1
|
Felipe Perez R, Mochi G, Khan A, Woodford M. Mitochondrial Chaperone Code: Just warming up. Cell Stress Chaperones 2024; 29:483-496. [PMID: 38763405 PMCID: PMC11153887 DOI: 10.1016/j.cstres.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024] Open
Abstract
More than 99% of the mitochondrial proteome is encoded by the nucleus and requires refolding following import. Therefore, mitochondrial proteins require the coordinated action of molecular chaperones for their folding and activation. Several heat shock protein (Hsp) molecular chaperones, including members of the Hsp27, Hsp40/70, and Hsp90 families, as well as the chaperonin complex Hsp60/10 have an established role in mitochondrial protein import and folding. The "Chaperone Code" describes the regulation of chaperone activity by dynamic post-translational modifications; however, little is known about the post-translational regulation of mitochondrial chaperones. Dissecting the regulation of chaperone function is essential for understanding their differential regulation in pathogenic conditions and the potential development of efficacious therapeutic strategies. Here, we summarize the recent literature on post-translational regulation of mitochondrial chaperones, the consequences for mitochondrial function, and potential implications for disease.
Collapse
Affiliation(s)
- R Felipe Perez
- Department of Urology, Upstate Medical University, Syracuse, NY, USA
| | - Gianna Mochi
- Department of Urology, Upstate Medical University, Syracuse, NY, USA; Department of Biochemistry & Molecular Biology, Upstate Medical University, Syracuse, NY, USA; Upstate Cancer Center, State University of New York, Upstate Medical University, Syracuse, NY, USA
| | - Ariba Khan
- Department of Urology, Upstate Medical University, Syracuse, NY, USA
| | - Mark Woodford
- Department of Urology, Upstate Medical University, Syracuse, NY, USA; Department of Biochemistry & Molecular Biology, Upstate Medical University, Syracuse, NY, USA; Upstate Cancer Center, State University of New York, Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
2
|
Braxton JR, Shao H, Tse E, Gestwicki JE, Southworth DR. Asymmetric apical domain states of mitochondrial Hsp60 coordinate substrate engagement and chaperonin assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540872. [PMID: 37293102 PMCID: PMC10245740 DOI: 10.1101/2023.05.15.540872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The mitochondrial chaperonin, mtHsp60, promotes the folding of newly imported and transiently misfolded proteins in the mitochondrial matrix, assisted by its co-chaperone mtHsp10. Despite its essential role in mitochondrial proteostasis, structural insights into how this chaperonin binds to clients and progresses through its ATP-dependent reaction cycle are not clear. Here, we determined cryo-electron microscopy (cryo-EM) structures of a hyperstable disease-associated mtHsp60 mutant, V72I, at three stages in this cycle. Unexpectedly, client density is identified in all states, revealing interactions with mtHsp60's apical domains and C-termini that coordinate client positioning in the folding chamber. We further identify a striking asymmetric arrangement of the apical domains in the ATP state, in which an alternating up/down configuration positions interaction surfaces for simultaneous recruitment of mtHsp10 and client retention. Client is then fully encapsulated in mtHsp60/mtHsp10, revealing prominent contacts at two discrete sites that potentially support maturation. These results identify a new role for the apical domains in coordinating client capture and progression through the cycle, and suggest a conserved mechanism of group I chaperonin function.
Collapse
Affiliation(s)
- Julian R. Braxton
- Graduate Program in Chemistry and Chemical Biology; University of California, San Francisco; San Francisco, CA 94158, USA
- Institute for Neurodegenerative Diseases; University of California, San Francisco; San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry; University of California, San Francisco; San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics; University of California, San Francisco; San Francisco, CA 94158, USA
| | - Hao Shao
- Institute for Neurodegenerative Diseases; University of California, San Francisco; San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry; University of California, San Francisco; San Francisco, CA 94158, USA
| | - Eric Tse
- Institute for Neurodegenerative Diseases; University of California, San Francisco; San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics; University of California, San Francisco; San Francisco, CA 94158, USA
| | - Jason E. Gestwicki
- Institute for Neurodegenerative Diseases; University of California, San Francisco; San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry; University of California, San Francisco; San Francisco, CA 94158, USA
| | - Daniel R. Southworth
- Institute for Neurodegenerative Diseases; University of California, San Francisco; San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics; University of California, San Francisco; San Francisco, CA 94158, USA
| |
Collapse
|
3
|
Hassell DS, Steingesser MG, Denney AS, Johnson CR, McMurray MA. Chemical rescue of mutant proteins in living Saccharomyces cerevisiae cells by naturally occurring small molecules. G3-GENES GENOMES GENETICS 2021; 11:6323229. [PMID: 34544143 PMCID: PMC8496222 DOI: 10.1093/g3journal/jkab252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/29/2021] [Indexed: 11/14/2022]
Abstract
Intracellular proteins function in a complex milieu wherein small molecules influence protein folding and act as essential cofactors for enzymatic reactions. Thus protein function depends not only on amino acid sequence but also on the concentrations of such molecules, which are subject to wide variation between organisms, metabolic states, and environmental conditions. We previously found evidence that exogenous guanidine reverses the phenotypes of specific budding yeast septin mutants by binding to a WT septin at the former site of an Arg side chain that was lost during fungal evolution. Here, we used a combination of targeted and unbiased approaches to look for other cases of "chemical rescue" by naturally occurring small molecules. We report in vivo rescue of hundreds of Saccharomyces cerevisiae mutants representing a variety of genes, including likely examples of Arg or Lys side chain replacement by the guanidinium ion. Failed rescue of targeted mutants highlight features required for rescue, as well as key differences between the in vitro and in vivo environments. Some non-Arg mutants rescued by guanidine likely result from "off-target" effects on specific cellular processes in WT cells. Molecules isosteric to guanidine and known to influence protein folding had a range of effects, from essentially none for urea, to rescue of a few mutants by DMSO. Strikingly, the osmolyte trimethylamine-N-oxide rescued ∼20% of the mutants we tested, likely reflecting combinations of direct and indirect effects on mutant protein function. Our findings illustrate the potential of natural small molecules as therapeutic interventions and drivers of evolution.
