1
|
Stein DS, Stevens LM. Maternal control of the Drosophila dorsal-ventral body axis. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 3:301-30. [PMID: 25124754 DOI: 10.1002/wdev.138] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 03/24/2014] [Accepted: 04/07/2014] [Indexed: 12/14/2022]
Abstract
UNLABELLED The pathway that generates the dorsal-ventral (DV) axis of the Drosophila embryo has been the subject of intense investigation over the previous three decades. The initial asymmetric signal originates during oogenesis by the movement of the oocyte nucleus to an anterior corner of the oocyte, which establishes DV polarity within the follicle through signaling between Gurken, the Drosophila Transforming Growth Factor (TGF)-α homologue secreted from the oocyte, and the Drosophila Epidermal Growth Factor Receptor (EGFR) that is expressed by the follicular epithelium cells that envelop the oocyte. Follicle cells that are not exposed to Gurken follow a ventral fate and express Pipe, a sulfotransferase that enzymatically modifies components of the inner vitelline membrane layer of the eggshell, thereby transferring DV spatial information from the follicle to the egg. These ventrally sulfated eggshell proteins comprise a localized cue that directs the ventrally restricted formation of the active Spätzle ligand within the perivitelline space between the eggshell and the embryonic membrane. Spätzle activates Toll, a transmembrane receptor in the embryonic membrane. Transmission of the Toll signal into the embryo leads to the formation of a ventral-to-dorsal gradient of the transcription factor Dorsal within the nuclei of the syncytial blastoderm stage embryo. Dorsal controls the spatially specific expression of a large constellation of zygotic target genes, the Dorsal gene regulatory network, along the embryonic DV circumference. This article reviews classic studies and integrates them with the details of more recent work that has advanced our understanding of the complex pathway that establishes Drosophila embryo DV polarity. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- David S Stein
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
2
|
Li XC, Zhang XW, Zhou JF, Ma HY, Liu ZD, Zhu L, Yao XJ, Li LG, Fang WH. Identification, characterization, and functional analysis of Tube and Pelle homologs in the mud crab Scylla paramamosain. PLoS One 2013; 8:e76728. [PMID: 24116143 PMCID: PMC3792031 DOI: 10.1371/journal.pone.0076728] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/24/2013] [Indexed: 02/06/2023] Open
Abstract
Tube and Pelle are essential components in Drosophila Toll signaling pathway. In this study, we characterized a pair of crustacean homologs of Tube and Pelle in Scylla paramamosain, namely, SpTube and SpPelle, and analyzed their immune functions. The full-length cDNA of SpTube had 2052 bp with a 1578 bp open reading frame (ORF) encoding a protein with 525 aa. A death domain (DD) and a kinase domain were predicted in the deduced protein. The full-length cDNA of SpPelle had 3825 bp with a 3420 bp ORF encoding a protein with 1140 aa. The protein contained a DD and a kinase domain. Two conserved repeat motifs previously called Tube repeat motifs present only in insect Tube or Tube-like sequences were found between these two domains. Alignments and structure predictions demonstrated that SpTubeDD and SpPelleDD significantly differed in sequence and 3D structure. Similar to TubeDD, SpTubeDD contained three common conserved residues (R, K, and R) on one surface that may mediate SpMyD88 binding and two common residues (A and A) on the other surface that may contribute to Pelle binding. By contrast, SpPelleDD lacked similar conservative residues. SpTube, insect Tube-like kinases, and human IRAK4 were found to be RD kinases with an RD dipeptide in the kinase domain. SpPelle, Pelle, insect Pelle-like kinases, and human IRAK1 were found to be non-RD kinases lacking an RD dipeptide. Both SpTube and SpPelle were highly expressed in hemocytes, gills, and hepatopancreas. Upon challenge, SpTube and SpPele were significantly increased in hemocytes by Gram-negative or Gram-positive bacteria, whereas only SpPelle was elevated by White Spot Syndrome Virus. The pull-down assay showed that SpTube can bind to both SpMyD88 and SpPelle. These results suggest that SpTube, SpPelle, and SpMyD88 may form a trimeric complex involved in the immunity of mud crabs against both Gram-negative and Gram-positive bacteria.
