1
|
Sun Y, Utpal H, Wu Y, Sun Q, Feng Z, Shen Y, Zhang R, Zhou X, Wu J. Comparative genomic and transcriptome analyses of two Pectobacterium brasiliense strains revealed distinct virulence determinants and phenotypic features. Front Microbiol 2024; 15:1362283. [PMID: 38800750 PMCID: PMC11116658 DOI: 10.3389/fmicb.2024.1362283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Potato soft rot caused by Pectobacterium spp. are devastating diseases of potato which cause severe economic losses worldwide. Pectobacterium brasiliense is considered as one of the most virulent species. However, the virulence mechanisms and pathogenicity factors of this strain have not been fully elucidated. Here, through pathogenicity screening, we identified two Pectobacterium brasiliense isolates, SM and DQ, with distinct pathogenicity levels. SM exhibits higher virulence compared to DQ in inducing aerial stem rot, blackleg and tuber soft rot. Our genomic and transcriptomic analyses revealed that SM encodes strain specific genes with regard to plant cell wall degradation and express higher level of genes associated with bacterial motility and secretion systems. Our plate assays verified higher pectinase, cellulase, and protease activities, as well as fast swimming and swarming motility in SM. Importantly, a unique endoglucanase S specific to SM was identified. Expression of this cellulase in DQ greatly enhances its virulence compared to wild type strain. Our study sheds light on possible determinants causing different pathogenicity of Pectobacterium brasiliense species with close evolutionary distance and provides new insight into the direction of genome evolution in response to host variation and environmental stimuli.
Collapse
Affiliation(s)
- Yue Sun
- Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Handique Utpal
- Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Yajuan Wu
- Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Qinghua Sun
- Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Zhiwen Feng
- Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | | | - Ruofang Zhang
- Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Xiaofeng Zhou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Jian Wu
- Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, Inner Mongolia, China
| |
Collapse
|
2
|
Authentication of nine snapper species by single-strand conformation polymorphism (SSCP) and forensically informative nucleotide sequencing (FINS) methods. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.12.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
3
|
Šarhanová P, Pfanzelt S, Brandt R, Himmelbach A, Blattner FR. SSR-seq: Genotyping of microsatellites using next-generation sequencing reveals higher level of polymorphism as compared to traditional fragment size scoring. Ecol Evol 2018; 8:10817-10833. [PMID: 30519409 PMCID: PMC6262739 DOI: 10.1002/ece3.4533] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 01/13/2023] Open
Abstract
Microsatellites (or simple sequence repeats, SSR) are widely used markers in population genetics. Traditionally, genotyping was and still is carried out through recording fragment length. Now, next-generation sequencing (NGS) makes it easy to obtain also sequence information for the loci of interest. This avoids misinterpretations that otherwise could arise due to size homoplasy. Here, an NGS strategy is described that allows to genotype hundreds of individuals at many custom-designed SSR loci simultaneously, combining multiplex PCR, barcoding, and Illumina sequencing. We created three different datasets for which alleles were coded according to (a) length of the repetitive region, (b) total fragment length, and (c) sequence identity, in order to evaluate the eventual benefits from having sequence data at hand, not only fragment length data. For each dataset, genetic diversity statistics, as well as F ST and R ST values, were calculated. The number of alleles per locus, as well as observed and expected heterozygosity, was highest in the sequence identity dataset, because of single-nucleotide polymorphisms and insertions/deletions in the flanking regions of the SSR motif. Size homoplasy was found to be very common, amounting to 44.7%-63.5% (mean over all loci) in the three study species. Thus, the information obtained by next-generation sequencing offers a better resolution than the traditional way of SSR genotyping and allows for more accurate evolutionary interpretations.
Collapse
Affiliation(s)
- Petra Šarhanová
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
- Present address:
Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | - Simon Pfanzelt
- Institute of Biology and Environmental SciencesCarl von Ossietzky University OldenburgOldenburgGermany
- Present address:
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
| | - Ronny Brandt
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
- Present address:
Max Planck Genome Centre CologneCologneGermany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
| | - Frank R. Blattner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
| |
Collapse
|
4
|
Cornejo C, Chabanenko S, Scheidegger C. Are species-pairs diverging lineages? A nine-locus analysis uncovers speciation among species-pairs of the Lobaria meridionalis-group (Ascomycota). Mol Phylogenet Evol 2018; 129:48-59. [PMID: 30036698 DOI: 10.1016/j.ympev.2018.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/13/2018] [Accepted: 07/14/2018] [Indexed: 01/17/2023]
Abstract
In spite of considerable effort to verify the theory of species-pairs, uncertainty still exists about the relationship between sexually or vegetatively reproducing populations of morphologically indistinguishable, sympatric lichen species. The current paper studies putative species-pairs within the Asian Lobaria meridionalis-group, using a nine-locus and time calibrated species-tree approach. Analyses demonstrate that pairs of sexually or vegetatively reproducing lineages split into highly supported monophyletic clades-confirming molecularly the species-pair concept for the L. meridionalis-group. In the broader context of evolution and speciation dynamics in lichenized fungi, this paper attempts to synthesize molecular findings from the last two decades to promote a more modern perception of the species-pair concept. Taxonomically, eight species were found to currently conform to the L. meridionalis-group, which differentiated during the Pliocene and Pleistocene. The coincidence of paleoclimatic events with estimated dates of divergence support a bioclimatic hypothesis for the evolution of species in the L. meridionalis-group, which also explains their current eco-geographic distribution patterns. Greater recognition for species with a long and independent evolutionary history, which merit high conservation priority, will be especially critical for preserving geographically restricted endemics from Southeast Asia, where habitat loss is driving rapid declines.
Collapse
Affiliation(s)
- Carolina Cornejo
- Swiss Federal Research Institute WSL, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland.
| | - Svetlana Chabanenko
- Sakhalin Branch of the Botanical Garden-Institute FEB RAS, Gorky-street 25, 693023 Yuzhno-Sakhalinsk, Russia.
| | - Christoph Scheidegger
- Swiss Federal Research Institute WSL, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland.
| |
Collapse
|
5
|
Kretzer AM, Luoma DL, Molina R, Spatafora JW. Taxonomy of theRhizopogon vinicolorspecies complex based on analysis of ITS sequences and microsatellite loci. Mycologia 2017. [DOI: 10.1080/15572536.2004.11833093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Annette M. Kretzer
- S.U.N.Y. College of Environmental Science and Forestry, Faculty of Environmental and Forest Biology, 350 Illick Hall, Syracuse, New York 13210-2788
| | - Daniel L. Luoma
- Department of Forest Science, Oregon State University, 154 Peavy Hall, Corvallis, Oregon 97331-7501
| | - Randy Molina
- U.S.D.A. Forest Service, Pacific Northwest Research Station, 2300 SW Jefferson Way, Corvallis, Oregon 97331
| | - Joseph W. Spatafora
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, Oregon 97331-2902
| |
Collapse
|
6
|
Multiplexed microsatellite markers for seven Metarhizium species. J Invertebr Pathol 2015; 132:132-134. [DOI: 10.1016/j.jip.2015.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/17/2015] [Accepted: 09/21/2015] [Indexed: 11/19/2022]
|
7
|
Kalwade SB, Devarumath RM. Single strand conformation polymorphism of genomic and EST-SSRs marker and its utility in genetic evaluation of sugarcane. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2014; 20:313-21. [PMID: 25049458 PMCID: PMC4101139 DOI: 10.1007/s12298-014-0231-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 04/07/2014] [Accepted: 04/15/2014] [Indexed: 06/03/2023]
Abstract
Sugarcane is an important crop producing around 75 % of sugar in world and used as first generation biofuel. In present study, the genomic and gene based microsatellite markers were analyzed by low cost Single Strand Confirmation Polymorphism technique for genetic evaluation of 22 selected sugarcane genotypes. Total 16 genomic and 12 Expression Sequence Tag derived markers were able to amplify the selected sugarcane genotypes. Total 138 alleles were amplified of which 99 alleles (72 %) found polymorphic with an average of 4.9 alleles per locus. Microsatellite marker, VCSSR7 and VCSSR 12 showed monomorphic alleles with frequency 7.1 % over the average of 3.5 obtained for polymorphic locus. The level of Polymorphic Information Content (PIC) varied from 0.09 in VCSSR 6 to 0.88 in VCSSR 11 marker respectively with a mean of 0.49. Genomic SSRs showed more polymorphism than EST-SSRs markers on selected sugarcane genotypes whereas, the genetic similarity indices calculated by Jaccard's similarity coefficient varied from 0.55 to 0.81 indicate a high level of genetic similarity among the genotypes that was mainly attributed to intra specific diversity. Hence, the SSR-SSCP technique helped to identify the genetically diverse clones which could be used in crossing program for introgression of sugar and stress related traits in hybrid sugarcane.
