1
|
Zhang N, Joly N, Buck M. A common feature from different subunits of a homomeric AAA+ protein contacts three spatially distinct transcription elements. Nucleic Acids Res 2012; 40:9139-52. [PMID: 22772990 PMCID: PMC3467059 DOI: 10.1093/nar/gks661] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Initiation of σ(54)-dependent transcription requires assistance to melt DNA at the promoter site but is impeded by numerous protein-protein and nucleo-protein interactions. To alleviate these inhibitory interactions, hexameric bacterial enhancer binding proteins (bEBP), a subset of the ATPases associated with various cellular activities (AAA+) protein family, are required to remodel the transcription complex using energy derived from ATP hydrolysis. However, neither the process of energy conversion nor the internal architecture of the closed promoter complex is well understood. Escherichia coli Phage shock protein F (PspF), a well-studied bEBP, contains a surface-exposed loop 1 (L1). L1 is key to the energy coupling process by interacting with Region I of σ(54) (σ(54)(RI)) in a nucleotide dependent manner. Our analyses uncover new levels of complexity in the engagement of a multimeric bEBP with a basal transcription complex via several L1s. The mechanistic implications for these multivalent L1 interactions are elaborated in the light of available structures for the bEBP and its target complexes.
Collapse
Affiliation(s)
- Nan Zhang
- Division of Biology, Sir Alexander Fleming Building, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | | | | |
Collapse
|
2
|
Xiao Y, Wigneshweraraj SR, Weinzierl R, Wang YP, Buck M. Construction and functional analyses of a comprehensive sigma54 site-directed mutant library using alanine-cysteine mutagenesis. Nucleic Acids Res 2009; 37:4482-97. [PMID: 19474350 PMCID: PMC2715252 DOI: 10.1093/nar/gkp419] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The sigma(54) factor associates with core RNA polymerase (RNAP) to form a holoenzyme that is unable to initiate transcription unless acted on by an activator protein. sigma(54) is closely involved in many steps of activator-dependent transcription, such as core RNAP binding, promoter recognition, activator interaction and open complex formation. To systematically define sigma(54) residues that contribute to each of these functions and to generate a resource for site specific protein labeling, a complete mutant library of sigma(54) was constructed by alanine-cysteine scanning mutagenesis. Amino acid residues from 3 to 476 of Cys(-)sigma(54) were systematically mutated to alanine and cysteine in groups of two adjacent residues at a time. The influences of each substitution pair upon the functions of sigma(54) were analyzed in vivo and in vitro and the functions of many residues were revealed for the first time. Increased sigma(54) isomerization activity seldom corresponded with an increased transcription activity of the holoenzyme, suggesting the steps after sigma(54) isomerization, likely to be changes in core RNAP structure, are also strictly regulated or rate limiting to open complex formation. A linkage between core RNAP-binding activity and activator responsiveness indicates that the sigma(54)-core RNAP interface changes upon activation.
Collapse
Affiliation(s)
- Yan Xiao
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | |
Collapse
|
3
|
Dago AE, Wigneshweraraj SR, Buck M, Morett E. A role for the conserved GAFTGA motif of AAA+ transcription activators in sensing promoter DNA conformation. J Biol Chem 2006; 282:1087-97. [PMID: 17090527 DOI: 10.1074/jbc.m608715200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription from sigma54-dependent bacterial promoters can be regarded as a second paradigm for bacterial gene transcription. The initial sigma54-RNA polymerase (RNAP).promoter complex, the closed complex, is transcriptionally silent. The transcriptionally proficient sigma54-RNAP.promoter complex, the open complex, is formed upon remodeling of the closed complex by actions of a specialized activator protein that belongs to the AAA (ATPases associated with various cellular activities) protein family in an ATP hydrolysis-dependent reaction. The integrity of a highly conserved signature motif in the AAA activator (known as the GAFTGA motif) is important for the remodeling activity of the AAA activator and for open complex formation. We now provide evidence that the invariant threo-nine residue of the GAFTGA motif plays a role in sensing the DNA downstream of the sigma54-RNAP-binding site and in coupling this information to sigma54-RNAP via the conserved regulatory Region I domain of sigma54 during open complex formation.
Collapse
Affiliation(s)
- Angel Ernesto Dago
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos 62210, México
| | | | | | | |
Collapse
|
4
|
Burrows PC, Severinov K, Ishihama A, Buck M, Wigneshweraraj SR. Mapping sigma 54-RNA polymerase interactions at the -24 consensus promoter element. J Biol Chem 2003; 278:29728-43. [PMID: 12750380 DOI: 10.1074/jbc.m303596200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sigma 54 promoter specificity factor is distinct from sigma 70-type factors. The sigma 54-RNA polymerase binds to promoters with conserved sequence elements at -24 and -12 and utilizes specialized enhancer-binding activators to convert, through an ATP-dependent process, closed promoter complexes to open promoter complexes. The interface between sigma 54-RNA polymerase and promoter DNA is poorly characterized, contrasting with sigma 70. Here, sigma 54 was modified with strategically positioned cleavage reagents to provide physical evidence that the highly conserved RpoN box motif of sigma 54 is close to and may therefore interact with the consensus -24 promoter element. We show that the spatial relationship between the sigma 54-RNA polymerase and the -24 promoter element remains unchanged during closed to open complex conversion and transcription initiation but changes during the early elongation phase. In contrast, the spatial relationship between sigma 54-RNA polymerase and the consensus -12 promoter element changes upon conversion of the closed promoter complex to an open one. We provide evidence that some -12 promoter region-sigma 54 interactions are dependent upon either the core RNA polymerase or a fork junction DNA structure at the -12-position, indicating that DNA fork junctions can substitute for core RNAP. We also show the beta-subunit flap domain contributes to different sets of sigma-promoter DNA interactions at sigma 54- and sigma 70-dependent promoters.