Collapse
Affiliation(s)
- Xin-Cang Li
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Shanghai, P. R. China
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, P. R. China
- * E-mail: (XCL); (WHF)
| | - Xiao-Wen Zhang
- Scholl of Life Science, Henan Normal University, Xinxiang, P. R. China
| | - Jun-Fang Zhou
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Shanghai, P. R. China
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, P. R. China
| | - Hong-Yu Ma
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Shanghai, P. R. China
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, P. R. China
| | - Zhi-Dong Liu
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Shanghai, P. R. China
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, P. R. China
| | - Lei Zhu
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Shanghai, P. R. China
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, P. R. China
| | - Xiao-Juan Yao
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Shanghai, P. R. China
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, P. R. China
| | - Lin-Gui Li
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Shanghai, P. R. China
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, P. R. China
| | - Wen-Hong Fang
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Shanghai, P. R. China
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, P. R. China
- * E-mail: (XCL); (WHF)
| |
Collapse
|
3
|
The IRAK homolog Pelle is the functional counterpart of IκB kinase in the Drosophila Toll pathway. PLoS One 2013; 8:e75150. [PMID: 24086459 PMCID: PMC3781037 DOI: 10.1371/journal.pone.0075150] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/09/2013] [Indexed: 12/30/2022] Open
Abstract
Toll receptors transduce signals that activate Rel-family transcription factors, such as NF-κB, by directing proteolytic degradation of inhibitor proteins. In mammals, the IκB Kinase (IKK) phosphorylates the inhibitor IκBα. A βTrCP protein binds to phosphorylated IκBα, triggering ubiquitination and proteasome mediated degradation. In Drosophila, Toll signaling directs Cactus degradation via a sequence motif that is highly similar to that in IκBα, but without involvement of IKK. Here we show that Pelle, the homolog of a mammalian regulator of IKK, acts as a Cactus kinase. We further find that the fly βTrCP protein Slimb is required in cultured cells to mediate Cactus degradation. These findings enable us for the first time to trace an uninterrupted pathway from the cell surface to the nucleus for Drosophila Toll signaling.
Collapse
|
4
|
Gosu V, Basith S, Durai P, Choi S. Molecular evolution and structural features of IRAK family members. PLoS One 2012; 7:e49771. [PMID: 23166766 PMCID: PMC3498205 DOI: 10.1371/journal.pone.0049771] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/12/2012] [Indexed: 02/04/2023] Open
Abstract
The interleukin-1 receptor-associated kinase (IRAK) family comprises critical signaling mediators of the TLR/IL-1R signaling pathways. IRAKs are Ser/Thr kinases. There are 4 members in the vertebrate genome (IRAK1, IRAK2, IRAKM, and IRAK4) and an IRAK homolog, Pelle, in insects. IRAK family members are highly conserved in vertebrates, but the evolutionary relationship between IRAKs in vertebrates and insects is not clear. To investigate the evolutionary history and functional divergence of IRAK members, we performed extensive bioinformatics analysis. The phylogenetic relationship between IRAK sequences suggests that gene duplication events occurred in the evolutionary lineage, leading to early vertebrates. A comparative phylogenetic analysis with insect homologs of IRAKs suggests that the Tube protein is a homolog of IRAK4, unlike the anticipated protein, Pelle. Furthermore, the analysis supports that an IRAK4-like kinase is an ancestral protein in the metazoan lineage of the IRAK family. Through functional analysis, several potentially diverged sites were identified in the common death domain and kinase domain. These sites have been constrained during evolution by strong purifying selection, suggesting their functional importance within IRAKs. In summary, our study highlighted the molecular evolution of the IRAK family, predicted the amino acids that contributed to functional divergence, and identified structural variations among the IRAK paralogs that may provide a starting point for further experimental investigations.
Collapse
Affiliation(s)
- Vijayakumar Gosu
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Shaherin Basith
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | | | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
- * E-mail:
| |
Collapse
|
5
|
Valanne S, Wang JH, Rämet M. The Drosophila Toll signaling pathway. THE JOURNAL OF IMMUNOLOGY 2011; 186:649-56. [PMID: 21209287 DOI: 10.4049/jimmunol.1002302] [Citation(s) in RCA: 632] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The identification of the Drosophila melanogaster Toll pathway cascade and the subsequent characterization of TLRs have reshaped our understanding of the immune system. Ever since, Drosophila NF-κB signaling has been actively studied. In flies, the Toll receptors are essential for embryonic development and immunity. In total, nine Toll receptors are encoded in the Drosophila genome, including the Toll pathway receptor Toll. The induction of the Toll pathway by gram-positive bacteria or fungi leads to the activation of cellular immunity as well as the systemic production of certain antimicrobial peptides. The Toll receptor is activated when the proteolytically cleaved ligand Spatzle binds to the receptor, eventually leading to the activation of the NF-κB factors Dorsal-related immunity factor or Dorsal. In this study, we review the current literature on the Toll pathway and compare the Drosophila and mammalian NF-κB pathways.