Collapse
Affiliation(s)
- Sachin B. Kalwade
- />Molecular Biology and Genetic Engineering Division, Vasantdada Sugar Institute, Manjari (Bk.), Tal. Haveli, Pune, 412307 India
- />Department of Biotechnology, Shivaji University, Vidyanagari, Kolhapur, 416004 India
| | - Rachayya M. Devarumath
- />Molecular Biology and Genetic Engineering Division, Vasantdada Sugar Institute, Manjari (Bk.), Tal. Haveli, Pune, 412307 India
- />Department of Biotechnology, Shivaji University, Vidyanagari, Kolhapur, 416004 India
| |
Collapse
|
8
|
Saghrouni F, Ben Abdeljelil J, Boukadida J, Ben Said M. Molecular methods for strain typing of Candida albicans
: a review. J Appl Microbiol 2013; 114:1559-74. [DOI: 10.1111/jam.12132] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 01/03/2013] [Accepted: 01/06/2013] [Indexed: 11/28/2022]
Affiliation(s)
- F. Saghrouni
- UR02SP13 Research Unit; Ministry of Public Health; Tunisia Tunisia
| | | | - J. Boukadida
- UR02SP13 Research Unit; Ministry of Public Health; Tunisia Tunisia
| | - M. Ben Said
- UR02SP13 Research Unit; Ministry of Public Health; Tunisia Tunisia
| |
Collapse
|
9
|
Using a Multi-Locus Microsatellite Typing method improved phylogenetic distribution of Candida albicans isolates but failed to demonstrate association of some genotype with the commensal or clinical origin of the isolates. INFECTION GENETICS AND EVOLUTION 2012; 12:1949-57. [DOI: 10.1016/j.meegid.2012.07.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/19/2012] [Accepted: 07/20/2012] [Indexed: 11/23/2022]
|
10
|
Barthe S, Gugerli F, Barkley NA, Maggia L, Cardi C, Scotti I. Always look on both sides: phylogenetic information conveyed by simple sequence repeat allele sequences. PLoS One 2012; 7:e40699. [PMID: 22808236 PMCID: PMC3396589 DOI: 10.1371/journal.pone.0040699] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 06/12/2012] [Indexed: 11/18/2022] Open
Abstract
Simple sequence repeat (SSR) markers are widely used tools for inferences about genetic diversity, phylogeography and spatial genetic structure. Their applications assume that variation among alleles is essentially caused by an expansion or contraction of the number of repeats and that, accessorily, mutations in the target sequences follow the stepwise mutation model (SMM). Generally speaking, PCR amplicon sizes are used as direct indicators of the number of SSR repeats composing an allele with the data analysis either ignoring the extent of allele size differences or assuming that there is a direct correlation between differences in amplicon size and evolutionary distance. However, without precisely knowing the kind and distribution of polymorphism within an allele (SSR and the associated flanking region (FR) sequences), it is hard to say what kind of evolutionary message is conveyed by such a synthetic descriptor of polymorphism as DNA amplicon size. In this study, we sequenced several SSR alleles in multiple populations of three divergent tree genera and disentangled the types of polymorphisms contained in each portion of the DNA amplicon containing an SSR. The patterns of diversity provided by amplicon size variation, SSR variation itself, insertions/deletions (indels), and single nucleotide polymorphisms (SNPs) observed in the FRs were compared. Amplicon size variation largely reflected SSR repeat number. The amount of variation was as large in FRs as in the SSR itself. The former contributed significantly to the phylogenetic information and sometimes was the main source of differentiation among individuals and populations contained by FR and SSR regions of SSR markers. The presence of mutations occurring at different rates within a marker’s sequence offers the opportunity to analyse evolutionary events occurring on various timescales, but at the same time calls for caution in the interpretation of SSR marker data when the distribution of within-locus polymorphism is not known.
Collapse
Affiliation(s)
- Stéphanie Barthe
- Unité Mixte de Recherche “Ecologie des forêts de Guyane”, University of French West Indies and French Guiana, Kourou, French Guiana
| | - Felix Gugerli
- Biodiversity and Conservation Biology Research Unit, Swiss Federal Research Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Noelle A. Barkley
- Plant Genetic Resources Conservation Unit, United States Department of Agriculture – Agricultural Research Service, Griffin, Georgia, United States of America
| | - Laurent Maggia
- Unité Mixte de Recherche “Amélioration génétique et adaptation des plantes méditerranéennes et tropicales”, Institut Agronomique néo-Calédonien, Nouméa, New Caledonia
| | - Céline Cardi
- Unité Mixte de Recherche “Amélioration génétique et adaptation des plantes méditerranéennes et tropicales”, Centre de coopération internationale en recherche agronomique pour le développement, Montpellier, France
| | - Ivan Scotti
- Unité Mixte de Recherche Ecologie des forêts de Guyane, Institut National de la Recherche Agronomique, Kourou, French Guiana
- * E-mail:
| |
Collapse
|
11
|
Willis SC, Macrander J, Farias IP, Ortí G. Simultaneous delimitation of species and quantification of interspecific hybridization in Amazonian peacock cichlids (genus cichla) using multi-locus data. BMC Evol Biol 2012; 12:96. [PMID: 22727018 PMCID: PMC3563476 DOI: 10.1186/1471-2148-12-96] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 05/29/2012] [Indexed: 11/10/2022] Open
Abstract
Background Introgression likely plays a significant role in evolution, but understanding the extent and consequences of this process requires a clear identification of species boundaries in each focal group. The delimitation of species, however, is a contentious endeavor. This is true not only because of the inadequacy of current tools to identify species lineages, but also because of the inherent ambiguity between natural populations and species paradigms. The result has been a debate about the supremacy of various species concepts and criteria. Here, we utilized multiple separate sources of molecular data, mtDNA, nuclear sequences, and microsatellites, to delimit species under a polytypic species concept (PTSC) and estimate the frequency and genomic extent of introgression in a Neotropical genus of cichlid fishes (Cichla). We compared our inferences of species boundaries and introgression under this paradigm to those when species are identified under a diagnostic species concept (DSC). Results We find that, based on extensive molecular data and an inclusive species concept, 8 separate biological entities should be recognized rather than the 15 described species of Cichla. Under the PTSC, fewer individuals are expected to exhibit hybrid ancestry than under the DSC (~2% vs. ~12%), but a similar number of the species exhibit introgression from at least one other species (75% vs. 60%). Under either species concept, the phylogenetic breadth of introgression in this group is notable, with both sister species and species from different major mtDNA clades exhibiting introgression. Conclusions Introgression was observed to be a widespread phenomenon for delimited species in this group. While several instances of introgressive hybridization were observed in anthropogenically altered habitats, most were found in undisturbed natural habitats, suggesting that introgression is a natural but ephemeral part of the evolution of many tropical species. Nevertheless, even transient introgression may facilitate an increase in genetic diversity or transfer of adaptive mutations that have important consequences in the evolution of tropical biodiversity.
Collapse
Affiliation(s)
- Stuart C Willis
- School of Biological Sciences, 348 Manter Hall, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| | | | | | | |
Collapse
|
12
|
Castellanos E, Juan LD, Domínguez L, Aranaz A. Progress in molecular typing of Mycobacterium avium subspecies paratuberculosis. Res Vet Sci 2012; 92:169-79. [DOI: 10.1016/j.rvsc.2011.05.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/08/2011] [Accepted: 05/21/2011] [Indexed: 10/18/2022]
|
13
|
Nazareno AG, dos Reis MS. The same but different: monomorphic microsatellite markers as a new tool for genetic analysis. AMERICAN JOURNAL OF BOTANY 2011; 98:e265-e267. [PMID: 21926307 DOI: 10.3732/ajb.1100163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
PREMISE OF THE STUDY The nucleotide variation at a microsatellite locus lacking length polymorphisms among its alleles was assessed to generate an informative tool for genetic analysis. METHODS AND RESULTS From a set of microsatellite markers, a monomorphic microsatellite locus developed for the palm species Butia eriospatha was used to elucidate whether there are polymorphic sites in its flanking regions. DNA sequences ≈133 bp long were obtained. Aligned sequences show variation at 17 polymorphic sites with both insertions and nucleotide substitutions. Fourteen distinct sequences (alleles) among 22 individuals were identified. The percent sequence difference varied from 0.0 to 5%, indicating that there is significant variation among sequences. CONCLUSIONS Due to significant levels of information and sequence diversity on a simple sequence repeat (SSR) locus of identical size, our study highlights that this molecular marker class can be a useful tool for population genetics and evolutionary studies for many plant species.
Collapse
Affiliation(s)
- Alison G Nazareno
- Núcleo de Pesquisas em Florestas Tropicais, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
| | | |
Collapse
|
14
|
Queloz V, Duò A, Sieber TN, Grünig CR. Microsatellite size homoplasies and null alleles do not affect species diagnosis and population genetic analysis in a fungal species complex. Mol Ecol Resour 2009; 10:348-67. [PMID: 21565031 DOI: 10.1111/j.1755-0998.2009.02757.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The suitability of 13 microsatellite loci for species diagnosis and population genetics in 11 species of the Phialocephala fortinii s.l.-Acephala applanata species complex (PAC) was assessed. Two data sets were compared to test possible biases in species typing and clone detection resulting from null alleles and size homoplasies. The first data set was based on fragment lengths derived from a multiplex polymerase chain reaction (PCR) assay and the second data set was received from singleplex PCR at lower stringency and sequencing. Most null alleles observed in the multiplex PCR assay could be amplified during singleplex PCR under less stringent conditions. Size homoplasies resulting from mutations in flanking regions and differences in microsatellite structures were observed. For example, Phialocephala uotolensis possessed a (CT)(13) in addition to the (GT)(x) motif at locus mPF_0644. Despite the occurrence of null alleles and size homoplasies, species diagnosis and population genetic analysis studies were not affected. These markers will facilitate studies on population biology, ecology and biogeography of PAC species.