Collapse
Affiliation(s)
- Patricia C Burrows
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | | | | | | | | |
Collapse
|
5
|
Bordes P, Wigneshweraraj SR, Schumacher J, Zhang X, Chaney M, Buck M. The ATP hydrolyzing transcription activator phage shock protein F of Escherichia coli: identifying a surface that binds sigma 54. Proc Natl Acad Sci U S A 2003; 100:2278-83. [PMID: 12601152 PMCID: PMC151331 DOI: 10.1073/pnas.0537525100] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Members of the protein family called ATPases associated with various cellular activities (AAA(+)) play a crucial role in transforming chemical energy into biological events. AAA(+) proteins are complex molecular machines and typically form ring-shaped oligomeric complexes that are crucial for ATPase activity and mechanism of action. The Escherichia coli transcription activator phage shock protein F (PspF) is an AAA(+) mechanochemical enzyme that functions to sense and relay the energy derived from nucleoside triphosphate hydrolysis to catalyze transcription by the sigma(54)-RNA polymerase. Closed promoter complexes formed by the sigma(54)-RNA polymerase are substrates for the action of PspF. By using a protein fragmentation approach, we identify here at least one sigma(54)-binding surface in the PspF AAA(+) domain. Results suggest that ATP hydrolysis by PspF is coupled to the exposure of at least one sigma(54)-binding surface. This nucleotide hydrolysis-dependent presentation of a substrate binding surface can explain why complexes that form between sigma(54) and PspF are transient and could be part of a mechanism used generally by other AAA(+) proteins to regulate activity.
Collapse
Affiliation(s)
- Patricia Bordes
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | | | | | | | | | | |
Collapse
|
6
|
Lew CM, Gralla JD. New roles for conserved regions within a sigma 54-dependent enhancer-binding protein. J Biol Chem 2002; 277:41517-24. [PMID: 12186874 DOI: 10.1074/jbc.m206912200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
23 amino acid substitutions were made in the C7 and C3 regions of pspFDeltaHTH, a protein required to convert sigma(54) closed promoter complexes to open complexes. These mutants were assayed for transcriptional competence, for the ability to hydrolyze ATP, for their multimerization state, and for their ability to interact with sigma(54) and its holoenzyme. C7 region mutants caused the protein to assume a compact form. This property could be mimicked by the addition of ATP, implying that compaction via C7 and ATP is part of the activation process. A number of C3 mutants were important for energy coupling, as indicated previously for several members of this activator family (, ). However, a patch within C3 influenced oligomerization. The C3 region was especially important in interacting with sigma(54) during the transition state but not important in inducing sigma(54) holoenzyme to engage the nontemplate strand of the promoter. It is proposed that both regions contain deterrent functions that prevent premature activation. Overall, the results imply unexpected roles for the C7 and C3 regions of this protein family during promoter activation.
Collapse
Affiliation(s)
- Chih M Lew
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California 90095-1569, USA
| | | |
Collapse
|
7
|
Elderkin S, Jones S, Schumacher J, Studholme D, Buck M. Mechanism of action of the Escherichia coli phage shock protein PspA in repression of the AAA family transcription factor PspF. J Mol Biol 2002; 320:23-37. [PMID: 12079332 DOI: 10.1016/s0022-2836(02)00404-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The PspA protein, a negative regulator of the Escherichia coli phage shock psp operon, is produced when virulence factors are exported through secretins in many Gram-negative pathogenic bacteria and its homologue in plants, VIPP1, plays a critical role in thylakoid biogenesis, essential for photosynthesis. Activation of transcription by the enhancer-dependent bacterial sigma(54) containing RNA polymerase occurs through ATP hydrolysis-driven protein conformational changes enabled by activator proteins that belong to the large AAA(+) mechanochemical protein family. We show that PspA directly and specifically acts upon and binds to the AAA(+) domain of the PspF transcription activator. Interactions involving PspF and nucleotide are changed by the action of PspA. These changes and the complexes that form between PspF and PspA can explain how PspA exerts its negative effects upon transcription activated by PspF, and are of significance when considering how activities of other AAA(+) proteins might be controlled.
Collapse
Affiliation(s)
- Sarah Elderkin
- Department of Biological Sciences, Imperial College of Science Technology and Medicine, Biomedical Sciences Building, Imperial College Road, London SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
8
|
Colland F, Fujita N, Ishihama A, Kolb A. The interaction between sigmaS, the stationary phase sigma factor, and the core enzyme of Escherichia coli RNA polymerase. Genes Cells 2002; 7:233-47. [PMID: 11918668 DOI: 10.1046/j.1365-2443.2002.00517.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The RNA polymerase holoenzyme of Escherichia coli is composed of a core enzyme (subunit structure alpha2betabeta') associated with one of the sigma subunits, required for promoter recognition. Different sigma factors compete for core binding. Among the seven sigma factors present in E. coli, sigma70 controls gene transcription during the exponential phase, whereas sigmaS regulates the transcription of genes in the stationary phase or in response to different stresses. Using labelled sigmaS and sigma70, we compared the affinities of both sigma factors for core binding and investigated the structural changes in the different subunits involved in the formation of the holoenzymes. RESULTS Using native polyacrylamide gel electrophoresis, we demonstrate that sigmaS binds to the core enzyme with fivefold reduced affinity compared to sigma70. Using iron chelate protein footprinting, we show that the core enzyme significantly reduces polypeptide backbone solvent accessibility in regions 1.1, 2.5, 3.1 and 3.2 of sigmaS, while increasing the accessibility in region 4.1 of sigmaS. We have also analysed the positioning of sigmaS on the holoenzyme by the proximity-dependent protein cleavage method using sigmaS derivatives in which FeBABE was tethered to single cysteine residues at nine different positions. Protein cutting patterns are observed on the beta and beta' subunits, but not alpha. Regions 2.5, 3.1 and 3.2 of sigmaS are close to both beta and beta' subunits, in agreement with iron chelate protein footprinting data. CONCLUSIONS A comparison between these results using sigmaS and previous data from sigma70 indicates similar contact patterns on the core subunits and similar characteristic changes associated with holoenzyme formation, despite striking differences in the accessibility of regions 4.1 and 4.2.