Collapse
Affiliation(s)
- Susanna Valanne
- Laboratory of Experimental Immunology, Institute of Medical Technology, University of Tampere, 33014 Tampere, Finland
| | | | | |
Collapse
|
6
|
Towb P, Sun H, Wasserman SA. Tube Is an IRAK-4 homolog in a Toll pathway adapted for development and immunity. J Innate Immun 2010; 1:309-21. [PMID: 19498957 DOI: 10.1159/000200773] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acting through the Pelle and IRAK family of protein kinases, Toll receptors mediate innate immune responses in animals ranging from insects to humans. In flies, the Toll pathway also functions in patterning of the syncytial embryo and requires Tube, a Drosophila -specific adaptor protein lacking a catalytic domain. Here we provide evidence that the Tube, Pelle, and IRAK proteins originated from a common ancestral gene. Following gene duplication, IRAK-4, Tube-like kinases, and Tube diverged from IRAK-1, Pelle, and related kinases. Remarkably, the function of Tube and Pelle in Drosophila embryos can be reconstituted in a chimera modeled on the predicted progenitor gene. In addition, a divergent property of downstream transcription factors was correlated with developmental function. Together, these studies reveal previously unrecognized parallels in Toll signaling in fly and human innate immunity and shed light on the evolution of pathway organization and function.
Collapse
Affiliation(s)
- Par Towb
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0349, USA
| | | | | |
Collapse
|
7
|
Cirimotich CM, Dong Y, Garver LS, Sim S, Dimopoulos G. Mosquito immune defenses against Plasmodium infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:387-95. [PMID: 20026176 PMCID: PMC3462653 DOI: 10.1016/j.dci.2009.12.005] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 12/07/2009] [Accepted: 12/08/2009] [Indexed: 05/11/2023]
Abstract
The causative agent of malaria, Plasmodium, has to undergo complex developmental transitions and survive attacks from the mosquito's innate immune system to achieve transmission from one host to another through the vector. Here we discuss recent findings on the role of the mosquito's innate immune signaling pathways in preventing infection by the Plasmodium parasite, the identification and mechanistic description of novel anti-parasite molecules, the role that natural bacteria harbored in the mosquito midgut might play in this immune defense and the crucial parasite and vector molecules that mediate midgut infection.
Collapse
Affiliation(s)
- Chris M Cirimotich
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
8
|
Abstract
In the past few years the knowledge of insect defense mechanisms against pathogenic microorganisms and parasites has significantly increased on both the molecular and the organismic level. These investigations have led to new concepts of immune protection also relevant for mammals with the identification of the Toll receptor family as an eminent example. This review provides a brief overview of insect strategies to on the one hand defeat bacterial pathogens while on the other hand cooperating with symbiotic bacteria beneficial for the insects.
Collapse
Affiliation(s)
- Heike Feldhaar
- Lehrstuhl für Soziobiologie und Verhaltensphysiologie, Biozentrum der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | |
Collapse
|
9
|
The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat Rev Immunol 2007; 7:862-74. [DOI: 10.1038/nri2194] [Citation(s) in RCA: 640] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
DeLotto R, DeLotto Y, Steward R, Lippincott-Schwartz J. Nucleocytoplasmic shuttling mediates the dynamic maintenance of nuclear Dorsal levels during Drosophila embryogenesis. Development 2007; 134:4233-41. [PMID: 17978003 DOI: 10.1242/dev.010934] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In Drosophila, the NF-kappaB/REL family transcription factor, Dorsal, redistributes from the cytoplasm to nuclei, forming a concentration gradient across the dorsoventral axis of the embryo. Using live imaging techniques in conjunction with embryos expressing a chimeric Dorsal-GFP, we demonstrate that the redistribution of Dorsal from cytoplasm to nucleus is an extremely dynamic process. Nuclear Dorsal concentration changes continuously over time in all nuclei during interphase. While Dorsal appears to be nuclearly localized primarily in ventral nuclei, it is actively shuttling into and out of all nuclei, including nuclei on the dorsal side. Nuclear export is blocked by leptomycin B, a potent inhibitor of Exportin 1 (CRM1)-mediated nuclear export. We have developed a novel in vivo assay revealing the presence of a functional leucine-rich nuclear export signal within the carboxyterminal 44 amino acids of Dorsal. We also find that diffusion of Dorsal is partially constrained to cytoplasmic islands surrounding individual syncitial nuclei. A model is proposed in which the generation and maintenance of the Dorsal gradient is a consequence of an active process involving both restricted long-range diffusion and the balancing of nuclear import with nuclear export.