Collapse
Affiliation(s)
- Daniel S Hassell
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Marc G Steingesser
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ashley S Denney
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Courtney R Johnson
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael A McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Friedlander JE, Shen N, Zeng A, Korm S, Feng H. Failure to Guard: Mitochondrial Protein Quality Control in Cancer. Int J Mol Sci 2021; 22:ijms22158306. [PMID: 34361072 PMCID: PMC8348654 DOI: 10.3390/ijms22158306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are energetic and dynamic organelles with a crucial role in bioenergetics, metabolism, and signaling. Mitochondrial proteins, encoded by both nuclear and mitochondrial DNA, must be properly regulated to ensure proteostasis. Mitochondrial protein quality control (MPQC) serves as a critical surveillance system, employing different pathways and regulators as cellular guardians to ensure mitochondrial protein quality and quantity. In this review, we describe key pathways and players in MPQC, such as mitochondrial protein translocation-associated degradation, mitochondrial stress responses, chaperones, and proteases, and how they work together to safeguard mitochondrial health and integrity. Deregulated MPQC leads to proteotoxicity and dysfunctional mitochondria, which contributes to numerous human diseases, including cancer. We discuss how alterations in MPQC components are linked to tumorigenesis, whether they act as drivers, suppressors, or both. Finally, we summarize recent advances that seek to target these alterations for the development of anti-cancer drugs.
Collapse
Affiliation(s)
- Joseph E. Friedlander
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
| | - Ning Shen
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
- Department of Medicine, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Aozhuo Zeng
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
| | - Sovannarith Korm
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
| | - Hui Feng
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
- Department of Medicine, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA 02118, USA
- Correspondence: ; Tel.: +1-617-358-4688; Fax: +1-617-358-1599
| |
Collapse
|
5
|
Exploring Small Heat Shock Proteins (sHSPs) for Targeting Drug Resistance in Candida albicans and other Pathogenic Fungi. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.1.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fungal infections have predominantly increased worldwide that leads to morbidity and mortality in severe cases. Invasive candidiasis and other pathogenic fungal infections are a major problem in immunocompromised individuals and post-operative patients. Increasing resistance to existing antifungal drugs calls for the identification of novel antifungal drug targets for chemotherapeutic interventions. This demand for identification and characterization of novel drug targets leads to the development of effective antifungal therapy against drug resistant fungi. Heat shock proteins (HSPs) are important for various biological processes like protein folding, posttranslational modifications, transcription, translation, and protein aggregation. HSPs are involved in maintaining homeostasis of the cell. A subgroup of HSPs is small heat shock proteins (sHSPs), which functions as cellular chaperones. They are having a significant role in the many cellular functions like development, cytoskeletal organization, apoptosis, membrane lipid polymorphism, differentiation, autophagy, in infection recognition and are major players in various stresses like osmotic stress, pH stress, etc. Studies have shown that fungal cells express increased levels of sHSPs upon antifungal drug induced stress responses. Here we review the important role of small heat shock proteins (sHSPs) in fungal diseases and their potential as antifungal targets.
Collapse
|
6
|
Caruso Bavisotto C, Alberti G, Vitale AM, Paladino L, Campanella C, Rappa F, Gorska M, Conway de Macario E, Cappello F, Macario AJL, Marino Gammazza A. Hsp60 Post-translational Modifications: Functional and Pathological Consequences. Front Mol Biosci 2020; 7:95. [PMID: 32582761 PMCID: PMC7289027 DOI: 10.3389/fmolb.2020.00095] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
Hsp60 is a chaperone belonging to the Chaperonins of Group I and typically functions inside mitochondria in which, together with the co-chaperonin Hsp10, maintains protein homeostasis. In addition to this canonical role, Hsp60 plays many others beyond the mitochondria, for instance in the cytosol, plasma-cell membrane, extracellular space, and body fluids. These non-canonical functions include participation in inflammation, autoimmunity, carcinogenesis, cell replication, and other cellular events in health and disease. Thus, Hsp60 is a multifaceted molecule with a wide range of cellular and tissue locations and functions, which is noteworthy because there is only one hsp60 gene. The question is by what mechanism this protein can become multifaceted. Likely, one factor contributing to this diversity is post-translational modification (PTM). The amino acid sequence of Hsp60 contains many potential phosphorylation sites, and other PTMs are possible such as O-GlcNAcylation, nitration, acetylation, S-nitrosylation, citrullination, oxidation, and ubiquitination. The effect of some of these PTMs on Hsp60 functions have been examined, for instance phosphorylation has been implicated in sperm capacitation, docking of H2B and microtubule-associated proteins, mitochondrial dysfunction, tumor invasiveness, and delay or facilitation of apoptosis. Nitration was found to affect the stability of the mitochondrial permeability transition pore, to inhibit folding ability, and to perturb insulin secretion. Hyperacetylation was associated with mitochondrial failure; S-nitrosylation has an impact on mitochondrial stability and endothelial integrity; citrullination can be pro-apoptotic; oxidation has a role in the response to cellular injury and in cell migration; and ubiquitination regulates interaction with the ubiquitin-proteasome system. Future research ought to determine which PTM causes which variations in the Hsp60 molecular properties and functions, and which of them are pathogenic, causing chaperonopathies. This is an important topic considering the number of acquired Hsp60 chaperonopathies already cataloged, many of which are serious diseases without efficacious treatment.
Collapse
Affiliation(s)
- Celeste Caruso Bavisotto
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Giusi Alberti
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy
| | - Alessandra Maria Vitale
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy
| | - Letizia Paladino
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy
| | - Claudia Campanella
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy
| | - Francesca Rappa
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy
| | - Magdalena Gorska
- Department of Medical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Everly Conway de Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy.,Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD, United States
| | - Francesco Cappello
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Alberto J L Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy.,Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD, United States
| | - Antonella Marino Gammazza
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy
| |
Collapse
|
7
|
Laloo AE, Wei J, Wang D, Narayanasamy S, Vanwonterghem I, Waite D, Steen J, Kaysen A, Heintz-Buschart A, Wang Q, Schulz B, Nouwens A, Wilmes P, Hugenholtz P, Yuan Z, Bond PL. Mechanisms of Persistence of the Ammonia-Oxidizing Bacteria Nitrosomonas to the Biocide Free Nitrous Acid. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5386-5397. [PMID: 29620869 DOI: 10.1021/acs.est.7b04273] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Free nitrous acid (FNA) exerts a broad range of antimicrobial effects on bacteria, although susceptibility varies considerably among microorganisms. Among nitrifiers found in activated sludge of wastewater treatment processes (WWTPs), nitrite-oxidizing bacteria (NOB) are more susceptible to FNA compared to ammonia-oxidizing bacteria (AOB). This selective inhibition of NOB over AOB in WWTPs bypasses nitrate production and improves the efficiency and costs of the nitrogen removal process in both the activated sludge and anaerobic ammonium oxidation (Anammox) system. However, the molecular mechanisms governing this atypical tolerance of AOB to FNA have yet to be understood. Herein we investigate the varying effects of the antimicrobial FNA on activated sludge containing AOB and NOB using an integrated metagenomics and label-free quantitative sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH-MS) metaproteomic approach. The Nitrosomonas genus of AOB, on exposure to FNA, maintains internal homeostasis by upregulating a number of known oxidative stress enzymes, such as pteridine reductase and dihydrolipoyl dehydrogenase. Denitrifying enzymes were upregulated on exposure to FNA, suggesting the detoxification of nitrite to nitric oxide. Interestingly, proteins involved in stress response mechanisms, such as DNA and protein repair enzymes, phage prevention proteins, and iron transport proteins, were upregulated on exposure to FNA. In addition enzymes involved in energy generation were also upregulated on exposure to FNA. The total proteins specifically derived from the NOB genus Nitrobacter was low and, as such, did not allow for the elucidation of the response mechanism to FNA exposure. These findings give us an understanding of the adaptive mechanisms of tolerance within the AOB Nitrosomonas to the biocidal agent FNA.