Collapse
Affiliation(s)
- V Queloz
- Forest Pathology and Dendrology, Institute of Integrative Biology (IBZ), ETH Zurich, CH-8092 Zurich, Switzerland
| | | | | | | |
Collapse
|
15
|
Yin-Ling, Zhou W, Motohashi K, Suga H, Fukui H, Kageyama K. Development of microsatellite markers for Pythium helicoides. FEMS Microbiol Lett 2009; 293:85-91. [PMID: 19278526 DOI: 10.1111/j.1574-6968.2009.01518.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A strategy combining dual-suppression PCR and thermal asymmetric interlaced PCR was used to determine sequences flanking microsatellite regions in Pythium helicoides. The primer pairs were designed to amplify loci containing (AC)n, (GA)n, (AGC)n, (CAC)n(CAA)n, (TCA)n and (CTTT)n repeats from the P. helicoides nuclear genome. The PCR products of each primer pair, amplified from three representative isolates collected from different hosts and locations, were cloned and sequenced. Different degrees of polymorphism were detected among these microsatellite markers. The numbers of alleles were 6, 2, 4, 11, 4 and 4 in YL-AC, YL-AGC, YL-CAA, YL-CTTT, YL-GA and YL-TCA, respectively. Allele analysis of 30 P. helicoides isolates showed length polymorphisms in all loci, except for YL-AC, using capillary electrophoresis. Thus, we have developed a simple method for designing PCR primers to amplify microsatellite markers from P. helicoides.
Collapse
Affiliation(s)
- Yin-Ling
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan.
| | | | | | | | | | | |
Collapse
|
16
|
Harbaugh DT, Wagner WL, Percy DM, James HF, Fleischer RC. Genetic structure of the polymorphic metrosideros (Myrtaceae) complex in the Hwaiian islands using nuclear microsatellite data. PLoS One 2009; 4:e4698. [PMID: 19259272 PMCID: PMC2649539 DOI: 10.1371/journal.pone.0004698] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 01/21/2009] [Indexed: 11/18/2022] Open
Abstract
Background Five species of Metrosideros (Myrtaceae) are recognized in the Hawaiian Islands, including the widespread M. polymorpha, and are characterized by a multitude of distinctive, yet overlapping, habit, ecological, and morphological forms. It remains unclear, despite several previous studies, whether the morphological variation within Hawaiian Metrosideros is due to hybridization, genetic polymorphism, phenotypic plasticity, or some combination of these processes. The Hawaiian Metrosideros complex has become a model system to study ecology and evolution; however this is the first study to use microsatellite data for addressing inter-island patterns of variation from across the Hawaiian Islands. Methodology/Principal Findings Ten nuclear microsatellite loci were genotyped from 143 individuals of Metrosideros. We took advantage of the bi-parental inheritance and rapid mutation rate of these data to examine the validity of the current taxonomy and to investigate whether Metrosideros plants from the same island are more genetically similar than plants that are morphologically similar. The Bayesian algorithm of the program structure was used to define genetic groups within Hawaiian Metrosideros and the closely related taxon M. collina from the Marquesas and Austral Islands. Several standard and nested AMOVAs were conducted to test whether the genetic diversity is structured geographically or taxonomically. Conclusions/Significance The results suggest that Hawaiian Metrosideros have dynamic gene flow, with genetic and morphological diversity structured not simply by geography or taxonomy, but as a result of parallel evolution on islands following rampant island-island dispersal, in addition to ancient chloroplast capture. Results also suggest that the current taxonomy requires major revisions in order to reflect the genetic structure revealed in the microsatellite data.
Collapse
Affiliation(s)
- Danica T Harbaugh
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States of America.
| | | | | | | | | |
Collapse
|
17
|
Omelchenko AV, Korchagin VI, Sevast’yanova GA, Ryskov AP, Tokarskaya ON. Molecular genetic characteristic of dinucleotide microsatellite loci in parthenogenetic lizards Darevskia unisexualis. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409020112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Szövényi P, Terracciano S, Ricca M, Giordano S, Shaw AJ. Recent divergence, intercontinental dispersal and shared polymorphism are shaping the genetic structure of amphi-Atlantic peatmoss populations. Mol Ecol 2009; 17:5364-77. [PMID: 19121003 DOI: 10.1111/j.1365-294x.2008.04003.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several lines of evidence suggest that recent long-distance dispersal may have been important in the evolution of intercontinental distribution ranges of bryophytes. However, the absolute rate of intercontinental migration and its relative role in the development of certain distribution ranges is still poorly understood. To this end, the genetic structure of intercontinental populations of six peatmoss species showing an amphi-Atlantic distribution was investigated using microsatellite markers. Methods relying on the coalescent were applied (IM and MIGRATE) to understand the evolution of this distribution pattern in peatmosses. Intercontinental populations of the six peatmoss species were weakly albeit significantly differentiated (average F(ST) = 0.104). This suggests that the North Atlantic Ocean is acting as a barrier to gene flow even in bryophytes adapted to long-range dispersal. The im analysis suggested a relatively recent split of intercontinental populations dating back to the last two glacial periods (9000-289,000 years ago). In contrast to previous hypotheses, analyses indicated that both ongoing migration and ancestral polymorphism are important in explaining the intercontinental genetic similarity of peatmoss populations, but their relative contribution varies with species. Migration rates were significantly asymmetric towards America suggesting differential extinction of genotypes on the two continents or invasion of the American continent by European lineages. These results indicate that low genetic divergence of amphi-Atlantic populations is a general pattern across numerous flowering plants and bryophytes. However, in bryophytes, ongoing intercontinental gene flow and retained shared ancestral polymorphism must both be considered to explain the genetic similarity of intercontinental populations.
Collapse
Affiliation(s)
- P Szövényi
- Department of Biology, Box 90338, Duke University, Durham, NC 27708-0338, USA.
| | | | | | | | | |
Collapse
|
19
|
Microsatellite evolution: Mutations, sequence variation, and homoplasy in the hypervariable avian microsatellite locus HrU10. BMC Evol Biol 2008; 8:138. [PMID: 18471288 PMCID: PMC2396632 DOI: 10.1186/1471-2148-8-138] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 05/09/2008] [Indexed: 02/01/2023] Open
Abstract
Background Microsatellites are frequently used genetic markers in a wide range of applications, primarily due to their high length polymorphism levels that can easily be genotyped by fragment length analysis. However, the mode of microsatellite evolution is yet not fully understood, and the role of interrupting motifs for the stability of microsatellites remains to be explored in more detail. Here we present a sequence analysis of mutation events and a description of the structure of repeated regions in the hypervariable, pentanucleotide microsatellite locus HrU10 in barn swallows (Hirundo rustica) and tree swallows (Tachycineta bicolor). Results In a large-scale parentage analysis in barn swallows and tree swallows, broods were screened for mutations at the HrU10 locus. In 41 cases in the barn swallows and 15 cases in the tree swallows, mutations corresponding to the loss or gain of one or two repeat units were detected. The parent and mutant offspring alleles were sequenced for 33 of these instances (26 in barn swallows and 7 in tree swallows). Replication slippage was considered the most likely mutational process. We tested the hypothesis that HrU10, a microsatellite with a wide allele size range, has an increased probability of introductions of interruptive motifs (IMs) with increasing length of the repeated region. Indeed, the number and length of the IMs was strongly positively correlated with the total length of the microsatellite. However, there was no significant correlation with the length of the longest stretch of perfectly repeated units, indicating a threshold level for the maximum length of perfectly repeated pentanucleotide motifs in stable HrU10 alleles. The combination of sequence and pedigree data revealed that 15 barn swallow mutations (58%) produced alleles that were size homoplasic to other alleles in the data set. Conclusion Our results give further insights into the mode of microsatellite evolution, and support the assumption of increased slippage rate with increased microsatellite length and a stabilizing effect of interrupting motifs for microsatellite regions consisting of perfect repeats. In addition, the observed extent of size homoplasy may impose a general caution against using hypervariable microsatellites in genetic diversity measures when alleles are identified by fragment length analysis only.
Collapse
|
20
|
Jewell K, Cheshier R, Cage GD. Genetic diversity among clinical Coccidioides spp. isolates in Arizona. Med Mycol 2008; 46:449-55. [PMID: 18608919 DOI: 10.1080/13693780801961337] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Increasing coccidioidomycosis rates in Arizona may indicate the development of a hypervirulent strain. One hundred and twenty-one clinical Coccidioides spp. isolates were collected over 16 months from Maricopa, Graham, Yuma, and Pima counties in Arizona. The patient age distribution ranged from 9 to 91 years, with a median age of 58 years; 36% were female, and 64% male. All isolates were analyzed by measuring length polymorphisms in nine distinct microsatellite regions. The three microsatellites found to have the greatest discriminatory power for Coccidioides posadasii were: K03 (0.87), GA37 (0.83), and K01 (0.78). The majority of isolates (n=119) were C. posadasii. Duplicate isolates (n=28) from 13 patients showed single strain infections. Phylogenetic analysis of the microsatellite data showed no dominant microsatellite pattern. We conclude that the increase in reported cases of coccidioidomycosis in Arizona is not linked to a dominant, hypervirulent strain of Coccidioides posadasii.