Collapse
Affiliation(s)
- Frédéric Colland
- Institut Pasteur, Laboratoire des Regulations Transcriptionnelles (FRE 2364 CNRS), 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
9
|
Wigneshweraraj SR, Casaz P, Buck M. Correlating protein footprinting with mutational analysis in the bacterial transcription factor sigma54 (sigmaN). Nucleic Acids Res 2002; 30:1016-28. [PMID: 11842114 PMCID: PMC100328 DOI: 10.1093/nar/30.4.1016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Protein footprints of the enhancer-dependent sigma54 protein, upon binding the Escherichia coli RNA polymerase core enzyme or upon forming closed promoter complexes, identified surface-exposed residues in sigma54 of potential functional importance at the interface between sigma54 and core RNA polymerases (RNAP) or DNA. We have now characterised alanine and glycine substitution mutants at several of these positions. Properties of the mutant sigma54s correlate protein footprints to activity. Some mutants show elevated DNA binding suggesting that promoter binding by holoenzyme may be limited to enable normal functioning. One such mutant (F318A) within the DNA binding domain of sigma54 shows a changed interaction with the promoter regulatory region implicated in transcription silencing and fails to silence transcription in vitro. It appears specifically defective in preferentially binding to a repressive DNA structure believed to restrict RNA polymerase isomerisation and is largely intact for activator responsiveness. Two mutants, one in the regulatory region I and the other within core interacting sequences of sigma54, failed to stably bind the activator in the presence of ADP-aluminium fluoride, an analogue of ATP in the transition state for hydrolysis. Overall, the data presented describe a collection sigma54 mutants that have escaped previous analysis and display an array of properties which allows the role of surface-exposed residues in the regulation of open complex formation and promoter DNA binding to be better understood. Their properties support the view that the interface between sigma54 and core RNAP is functionally specialised.
Collapse
Affiliation(s)
- Siva R Wigneshweraraj
- Department of Biological Sciences, Imperial College of Science, Technology and Medicine, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK
| | | | | |
Collapse
|
10
|
Chaney M, Grande R, Wigneshweraraj SR, Cannon W, Casaz P, Gallegos MT, Schumacher J, Jones S, Elderkin S, Dago AE, Morett E, Buck M. Binding of transcriptional activators to sigma 54 in the presence of the transition state analog ADP-aluminum fluoride: insights into activator mechanochemical action. Genes Dev 2001; 15:2282-94. [PMID: 11544185 PMCID: PMC312774 DOI: 10.1101/gad.205501] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Conformational changes in sigma 54 (sigma(54)) and sigma(54)-holoenzyme depend on nucleotide hydrolysis by an activator. We now show that sigma(54) and its holoenzyme bind to the central ATP-hydrolyzing domains of the transcriptional activators PspF and NifA in the presence of ADP-aluminum fluoride, an analog of ATP in the transition state for hydrolysis. Direct binding of sigma(54) Region I to activator in the presence of ADP-aluminum fluoride was shown and inferred from in vivo suppression genetics. Energy transduction appears to occur through activator contacts to sigma(54) Region I. ADP-aluminum fluoride-dependent interactions and consideration of other AAA+ proteins provide insight into activator mechanochemical action.
Collapse
Affiliation(s)
- M Chaney
- Department of Biology and Biochemistry, Faculty of Life Sciences, Sir Alexander Fleming Building, Imperial College of Science Technology and Medicine, London SW7 2AZ, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wigneshweraraj SR, Chaney MK, Ishihama A, Buck M. Regulatory sequences in sigma 54 localise near the start of DNA melting. J Mol Biol 2001; 306:681-701. [PMID: 11243780 DOI: 10.1006/jmbi.2000.4393] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transcription initiation by the enhancer-dependent sigma(54) RNA polymerase holoenzyme is positively regulated after promoter binding. The promoter DNA melting process is subject to activation by an enhancer-bound activator protein with nucleoside triphosphate hydrolysis activity. Tethered iron chelate probes attached to amino and carboxyl-terminal domains of sigma(54) were used to map sigma(54)-DNA interaction sites. The two domains localise to form a centre over the -12 promoter region. The use of deletion mutants of sigma(54) suggests that amino-terminal and carboxyl-terminal sequences are both needed for the centre to function. Upon activation, the relationship between the centre and promoter DNA changes. We suggest that the activator re-organises the centre to favour stable open complex formation through adjustments in sigma(54)-DNA contact and sigma(54) conformation. The centre is close to the active site of the RNA polymerase and includes sigma(54) regulatory sequences needed for DNA melting upon activation. This contrasts systems where activators recruit RNA polymerase to promoter DNA, and the protein and DNA determinants required for activation localise away from promoter sequences closely associated with the start of DNA melting.
Collapse
Affiliation(s)
- S R Wigneshweraraj
- Department of Biology, Imperial College of Science Technology and Medicine, Imperial College Road, London, SW7 2AZ, UK
| | | | | | | |
Collapse
|
12
|
Wigneshweraraj SR, Ishihama A, Buck M. In vitro roles of invariant helix-turn-helix motif residue R383 in sigma(54) (sigma(N)). Nucleic Acids Res 2001; 29:1163-74. [PMID: 11222766 PMCID: PMC29711 DOI: 10.1093/nar/29.5.1163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In vitro DNA-binding and transcription properties of sigma(54) proteins with the invariant Arg383 in the putative helix-turn-helix motif of the DNA-binding domain substituted by lysine or alanine are described. We show that R383 contributes to maintaining stable holoenzyme-promoter complexes in which limited DNA opening downstream of the -12 GC element has occurred. Unlike wild-type sigma(54), holoenzymes assembled with the R383A or R383K mutants could not form activator-independent, heparin-stable complexes on heteroduplex Sinorhizobium meliloti nifH DNA mismatched next to the GC. Using longer sequences of heteroduplex DNA, heparin-stable complexes formed with the R383K and, to a lesser extent, R383A mutant holoenzymes, but only when the activator and a hydrolysable nucleotide was added and the DNA was opened to include the -1 site. Although R383 appears inessential for polymerase isomerisation, it makes a significant contribution to maintaining the holoenzyme in a stable complex when melting is initiating next to the GC element. Strikingly, Cys383-tethered FeBABE footprinting of promoter DNA strongly suggests that R383 is not proximal to promoter DNA in the closed complex. This indicates that R383 is not part of the regulatory centre in the sigma(54) holoenzyme, which includes the -12 promoter region elements. R383 contributes to several properties, including core RNA polymerase binding and to the in vivo stability of sigma(54).