Collapse
Affiliation(s)
- Andrew E Laloo
- Advanced Water Management Centre , The University of Queensland , St. Lucia , Brisbane , QLD 4072 , Australia
| | - Justin Wei
- Advanced Water Management Centre , The University of Queensland , St. Lucia , Brisbane , QLD 4072 , Australia
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education , Hunan University , Changsa 410082 , China
| | - Shaman Narayanasamy
- Luxembourg Centre for Systems Biomedicine , Université du Luxembourg , L-4362 Esch-sur-Alzette , Luxembourg
| | - Inka Vanwonterghem
- Australian Centre for Ecogenomics (ACE), School of Chemistry and Molecular Bioscience , The University of Queensland , St. Lucia , Brisbane , QLD 4072 , Australia
| | - David Waite
- Australian Centre for Ecogenomics (ACE), School of Chemistry and Molecular Bioscience , The University of Queensland , St. Lucia , Brisbane , QLD 4072 , Australia
| | - Jason Steen
- Australian Centre for Ecogenomics (ACE), School of Chemistry and Molecular Bioscience , The University of Queensland , St. Lucia , Brisbane , QLD 4072 , Australia
| | - Anne Kaysen
- Luxembourg Centre for Systems Biomedicine , Université du Luxembourg , L-4362 Esch-sur-Alzette , Luxembourg
| | - Anna Heintz-Buschart
- Luxembourg Centre for Systems Biomedicine , Université du Luxembourg , L-4362 Esch-sur-Alzette , Luxembourg
| | - Qilin Wang
- Griffith School of Engineering & Centre for Clean Environment and Energy , Griffith University , Nathan , QLD 4111 , Australia
| | - Benjamin Schulz
- School of Chemistry and Molecular Biosciences , The University of Queensland , St. Lucia , Brisbane , QLD 4072 , Australia
| | - Amanda Nouwens
- School of Chemistry and Molecular Biosciences , The University of Queensland , St. Lucia , Brisbane , QLD 4072 , Australia
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine , Université du Luxembourg , L-4362 Esch-sur-Alzette , Luxembourg
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics (ACE), School of Chemistry and Molecular Bioscience , The University of Queensland , St. Lucia , Brisbane , QLD 4072 , Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre , The University of Queensland , St. Lucia , Brisbane , QLD 4072 , Australia
| | - Philip L Bond
- Advanced Water Management Centre , The University of Queensland , St. Lucia , Brisbane , QLD 4072 , Australia
| |
Collapse
|
8
|
Wiechmann K, Müller H, König S, Wielsch N, Svatoš A, Jauch J, Werz O. Mitochondrial Chaperonin HSP60 Is the Apoptosis-Related Target for Myrtucommulone. Cell Chem Biol 2017; 24:614-623.e6. [PMID: 28457707 DOI: 10.1016/j.chembiol.2017.04.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/18/2017] [Accepted: 04/06/2017] [Indexed: 12/24/2022]
Abstract
The acylphloroglucinol myrtucommulone A (MC) causes mitochondrial dysfunctions by direct interference leading to apoptosis in cancer cells, but the molecular targets involved are unknown. Here, we reveal the chaperonin heat-shock protein 60 (HSP60) as a molecular target of MC that seemingly modulates HSP60-mediated mitochondrial functions. Exploiting an unbiased, discriminative protein fishing approach using MC as bait and mitochondrial lysates from leukemic HL-60 cells as target source identified HSP60 as an MC-binding protein. MC prevented HSP60-mediated reactivation of denatured malate dehydrogenase in a protein refolding assay. Interference of MC with HSP60 was accompanied by aggregation of two proteins in isolated mitochondria under heat shock that were identified as Lon protease-like protein (LONP) and leucine-rich PPR motif-containing protein (LRP130). Together, our results reveal HSP60 as a direct target of MC, proposing MC as a valuable tool for studying HSP60 biology and for evaluating its value as a target in related diseases, such as cancer.
Collapse
Affiliation(s)
- Katja Wiechmann
- Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Hans Müller
- Organic Chemistry II, Saarland University, Campus C 4.2, 66123 Saarbrücken, Germany
| | - Stefanie König
- Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Natalie Wielsch
- Research Group Mass Spectrometry and Proteomics, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Aleš Svatoš
- Research Group Mass Spectrometry and Proteomics, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Johann Jauch
- Organic Chemistry II, Saarland University, Campus C 4.2, 66123 Saarbrücken, Germany
| | - Oliver Werz
- Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Jena, Philosophenweg 14, 07743 Jena, Germany.
| |
Collapse
|
9
|
Role of Heat-Shock Proteins in Cellular Function and in the Biology of Fungi. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2015; 2015:132635. [PMID: 26881084 PMCID: PMC4736001 DOI: 10.1155/2015/132635] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/20/2015] [Accepted: 12/16/2015] [Indexed: 11/18/2022]
Abstract
Stress (biotic or abiotic) is an unfavourable condition for an organism including fungus. To overcome stress, organism expresses heat-shock proteins (Hsps) or chaperons to perform biological function. Hsps are involved in various routine biological processes such as transcription, translation and posttranslational modifications, protein folding, and aggregation and disaggregation of proteins. Thus, it is important to understand holistic role of Hsps in response to stress and other biological conditions in fungi. Hsp104, Hsp70, and Hsp40 are found predominant in replication and Hsp90 is found in transcriptional and posttranscriptional process. Hsp90 and Hsp70 in combination or alone play a major role in morphogenesis and dimorphism. Heat stress in fungi expresses Hsp60, Hsp90, Hsp104, Hsp30, and Hsp10 proteins, whereas expression of Hsp12 protein was observed in response to cold stress. Hsp30, Hsp70, and Hsp90 proteins showed expression in response to pH stress. Osmotic stress is controlled by small heat-shock proteins and Hsp60. Expression of Hsp104 is observed under high pressure conditions. Out of these heat-shock proteins, Hsp90 has been predicted as a potential antifungal target due to its role in morphogenesis. Thus, current review focuses on role of Hsps in fungi during morphogenesis and various stress conditions (temperature, pH, and osmotic pressure) and in antifungal drug tolerance.