Collapse
Affiliation(s)
- Kelsea Jewell
- Arizona Department of Health Services, Phoenix, Arizona, USA.
| | | | | |
Collapse
|
21
|
Identification and characterization of simple sequence repeat markers for Pythium aphanidermatum, P. cryptoirregulare, and P. irregulare and the potential use in Pythium population genetics. Curr Genet 2007; 53:81-93. [PMID: 18058102 DOI: 10.1007/s00294-007-0167-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 11/18/2007] [Accepted: 11/20/2007] [Indexed: 10/22/2022]
Abstract
Six simple sequence repeat (SSR)-enriched genome libraries from Pythium aphanidermatum, P. irregulare, and P. cryptoirregulare were constructed to develop SSR markers. One hundred six SSR primer pairs for P. aphanidermatum, 73 for P. cryptoirregulare, and 82 for P. irregulare were initially identified. After examining primers, the most polymorphic and reproducible SSR markers were selected for each Pythium species; 14 in P. aphanidermatum, 21 in P. irregulare, and 22 in P. cryptoirregulare. Analysis of isolates from each Pythium species using SSR markers showed the high degree of gene diversity and polymorphic information content (PIC) value in the three species. The average number of alleles was 3.5-5.3 in the three Pythium species. Seven SSR loci from P. cryptoirregulare and P. irregualre showed the distinct genetic separations of P. irregualre complex isolates. SSR markers identified for the three Pythium target species were highly transferable to other closely related Pythium species. Cross-amplification was found in all SSR markers between P. cryptoirregulare and P. irregulare. SSR loci were successfully amplified by direct PCR from mycelia of P. aphanidermatum, P. cryptoirregulare, and P. irregulare. These newly developed SSR markers can be used for population genetic studies and monitoring the movement of isolates in crop production systems or in nature.
Collapse
|
22
|
Tesfaye K, Borsch T, Govers K, Bekele E. Characterization of Coffea chloroplast microsatellites and evidence for the recent divergence of C. arabica and C. eugenioides chloroplast genomes. Genome 2007; 50:1112-29. [DOI: 10.1139/g07-088] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Comparative sequencing of >7 kb of highly variable chloroplast genome regions (atpB–rbcL, trnS–trnG, rpl22–rps19, and rps19–rpl2 spacers; introns in atpF, trnG, trnK, and rpl16) with microsatellites known from other angiosperms was carried out in Coffea . Samples comprised 8 diploid species of Coffea, 5 individuals of tetraploid C. arabica representing geographically distant wild populations from Ethiopia, 2 commercial cultivars of C. arabica, and Psilanthus leroyi and Ixora coccinea as outgroups. Phylogeny reconstruction using maximum parsimony and Bayesian inference resulted in congruent topologies with high support for C. arabica and C. eugenioides being sisters. Partitioned analyses showed that all regions except the atpB–rbcL spacer resolved this sister-group, although this was often unsupported. The large sequence data set further shows that chloroplast genomes of C. arabica and C. eugenioides each possess apomorphies, indicating that not C. eugenioides but an ancestor or close relative of C. eugenioides is the maternal parent of C. arabica. Seven variable chloroplast microsatellites were characterized in Coffea. Most microsatellites are poly(A/T) stretches, whereas one in the trnS–trnG spacer has an (AT)n motif. Most strikingly, all individuals of C. arabica possess identical sequences, suggesting a single chloroplast haplotype. This can be explained by a recent origin of C. arabica in a unique allopolyploidization event, or by severe bottleneck effects in the evolutionary history of the species. Reconstruction of the evolution of microstructural mutations shows much higher levels of homoplasy in microsatellite loci than in other parts of spacers and introns. Microsatellites are inferred to evolve by insertion and deletion of 1 to 3 motif copies in one step.
Collapse
Affiliation(s)
- Kassahun Tesfaye
- Molecular Systematics Working Group, Nees-Institute for Biodiversity of Plants, University of Bonn, Meckenheimer Allee 170, 53115 Bonn, Germany
- Department of Biology, Addis Ababa University, P.O. Box 3434, Addis Ababa, Ethiopia
| | - Thomas Borsch
- Molecular Systematics Working Group, Nees-Institute for Biodiversity of Plants, University of Bonn, Meckenheimer Allee 170, 53115 Bonn, Germany
- Department of Biology, Addis Ababa University, P.O. Box 3434, Addis Ababa, Ethiopia
| | - Kim Govers
- Molecular Systematics Working Group, Nees-Institute for Biodiversity of Plants, University of Bonn, Meckenheimer Allee 170, 53115 Bonn, Germany
- Department of Biology, Addis Ababa University, P.O. Box 3434, Addis Ababa, Ethiopia
| | - Endashaw Bekele
- Molecular Systematics Working Group, Nees-Institute for Biodiversity of Plants, University of Bonn, Meckenheimer Allee 170, 53115 Bonn, Germany
- Department of Biology, Addis Ababa University, P.O. Box 3434, Addis Ababa, Ethiopia
| |
Collapse
|
23
|
Lia VV, Bracco M, Gottlieb AM, Poggio L, Confalonieri VA. Complex mutational patterns and size homoplasy at maize microsatellite loci. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 115:981-91. [PMID: 17712542 DOI: 10.1007/s00122-007-0625-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Accepted: 07/31/2007] [Indexed: 05/16/2023]
Abstract
Microsatellite markers have become one of the most popular tools for germplasm characterization, population genetics and evolutionary studies. To investigate the mutational mechanisms of maize microsatellites, nucleotide sequence information was obtained for ten loci. In addition, Single-Strand Conformation Polymorphism (SSCP) analysis was conducted to assess the occurrence of size homoplasy. Sequence analysis of 54 alleles revealed a complex pattern of mutation at 8/10 loci, with only 2 loci showing allele variation strictly consistent with stepwise mutations. The overall allelic diversity resulted from changes in the number of repeat units, base substitutions, and indels within repetitive and non-repetitive segments. Thirty-one electromorphs sampled from six maize landraces were considered for SSCP analysis. The number of conformers per electromorph ranged from 1 to 7, with 74.2% of the electromorphs showing more than one conformer. Size homoplasy was apparent within landraces and populations. Variation in the amount of size homoplasy was observed within and between loci, although no differences were detected among populations. The results of the present study provide useful information on the interpretation of genetic data derived from microsatellite markers. Further efforts are still needed to determine the impact of these findings on the estimation of population parameters and on the inference of phylogenetic relationships in maize investigations.
Collapse
Affiliation(s)
- V V Lia
- Laboratorio de Genética, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
24
|
Malysheva DN, Tokarskaya ON, Petrosyan VG, Danielyan FD, Darevsky IS, Ryskov AP. Genomic variation in parthenogenetic lizard Darevskia armeniaca: evidence from DNA fingerprinting data. ACTA ACUST UNITED AC 2007; 98:173-8. [PMID: 17374876 DOI: 10.1093/jhered/esm003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Microsatellites, or short tandem repeats, are abundant across genomes of most organisms. It is evident that the most straightforward and conclusive way of studying mutations in microsatellite-containing loci is to use clonally transmitted genomes or DNA sequences inherited in multigeneration pedigrees. At present, little is known about the origin of genetic variation in species that lack effective genetic recombination. DNA fingerprinting in 43 families of the parthenogenetic lizard species Darevskia armeniaca (131 siblings), using (GACA)(4), (GGCA)(4), (GATA)(4), and (CAC)(5) probes, revealed mutant fingerprints in siblings that differed from their mothers in several restriction DNA fragments. In some cases, the mutant fingerprints detected in siblings were also found in population samples. The mutation rate for new restriction fragment length estimated by using multilocus probes varied from 0.8 x 10(-2) to 4.9 x 10(-2) per band/per sibling. Probably, the most variations detected as restriction fragment length polymorphism have germ-line origin, but somatic changes of (CAC)(n) fingerprints in adult lizards were also observed. These results provide new evidence of existing unstable regions in genomes of parthenogenetic vertebrate animals, which provide genetic variation in unisexual populations.