Collapse
Affiliation(s)
- S R Wigneshweraraj
- Department of Biology, Imperial College of Science, Technology and Medicine, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK
| | | | | |
Collapse
|
13
|
Scott DJ, Ferguson AL, Gallegos MT, Pitt M, Buck M, Hoggett JG. Interaction of sigma factor sigmaN with Escherichia coli RNA polymerase core enzyme. Biochem J 2000; 352 Pt 2:539-47. [PMID: 11085949 PMCID: PMC1221487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The equilibrium binding and kinetics of assembly of the DNA-dependent RNA polymerase (RNAP) sigma(N)-holoenzyme has been investigated using biosynthetically labelled 7-azatryptophyl- (7AW)sigma(N). The spectroscopic properties of such 7AW proteins allows their absorbance and fluorescence to be monitored selectively, even in the presence of high concentrations of other tryptophan-containing proteins. The 7AWsigma(N) retained its biological activity in stimulating transcription from sigma(N)-specific promoters, and in in vitro gel electrophoresis assays of binding to core RNAP from Escherichia coli. Furthermore, five Trp-->Ala single mutants of sigma(N) were shown to support growth under conditions of nitrogen limitation, and showed comparable efficiency in activating the sigma(N)-dependent nifH promoter in vivo, indicating that none of the tryptophan residues were essential for activity. The equilibrium binding of 7AWsigma(N) to core RNAP was examined by analytical ultracentrifugation. In sedimentation equilibrium experiments, absorbance data at 315 nm (which reports selectively on the distribution of free and bound 7AWsigma(N)) established that a 1:1 complex was formed, with a dissociation constant lower than 2 microM. The kinetics of the interaction between 7AWsigma(N) and core RNAP was investigated using stopped-flow spectrofluorimetry. A biphasic decrease in fluorescence intensity was observed when samples were excited at 280 nm, whereas only the slower of the two phases was observed at 315 nm. The kinetic data were analysed in terms of a mechanism in which a fast bimolecular association of sigma(N) with core RNAP is followed by a relatively slow isomerization step. The consequences of these findings on the competition between sigma(N) and the major sigma factor, sigma(70), in Escherichia coli are discussed.
Collapse
Affiliation(s)
- D J Scott
- Department of Biology, University of York, Heslington, York YO10 5YW, U.K
| | | | | | | | | | | |
Collapse
|
14
|
Pitt M, Gallegos MT, Buck M. Single amino acid substitution mutants of Klebsiella pneumoniae sigma(54) defective in transcription. Nucleic Acids Res 2000; 28:4419-27. [PMID: 11071928 PMCID: PMC113868 DOI: 10.1093/nar/28.22.4419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transcription initiation by the sigma(54) RNA polymerase requires specialised activators and their associated nucleoside triphosphate hydrolysis. To explore the roles of sigma(54) in initiation we used random mutagenesis of rpoN and an in vivo activity screen to isolate functionally altered sigma(54) proteins. Five defective mutants, each with a different single amino acid substitution, were obtained. Three failed in transcription after forming a closed complex. One such mutant mapped to regulatory Region I of sigma(54), the other two to Region III. The Region I mutant allowed transcription independently of activator and showed reduced activator-dependent sigma(54) isomerisation. The two Region III mutants displayed altered behaviour in a sigma(54) isomerisation assay and one failed to stably bind early melted DNA as the holoenzyme; they may contribute to a communication pathway linking changes in sigma to open complex formation. Two further Region III mutants showed gross defects in overall DNA binding. For one, sufficient residual DNA binding activity remained to allow us to demonstrate that other activities were largely unaffected. Changes in DNA binding preferences and core polymerase-dependent properties were evident amongst the mutants.
Collapse
Affiliation(s)
- M Pitt
- Department of Biology, Sir Alexander Fleming Building, Imperial College of Science, Technology and Medicine, Imperial College Road, London SW7 2AZ, UK
| | | | | |
Collapse
|
15
|
Guo Y, Lew CM, Gralla JD. Promoter opening by sigma(54) and sigma(70) RNA polymerases: sigma factor-directed alterations in the mechanism and tightness of control. Genes Dev 2000; 14:2242-55. [PMID: 10970887 PMCID: PMC316896 DOI: 10.1101/gad.794800] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Transcription control at the melting step is not yet understood. Here, band shift, cross-linking, and transcription experiments on diverse DNA probes were used with two bacterial RNA polymerase holoenzymes that differ in how they regulate melting. Data indicated that both sigma(54) and sigma(70) holoenzymes assume a default closed form that cannot establish single-strand binding. Upon activation the enzymes are converted to an open form that can bind simultaneously to the upstream fork junction and to the melted transcription start site. The key difference is that sigma(54) imposes tighter regulation by creating a complex molecular switch at -12/-11; the current data show that this switch can be thrown by activator. In this case an ATP-bound enhancer protein causes sigma(54) to alter its cross-linking pattern near -11 and also causes a reorganization of holoenzyme: DNA interactions, detected by electrophoretic mobility-shift assay. At a temperature-dependent sigma(70) promoter, elevated temperature alone can assist in triggering conformational changes that enhance the engagement of single-strand DNA. Thus, the two sigma factors modify the same intrinsic opening pathway to create quite different mechanisms of transcriptional regulation.