Collapse
|
10
|
Böttinger L, Oeljeklaus S, Guiard B, Rospert S, Warscheid B, Becker T. Mitochondrial heat shock protein (Hsp) 70 and Hsp10 cooperate in the formation of Hsp60 complexes. J Biol Chem 2015; 290:11611-22. [PMID: 25792736 DOI: 10.1074/jbc.m115.642017] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial Hsp70 (mtHsp70) mediates essential functions for mitochondrial biogenesis, like import and folding of proteins. In these processes, the chaperone cooperates with cochaperones, the presequence translocase, and other chaperone systems. The chaperonin Hsp60, together with its cofactor Hsp10, catalyzes folding of a subset of mtHsp70 client proteins. Hsp60 forms heptameric ring structures that provide a cavity for protein folding. How the Hsp60 rings are assembled is poorly understood. In a comprehensive interaction study, we found that mtHsp70 associates with Hsp60 and Hsp10. Surprisingly, mtHsp70 interacts with Hsp10 independently of Hsp60. The mtHsp70-Hsp10 complex binds to the unassembled Hsp60 precursor to promote its assembly into mature Hsp60 complexes. We conclude that coupling to Hsp10 recruits mtHsp70 to mediate the biogenesis of the heptameric Hsp60 rings.
Collapse
Affiliation(s)
- Lena Böttinger
- From the Institut für Biochemie und Molekularbiologie, ZBMZ, the Fakultät für Biologie
| | - Silke Oeljeklaus
- Institut für Biologie II, Abteilung Biochemie und Funktionelle Proteomik, Universität Freiburg, 79104 Freiburg, Germany, the BIOSS Centre for Biological Signalling Studies, and
| | - Bernard Guiard
- the Centre de Génétique Moléculaire, CNRS, 91190 Gif-sur-Yvette, France
| | - Sabine Rospert
- From the Institut für Biochemie und Molekularbiologie, ZBMZ, the BIOSS Centre for Biological Signalling Studies, and
| | - Bettina Warscheid
- Institut für Biologie II, Abteilung Biochemie und Funktionelle Proteomik, Universität Freiburg, 79104 Freiburg, Germany, the BIOSS Centre for Biological Signalling Studies, and
| | - Thomas Becker
- From the Institut für Biochemie und Molekularbiologie, ZBMZ, the Fakultät für Biologie, the BIOSS Centre for Biological Signalling Studies, and
| |
Collapse
|
11
|
Lu Z, Chen Y, Aponte AM, Battaglia V, Gucek M, Sack MN. Prolonged fasting identifies heat shock protein 10 as a Sirtuin 3 substrate: elucidating a new mechanism linking mitochondrial protein acetylation to fatty acid oxidation enzyme folding and function. J Biol Chem 2014; 290:2466-76. [PMID: 25505263 DOI: 10.1074/jbc.m114.606228] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although Sirtuin 3 (SIRT3), a mitochondrially enriched deacetylase and activator of fat oxidation, is down-regulated in response to high fat feeding, the rate of fatty acid oxidation and mitochondrial protein acetylation are invariably enhanced in this dietary milieu. These paradoxical data implicate that additional acetylation modification-dependent levels of regulation may be operational under nutrient excess conditions. Because the heat shock protein (Hsp) Hsp10-Hsp60 chaperone complex mediates folding of the fatty acid oxidation enzyme medium-chain acyl-CoA dehydrogenase, we tested whether acetylation-dependent mitochondrial protein folding contributes to this regulatory discrepancy. We demonstrate that Hsp10 is a functional SIRT3 substrate and that, in response to prolonged fasting, SIRT3 levels modulate mitochondrial protein folding. Acetyl mutagenesis of Hsp10 lysine 56 alters Hsp10-Hsp60 binding, conformation, and protein folding. Consistent with Hsp10-Hsp60 regulation of fatty acid oxidation enzyme integrity, medium-chain acyl-CoA dehydrogenase activity and fat oxidation are elevated by Hsp10 acetylation. These data identify acetyl modification of Hsp10 as a nutrient-sensing regulatory node controlling mitochondrial protein folding and metabolic function.
Collapse
Affiliation(s)
- Zhongping Lu
- From the Cardiovascular and Pulmonary Branch and the Department of Biochemistry and Molecular Medicine, George Washington University, Washington, D. C. 20052, and the Veterans Affairs Medical Center, Washington, D. C. 20422
| | - Yong Chen
- Proteomic Core Facility, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Angel M Aponte
- Proteomic Core Facility, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Valentina Battaglia
- the Department of Biochemistry and Molecular Medicine, George Washington University, Washington, D. C. 20052, and the Veterans Affairs Medical Center, Washington, D. C. 20422
| | - Marjan Gucek
- Proteomic Core Facility, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
12
|
Cappello F, Marino Gammazza A, Palumbo Piccionello A, Campanella C, Pace A, Conway de Macario E, Macario AJL. Hsp60 chaperonopathies and chaperonotherapy: targets and agents. Expert Opin Ther Targets 2013; 18:185-208. [PMID: 24286280 DOI: 10.1517/14728222.2014.856417] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Hsp60 (Cpn60) assembles into a tetradecamer that interacts with the co-chaperonin Hsp10 (Cpn10) to assist client polypeptides to fold, but it also has other roles, including participation in pathogenic mechanisms. AREA COVERED Hsp60 chaperonopathies are pathological conditions, inherited or acquired, in which the chaperone plays a determinant etiologic-pathogenic role. These diseases justify selection of Hsp60 as a target for developing agents that interfere with its pathogenic effects. We provide information on how to proceed. EXPERT OPINION The information available encourages the development of ways to improve Hsp60 activity (positive chaperonotherapy) when deficient or to block it (negative chaperonotherapy) when pathogenic. Many questions are still unanswered and obstacles are obvious. More information is needed to establish when and why autologous Hsp60 becomes a pathogenic autoantigen, or induces cytokine formation and inflammation, or favors carcinogenesis. Clarification of these points will take considerable time. However, analysis of the Hsp60 molecule and a search for active compounds aimed at structural sites that will affect its functioning should continue without interruption. No doubt that some of these compounds will offer therapeutic hopes and will also be instrumental for dissecting structure-function relationships at the biochemical and biological (using animal models and cultured cells) levels.
