enzymes that use glycyl radicals and exposed low-potential iron-sulfur clusters, which can be directly poisoned by oxygen. They also developed mechanisms to defend themselves against superoxide (O(2)()) and hydrogen peroxide, partially reduced oxygen species that are generated as inadvertent by-products of aerobic metabolism. Contemporary organisms have inherited both the vulnerabilities and the defenses of these ancestral microbes. Current research seeks to identify these, and bacteria comprise an exceptionally accessible experimental system that has provided many of the answers. This manuscript reviews recent developments and identifies remaining puzzles.
Collapse
Affiliation(s)
- James A Imlay
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|
49
|
Gorodetsky AA, Dietrich LEP, Lee PE, Demple B, Newman DK, Barton JK. DNA binding shifts the redox potential of the transcription factor SoxR. Proc Natl Acad Sci U S A 2008; 105:3684-9. [PMID: 18316718 PMCID: PMC2268809 DOI: 10.1073/pnas.0800093105] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Indexed: 11/18/2022] Open
Abstract
Electrochemistry measurements on DNA-modified electrodes are used to probe the effects of binding to DNA on the redox potential of SoxR, a transcription factor that contains a [2Fe-2S] cluster and is activated through oxidation. A DNA-bound potential of +200 mV versus NHE (normal hydrogen electrode) is found for SoxR isolated from Escherichia coli and Pseudomonas aeruginosa. This potential value corresponds to a dramatic shift of +490 mV versus values found in the absence of DNA. Using Redmond red as a covalently bound redox reporter affixed above the SoxR binding site, we also see, associated with SoxR binding, an attenuation in the Redmond red signal compared with that for Redmond red attached below the SoxR binding site. This observation is consistent with a SoxR-binding-induced structural distortion in the DNA base stack that inhibits DNA-mediated charge transport to the Redmond red probe. The dramatic shift in potential for DNA-bound SoxR compared with the free form is thus reconciled based on a high-energy conformational change in the SoxR-DNA complex. The substantial positive shift in potential for DNA-bound SoxR furthermore indicates that, in the reducing intracellular environment, DNA-bound SoxR is primarily in the reduced form; the activation of DNA-bound SoxR would then be limited to strong oxidants, making SoxR an effective sensor for oxidative stress. These results more generally underscore the importance of using DNA electrochemistry to determine DNA-bound potentials for redox-sensitive transcription factors because such binding can dramatically affect this key protein property.
Collapse
Affiliation(s)
- Alon A. Gorodetsky
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | | | - Paul E. Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Bruce Demple
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115
| | - Dianne K. Newman
- Departments of Biology and
- Earth and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; and
| | - Jacqueline K. Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
50
|
Abstract
Life evolved in an anaerobic world; therefore, fundamental enzymatic mechanisms and biochemical pathways were refined and integrated into metabolism in the absence of any selective pressure to avoid reactivity with oxygen. After photosystem II appeared, environmental oxygen levels rose very slowly. During this time, microorganisms acquired oxygen tolerance by jettisoning enzymes that use glycyl radicals and exposed low-potential iron-sulfur clusters, which can be directly poisoned by oxygen. They also developed mechanisms to defend themselves against superoxide (O(2)()) and hydrogen peroxide, partially reduced oxygen species that are generated as inadvertent by-products of aerobic metabolism. Contemporary organisms have inherited both the vulnerabilities and the defenses of these ancestral microbes. Current research seeks to identify these, and bacteria comprise an exceptionally accessible experimental system that has provided many of the answers. This manuscript reviews recent developments and identifies remaining puzzles.
Collapse
Affiliation(s)
- James A Imlay
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|