Collapse
Affiliation(s)
- Y Guo
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
16
|
Buck M, Gallegos MT, Studholme DJ, Guo Y, Gralla JD. The bacterial enhancer-dependent sigma(54) (sigma(N)) transcription factor. J Bacteriol 2000; 182:4129-36. [PMID: 10894718 PMCID: PMC101881 DOI: 10.1128/jb.182.15.4129-4136.2000] [Citation(s) in RCA: 344] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- M Buck
- Department of Biology, Imperial College of Science, Technology and Medicine, London SW7 2AZ, United Kingdom.
| | | | | | | | | |
Collapse
|
17
|
Chaney M, Pitt M, Buck M. Sequences within the DNA cross-linking patch of sigma 54 involved in promoter recognition, sigma isomerization, and open complex formation. J Biol Chem 2000; 275:22104-13. [PMID: 10807913 DOI: 10.1074/jbc.m002253200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterial RNA polymerase holoenzyme containing the final sigma(54) subunit functions in enhancer-dependent transcription. Mutagenesis has been used to probe the function of a sequence in the final sigma(54) DNA binding domain that includes residues that cross-link to promoter DNA. Several activities of the final sigma and holoenzyme are shown to depend on the cross-linking patch. The patch contributes to promoter binding by final sigma(54), and holoenzyme and is involved in activator-dependent final sigma isomerization. As part of the final sigma(54)-holoenzyme, some residues in the patch limit basal transcription. Other cross-linking patch sequences appear to limit activator-dependent open complex formation. Deletion of 19 residues adjacent to the cross-linking patch resulted in a holoenzyme unable to respond to activator but capable of activator-independent (bypass) transcription in vitro. Overall results are consistent with the cross-linking patch directing interactions to the -12 promoter region to set basal and activated levels of transcription.
Collapse
Affiliation(s)
- M Chaney
- Department of Biology, Imperial College of Science, Technology, and Medicine, London SW7 2AZ, United Kingdom
| | | | | |
Collapse
|
18
|
Southern E, Merrick M. The role of region II in the RNA polymerase sigma factor sigma(N) (sigma(54)). Nucleic Acids Res 2000; 28:2563-70. [PMID: 10871407 PMCID: PMC102712 DOI: 10.1093/nar/28.13.2563] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bacterial RNA polymerase holoenzymes containing the sigma subunit sigma(N) (sigma(54)) can form a stable closed complex with promoter DNA but only undergo transition to an open complex and transcription initiation when acted on by an activator protein. Proteins of the sigma(N) family have a conserved N-terminal region of 50 amino acids (Region I) that is separated from a conserved C-terminal region of around 360 amino acids (Region III) by a much more variable sequence of between 30 and 110 residues (Region II). We have investigated the role of Region II in Klebsiella pneumoniae sigma(N) by studying the properties of deletions of all or part of the region both in vivo and in vitro. We found that whilst Region II is not essential, deletion of all or part of it can significantly impair sigma(N) activity. Deletions have effects on DNA binding by the isolated sigma factor and on holoenzyme formation, but the most marked effects are on transition of the holoenzyme from the closed to the open complex in the presence of the activator protein.
Collapse
Affiliation(s)
- E Southern
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | | |
Collapse
|
19
|
Wigneshweraraj SR, Fujita N, Ishihama A, Buck M. Conservation of sigma-core RNA polymerase proximity relationships between the enhancer-independent and enhancer-dependent sigma classes. EMBO J 2000; 19:3038-48. [PMID: 10856247 PMCID: PMC203346 DOI: 10.1093/emboj/19.12.3038] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Two distinct classes of RNA polymerase sigma factors (sigma) exist in bacteria and are largely unrelated in primary amino acid sequence and their modes of transcription activation. Using tethered iron chelate (Fe-BABE) derivatives of the enhancer-dependent sigma(54), we mapped several sites of proximity to the beta and beta' subunits of the core RNA polymerase. Remarkably, most sites localized to those previously identified as close to the enhancer-independent sigma(70) and sigma(38). This indicates a common use of sets of sequences in core for interacting with the two sigma classes. Some sites chosen in sigma(54) for modification with Fe-BABE were positions, which when mutated, deregulate the sigma(54)-holoenzyme and allow activator-independent initiation and holoenzyme isomerization. We infer that these sites in sigma(54) may be involved in interactions with the core that contribute to maintenance of alternative states of the holoenzyme needed for either the stable closed promoter complex conformation or the isomerized holoenzyme conformation associated with the open promoter complex. One site of sigma(54) proximity to the core is apparently not evident with sigma(70), and may represent a specialized interaction.
Collapse
Affiliation(s)
- S R Wigneshweraraj
- Imperial College of Science, Technology and Medicine, Department of Biology, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK
| | | | | | | |
Collapse
|
20
|
Gallegos MT, Buck M. Sequences in sigma(54) region I required for binding to early melted DNA and their involvement in sigma-DNA isomerisation. J Mol Biol 2000; 297:849-59. [PMID: 10736222 DOI: 10.1006/jmbi.2000.3608] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The bacterial sigma(54) RNA polymerase functions in a transcription activation mechanism that fully relies upon nucleotide hydrolysis by an enhancer binding activator protein to stimulate open complex formation. Here, we describe results of DNA-binding assays used to probe the role of the sigma(54) amino terminal region I in activation. Of the 15 region I alanine substitution mutants assayed, several specifically failed to bind to a DNA structure representing an early conformation in DNA melting. The same mutants are defective in activated transcription and in forming an isomerised sigma-DNA complex on the early opened DNA. The mechanism of activation may therefore require tight binding of sigma(54) to particular early melted DNA structures. Where mutant sigma(54) binding to early melted DNA was detected, activator-dependent isomerisation generally occurred as efficiently as with the wild-type protein, suggesting that certain region I sequences are largely uninvolved in sigma isomerisation. DNA-binding, sigma isomerisation and transcription activation assays allow formulation of a functional map of region I.