Collapse
Affiliation(s)
- Francesco Cappello
- Euro-Mediterranean Institute of Science and Technology (IEMEST) , Palermo , Italy
| | | | | | | | | | | | | |
Collapse
|
13
|
Mayer FL, Wilson D, Jacobsen ID, Miramón P, Slesiona S, Bohovych IM, Brown AJP, Hube B. Small but crucial: the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans. PLoS One 2012; 7:e38584. [PMID: 22685587 PMCID: PMC3369842 DOI: 10.1371/journal.pone.0038584] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 05/11/2012] [Indexed: 01/01/2023] Open
Abstract
Small heat shock proteins (sHsps) have multiple cellular functions. However, the biological function of sHsps in pathogenic microorganisms is largely unknown. In the present study we identified and characterized the novel sHsp Hsp21 of the human fungal pathogen Candida albicans. Using a reverse genetics approach we demonstrate the importance of Hsp21 for resistance of C. albicans to specific stresses, including thermal and oxidative stress. Furthermore, a hsp21Δ/Δ mutant was defective in invasive growth and formed significantly shorter filaments compared to the wild type under various filament-inducing conditions. Although adhesion to and invasion into human-derived endothelial and oral epithelial cells was unaltered, the hsp21Δ/Δ mutant exhibited a strongly reduced capacity to damage both cell lines. Furthermore, Hsp21 was required for resisting killing by human neutrophils. Measurements of intracellular levels of stress protective molecules demonstrated that Hsp21 is involved in both glycerol and glycogen regulation and plays a major role in trehalose homeostasis in response to elevated temperatures. Mutants defective in trehalose and, to a lesser extent, glycerol synthesis phenocopied HSP21 deletion in terms of increased susceptibility to environmental stress, strongly impaired capacity to damage epithelial cells and increased sensitivity to the killing activities of human primary neutrophils. Via systematic analysis of the three main C. albicans stress-responsive kinases (Mkc1, Cek1, Hog1) under a range of stressors, we demonstrate Hsp21-dependent phosphorylation of Cek1 in response to elevated temperatures. Finally, the hsp21Δ/Δ mutant displayed strongly attenuated virulence in two in vivo infection models. Taken together, Hsp21 mediates adaptation to specific stresses via fine-tuning homeostasis of compatible solutes and activation of the Cek1 pathway, and is crucial for multiple stages of C. albicans pathogenicity. Hsp21 therefore represents the first reported example of a small heat shock protein functioning as a virulence factor in a eukaryotic pathogen.
Collapse
Affiliation(s)
- François L. Mayer
- Department of Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany
| | - Duncan Wilson
- Department of Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany
| | - Ilse D. Jacobsen
- Department of Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany
| | - Pedro Miramón
- Department of Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany
| | - Silvia Slesiona
- Department of Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany
- Department of Microbial Biochemistry and Physiology, Hans-Knoell-Institute, Jena, Germany
| | - Iryna M. Bohovych
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Alistair J. P. Brown
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany
- Center for Sepsis Control and Care, Universitätsklinikum Jena, Jena, Germany
- Friedrich Schiller University, Jena, Germany
| |
Collapse
|
14
|
Ottens AK, Bustamante L, Golden EC, Yao C, Hayes RL, Wang KKW, Tortella FC, Dave JR. Neuroproteomics: a biochemical means to discriminate the extent and modality of brain injury. J Neurotrauma 2010; 27:1837-52. [PMID: 20698760 DOI: 10.1089/neu.2010.1374] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Diagnosis and treatment of stroke and traumatic brain injury remain significant health care challenges to society. Patient care stands to benefit from an improved understanding of the interactive biochemistry underlying neurotrauma pathobiology. In this study, we assessed the power of neuroproteomics to contrast biochemical responses following ischemic and traumatic brain injuries in the rat. A middle cerebral artery occlusion (MCAO) model was employed in groups of 30-min and 2-h focal neocortical ischemia with reperfusion. Neuroproteomes were assessed via tandem cation-anion exchange chromatography-gel electrophoresis, followed by reversed-phase liquid chromatography-tandem mass spectrometry. MCAO results were compared with those from a previous study of focal contusional brain injury employing the same methodology to characterize homologous neocortical tissues at 2 days post-injury. The 30-min MCAO neuroproteome depicted abridged energy production involving pentose phosphate, modulated synaptic function and plasticity, and increased chaperone activity and cell survival factors. The 2-h MCAO data indicated near complete loss of ATP production, synaptic dysfunction with degraded cytoarchitecture, more conservative chaperone activity, and additional cell survival factors than those seen in the 30-min MCAO model. The TBI group exhibited disrupted metabolism, but with retained malate shuttle functionality. Synaptic dysfunction and cytoarchitectural degradation resembled the 2-h MCAO group; however, chaperone and cell survival factors were more depressed following TBI. These results underscore the utility of neuroproteomics for characterizing interactive biochemistry for profiling and contrasting the molecular aspects underlying the pathobiological differences between types of brain injuries.
Collapse
Affiliation(s)
- Andrew K Ottens
- Department of Anatomy, Medical College of Virginia at Virginia Commonwealth University, Richmond, Virginia 23298-0709, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Koeck T, Corbett JA, Crabb JW, Stuehr DJ, Aulak KS. Glucose-modulated tyrosine nitration in beta cells: targets and consequences. Arch Biochem Biophys 2009; 484:221-31. [PMID: 19402213 PMCID: PMC2759311 DOI: 10.1016/j.abb.2009.01.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hyperglycemia, key factor of the pre-diabetic and diabetic pathology, is associated with cellular oxidative stress that promotes oxidative protein modifications. We report that protein nitration is responsive to changes in glucose concentrations in islets of Langerhans and insulinoma beta cells. Alterations in the extent of tyrosine nitration as well as the cellular nitroproteome profile correlated tightly with changing glucose concentrations. The target proteins we identified function in protein folding, energy metabolism, antioxidant capacity, and membrane permeability. Nitration of heat shock protein 60 in vitro was found to decrease its ATP hydrolysis and interaction with proinsulin, suggesting a mechanism by which protein nitration could diminish insulin secretion. This was supported by our finding of a decrease in stimulated insulin secretion following glycolytic stress in cultured cells. Our results reveal that protein tyrosine nitration may be a previously unrecognized factor in beta-cell dysfunction and the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Thomas Koeck
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - John A. Corbett
- The Comprehensive Diabetes Center, Department of Medicine, University of Alabama in Birmingham. Shel 12 floor, 1530 3rd Ave. So., Birmingham, AL 35249-2182
| | - John W. Crabb
- Departments of Cell Biology and Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Dennis J. Stuehr
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Kulwant S. Aulak
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| |
Collapse
|
16
|
Cheong J, Goh D, Wan Hong Yong J, Ngin Tan S, Shi Ong E. Inhibitory effect of kinetin riboside in human heptamoa, HepG2. ACTA ACUST UNITED AC 2009; 5:91-8. [DOI: 10.1039/b712807j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Abstract
Heat-shock proteins (hsps) have been identified as molecular chaperones conserved between microbes and man and grouped by their molecular mass and high degree of amino acid homology. This article reviews the major hsps of Saccharomyces cerevisiae, their interactions with trehalose, the effect of fermentation and the role of the heat-shock factor. Information derived from this model, as well as from Neurospora crassa and Achlya ambisexualis, helps in understanding the importance of hsps in the pathogenic fungi, Candida albicans, Cryptococcus neoformans, Aspergillus spp., Histoplasma capsulatum, Paracoccidioides brasiliensis, Trichophyton rubrum, Phycomyces blakesleeanus, Fusarium oxysporum, Coccidioides immitis and Pneumocystis jiroveci. This has been matched with proteomic and genomic information examining hsp expression in response to noxious stimuli. Fungal hsp90 has been identified as a target for immunotherapy by a genetically recombinant antibody. The concept of combining this antibody fragment with an antifungal drug for treating life-threatening fungal infection and the potential interactions with human and microbial hsp90 and nitric oxide is discussed.