Collapse
Affiliation(s)
- Robert DeLotto
- Department of Molecular Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| | | | | | | |
Collapse
|
11
|
Mindorff EN, O'Keefe DD, Labbé A, Yang JP, Ou Y, Yoshikawa S, van Meyel DJ. A gain-of-function screen for genes that influence axon guidance identifies the NF-kappaB protein dorsal and reveals a requirement for the kinase Pelle in Drosophila photoreceptor axon targeting. Genetics 2007; 176:2247-63. [PMID: 17603113 PMCID: PMC1950629 DOI: 10.1534/genetics.107.072819] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
To identify novel regulators of nervous system development, we used the GAL4-UAS misexpression system in Drosophila to screen for genes that influence axon guidance in developing embryos. We mobilized the Gene Search (GS) P element and identified 42 lines with insertions in unique loci, including leak/roundabout2, which encodes an axon guidance receptor and confirms the utility of our screen. The genes we identified encode proteins of diverse classes, some acting near the cell surface and others in the cytoplasm or nucleus. We found that one GS line drove misexpression of the NF-kappaB transcription factor Dorsal, causing motor axons to bypass their correct termination sites. In the developing visual system, Dorsal misexpression also caused photoreceptor axons to reach incorrect positions within the optic lobe. This mistargeting occurred without observable changes of cell fate and correlated with localization of ectopic Dorsal in distal axons. We found that Dorsal and its inhibitor Cactus are expressed in photoreceptors, though neither was required for axon targeting. However, mutation analyses of genes known to act upstream of Dorsal revealed a requirement for the interleukin receptor-associated kinase family kinase Pelle for layer-specific targeting of photoreceptor axons, validating our screen as a means to identify new molecular determinants of nervous system development in vivo.
Collapse
Affiliation(s)
- Elizabeth N Mindorff
- Graduate Program in Neurological Sciences, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The nuclear factor kappa B (NF-kappaB) pathways in Drosophila are multi-component pathways, as in vertebrates, that regulate the expression of many genes responsible for the formation of dorsal-ventral polarity in the early embryo, the innate immune response to infection with Gram- negative and positive bacteria and fungi, the cellular immune response and hematopoiesis. Overactivation of the fly pathway can result in developmental defects, overproliferation of hemocytes and the formation of melanotic tumors or nodules. The extracellular events leading to the maturation of the ligand for initiation of the Drosophila NF-kappaB pathway is not conserved between flies and vertebrates, but the Toll receptor and downstream events are remarkably similar. NF-kappaB proteins have been identified in mollusks, and arthropods such as horseshoe crabs and beetles, indicating that this pathway has been established more than 500 million years ago. The fly NF-kappaB pathways are less complex than those in vertebrates, with the involvement of fewer proteins, but they are, nonetheless, just as important as their vertebrate counterparts for the life of the fly.