Collapse
Affiliation(s)
- M T Gallegos
- Department of Biology, Imperial College of Science Technology, and Medicine, Imperial College Road, London, SW7 2AZ, UK.
| | | |
Collapse
|
21
|
Studholme DJ, Wigneshwereraraj SR, Gallegos MT, Buck M. Functionality of purified sigma(N) (sigma(54)) and a NifA-like protein from the hyperthermophile Aquifex aeolicus. J Bacteriol 2000; 182:1616-23. [PMID: 10692367 PMCID: PMC94459 DOI: 10.1128/jb.182.6.1616-1623.2000] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome sequence of the extremely thermophilic bacterium Aquifex aeolicus encodes alternative sigma factor sigma(N) (sigma(54), RpoN) and five potential sigma(N)-dependent transcriptional activators. Although A. aeolicus possesses no recognizable nitrogenase genes, two of the activators have a high degree of sequence similarity to NifA proteins from nitrogen-fixing proteobacteria. We identified five putative sigma(N)-dependent promoters upstream of operons implicated in functions including sulfur respiration, nitrogen assimilation, nitrate reductase, and nitrite reductase activity. We cloned, overexpressed (in Escherichia coli), and purified A. aeolicus sigma(N) and the NifA homologue, AQ_218. Purified A. aeolicus sigma(N) bound to E. coli core RNA polymerase and bound specifically to a DNA fragment containing E. coli promoter glnHp2 and to several A. aeolicus DNA fragments containing putative sigma(N)-dependent promoters. When combined with E. coli core RNA polymerase, A. aeolicus sigma(N) supported A. aeolicus NifA-dependent transcription from the glnHp2 promoter. The E. coli activator PspFDeltaHTH did not stimulate transcription. The NifA homologue, AQ_218, bound specifically to a DNA sequence centered about 100 bp upstream of the A. aeolicus glnBA operon and so is likely to be involved in the regulation of nitrogen assimilation in this organism. These results argue that the sigma(N) enhancer-dependent transcription system operates in at least one extreme environment, and that the activator and sigma(N) have coevolved.
Collapse
Affiliation(s)
- D J Studholme
- Department of Biology, Imperial College of Science, Technology and Medicine, London SW7 2AZ, United Kingdom
| | | | | | | |
Collapse
|
22
|
Svergun DI, Malfois M, Koch MH, Wigneshweraraj SR, Buck M. Low resolution structure of the sigma54 transcription factor revealed by X-ray solution scattering. J Biol Chem 2000; 275:4210-4. [PMID: 10660585 DOI: 10.1074/jbc.275.6.4210] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sigma54 RNA polymerase holoenzyme functions in enhancer-dependent transcription. The structural organization of the sigma54 subunit of bacterial RNA polymerase in solution is analyzed by synchrotron x-ray scattering. Scattering patterns are collected from the full-length protein and from a large fragment able to bind the core RNA polymerase, and their low resolution shapes are restored using two ab initio shape determination techniques. The sigma54 subunit is a highly elongated particle, and the core binding fragment can be unambiguously positioned inside the full-length protein. The boomerang-like shape of the core binding fragment is similar to that of the atomic model of a fragment of the Escherichia coli sigma70 protein, indicating that, although the sigma54 and sigma70 factors are unrelated by primary sequence, they may share some structural similarity. Potential DNA binding surfaces of sigma54 are also predicted by comparison with the sigma54 core binding fragment.
Collapse
Affiliation(s)
- D I Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany.
| | | | | | | | | |
Collapse
|
23
|
Wassem R, De Souza EM, Yates MG, Pedrosa FD, Buck M. Two roles for integration host factor at an enhancer-dependent nifA promoter. Mol Microbiol 2000; 35:756-64. [PMID: 10692153 DOI: 10.1046/j.1365-2958.2000.01746.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Control of transcription in prokaryotes often involves direct contact of regulatory proteins with RNA polymerase. For the sigma54 RNA polymerase, regulatory proteins bound to distally located enhancers engage the polymerase via DNA looping. The sigma54-dependent nifA promoter of Herbaspirillum seropedicae (Hs) is activated under nitrogen-limiting growth conditions. Potential enhancers for the nitrogen control activators NTRC and NIFA and binding sites for integration host factor (IHF) and sigma54-holoenzyme were identified. DNA footprinting experiments showed that these sites functioned for protein binding. Their involvement in the promoter regulation was explored. In vitro, activation of the Hs nifA promoter by NTRC is stimulated by the DNA bending protein IHF. In marked contrast, activation by NIFA is greatly reduced by IHF, thus diminishing potentially destabilizing autoactivation of the nifA promoter by NIFA. Additionally, high levels of NIFA appear to limit NTRC-dependent activation. This inhibition is IHF dependent. Therefore, IHF acts positively and negatively at the nifA promoter to restrict transcription activation to NTRC and one signal transduction pathway.
Collapse
Affiliation(s)
- R Wassem
- Departamento de Bioquímica, Universidade Federal do Paraná, Caixa Postal 19046, Curitiba - PR, CEP 81531-990, Brazil
| | | | | | | | | |
Collapse
|
24
|
Studholme DJ, Finn RD, Chaney MK, Buck M. The C-terminal 12 amino acids of sigma(N) are required for structure and function. Arch Biochem Biophys 1999; 371:234-40. [PMID: 10545210 DOI: 10.1006/abbi.1999.1426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sigma(N) protein is an alternative sigma subunit of bacterial RNA polymerase. We investigated the role of a 12-amino-acid "tail" at the C-terminus of Klebsiella pneumoniae sigma(N), which was predicted to be largely surface-exposed and to be mostly loop (that is not alpha-helical or beta-strand). Deletion of this tail from N-terminal hexahistidine-tagged sigma(N) led to loss of sigma(N)-dependent transcription activity in vivo. We overexpressed and purified this deletion-mutant protein for in vitro characterization. The purified deleted protein showed decreased RNA polymerase core- and DNA-binding activities compared to the full-length protein and transcription activity was greatly impaired. Furthermore, evidence from circular dichroism and protease digestion experiments together suggested that deletion of the C-terminus tail resulted in a loss of conformational constraint in the protein. We discuss a possible structural role for the 12 amino acids at the C-terminus of sigma(N).