Collapse
Affiliation(s)
- James P Burnie
- Department of Medical Microbiology, Clinical Sciences Building, University of Manchester, Manchester Royal Infirmary, Manchester, UK.
| | | | | | | |
Collapse
|
18
|
Miura T, Minegishi H, Usami R, Abe F. Systematic analysis of HSP gene expression and effects on cell growth and survival at high hydrostatic pressure in Saccharomyces cerevisiae. Extremophiles 2006; 10:279-84. [PMID: 16489413 DOI: 10.1007/s00792-005-0496-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 11/17/2005] [Indexed: 11/28/2022]
Abstract
We systematically investigated the role of HSP genes in the growth and survival of Saccharomyces cerevisiae under high hydrostatic pressure together with analysis of pressure-regulated gene expression. Cells of strain BY4742 were capable of growth at moderate pressure of 25 MPa. When pressure of 25 MPa was applied to the cells, the expression of HSP78, HSP104, and HSP10 was upregulated by about 3- to 4-fold, and that of HSP32, HSP42, and HSP82 was upregulated by about 2- to 2.6-fold. However, the loss of one of the six genes did not markedly affect growth at 25 MPa, while the loss of HSP31 impaired high-pressure growth. These results suggest that Hsp31 plays a role in high-pressure growth but that the six upregulated genes do not. Extremely high pressure of 125 MPa decreased the viability of the wild-type cells to 1% of the control level. Notably, the loss of HSP genes other than HSP31 enhanced the survival rate by about fivefold at 125 MPa, suggesting that the cellular defensive system against high pressure could be strengthened upon the loss of the HSP genes. In this paper, we describe the requirement for and significance of a subset of HSP genes in yeast cell growth at moderate pressure and survival at extremely high pressure.
Collapse
Affiliation(s)
- Takeshi Miura
- Extremobiosphere Research Center, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | | | | | | |
Collapse
|
19
|
Uccelletti D, Farina F, Pinton P, Goffrini P, Mancini P, Talora C, Rizzuto R, Palleschi C. The Golgi Ca2+-ATPase KlPmr1p function is required for oxidative stress response by controlling the expression of the heat-shock element HSP60 in Kluyveromyces lactis. Mol Biol Cell 2005; 16:4636-47. [PMID: 16030259 PMCID: PMC1237070 DOI: 10.1091/mbc.e05-02-0138] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Golgi P-type Ca2+-ATPase, Pmr1p, is the major player for calcium homeostasis in yeast. The inactivation of KlPMR1 in Kluyveromyces lactis leads to high pleiotropic phenotypes that include reduced glycosylation, cell wall defects, and alterations of mitochondrial metabolism. In this article we found that cells lacking KlPmr1p have a morphologically altered mitochondrial network and that mitochondria (m) from Klpmr1delta cells accumulate Ca2+ more slowly and reach a lower [Ca2+]m level, when exposed to [Ca2+] < 5 microM, than wild-type cells. The Klpmr1delta cells also exhibit traits of ongoing oxidative stress and present hyperphosphorylation of KlHog1p, the hallmark for the activation of stress response pathways. The mitochondrial chaperone KlHsp60 acts as a multicopy suppressor of phenotypes that occur in cells lacking the Ca2+-ATPase, including relief from oxidative stress and recovery of cell wall thickness and functionality. Inhibition of KlPMR1 function decreases KlHSP60 expression at both mRNA and protein levels. Moreover, KlPRM1 loss of function correlates with both decreases in HSF DNA binding activity and KlHSP60 expression. We suggest a role for KlPMR1 in HSF DNA binding activity, which is required for proper KlHSP60 expression, a key step in oxidative stress response.
Collapse
Affiliation(s)
- Daniela Uccelletti
- Department of Developmental and Cell Biology, University of Rome La Sapienza, 00185 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Lin KM, Hollander JM, Kao VY, Lin B, Macpherson L, Dillmann WH. Myocyte protection by 10 kD heat shock protein (Hsp10) involves the mobile loop and attenuation of the Ras GTP-ase pathway. FASEB J 2004; 18:1004-6. [PMID: 15059967 DOI: 10.1096/fj.03-0348fje] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Heat shock proteins (hsp), hsp60 and hsp10, are involved in the folding of imported mitochondrial proteins and the refolding of denatured proteins after stress. We examined whether hsp10 can reduce myocyte death by its mitochondrial function or by interacting with cytoplasmic signaling pathways. Overexpression of hsp10 by adenoviral infection decreased myocyte death induced by hydrogen peroxide, sodium cyanide, and simulated ischemia and reoxygenation (SI/RO). We generated an adenoviral vector coding for a temperature-sensitive mutant hsp10 protein (P34H), incapable of cooperatively refolding denatured malate dehydrogenase with hsp60. Overexpression of the hsp10 mutant potentiated SI/RO-induced myocyte death. Analysis of electron transport chain function revealed increased Complex I capacity with hsp10 overexpression, whereas hsp10(P34H) overexpression decreased Complex II capacity. Hsp10 overexpression preserved both Complex I and II function after SI/RO. Examination of the Ras GTP-ase signaling pathway indicated that inhibition of Ras was required for protection by hsp10. Constitutive activation of Ras abolished the effects afforded by hsp10 and hsp10(P34H). Hsp10 overexpression inactivated Raf, ERK, and p90Ribosomal kinase (p90RSK) before and after SI/RO. Our results suggest that complex mechanisms are involved in the protection by hsp10 against SI/RO-induced myocyte death. This mechanism may involve the hsp10 mobile loop and attenuation of the Ras GTP-ase signaling pathway.