Collapse
Affiliation(s)
- S Minakhina
- Waksman Institute, Department of Molecular Biology and Biochemistry and the Cancer Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | | |
Collapse
|
13
|
Chen LY, Wang JC, Hyvert Y, Lin HP, Perrimon N, Imler JL, Hsu JC. Weckle is a zinc finger adaptor of the toll pathway in dorsoventral patterning of the Drosophila embryo. Curr Biol 2006; 16:1183-93. [PMID: 16782008 DOI: 10.1016/j.cub.2006.05.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 05/10/2006] [Accepted: 05/17/2006] [Indexed: 11/21/2022]
Abstract
BACKGROUND The Drosophila Toll pathway takes part in both establishment of the embryonic dorsoventral axis and induction of the innate immune response in adults. Upon activation by the cytokine Spätzle, Toll interacts with the adaptor proteins DmMyD88 and Tube and the kinase Pelle and triggers degradation of the inhibitor Cactus, thus allowing the nuclear translocation of the transcription factor Dorsal/Dif. weckle (wek) was previously identified as a new dorsal group gene that encodes a putative zinc finger transcription factor. However, its role in the Toll pathway was unknown. RESULTS Here, we isolated new wek alleles and demonstrated that cactus is epistatic to wek, which in turn is epistatic to Toll. Consistent with this, Wek localizes to the plasma membrane of embryos, independently of Toll signaling. Wek homodimerizes and associates with Toll. Moreover, Wek binds to and localizes DmMyD88 to the plasma membrane. Thus, Wek acts as an adaptor to assemble/stabilize a Toll/Wek/DmMyD88/Tube complex. Remarkably, unlike the DmMyD88/tube/pelle/cactus gene cassette of the Toll pathway, wek plays a minimal role, if any, in the immune defense against Gram-positive bacteria and fungi. CONCLUSIONS We conclude that Wek is an adaptor to link Toll and DmMyD88 and is required for efficient recruitment of DmMyD88 to Toll. Unexpectedly, wek is dispensable for innate immune response, thus revealing differences in the Toll-mediated activation of Dorsal in the embryo and Dif in the fat body of adult flies.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/physiology
- Animals
- Antigens, Differentiation/metabolism
- Body Patterning/genetics
- Cell Membrane/metabolism
- DNA-Binding Proteins/metabolism
- Dimerization
- Drosophila/embryology
- Drosophila/genetics
- Drosophila/metabolism
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Drosophila Proteins/physiology
- Embryo, Nonmammalian/cytology
- Embryo, Nonmammalian/metabolism
- Epistasis, Genetic
- Immunity, Innate/genetics
- Models, Biological
- Mutation
- Phenotype
- Phosphoproteins/metabolism
- Receptors, Immunologic/metabolism
- Toll-Like Receptors/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription Factors/physiology
- Zinc Fingers
Collapse
Affiliation(s)
- Li-Ying Chen
- Department of Life Science, Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan 30034, Republic of China
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
The response of the fruit fly Drosophila melanogaster to various microorganism infections relies on a multilayered defense. The epithelia constitute a first and efficient barrier. Innate immunity is activated when microorganisms succeed in entering the body cavity of the fly. Invading microorganisms are killed by the combined action of cellular and humoral processes. They are phagocytosed by specialized blood cells, surrounded by toxic melanin, or lysed by antibacterial peptides secreted into the hemolymph by fat body cells. During the last few years, research has focused on the mechanisms of microbial recognition by various pattern recognition receptors and of the subsequent induction of antimicrobial peptide expression. The cellular arm of the Drosophila innate immune system, which was somehow neglected, now constitutes the new frontier.
Collapse
Affiliation(s)
- Vincent Leclerc
- Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | |
Collapse
|
15
|
Abstract
BACKGROUND The NF-kappaB/Rel pathway functions in the establishment of dorsal-ventral polarity and in the innate humoral and cellular immune response in Drosophila. An important aspect of all NF-kappaB/Rel pathways is the translocation of the Rel proteins from the cytoplasm to the nucleus, where they function as transcription factors. RESULTS We have identified a new protein, Tamo, which binds to Drosophila Rel protein Dorsal, but not to Dorsal lacking the nuclear localization sequence. Tamo does not bind to the other Drosophila Rel proteins, Dif and Relish. The Tamo-Dorsal complex forms in the cytoplasm and Tamo also interacts with a cytoplasmically orientated nucleoporin. In addition Tamo binds the Ras family small GTPase, Ran. Tamo functions during oogenesis and, based on phenotypic analysis, controls the levels of nuclear Dorsal in early embryos. It further regulates the accumulation of Dorsal in the nucleus after immune challenge. CONCLUSIONS Tamo has an essential function during oogenesis. Tamo interacts with Dorsal and proteins that are part of the nuclear import machinery. We propose that tamo modulates the levels of import of Dorsal and other proteins.