Collapse
Affiliation(s)
- D J Studholme
- Department of Biology, Imperial College of Science Technology and Medicine, Sir Alexander Fleming Building, London, SW7 2AZ, United Kingdom
| | | | | | | |
Collapse
|
25
|
Casaz P, Gallegos MT, Buck M. Systematic analysis of sigma54 N-terminal sequences identifies regions involved in positive and negative regulation of transcription. J Mol Biol 1999; 292:229-39. [PMID: 10493871 DOI: 10.1006/jmbi.1999.3076] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The conserved amino-terminal region of sigma 54 (Region I) contains sequences that allow response to activator proteins, and inhibit initiation in the absence of activator. Alanine-scanning mutagenesis has been used to systematically define Region I elements that contribute to each of these functions. Amino acid residues from 6 to 50 were substituted with alanine in groups of three consecutive residues, making a total of 15 mutants. Mutants were tested for their ability to mediate activation in vivo, and in vitro, and to support transcription in the absence of activator in vitro. Most mutations located between residues 15 and 47 altered sigma function, while mutations between residues 6 and 14, and 48-50 had little effect. The defective mutants ala 15-17, 42-44, and 45-47 define new amino acids required for normal sigma function. In general, there is an inverse correlation between the levels of activated and activator-independent transcription, suggesting that the two functions are linked. When activated, the defective sigma mutants, except for ala 24-26, formed heparin-resistant open complexes similar to wild-type sigma. Mutant ala 24-26 formed heparin-unstable open complexes, suggesting that this mutation interferes with a different step in the initiation pathway.
Collapse
Affiliation(s)
- P Casaz
- Department of Biology, Imperial College of Science Technology, and Medicine, Imperial College Road, London, SW7 2AZ, UK
| | | | | |
Collapse
|
26
|
Gallegos MT, Cannon WV, Buck M. Functions of the sigma(54) region I in trans and implications for transcription activation. J Biol Chem 1999; 274:25285-90. [PMID: 10464252 DOI: 10.1074/jbc.274.36.25285] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Control of transcription frequently involves the direct interaction of activators with RNA polymerase. In bacteria, the formation of stable open promoter complexes by the sigma(54) RNA polymerase is critically dependent on sigma(54) amino Region I sequences. Their presence correlates with activator dependence, and removal allows the holoenzyme to engage productively with melted DNA independently of the activator. Using purified Region I sequences and holoenzymes containing full-length or Region I-deleted sigma(54), we have explored the involvement of Region I in transcription activation. Results show that Region I in trans inhibits a reversible conformational change in the holoenzyme believed to be polymerase isomerization. Evidence is presented indicating that the holoenzyme (and not the promoter DNA per se) is one interacting target used by Region I in preventing polymerase isomerization. Activator overcomes this inhibition in a reaction requiring nucleotide hydrolysis. Region I in trans is able to inhibit activated transcription by the holoenzyme containing full-length sigma(54). Inhibition appeared to be noncompetitive with respect to the activator, suggesting that a direct activator interaction occurs with parts of the holoenzyme outside Region I. Stabilization of isomerized holoenzyme bound to melted DNA by Region I in trans occurs largely independently of the initiating nucleotide, suggesting a role for Region I in maintaining the open complex.
Collapse
Affiliation(s)
- M T Gallegos
- Department of Biology, Imperial College of Science Technology and Medicine, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, United Kingdom
| | | | | |
Collapse
|
27
|
Abstract
The bacterial sigma54 protein associates with core RNA polymerase to form a holoenzyme that functions in enhancer-dependent transcription. Isomerization of the sigma54 polymerase and its engagement with melted DNA in open promoter complexes requires nucleotide hydrolysis by an enhancer-binding activator. We show that a single amino acid substitution, RA336, in the Klebsiella pneumoniae sigma54 C-terminal DNA-binding domain allows the holoenzyme to isomerize, engage with stably melted DNA and to transcribe from transiently melting DNA without an activator. Activator responsiveness for the formation of stable open complexes remained intact. The activator-independent transcription phenotype of RA336 is shared with mutants in amino-terminal Region I sequences. Thus, in sigma54, two distinct domains function for enhancer responsiveness. A sigma54-DNA contact mediated by R336 appears to be part of a network of interactions necessary for maintaining the transcriptionally inactive state of the holoenzyme. We suggest activator functions to change these interactions and facilitate open complex formation through promoting polymerase isomerization.
Collapse
Affiliation(s)
- M Chaney
- Department of Biology, Biomedical Sciences Building, Imperial College of Science, Technology and Medicine, Imperial College Road, London SW7 2AZ, UK
| | | |
Collapse
|
28
|
Oguiza JA, Gallegos MT, Chaney MK, Cannon WV, Buck M. Involvement of the sigmaN DNA-binding domain in open complex formation. Mol Microbiol 1999; 33:873-85. [PMID: 10447895 DOI: 10.1046/j.1365-2958.1999.01542.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
sigmaN (sigma54) RNA polymerase holoenzyme closed complexes isomerize to open complexes in a reaction requiring nucleoside triphosphate hydrolysis by enhancer binding activator proteins. Here, we characterize Klebsiella pneumoniae sigmaN mutants, altered in the carboxy DNA-binding domain (F354A/F355A, F402A, F403A and F402A/F403A), that fail in activator-dependent transcription. The mutant holoenzymes have altered activator-dependent interactions with promoter sequences that normally become melted. Activator-dependent stable complexes accumulated slowly in vitro (F402A) and to a reduced final level (F403A, F402A/F403A, F354A/F355A). Similar results were obtained in an assay of activator-independent stable complex formation. Premelted templates did not rescue the mutants for stable preinitiation complex formation but did for deleted region I sigmaN, suggesting different defects. The DNA-binding domain substitutions are within sigmaN sequences previously shown to be buried upon formation of the wild-type holoenzyme or closed complex, suggesting that, in the mutants, alteration of the sigmaN-core and sigmaN-DNA interfaces has occurred to change holoenzyme activity. Core-binding assays with the mutant sigmas support this view. Interestingly, an internal deletion form of sigmaN lacking the major core binding determinant was able to assemble into holoenzyme and, although unable to support activator-dependent transcription, formed a stable activator-independent holoenzyme promoter complex on premelted DNA templates.