Collapse
Affiliation(s)
- D N Malysheva
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
25
|
Malysheva DN, Vergun AA, Tokarskaya ON, Sevast’yanova GA, Darevsky IS, Ryskov AP. Nucleotide sequences of the microsatellite locus Du215 (arm) allelic variants in the parthenospecies Darevskia armeniaca (Lacertidae). RUSS J GENET+ 2007. [DOI: 10.1134/s1022795407020032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Lasker BA. Nucleotide sequence-based analysis for determining the molecular epidemiology of Penicillium marneffei. J Clin Microbiol 2006; 44:3145-53. [PMID: 16954240 PMCID: PMC1594698 DOI: 10.1128/jcm.00567-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dimorphic fungus, Penicillium marneffei, is an emerging opportunistic pathogen endemic in Southeast Asia, especially for those with impaired cellular immunity such as human immunodeficiency virus-infected persons. A discriminatory and reproducible method based on the analysis of nucleotide sequences would facilitate epidemiologic investigations of this fungus. Twenty-four clinical or environmental isolates of P. marneffei obtained from China, Thailand, and Vietnam were analyzed by nucleotide sequence analysis. A total of 3,803 bp, consisting of eight nuclear gene fragments (transcription factor [AbaA], catalase [CpeA]], homodomain transcription factor [StlA], isocitrate lyase [Icl1], polyaromatic amino acid biosynthesis [PAA], NADH-dependent glutamate synthase [NGS], lovastatin nonaketide synthase [LNS], a cell wall mannoprotein [MP1], and a gene fragment of the cytochrome oxidase subunit 1 gene [COX1] of the P. marneffei mitochondrial genome) were amplified by PCR and then sequenced. No polymorphic sites within the Cox1 gene fragment were observed. Likewise, no nucleotide sequence polymorphisms were observed for three gene fragments: StlA, AbaA, and NGS. Seven single-nucleotide polymorphisms were observed for three gene fragments, Icl1, CpeA, and PAA, providing only a low degree of discriminatory power (D = 0.747). In contrast, the gene fragment for an antigenic cell wall glycoprotein, MP1, a useful immunologic marker for infection, was observed to be highly polymorphic with 12 different MP1 types (D = 0.887). Single-nucleotide polymorphisms were observed at 21 different locations in the MP1 gene fragment. Indels of 3, 21, 24, and 42 bp were observed and were in frame for protein translation. The relatively high degree of MP1 polymorphisms suggests the sequence is rapidly evolving in order to evade host immune responses. After all polymorphic gene sequences were combined, a high degree of genetic variation was observed (D = 0.949) for a total of 16 different haploid sequence types with 11 genotypes represented by single isolates. Phylogenetic analysis detected clusters composed of isolates obtained only from China or Thailand, as well as clusters with a combination of isolates from these two countries, indicating some mixing or common descent. Identical sequences were observed for isolates passed in vitro for 8 weeks, suggesting good reproducibility. The low degree of nucleotide diversity in housekeeping and regulatory genes suggests the recent emergence and spread as a species or an evolutionary bottleneck. In summary, multilocus sequence typing demonstrated a high degree of discriminatory power and reproducibility and may provide a robust and reliable adjunct method for genotyping isolates of P. marneffei and facilitating interlaboratory comparisons.
Collapse
Affiliation(s)
- Brent A Lasker
- Mycotic Disease Branch, Division of Bacterial and Mycotic Diseases, National Centers for Infectious Diseases, Centers for Disease Control and Prevention, Mailstop G-11, Atlanta, GA 30333, USA.
| |
Collapse
|
27
|
Chung SM, Staub JE, Chen JF. Molecular phylogeny of Cucumis species as revealed by consensus chloroplast SSR marker length and sequence variation. Genome 2006; 49:219-29. [PMID: 16604104 DOI: 10.1139/g05-101] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate phylogenetic relationships in the genus Cucumis, 9 consensus chloroplast simple sequence repeat (ccSSR) primer pairs (ccSSR3, 9, 11, 13, 14, 17, 20, 21, and 23) were employed for DNA fragment length variation and 5 amplified fragments, ccSSR4, 12, 13, 19, and 20, were sequenced using total DNA from 13 accessions representing 7 African Cucumis species (x = 12), 3 Cucumis melo L. (x = 12) accessions, 2 Cucumis sativus L. (x = 7) accessions, and 1 Cucumis hystrix Chakr. (x = 12) accession. A Citrullus lanatus (Thunb.) Matsum. & Nakai (x = 11) accession was used as an outgroup. While fragment length analysis revealed the existence of 3 major species clusters (i.e., a group of African Cucumis species, a group composed of C. melo accessions, and a group containing C. sativus and C. hystrix species), sequence variation analysis identified 2 major species clusters (i.e., a group of African Cucumis species and a group composed of C. melo, C. sativus, and C. hystrix species). Comparative analysis using nuclear DNA (previous studies) and cpDNA sequence substitution data resulted in the placement of C. melo and C. sativus in different cluster groupings. Thus, both nuclear and cytoplasmic DNA should be employed and compared when a putative progenitor or specimens of an ancestral Cucumis species lineage is investigated. In addition, C. ficifolius (2x) and C. aculeatus (4x) of the African Cucumis species clustered together in this study. This result does not agree with reported isozyme analyses, but does agree with previously characterized chromosome homologies between these 2 species. Although African Cucumis species and C. hystrix do not share a close relationship, genetic affinities between C. sativus and C. hystrix are considerable. Combined evidence from previously published studies and data presented herein lend support to the hypothesis that C. hystrix is either a progenitor species of C. sativus or that they at least share a common ancestral lineage.
Collapse
Affiliation(s)
- S-M Chung
- Vegetable Crops Research Unit, Department of Horticulture, US Department of Agriculture-ARS, University of Wisconsin, 1575 Linden Drive, Madison, WI 53706, USA.
| | | | | |
Collapse
|
28
|
Badaeva TN, Korchagin VI, Tokarskaya ON, Ryskov AP. Identification and molecular characteristics of mutant alleles at the Du281 locus in parthenogenetic progeny of Darevskia unisexualis. DOKL BIOCHEM BIOPHYS 2006; 409:197-9. [PMID: 16986429 DOI: 10.1134/s1607672906040016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- T N Badaeva
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, Moscow 117334, Russia
| | | | | | | |
Collapse
|
29
|
Lasker BA, Butler G, Lott TJ. Molecular genotyping of Candida parapsilosis group I clinical isolates by analysis of polymorphic microsatellite markers. J Clin Microbiol 2006; 44:750-9. [PMID: 16517850 PMCID: PMC1393075 DOI: 10.1128/jcm.44.3.750-759.2006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida parapsilosis, a pathogenic yeast, is composed of three newly designated genomic species that are physiologically and morphologically indistinguishable. Nosocomial infections caused by group I C. parapsilosis are often associated with the breakdown of infection control practices and the contamination of medical devices, solutions, and indwelling catheters. Due to the low levels of nucleotide sequence variation that are observed, an investigation of the size polymorphisms in loci harboring microsatellite repeat sequences was applied for the typing of C. parapsilosis group I isolates. PCR primer sets that flank the microsatellite repeats for seven loci were designed. Following amplification by PCR, the size of each amplification product was determined automatically by capillary electrophoresis. A total of 42 C. parapsilosis group I isolates were typed by microsatellite analysis, and their profiles were compared to the hybridization profiles obtained by use of the Cp3-13 DNA probe. A high degree of discrimination (discriminatory power = 0.971) was observed by microsatellite analysis. The number of different alleles per locus ranged from 14 for locus B to 5 for locus C. Microsatellite analysis detected 30 different microsatellite genotypes, with 24 genotypes represented by a single isolate. Comparison of the genotypes obtained by microsatellite analysis and those obtained by analysis of the Cp3-13 hybridization profiles showed that they were similar, and these methods were able to identify related and unrelated isolates. Some discrepancies were observed between the methods and may be due to higher mutation rates and/or homoplasy by microsatellite markers. Identical results were observed between microsatellite analysis and Cp3-13 DNA hybridization profile analysis for C. parapsilosis isolates obtained from two patients, demonstrating the reproducibilities of the methods in vivo. Identical microsatellite profiles were observed for isolates displaying different phenotypic switching morphologies. Indistinguishable Cp3-13 DNA hybridization profiles were observed for six epidemiologically related isolates; however, only three of six primary isolates had identical microsatellite profiles. Size variation at a single locus was observed for three of six isolates obtained either after the outbreak period or from a different body site, suggesting the potential of the method to detect microevolutionary events. Interestingly, for most loci a single allele per strain was observed; in contrast, two alleles per locus were observed for some strains, and consistent with the findings for natural isolates, some isolates may be aneuploid. Due to the potential for high throughput, reproducibility, and discrimination, microsatellite analysis may provide a robust and efficient method for the genotyping of large numbers of C. parapsilosis group I isolates.
Collapse
Affiliation(s)
- Brent A Lasker
- Mycotic Diseases Branch, Division of Bacterial and Mycotic Diseases, National Centers for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Mailstop G-11, Atlanta, GA 30333.
| | | | | |
Collapse
|
30
|
Pearse DE, Arndt AD, Valenzuela N, Miller BA, Cantarelli V, Sites JW. Estimating population structure under nonequilibrium conditions in a conservation context: continent-wide population genetics of the giant Amazon river turtle, Podocnemis expansa (Chelonia; Podocnemididae). Mol Ecol 2006; 15:985-1006. [PMID: 16599962 DOI: 10.1111/j.1365-294x.2006.02869.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Giant Amazon river turtles, Podocnemis expansa, are indigenous to the Amazon, Orinoco, and Essequibo River basins, and are distributed across nearly the entire width of the South American continent. Although once common, their large size, high fecundity, and gregarious nesting, made P. expansa especially vulnerable to over-harvesting for eggs and meat. Populations have been severely reduced or extirpated in many areas throughout its range, and the species is now regulated under Appendix II of the Convention on International Trade in Endangered Species. Here, we analyse data from mitochondrial DNA sequence and multiple nuclear microsatellite markers with an array of complementary analytical methods. Results show that concordance from multiple data sets and analyses can provide a strong signal of population genetic structure that can be used to guide management. The general lack of phylogeographic structure but large differences in allele and haplotype frequencies among river basins is consistent with fragmented populations and female natal-river homing. Overall, the DNA data show that P. expansa populations lack a long history of genetic differentiation, but that each major tributary currently forms a semi-isolated reproductive population and should be managed accordingly.