Collapse
Affiliation(s)
- Svetlana Minakhina
- Waksman Institute, Department of Molecular Biology and Biochemistry, NJ Cancer Center, Rutgers University, 190 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | | | | |
Collapse
|
16
|
Sun H, Bristow BN, Qu G, Wasserman SA. A heterotrimeric death domain complex in Toll signaling. Proc Natl Acad Sci U S A 2002; 99:12871-6. [PMID: 12351681 PMCID: PMC130552 DOI: 10.1073/pnas.202396399] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2002] [Indexed: 12/27/2022] Open
Abstract
Signaling from the transmembrane receptor Toll to Rel-related transcription factors regulates dorsoventral patterning of the Drosophila embryo, as well as larval and adult immunity. To identify additional pathway components, we have used double-stranded RNA interference to investigate Drosophila counterparts of genes that regulate the mammalian Rel family member NF-kappaB. Experiments in cultured cells reveal that the fly orthologue of the adaptor protein MyD88 is essential for signal transduction from Toll to a second adaptor protein, Tube. By using coimmunoprecipitation studies, we find a heterotrimeric association of the death domains of MyD88, Tube, and the protein kinase Pelle. Site-directed mutational analyses of interaction sites defined by crystallographic studies demonstrate that Tube recruits MyD88 and Pelle into the heterotrimer by two distinct binding surfaces on the Tube death domain. Furthermore, functional assays confirm that the formation of this heterotrimer is critical for signal transduction by the Toll pathway.
Collapse
Affiliation(s)
- Huaiyu Sun
- Center for Molecular Genetics, Section of Cell and Developmental Biology, Division of Biology, University of California at San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
17
|
Towb P, Bergmann A, Wasserman SA. The protein kinase Pelle mediates feedback regulation in the Drosophila Toll signaling pathway. Development 2001; 128:4729-36. [PMID: 11731453 DOI: 10.1242/dev.128.23.4729] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dorsoventral polarity in the Drosophila embryo is established through a signal transduction cascade triggered in ventral and ventrolateral regions. Activation of a transmembrane receptor, Toll, leads to localized recruitment of the adaptor protein Tube and protein kinase Pelle. Signaling through these components directs degradation of the IκB-like inhibitor Cactus and nuclear translocation of the Rel protein Dorsal. Here we show through confocal immunofluorescence microscopy that Pelle functions to downregulate the signal-dependent relocalization of Tube. Inactivation of the Pelle kinase domain, or elimination of the Tube-Pelle interaction, dramatically increases Tube recruitment to the ventral plasma membrane in regions of active signaling. We also characterize a large collection of pelle alleles, identifying the molecular lesions in these alleles and their effects on Pelle autophosphorylation, Tube phosphorylation and Tube relocalization. Our results point to a mechanism operating to modulate the domain or duration of signaling downstream from Tube and Pelle.
Collapse
Affiliation(s)
- P Towb
- Section of Cell and Developmental Biology, Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0634, USA
| | | | | |
Collapse
|
18
|
Fernandez NQ, Grosshans J, Goltz JS, Stein D. Separable and redundant regulatory determinants in Cactus mediate its dorsal group dependent degradation. Development 2001; 128:2963-74. [PMID: 11532919 DOI: 10.1242/dev.128.15.2963] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dorsal-ventral polarity within the Drosophila syncytial blastoderm embryo is determined by the maternally encoded dorsal group signal transduction pathway that regulates nuclear localization of the transcription factor Dorsal. Nuclear uptake of Dorsal, a Rel/NFκB homolog, is controlled by the interaction with its cognate IκB inhibitor protein Cactus, which is degraded on the ventral side of the embryo in response to dorsal group signaling. Previous studies have suggested that an N-terminally located kinase target motif similar to that found in IκB proteins is involved in the spatially controlled degradation of Cactus. We report studies of the in vivo function and distribution of fusion proteins comprising segments of Cactus attached to Escherichia coli β-galactosidase (lacZ). Full-length Cactus-lacZ expressed in vivo normalizes the ventralized phenotype of embryos that lack Cactus and faithfully reconstitutes dorsal group-regulated degradation, while fusion protein constructs that lack the first 125 amino acids of Cactus escape dorsal group-dependent degradation. Furthermore, Cactus-lacZ constructs that lack only the putative IκB-dependent kinase target-like motif can nevertheless undergo spatially regulated dorsal group-dependent degradation and we have identified the regulatory determinant responsible for dorsal group-dependent degradation of Cactus in the absence of this motif. Taken together, our studies indicate the presence of two distinct redundantly acting determinants in the N terminus of Cactus that direct dorsal group-dependent degradation. Strikingly, the regulatory domain of human IκBα can also direct polarized degradation of Cactus-lacZ fusion protein.