Collapse
Affiliation(s)
- Kurt M Lin
- Division of Medical Engineering Research, National Health Research Institutes, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
21
|
Klunker D, Haas B, Hirtreiter A, Figueiredo L, Naylor DJ, Pfeifer G, Müller V, Deppenmeier U, Gottschalk G, Hartl FU, Hayer-Hartl M. Coexistence of group I and group II chaperonins in the archaeon Methanosarcina mazei. J Biol Chem 2003; 278:33256-67. [PMID: 12796498 DOI: 10.1074/jbc.m302018200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two distantly related classes of cylindrical chaperonin complexes assist in the folding of newly synthesized and stress-denatured proteins in an ATP-dependent manner. Group I chaperonins are thought to be restricted to the cytosol of bacteria and to mitochondria and chloroplasts, whereas the group II chaperonins are found in the archaeal and eukaryotic cytosol. Here we show that members of the archaeal genus Methanosarcina co-express both the complete group I (GroEL/GroES) and group II (thermosome/prefoldin) chaperonin systems in their cytosol. These mesophilic archaea have acquired between 20 and 35% of their genes by lateral gene transfer from bacteria. In Methanosarcina mazei Gö1, both chaperonins are similarly abundant and are moderately induced under heat stress. The M. mazei GroEL/GroES proteins have the structural features of their bacterial counterparts. The thermosome contains three paralogous subunits, alpha, beta, and gamma, which assemble preferentially at a molar ratio of 2:1:1. As shown in vitro, the assembly reaction is dependent on ATP/Mg2+ or ADP/Mg2+ and the regulatory role of the beta subunit. The co-existence of both chaperonin systems in the same cellular compartment suggests the Methanosarcina species as useful model systems in studying the differential substrate specificity of the group I and II chaperonins and in elucidating how newly synthesized proteins are sorted from the ribosome to the proper chaperonin for folding.
Collapse
MESH Headings
- Adenosine Triphosphatases/chemistry
- Adenosine Triphosphate/metabolism
- Amino Acid Sequence
- Archaea
- Chaperonin 10/metabolism
- Chaperonin 60/metabolism
- Cloning, Molecular
- Cytosol/metabolism
- Electrophoresis, Polyacrylamide Gel
- Escherichia coli/metabolism
- Hot Temperature
- Hydrogen-Ion Concentration
- Immunoblotting
- Light
- Magnesium/metabolism
- Methanosarcina/metabolism
- Microscopy, Electron
- Models, Genetic
- Molecular Sequence Data
- Precipitin Tests
- Promoter Regions, Genetic
- Protein Folding
- Protein Structure, Tertiary
- Recombinant Proteins/metabolism
- Ribosomes/metabolism
- Scattering, Radiation
- Sequence Homology, Amino Acid
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Thiosulfate Sulfurtransferase/chemistry
- Time Factors
Collapse
Affiliation(s)
- Daniel Klunker
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18a, 82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cabiscol E, Bellí G, Tamarit J, Echave P, Herrero E, Ros J. Mitochondrial Hsp60, resistance to oxidative stress, and the labile iron pool are closely connected in Saccharomyces cerevisiae. J Biol Chem 2002; 277:44531-8. [PMID: 12200437 DOI: 10.1074/jbc.m206525200] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the present study, we have analyzed the role of the molecular chaperone Hsp60 in protection of Saccharomyces cerevisiae against oxidative damage. We constructed mutant strains in which the levels of Hsp60 protein, compared with wild-type cells, were four times greater, and the addition of doxycycline gradually reduces them to 20% of wild-type. Under oxidative-stress conditions, the progressive decrease in Hsp60 levels in these mutants resulted in reduced cell viability and an increase in both cell peroxide species and protein carbonyl content. Protection of Fe/S-containing enzymes from oxidative inactivation was found to be dose-dependent with respect to Hsp60 levels. As these enzymes release their iron ions under oxidative-stress conditions, the intracellular labile iron pool, monitored with calcein, was higher in cells with reduced Hsp60 levels. Consistently, the iron chelator deferoxamine protected low Hsp60-expressing cells from both oxidant-induced death and protein oxidation. These results indicate that the role of Hsp60 in oxidative-stress defense is explained by protection of several Fe/S proteins, which prevent the release of iron ions and thereby avert further damage.
Collapse
Affiliation(s)
- Elisa Cabiscol
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Kopecek P, Altmannová K, Weigl E. Stress proteins: nomenclature, division and functions. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2001; 145:39-47. [PMID: 12426770 DOI: 10.5507/bp.2001.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The heat shock response, characterized by increased expression of heat shock proteins (Hsps) is induced by exposure of cells and tissues to extreme conditions that cause acute or chronic stress. Hsps function as molecular chaperones in regulating cellular homeostasis and promoting survival. If the stress is too severe, a signal that leads to programmed cell death, apoptosis, is activated, thereby providing a finely tuned balance between survival and death. In addition to extracellular stimuli, several nonstressfull conditions induce Hsps during normal cellular growth and development. The enhanced heat shock gene expression in response to various stimuli is regulated by heat shock transcription factors.
Collapse
Affiliation(s)
- P Kopecek
- Department of Biology, Medical Faculty, Palacký University, 775 15 Olomouc, Czech Republic
| | | | | |
Collapse
|
24
|
Shewmaker F, Maskos K, Simmerling C, Landry SJ. The disordered mobile loop of GroES folds into a defined beta-hairpin upon binding GroEL. J Biol Chem 2001; 276:31257-64. [PMID: 11395498 DOI: 10.1074/jbc.m102765200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The GroES mobile loop is a stretch of approximately 16 amino acids that exhibits a high degree of flexible disorder in the free protein. This loop is responsible for the interaction between GroES and GroEL, and it undergoes a folding transition upon binding to GroEL. Results derived from a combination of transferred nuclear Overhauser effect NMR experiments and molecular dynamics simulations indicate that the mobile loop adopts a beta-hairpin structure with a Type I, G1 Bulge turn. This structure is distinct from the conformation of the loop in the co-crystal of GroES with GroEL-ADP but identical to the conformation of the bacteriophage-panned "strongly binding peptide" in the co-crystal with GroEL. Analysis of sequence conservation suggests that sequences of the mobile loop and strongly binding peptide were selected for the ability to adopt this hairpin conformation.