Collapse
Affiliation(s)
- Devon E Pearse
- Department of Integrative Biology, Brigham Young University, Provo, UT 84602, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Ochsenreither S, Kuhls K, Schaar M, Presber W, Schönian G. Multilocus microsatellite typing as a new tool for discrimination of Leishmania infantum MON-1 strains. J Clin Microbiol 2006; 44:495-503. [PMID: 16455904 PMCID: PMC1392658 DOI: 10.1128/jcm.44.2.495-503.2006] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Leishmania donovani complex, which consists of L. donovani, L. infantum-L. chagasi, and L. archibaldi, is responsible for visceral manifestations of leishmaniasis. Multilocus enzyme electrophoresis is the standard method for the characterization and identification of strains of Leishmania. For L. infantum, the predominance of zymodeme MON-1 significantly reduces the discriminative power of this approach. In the present study, we developed 17 independent polymorphic microsatellite markers for the typing of strains of L. infantum, with the main emphasis on zymodeme MON-1. The discriminative powers of 11 markers selected from among these markers were tested by using a panel of 63 isolates of the L. donovani complex. Unique multilocus genotypes were observed for the strains analyzed, with only three exceptions. Model-based and distance-based analyses of the data set showed comparable results. It was possible to discriminate between L. donovani sensu stricto, a non-MON-1 group of L. infantum isolates, and a MON-1 group of L. infantum isolates. Within MON-1, three clusters with geographical correlations became apparent. The frequency of heterozygosity in the alleles analyzed varied extremely between the different groups of isolates. The main clusters described are not consistent with species definitions based on isoenzyme analysis but confirm the results of former PCR-based investigations.
Collapse
Affiliation(s)
- Sebastian Ochsenreither
- Institute of Microbiology and Hygiene, Charité Universitätsmedizin Berlin, Dorotheenstr. 96, 10117 Berlin, Germany
| | | | | | | | | |
Collapse
|
32
|
Lee YJ, Hwang SY, Ho KC, Lin TP. Source populations of Quercus glauca in the last glacial age in Taiwan revealed by nuclear microsatellite markers. ACTA ACUST UNITED AC 2006; 97:261-9. [PMID: 16614134 DOI: 10.1093/jhered/esj030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this work, we attempted to study genetic differentiation between populations of Quercus glauca in Taiwan using nuclear microsatellite markers to infer the potential refugium in the last glaciation stage. Four microsatellite loci for 20 individuals each in 10 populations of Taiwan were analyzed. We found that Q. glauca has relatively high within-population diversity (H(E) = 0.741) and low population differentiation (F(ST) = 0.042) but shows isolation by distance. The most divergent populations, according to the average F(ST) for individual populations in comparison with every other population, were found in populations Cy, Sa, and Hy in southern Taiwan and Pa in north-central Taiwan. Moreover, populations Cy, Sa, and Pa were recognized as being the source populations for gene recolonization after the last glaciation stage. In addition, the three sites of Wu, Ym, and Cy exhibited the highest gene diversities that coincided with populations with the highest chloroplast DNA variations. This may have resulted from an admixture of colonization routes. In conclusion, observations of the most divergent populations and source populations suggest that southern and probably north-central Taiwan may have potentially been refugia for Q. glauca in the last glaciation. This agrees with the possible refugium in southern Taiwan revealed by a previous study using chloroplast DNA markers.
Collapse
Affiliation(s)
- Yuan-Jr Lee
- Institute of Plant Biology, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei 106, Taiwan
| | | | | | | |
Collapse
|
33
|
Ciofi C, Wilson GA, Beheregaray LB, Marquez C, Gibbs JP, Tapia W, Snell HL, Caccone A, Powell JR. Phylogeographic history and gene flow among giant Galápagos tortoises on southern Isabela Island. Genetics 2006; 172:1727-44. [PMID: 16387883 PMCID: PMC1456292 DOI: 10.1534/genetics.105.047860] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Accepted: 12/13/2005] [Indexed: 11/18/2022] Open
Abstract
Volcanic islands represent excellent models with which to study the effect of vicariance on colonization and dispersal, particularly when the evolution of genetic diversity mirrors the sequence of geological events that led to island formation. Phylogeographic inference, however, can be particularly challenging for recent dispersal events within islands, where the antagonistic effects of land bridge formation and vicariance can affect movements of organisms with limited dispersal ability. We investigated levels of genetic divergence and recovered signatures of dispersal events for 631 Galápagos giant tortoises across the volcanoes of Sierra Negra and Cerro Azul on the island of Isabela. These volcanoes are among the most recent formations in the Galápagos (<0.7 million years), and previous studies based on genetic and morphological data could not recover a consistent pattern of lineage sorting. We integrated nested clade analysis of mitochondrial DNA control region sequences, to infer historical patterns of colonization, and a novel Bayesian multilocus genotyping method for recovering evidence of recent migration across volcanoes using eleven microsatellite loci. These genetic studies illuminate taxonomic distinctions as well as provide guidance to possible repatriation programs aimed at countering the rapid population declines of these spectacular animals.
Collapse
Affiliation(s)
- Claudio Ciofi
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Picard D, Plantard O. What constitutes a population for the plant parasitic nematode Globodera pallida in its native area (Peru)? Int J Parasitol 2006; 36:115-22. [PMID: 16239004 DOI: 10.1016/j.ijpara.2005.08.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Revised: 08/22/2005] [Accepted: 08/23/2005] [Indexed: 11/28/2022]
Abstract
Although numerous species are distributed in discrete populations easily recognised by geographical barriers, continuous populations are a common feature of plants or marine organisms. This is particularly true for soil organisms as their habitat is continuous and their range cannot easily be assessed as they are buried below ground. In the case of organisms for which standard methods such as Capture/Mark/Recapture cannot be used, population genetics provide a straightforward approach to delimitate populations. In this study, we have pursued this topic with a soil-dwelling nematode (Globodera pallida), which parasitises potato roots and is indigenous to South America. Potential barriers to gene flow were identified using the analysis of the F(ST)/(1-F(ST)) ratio against geographical distance and spatial autocorrelation combined with model-based clustering algorithm. Inside regions, neither genetic differentiation nor isolation by distance (IBD) occur among fields less than 50 km distant. We hypothesise that the large amount of gene flow revealed by the absence of genetic structure of this organism could be due to large passive dispersion inside an agronomic area where G. pallida has a continuous distribution and is found at high density. The first evidence of genetic differentiation appeared when a field was separated from others by an area free of farms (where G. pallida is absent or rare). Among regions, a high genetic structure coupled with an IBD pattern occurs as the consequences of the limitations of passive dispersal across deep valleys or high mountains. To our knowledge, this is the first study identifying the spatial limit of a population for a plant nematode parasite.
Collapse
Affiliation(s)
- Damien Picard
- UMR INRA-ENSAR BiO3P, Domaine de la Motte, B.P. 35327, 35653 Le Rheu Cedex, France
| | | |
Collapse
|
35
|
Coulibaly I, Gharbi K, Danzmann RG, Yao J, Rexroad CE. Characterization and comparison of microsatellites derived from repeat-enriched libraries and expressed sequence tags. Anim Genet 2005; 36:309-15. [PMID: 16026341 DOI: 10.1111/j.1365-2052.2005.01305.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The construction of high-density linkage maps for use in identifying loci underlying important traits requires the development of large numbers of polymorphic genetic markers spanning the entire genome at regularly spaced intervals. As part of our efforts to develop markers for rainbow trout (Oncorhynchus mykiss), we performed a comparison of allelic variation between microsatellite markers developed from expressed sequence tag (EST) data and anonymous markers identified from repeat-enriched libraries constructed from genomic DNA. A subset of 70 markers (37 from EST databases and 33 from repeat enriched libraries) was characterized with respect to polymorphism information content (PIC), number of alleles, repeat number, locus duplication within the genome and ability to amplify in other salmonid species. Higher PIC was detected in dinucleotide microsatellites derived from ESTs than anonymous markers (72.7% vs. 54.0%). In contrast, dinucleotide repeat numbers were higher for anonymous microsatellites than for EST derived microsatellites (27.4 vs.18.1). A higher rate of cross-species amplification was observed for EST microsatellites. Approximately half of each marker type was duplicated within the genome. Unlike single-copy markers, amplification of duplicated microsatellites in other salmonids was not correlated to phylogenetic distance. Genomic microsatellites proved more useful than EST derived microsatellites in discriminating among the salmonids. In total, 428 microsatellite markers were developed in this study for mapping and population genetic studies in rainbow trout.
Collapse
Affiliation(s)
- I Coulibaly
- Animal and Veterinary Sciences Division, West Virginia University, PO Box 6108, Morgantown, WV 26506, USA
| | | | | | | | | |
Collapse
|
36
|
Abstract
Analysis of nucleotide sequence variation at a microsatellite DNA locus revealed extensive size homoplasy of alleles in Adélie penguins (Pygoscelis adeliae). Variation in the flanking regions at this locus allowed discrimination between mechanisms proposed for length changes in microsatellite DNA alleles. We further examined the structure of alleles for the same microsatellite DNA locus across 11 additional species of penguin (Spheniscidae) by mapping allele sequences onto an independent penguin phylogeny. Our analysis indicated that the repeat motifs appear to have evolved independently on several occasions. We observed sequence instability in the region bordering the repeat tract with a transversional bias predominating. We propose that this bias results from inaccurate DNA replication owing to the sequence context of this repeat tract. Because we show that regions flanking repeat sequences exhibit this mutational bias, this cautions against the use of such regions for phylogeny reconstruction.