Collapse
Affiliation(s)
- N Q Fernandez
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
19
|
Cornwell WD, Kirkpatrick RB. Cactus-independent nuclear translocation of Drosophila RELISH. J Cell Biochem 2001; 82:22-37. [PMID: 11400160 DOI: 10.1002/jcb.1144] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Insects can effectively and rapidly clear microbial infections by a variety of innate immune responses including the production of antimicrobial peptides. Induction of these antimicrobial peptides in Drosophila has been well established to involve NF-kappaB elements. We present evidence here for a molecular mechanism of Lipopolysaccharide (LPS)-induced signaling involving Drosophila NF-kappaB, RELISH, in Drosophila S2 cells. We demonstrate that LPS induces a rapid processing event within the RELISH protein releasing the C-terminal ankyrin-repeats from the N-terminal Rel homology domain (RHD). Examination of the cellular localization of RELISH reveals that the timing of this processing coincides with the nuclear translocation of the RHD and the retention of the ankyrin-repeats within the cytoplasm. Both the processing and the nuclear translocation immediately precede the expression of antibacterial peptide genes cecropin A1, attacin, and diptericin. Over-expression of the RHD but not full-length RELISH results in an increase in the promoter activity of the cecropin A1 gene in the absence of LPS. Furthermore, the LPS-induced expression of these antibacterial peptides is greatly reduced when RELISH expression is depleted via RNA-mediated interference. In addition, loss of cactus expression via RNAi revealed that RELISH activation and nuclear translocation is not dependent on the presence of cactus. Taken together, these results suggest that this signaling mechanism involving the processing of RELISH followed by nuclear translocation of the RHD is central to the induction of at least part of the antimicrobial response in Drosophila, and is largely independent of cactus regulation.
Collapse
Affiliation(s)
- W D Cornwell
- Department of Gene Expression Sciences, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania, USA
| | | |
Collapse
|
20
|
Abstract
Protein-protein interactions mediate many important cellular processes and are central to the mechanisms by which most proteins function. Charting the interactions among the proteins involved in a process has been an essential step in characterising the function of proteins and pathways. The yeast two-hybrid system is one approach to detecting protein interactions that can now be scaled-up to assay large sets of proteins systematically, such as those being identified from genome sequencing efforts. The system has already been extensively used to acquire data that have enabled construction of large protein interaction maps (PIMs). When combined with other data, including data being generated by other functional genomics approaches, PIMs help assign function to new proteins and delineate functional networks. Hypotheses generated in such a manner often must be tested by additional experimentation, preferably in vivo. The model organism Drosophila melanogaster has a wealth of genetic and bioinformatic tools available for such analyses. The proteome predicted from the recently sequenced Drosophila genome indicates that humans have more genes in common with Drosophila than with any other invertebrate model organism characterised to date. Thus, the construction and characterisation of Drosophila PIMs will help define the functions of many conserved genes and pathways, and will provide the pharmaceutical research industry with invaluable data to assist with drug target identification and validation.
Collapse
Affiliation(s)
- C A Stanyon
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, Michigan 48201, USA
| | | |
Collapse
|
21
|
Abstract
Experiments reported in the past year have revealed considerable diversity in Toll-mediated pathways for signal transduction in development and innate immunity. Rather than function as a well conserved signaling cassette, Toll receptors and associated factors have apparently evolved as a diverse set of configurations to defend against microbial infection in species ranging from plants to humans.
Collapse
Affiliation(s)
- S A Wasserman
- Center for Molecular Genetics, Division of Biology, University of California, San Diego, 9500 Gilman Drive, MC 0634, La Jolla, California 92093-0634, USA.
| |
Collapse
|
22
|
Lin P, Huang LH, Steward R. Cactin, a conserved protein that interacts with the Drosophila IkappaB protein cactus and modulates its function. Mech Dev 2000; 94:57-65. [PMID: 10842059 DOI: 10.1016/s0925-4773(00)00314-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Rel transcription factors function in flies and vertebrates in immunity and development. Although Rel proteins regulate diverse processes, the control of their function is conserved. In a two-hybrid screen for additional components of the pathway using the Drosophila I-kappaB protein Cactus as a bait, we isolated a novel coiled-coil protein with N-terminal Arg-Asp (RD)- like motifs that we call Cactin. Like the other components of this pathway, Cactin is evolutionarily conserved. Over-expression of cactin in a cactus(A2) heterozygous background results in the enhancement of the cactus phenotype. Both the embryonic lethality and ventralization are strongly increased, suggesting that cactin functions in the Rel pathway controlling the formation of dorsal-ventral embryonic polarity.