Collapse
Affiliation(s)
- F Shewmaker
- Department of Biochemistry, Tulane University Health Sciences Center, New Orleans, Louisiana 70112-2699, USA
| | | | | | | |
Collapse
|
25
|
Richardson A, Schwager F, Landry SJ, Georgopoulos C. The importance of a mobile loop in regulating chaperonin/ co-chaperonin interaction: humans versus Escherichia coli. J Biol Chem 2001; 276:4981-7. [PMID: 11050098 DOI: 10.1074/jbc.m008628200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chaperonins are universally conserved proteins that nonspecifically facilitate the folding of a wide spectrum of proteins. While bacterial GroEL is functionally promiscuous with various co-chaperonin partners, its human homologue, Hsp60 functions specifically with its co-chaperonin partner, Hsp10, and not with other co-chaperonins, such as the bacterial GroES or bacteriophage T4-encoded Gp31. Co-chaperonin interaction with chaperonin is mediated by the co-chaperonin mobile loop that folds into a beta-hairpin conformation upon binding to the chaperonin. A delicate balance of flexibility and conformational preferences of the mobile loop determines co-chaperonin affinity for chaperonin. Here, we show that the ability of Hsp10, but not GroES, to interact specifically with Hsp60 lies within the mobile loop sequence. Using mutational analysis, we show that three substitutions in the GroES mobile loop are necessary and sufficient to acquire Hsp10-like specificity. Two of these substitutions are predicted to preorganize the beta-hairpin turn and one to increase the hydrophobicity of the GroEL-binding site. Together, they result in a GroES that binds chaperonins with higher affinity. It seems likely that the single ring mitochondrial Hsp60 exhibits intrinsically lower affinity for the co-chaperonin that can be compensated for by a higher affinity mobile loop.
Collapse
Affiliation(s)
- A Richardson
- Département de Biochimie Médicale, Centre Médical Universitaire, 1 rue Michel-Servet, 1211 Geneva, Switzerland
| | | | | | | |
Collapse
|
26
|
Dubaquié Y, Looser R, Fünfschilling U, Jenö P, Rospert S. Identification of in vivo substrates of the yeast mitochondrial chaperonins reveals overlapping but non-identical requirement for hsp60 and hsp10. EMBO J 1998; 17:5868-76. [PMID: 9774331 PMCID: PMC1170914 DOI: 10.1093/emboj/17.20.5868] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The mechanism of chaperonin-assisted protein folding has been mostly analyzed in vitro using non-homologous substrate proteins. In order to understand the relative importance of hsp60 and hsp10 in the living cell, homologous substrate proteins need to be identified and analyzed. We have devised a novel screen to test the folding of a large variety of homologous substrates in the mitochondrial matrix in the absence or presence of functional hsp60 or hsp10. The identified substrates have an Mr of 15-90 kDa and fall into three groups: (i) proteins that require both hsp60 and hsp10 for correct folding; (ii) proteins that completely fail to fold after inactivation of hsp60 but are unaffected by the inactivation of hsp10; and (iii) newly imported hsp60 itself, which is more severely affected by inactivation of hsp10 than by inactivation of pre-existing hsp60. The majority of the identified substrates are group I proteins. For these, the lack of hsp60 function has a more pronounced effect than inactivation of hsp10. We suggest that homologous substrate proteins have differential chaperonin requirements, indicating that hsp60 and hsp10 do not always act as a single functional unit in vivo.
Collapse
Affiliation(s)
- Y Dubaquié
- Biozentrum der Universität Basel, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
27
|
Komiya T, Rospert S, Koehler C, Looser R, Schatz G, Mihara K. Interaction of mitochondrial targeting signals with acidic receptor domains along the protein import pathway: evidence for the 'acid chain' hypothesis. EMBO J 1998; 17:3886-98. [PMID: 9670006 PMCID: PMC1170724 DOI: 10.1093/emboj/17.14.3886] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial precursor proteins with basic targeting signals may be transported across the outer membrane by sequential binding to acidic receptor sites of increasing affinity. To test this 'acid chain' hypothesis, we assayed the interaction of mitochondrial precursors with three acidic receptor domains: the cytosolic domain of Tom20 and the intermembrane space domain of Tom22 and Tim23. The apparent affinity and salt resistance of precursor binding increased in the order Tom20<Tom22 (internal)<Tim23. Precursor binding to the three acidic receptor domains and to the pure cytosolic domain of Tom70 was inhibited by excess targeting peptide, but not by an equally basic control peptide. In this membrane-free and defined system, a precursor pre-bound to the Tom70 or Tom20 domain was transferred efficiently to the Tim23 domain. Transfer was stimulated by the internal Tom22 domain and was much less efficient in the reverse direction. Precursors destined for the outer membrane bound only to Tom20, but not to the internal Tom22 or the Tim23 domain, and a precursor destined for the inner membrane bound only to the Tom20 and the internal Tom22 domain, but not to the Tim23 domain. These results suggest that specific and sequential binding of a targeting signal to strategically situated acidic receptors delivers a precursor across the outer membrane and contributes to intramitochondrial sorting of imported proteins.
Collapse
Affiliation(s)
- T Komiya
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka 812, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Facilitated protein folding by the double toroidal bacterial chaperonin, GroEL/GroES, proceeds by a "two-stroke engine" mechanism in which an allosteric interaction between the two rings synchronizes the reaction cycle by controlling the binding and release of cochaperonin. Using chimeric chaperonin molecules assembled by fusing equatorial and apical domains derived from GroEL and its mammalian mitochondrial homolog, Hsp60, we show that productive folding by Hsp60 and its cognate cochaperonin, Hsp10, proceeds in vitro and in vivo without the formation of a two-ring structure. This simpler "one-stroke" engine works because Hsp60 has a different mechanism for the release of its cochaperonin cap and bound target protein.
Collapse
Affiliation(s)
- K L Nielsen
- Department of Biochemistry, New York University Medical Center, New York 10016, USA
| | | |
Collapse
|
29
|
Abstract
The chaperonin GroEL and its cofactor GroES facilitate protein folding in an ATP-regulated manner. The recently solved crystal structure of the GroEL.GroES.(ADP)7 complex shows that the lining of the cavity in the polypeptide acceptor state is hydrophobic, whereas in the protein-release state it becomes hydrophilic. Other highlights of the past year include the visualization of the allosteric states of GroEL with respect to ATP using cryo-electron microscopy, and an X-ray crystallographic analysis of the interaction between the apical domain of GroEL and a peptide.
Collapse
Affiliation(s)
- A Horovitz
- Department of Structural Biology, Weizmann Institute, Rehovot, Israel.
| |
Collapse
|