Collapse
Affiliation(s)
- L D Shepherd
- Allan Wilson Centre for Molecular Ecology and Evolution, Institute of Molecular BioSciences, Massey University, Private Bag 102904, North Shore Mail Centre, Auckland, New Zealand
| | | |
Collapse
|
37
|
Xu Y, Ma RC, Xie H, Liu JT, Cao MQ. Development of SSR markers for the phylogenetic analysis of almond trees from China and the Mediterranean region. Genome 2005; 47:1091-104. [PMID: 15644967 DOI: 10.1139/g04-058] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expressed sequence tag (EST) derived simple sequence repeats (SSRs, microsatellites) were screened and identified from 3863 almond and 10 185 peach EST sequences, and the spectra of SSRs in the non-redundant EST sequences were investigated after sequence assembly. One hundred seventy-eight (12.07%) almond SSRs and 497 (9.97%) peach SSRs were detected. The EST-SSR occurs every 4.97 kb in almond ESTs and 6.57 kb in peach, and SSRs with di- and trinucleotide repeat motifs are the most abundant in both almond and peach ESTs. Twenty one EST-SSRs were thereafter, developed and used together with 7 genomic SSRs, to study the genetic relationship among 36 almond (P. communis Fritsch.) cultivars from China and the Mediterranean area, as well as 8 accessions of other related species from the genus Prunus. Both EST-derived and genomic SSR markers showed high cross-species transferability in the genus. Out of the 112 polymorphic alleles detected in the 36 cultivated almonds, 28 are specific to Chinese cultivars and 25 to the others. The 44 accessions were clustered into 4 groups in the phylogenetic tree and the 36 almond cultivars formed two distinct subgroups, one containing only Chinese cultivars and one of unknown origin and the other only those originating from the Mediterranean area, indicating that Chinese almond cultivars have a distinct evolutionary history from the Mediterranean almond. Our preliminary results indicated that common almond was more closely related to peach (P. persica (L.) Batsch.) than to the four wild species of almond, (P. mongolica Maxim., P. ledebouriana Schleche, P. tangutica Batal., and P. triloba Lindl.). The implications of these SSR markers for evolutionary analysis and molecular mapping of Prunus species are discussed.
Collapse
Affiliation(s)
- Yong Xu
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Ban-Jing., Hai-Dian District, Beijing 100089, China
| | | | | | | | | |
Collapse
|
38
|
Roberts MA, Schwartz TS, Karl SA. Global population genetic structure and male-mediated gene flow in the green sea turtle (Chelonia mydas): analysis of microsatellite loci. Genetics 2005; 166:1857-70. [PMID: 15126404 PMCID: PMC1470815 DOI: 10.1534/genetics.166.4.1857] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We assessed the degree of population subdivision among global populations of green sea turtles, Chelonia mydas, using four microsatellite loci. Previously, a single-copy nuclear DNA study indicated significant male-mediated gene flow among populations alternately fixed for different mitochondrial DNA haplotypes and that genetic divergence between populations in the Atlantic and Pacific Oceans was more common than subdivisions among populations within ocean basins. Even so, overall levels of variation at single-copy loci were low and inferences were limited. Here, the markedly more variable microsatellite loci confirm the presence of male-mediated gene flow among populations within ocean basins. This analysis generally confirms the genetic divergence between the Atlantic and Pacific. As with the previous study, phylogenetic analyses of genetic distances based on the microsatellite loci indicate a close genetic relationship among eastern Atlantic and Indian Ocean populations. Unlike the single-copy study, however, the results here cannot be attributed to an artifact of general low variability and likely represent recent or ongoing migration between ocean basins. Sequence analyses of regions flanking the microsatellite repeat reveal considerable amounts of cryptic variation and homoplasy and significantly aid in our understanding of population connectivity. Assessment of the allele frequency distributions indicates that at least some of the loci may not be evolving by the stepwise mutation model.
Collapse
Affiliation(s)
- Mark A Roberts
- Department of Biology, University of South Florida, Tampa, Florida 33620, USA
| | | | | |
Collapse
|
39
|
Malysheva DN, Tokarskaya ON, Danielyan FD, Darevsky IS, Ryskov AP. Identification of microsatellite mutations in parthenogenetic lizards Darevskia armeniaca. DOKL BIOCHEM BIOPHYS 2005; 400:28-31. [PMID: 15846978 DOI: 10.1007/s10628-005-0025-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- D N Malysheva
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 117334 Russia
| | | | | | | | | |
Collapse
|
40
|
Picard D, Plantard O, Scurrah M, Mugniery D. Inbreeding and population structure of the potato cyst nematode (Globodera pallida) in its native area (Peru). Mol Ecol 2004; 13:2899-908. [PMID: 15367107 DOI: 10.1111/j.1365-294x.2004.02275.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dispersal abilities and the population genetic structure of nematodes living in the soil are poorly known. In the present study, we have pursued these issues in the potato cyst nematode Globodera pallida, which parasitizes potato roots and is indigenous to South America. A hierarchical sampling regime was conducted in Peru to investigate gene flow on regional, field and plant scales. Multilocus genotypes of single individuals were obtained using eight polymorphic microsatellites markers. Large heterozygote deficiencies were observed at most loci. The limited active dispersal of larvae from their cyst, which favours mating between (half) siblings, could be responsible for this pattern. Within fields, as well as among fields within regions (even 35 km apart), low F(ST) values suggest extensive gene flow. Among fields within regions, only 1.5-4.4% genetic variability was observed. Passive dispersal of cysts by natural means (wind, running water, or wild animals) or by anthropogenic means (tillage, movement of infected seed tubers) is probably responsible for the results observed. Among regions, high F(ST) values were observed. Thus long-range dispersal (more than 320 km apart) is probably limited by major biogeographical barriers such as the mountains found in the Andean Cordillera. These results provide useful information for the management of resistant varieties, to slow down the emergence and spread of resistance-breaking pathotypes.
Collapse
Affiliation(s)
- D Picard
- UMR INRA-ENSAR BiO3P, Domaine de la Motte, B.P. 35327, 35653 Le Rheu cedex, France
| | | | | | | |
Collapse
|
41
|
Dettman JR, Taylor JW. Mutation and evolution of microsatellite loci in Neurospora. Genetics 2004; 168:1231-48. [PMID: 15579682 PMCID: PMC1448800 DOI: 10.1534/genetics.104.029322] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Accepted: 07/14/2004] [Indexed: 11/18/2022] Open
Abstract
The patterns of mutation and evolution at 13 microsatellite loci were studied in the filamentous fungal genus Neurospora. First, a detailed investigation was performed on five microsatellite loci by sequencing each microsatellite, together with its nonrepetitive flanking regions, from a set of 147 individuals from eight species of Neurospora. To elucidate the genealogical relationships among microsatellite alleles, repeat number was mapped onto trees constructed from flanking-sequence data. This approach allowed the potentially convergent microsatellite mutations to be placed in the evolutionary context of the less rapidly evolving flanking regions, revealing the complexities of the mutational processes that have generated the allelic diversity conventionally assessed in population genetic studies. In addition to changes in repeat number, frequent substitution mutations within the microsatellites were detected, as were substitutions and insertion/deletions within the flanking regions. By comparing microsatellite and flanking-sequence divergence, clear evidence of interspecific allele length homoplasy and microsatellite mutational saturation was observed, suggesting that these loci are not appropriate for inferring phylogenetic relationships among species. In contrast, little evidence of intraspecific mutational saturation was observed, confirming the utility of these loci for population-level analyses. Frequency distributions of alleles within species were generally consistent with the stepwise mutational model. By comparing variation within species at the microsatellites and the flanking-sequence, estimated microsatellite mutation rates were approximately 2500 times greater than mutation rates of flanking DNA and were consistent with estimates from yeast and fruit flies. A positive relationship between repeat number and variance in repeat number was significant across three genealogical depths, suggesting that longer microsatellite alleles are more mutable than shorter alleles. To test if the observed patterns of microsatellite variation and mutation could be generalized, an additional eight microsatellite loci were characterized and sequenced from a subset of the same Neurospora individuals.
Collapse
Affiliation(s)
- Jeremy R Dettman
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|
42
|
Adams RI, Brown KM, Hamilton MB. The impact of microsatellite electromorph size homoplasy on multilocus population structure estimates in a tropical tree (Corythophora alta) and an anadromous fish (Morone saxatilis). Mol Ecol 2004; 13:2579-88. [PMID: 15315672 DOI: 10.1111/j.1365-294x.2004.02256.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microsatellite allelic states are determined by electrophoretic sizing of polymerase chain reaction fragments to define electromorphs. Numerous studies have documented that identical microsatellite electromorphs are potentially heterogeneous at the DNA sequence level, a phenomenon called electromorph size homoplasy. Few studies have examined the impact of electromorph size homoplasy on estimates of population genetic parameters. We investigated the frequency of microsatellite electromorph size homoplasy for 12 loci in the tropical tree Corythophora alta and 11 loci in the anadromous fish Morone saxatilis by sequencing 14-23 homozygotes per locus sampled from multiple populations for a total of 453 sequences. Sequencing revealed no homoplasy for M. saxatilis loci. Seven C. alta loci exhibited homoplasy, including single and compound repeat motifs both with and without interruptions. Between 12.5 and 42.9% of electromorphs sampled per locus showed size homoplasy. Two methods of correction for homoplasy in C. alta generally produced little or no change in single-locus estimates of RST, except for two loci in which some additional differentiation among populations was revealed. Twelve-locus estimates of RST (including the seven loci corrected for homoplasy) were slightly greater than estimates from uncorrected data, although the 95% confidence intervals overlapped. The frequency of methodological errors such as clerical mistakes or sample mislabelling per genotype scored was estimated at 5.4 and 7.3% for C. alta and M. saxatilis, respectively. Simulations showed that the increase in RST produced by homoplasy correction was only slightly larger than variation in RST estimates expected to be caused by methodological errors.