Collapse
Affiliation(s)
- J A Oguiza
- Department of Biology, Imperial College of Science, Technology and Medicine, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
29
|
Abstract
Sigma subunits of bacterial RNA polymerases are closely involved in many steps of promoter-specific transcription initiation. Holoenzyme formed with the specialised minor sigma-N (sigmaN) protein binds rare promoters in a transcriptionally inactive state and functions in enhancer-dependent transcription. Using competition and dissociation assays, we show that sigmaN-holoenzyme has a stability comparable to the major sigma70-holoenzyme. Purified partial sequences of sigmaN were prepared and assayed for retention of core RNA polymerase binding activity. Two discrete fragments of sigmaN which both bind the core but with significantly different affinities were identified, demonstrating that the sigmaN interface with core RNA polymerase is extensive. The low affinity segment of sigmaN included region I sequences, an amino terminal domain which mediates activator responsiveness and formation of open promoter complexes. The higher affinity site lies within a 95 residue fragment of region III. We propose that the core to region I contact mediates properties of the sigmaN-holoenzyme important for enhancer responsiveness. Heparin is shown to dissociate sigmaN and core, indicating that disruption of the holoenzyme is involved in the heparin sensitivity of the sigmaN closed complex.
Collapse
Affiliation(s)
- M T Gallegos
- Department of Biology, Imperial College of Science Technology and Medicine, Sir Alexander Fleming Building, Imperial College Road, London, SW7 2AZ, UK
| | | |
Collapse
|
30
|
Cannon W, Gallegos MT, Casaz P, Buck M. Amino-terminal sequences of sigmaN (sigma54) inhibit RNA polymerase isomerization. Genes Dev 1999; 13:357-70. [PMID: 9990859 PMCID: PMC316430 DOI: 10.1101/gad.13.3.357] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In bacteria, association of the specialized sigmaN protein with the core RNA polymerase subunits forms a holoenzyme able to bind promoter DNA, but unable to melt DNA and initiate transcription unless acted on by an activator protein. The conserved amino-terminal 50 amino acids of sigmaN (Region I) are required for the response to activators. We have used pre-melted DNA templates, in which the template strand is unpaired and accessible for transcription initiation, to mimic a naturally melted promoter and explore the function of Region I. Our results indicate that one activity of Region I sequences is to inhibit productive interaction of holoenzyme with pre-melted DNA. On pre-melted DNA targets, either activation of sigmaN-holoenzyme or removal of Region I allowed efficient formation of complexes in which melted DNA was sequestered by RNA polymerase. Like natural pre-initiation complexes formed on conventional DNA templates through the action of activator, such complexes were heparin-resistant and transcriptionally active. The inhibitory sigmaN Region I domain functioned in trans to confer heparin sensitivity to complexes between Region I-deleted holoenzyme and pre-melted promoter DNA. Evidence that Region I senses the conformation of the promoter was obtained from protein footprint experiments. We suggest that one function for Region I is to mask a single-strand DNA-binding activity of the holoenzyme. On the basis of extended DNA footprints of Region I-deleted holoenzyme, we also propose that Region I prevents RNA polymerase isomerization, a conformational change necessary for access to and the subsequent stable association of holoenzyme with melted DNA.
Collapse
Affiliation(s)
- W Cannon
- Department of Biology, Biomedical Sciences Building, Imperial College of Science, Technology, and Medicine, London SW7 2AZ, UK
| | | | | | | |
Collapse
|
31
|
Casaz P, Buck M. Region I modifies DNA-binding domain conformation of sigma 54 within the holoenzyme. J Mol Biol 1999; 285:507-14. [PMID: 9878425 DOI: 10.1006/jmbi.1998.2328] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of transcription at sigma 54-dependent bacterial promoters proceeds via a mechanism that is independent of recruitment of RNA polymerase to the promoter, but is instead totally dependent on activator-driven conformational changes in the promoter-bound RNA polymerase. Understanding of the activation mechanism first requires a detailed description of the interactions taking place in the polymerase holoenzyme and closed complex. The interactions of sigma 54 with core RNA polymerase and promoter DNA were investigated using enzymatic and chemical (hydroxyl radical) protease footprinting of sigma. Regions of sigma were identified that are in direct contact with ligands, or whose conformation changes following ligand binding. A comparison of wild-type sigma and a mutant bearing a deletion of conserved Region I, which is required for response to activator proteins and regulated initiation, revealed differences in the protease sensitivity of free sigma indicating that Region I affects sigma conformation. Comparison of the holoenzyme and closed complex hydroxyl radical footprints revealed that residues of wild-type sigma protected by promoter DNA overlap, to a large extent, the residues of Region I-deleted sigma protected by core polymerase. Region I could thus modify DNA-binding by changing conformation of the DNA-binding domain of sigma 54 in a core polymerase-dependent manner. These differences can account for the modified promoter binding of the Region I-deleted sigma holoenzyme observed by DNA footprinting, and are likely of significance to the Region I-dependent activation of transcription.
Collapse
Affiliation(s)
- P Casaz
- Department of Biology, Imperial College of Science, Technology and Medicine, Imperial College Road, London, SW7 2AZ, UK
| | | |
Collapse
|
32
|
Syed A, Gralla JD. Identification of an N-terminal region of sigma 54 required for enhancer responsiveness. J Bacteriol 1998; 180:5619-25. [PMID: 9791110 PMCID: PMC107619 DOI: 10.1128/jb.180.21.5619-5625.1998] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sigma 54 associates with bacterial core RNA polymerase and converts it into an enhancer-responsive enzyme. Deletion of the N-terminal 40 amino acids is known to result in loss of the ability to respond to enhancer binding proteins. In this work PCR mutagenesis and genetic screens were used to identify a small patch, from amino acids 33 to 37, that is required for proper response to activator in vivo. Site-directed single point mutants within this segment were constructed and studied. Two of these were defective in responding to the enhancer binding protein in vitro. The mutants could still direct the polymerase to bind to DNA and initiate transient melting. However, they failed in directing activator-dependent formation of a heparin-stable open complex. Thus, amino acid region 33 to 37 includes critical activation response determinants. This region overlaps the larger leucine patch negative-control region, suggesting that anti-inhibition and positive activation are closely coupled events.
Collapse
Affiliation(s)
- A Syed
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095-1569, USA
| | | |
Collapse
|
33
|
Roy S, Garges S, Adhya S. Activation and repression of transcription by differential contact: two sides of a coin. J Biol Chem 1998; 273:14059-62. [PMID: 9603899 DOI: 10.1074/jbc.273.23.14059] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- S Roy
- Laboratory of Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | | | | |
Collapse
|