Collapse
Affiliation(s)
- Rachel I Adams
- Georgetown University, Department of Biology, Reiss Sciences Building 406, 37th and O Streets NW, Washington, DC 20057-1229 USA
| | | | | |
Collapse
|
43
|
|
44
|
Bachmann L, Bareiss P, Tomiuk J. Allelic variation, fragment length analyses and population genetic models: a case study on Drosophila microsatellites*. J ZOOL SYST EVOL RES 2004. [DOI: 10.1111/j.1439-0469.2004.00275.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Lasker BA, Ran Y. Analysis of polymorphic microsatellite markers for typing Penicillium marneffei isolates. J Clin Microbiol 2004; 42:1483-90. [PMID: 15070993 PMCID: PMC387604 DOI: 10.1128/jcm.42.4.1483-1490.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Penicillium marneffei is an emerging opportunistic dimorphic fungal pathogen that is endemic in Southeast Asia. A typing method based on the analysis of size polymorphisms in microsatellite loci was investigated. Three loci available from the GenBank database were identified to harbor microsatellites. PCR primers flanking the microsatellite repeats were designed with one primer in the set fluorescently labeled. PCR products were then sized by automated capillary electrophoresis. As expected for a haploid fungus, a single band was observed for each microsatellite locus for all isolates. Polymorphic microsatellite marker (PMM) analysis detected a total of 22 different allelic types for 35 isolates of P. marneffei with a high discriminatory power (D = 0.956). Microsatellites I, II, and III detected 14, 10, and 7 alleles, respectively. The reproducibility of length polymorphisms was confirmed by using different DNA preparations from the same isolate or by repeated runs from the same DNA preparation. PMM profiles for eight isolates passaged in vitro for 7 to 8 weeks were identical to the original culture, demonstrating short-term stability and reproducibility. PCR products were not observed for other dimorphic fungi or human DNA. Comparison of allelic frequencies in isolates obtained from China and Thailand identified distinct allele combinations, suggesting the potential geographic isolation of populations. Due to the high discriminatory power, reproducibility, and potential for high throughput, PMM analysis may provide a good typing method for epidemiologic and surveillance investigations of P. marneffei.
Collapse
Affiliation(s)
- Brent A Lasker
- Mycotic Diseases Branch, Division of Bacterial and Mycotic Diseases, National Centers for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
| | | |
Collapse
|
46
|
Affiliation(s)
- Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden.
| |
Collapse
|
47
|
Muwanika VB, Nyakaana S, Siegismund HR, Arctander P. Phylogeography and population structure of the common warthog (Phacochoerus africanus) inferred from variation in mitochondrial DNA sequences and microsatellite loci. Heredity (Edinb) 2004; 91:361-72. [PMID: 14512951 DOI: 10.1038/sj.hdy.6800341] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Global climate fluctuated considerably throughout the Pliocene and Pleistocene, influencing the evolutionary history of a wide range of species. Using both mitochondrial sequences and microsatellites, we have investigated the evolutionary consequences of such environmental fluctuation for the patterns of genetic variation in the common warthog, sampled from 24 localities in Africa. In the sample of 181 individuals, 70 mitochondrial DNA haplotypes were identified and an overall nucleotide diversity of 4.0% was observed. The haplotypes cluster in three well-differentiated clades (estimated net sequence divergence of 3.1-6.6%) corresponding to the geographical origins of individuals (i.e. eastern, western and southern African clades). At the microsatellite loci, high polymorphism was observed both in the number of alleles per locus (6-21), and in the gene diversity (in each population 0.59-0.80). Analysis of population differentiation indicates greater subdivision at the mitochondrial loci (FST=0.85) than at nuclear loci (FST=0.20), but both mitochondrial and nuclear loci support the existence of the three warthog lineages. We interpret our results in terms of the large-scale climatic fluctuations of the Pleistocene.
Collapse
Affiliation(s)
- V B Muwanika
- Institute of Environment and Natural Resources, Makerere University, PO Box 7298, Kampala, Uganda.
| | | | | | | |
Collapse
|
48
|
González-Martínez SC, Robledo-Arnuncio JJ, Collada C, Díaz A, Williams CG, Alía R, Cervera MT. Cross-amplification and sequence variation of microsatellite loci in Eurasian hard pines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 109:1125-32. [PMID: 14985972 DOI: 10.1007/s00122-004-1739-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2003] [Accepted: 01/05/2004] [Indexed: 05/20/2023]
Abstract
Microsatellite transfer across coniferous species is a valued methodology because de novo development for each species is costly and there are many species with only a limited commodity value. Cross-species amplification of orthologous microsatellite regions provides valuable information on mutational and evolutionary processes affecting these loci. We tested 19 nuclear microsatellite markers from Pinus taeda L. (subsection Australes) and three from P. sylvestris L. (subsection Pinus) on seven Eurasian hard pine species ( P. uncinata Ram., P. sylvestris L., P. nigra Arn., P. pinaster Ait., P. halepensis Mill., P. pinea L. and P. canariensis Sm.). Transfer rates to species in subsection Pinus (36-59%) were slightly higher than those to subsections Pineae and Pinaster (32-45%). Half of the trans-specific microsatellites were found to be polymorphic over evolutionary times of approximately 100 million years (ten million generations). Sequencing of three trans-specific microsatellites showed conserved repeat and flanking regions. Both a decrease in the number of perfect repeats in the non-focal species and a polarity for mutation, the latter defined as a higher substitution rate in the flanking sequence regions close to the repeat motifs, were observed in the trans-specific microsatellites. The transfer of microsatellites among hard pine species proved to be useful for obtaining highly polymorphic markers in a wide range of species, thereby providing new tools for population and quantitative genetic studies.
Collapse
|
49
|
González-Martínez SC, Robledo-Arnuncio JJ, Collada C, Díaz A, Williams CG, Alía R, Cervera MT. Cross-amplification and sequence variation of microsatellite loci in Eurasian hard pines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 109:103-11. [PMID: 14985972 DOI: 10.1007/s00122-004-1596-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2003] [Accepted: 01/05/2004] [Indexed: 05/23/2023]
Abstract
Microsatellite transfer across coniferous species is a valued methodology because de novo development for each species is costly and there are many species with only a limited commodity value. Cross-species amplification of orthologous microsatellite regions provides valuable information on mutational and evolutionary processes affecting these loci. We tested 19 nuclear microsatellite markers from Pinus taeda L. (subsection Australes) and three from P. sylvestris L. (subsection Pinus) on seven Eurasian hard pine species ( P. uncinata Ram., P. sylvestris L., P. nigra Arn., P. pinaster Ait., P. halepensis Mill., P. pinea L. and P. canariensis Sm.). Transfer rates to species in subsection Pinus (36-59%) were slightly higher than those to subsections Pineae and Pinaster (32-45%). Half of the trans-specific microsatellites were found to be polymorphic over evolutionary times of approximately 100 million years (ten million generations). Sequencing of three trans-specific microsatellites showed conserved repeat and flanking regions. Both a decrease in the number of perfect repeats in the non-focal species and a polarity for mutation, the latter defined as a higher substitution rate in the flanking sequence regions close to the repeat motifs, were observed in the trans-specific microsatellites. The transfer of microsatellites among hard pine species proved to be useful for obtaining highly polymorphic markers in a wide range of species, thereby providing new tools for population and quantitative genetic studies.
Collapse
|
50
|
Roberts MA, Schwartz TS, Karl SA. Global Population Genetic Structure and Male-Mediated Gene Flow in the Green Sea Turtle ( Chelonia mydas): Analysis of Microsatellite Loci. Genetics 2004. [DOI: 10.1093/genetics/166.4.1857] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
We assessed the degree of population subdivision among global populations of green sea turtles, Chelonia mydas, using four microsatellite loci. Previously, a single-copy nuclear DNA study indicated significant male-mediated gene flow among populations alternately fixed for different mitochondrial DNA haplotypes and that genetic divergence between populations in the Atlantic and Pacific Oceans was more common than subdivisions among populations within ocean basins. Even so, overall levels of variation at single-copy loci were low and inferences were limited. Here, the markedly more variable microsatellite loci confirm the presence of male-mediated gene flow among populations within ocean basins. This analysis generally confirms the genetic divergence between the Atlantic and Pacific. As with the previous study, phylogenetic analyses of genetic distances based on the microsatellite loci indicate a close genetic relationship among eastern Atlantic and Indian Ocean populations. Unlike the single-copy study, however, the results here cannot be attributed to an artifact of general low variability and likely represent recent or ongoing migration between ocean basins. Sequence analyses of regions flanking the microsatellite repeat reveal considerable amounts of cryptic variation and homoplasy and significantly aid in our understanding of population connectivity. Assessment of the allele frequency distributions indicates that at least some of the loci may not be evolving by the stepwise mutation model.
Collapse
Affiliation(s)
| | - Tonia S Schwartz
- Department of Biology, University of South Florida, Tampa, Florida 33620
| | - Stephen A Karl
- Department of Biology, University of South Florida, Tampa, Florida 33620
| |
Collapse
|