Collapse
Affiliation(s)
- P Lin
- Waksman Institute, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway,NJ 08854-8020, USA
| | | | | |
Collapse
|
23
|
Abstract
Regulated proteolysis is a critical feature of many intercellular signalling pathways that control cell-fate specification and tissue patterning during metazoan development. The roles of proteolysis in three different pathways, the Toll, Hedgehog, and Notch pathways, are described to illustrate the importance of specific protein cleavages in both extracellular ligand-receptor interactions and intracellular signal transduction. An emerging principle is the use of proteolysis to control the maturation and activation of receptors, to limit the spatial diffusion of their ligands, and to modulate the subcellular localization or transcriptional activity of DNA-binding factors in response to receptor-ligand interactions at the cell surface.
Collapse
Affiliation(s)
- Y Ye
- Department of Genetics, Stellar-Chance Laboratories, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | |
Collapse
|
24
|
Tartakoff AM, Lichtenstein M, Nanduri J, Tsao HM. Review: dynamic stability of the interphase nucleus in health and disease. J Struct Biol 2000; 129:144-58. [PMID: 10806065 DOI: 10.1006/jsbi.2000.4225] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ongoing export of newly synthesized RNAs, as well as control of transcriptional activity, involves dynamic nucleocytoplasmic transport of proteins. Some proteins that shuttle reside primarily in the nucleus while others are concentrated in the cytoplasm. Moreover, some proteins shuttle continuously, while others shuttle only once. A third group is stimulated to relocate either into or out of the nucleus as a result of interruption of shuttling. In addition to these protein-specific events, several physiological stimuli have global effects on nucleocytoplasmic transport. In related events, selected proteins move between distinct sites in the nucleoplasm, others enter and leave the nucleolus, and still others transit between the nuclear envelope and cytoplasmic membranes. These multiple dynamic distributions provide numerous opportunities for precise communication between spatially distant sites in the cell.
Collapse
Affiliation(s)
- A M Tartakoff
- Pathology Department, Cell Biology Program, Case Western Reserve University School of Medicine, 2085 Adelbert Road, Cleveland, Ohio, 44106, USA
| | | | | | | |
Collapse
|
25
|
Bhaskar V, Valentine SA, Courey AJ. A functional interaction between dorsal and components of the Smt3 conjugation machinery. J Biol Chem 2000; 275:4033-40. [PMID: 10660560 DOI: 10.1074/jbc.275.6.4033] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To identify proteins that regulate the function of Dorsal, a Drosophila Rel family transcription factor, we employed a yeast two-hybrid screen to search for genes encoding Dorsal-interacting proteins. Six genes were identified, including two that encode previously known Dorsal-interacting proteins (Twist and Cactus), three that encode novel proteins, and one that encodes Drosophila Ubc9 (DmUbc9), a protein thought to conjugate the ubiquitin-like polypeptide Smt3 to protein substrates. We have found that DmUbc9 binds and conjugates Drosophila Smt3 (DmSmt3) to Dorsal. In cultured cells, DmUbc9 was found to relieve inhibition of Dorsal nuclear uptake by Cactus, allowing Dorsal to enter the nucleus and activate transcription. The effect of DmUbc9 on Dorsal activity was potentiated by the overexpression of DmSmt3. We have also identified a DmSmt3-activating enzyme, DmSAE1/DmSAE2 and found that it further potentiates Dorsal-mediated activation.
Collapse
Affiliation(s)
- V Bhaskar
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | | | | |
Collapse
|
26
|
Abstract
The Drosophila Rel/NF-kappaB transcription factors - Dorsal, Dif, and Relish - control several biological processes, including embryonic pattern formation, muscle development, immunity, and hematopoiesis. Molecular-genetic analysis of 12 mutations that cause embryonic dorsal/ventral patterning defects has defined the steps that control the formation of this axis. Regulated activation of the Toll receptor leads to the establishment of a gradient of nuclear Dorsal protein, which in turn governs the subdivision of the axis and specification of ventral, lateral and dorsal fates. Phenotypic analysis of dorsal-ventral embryonic mutants and the characterization of the two other fly Rel proteins, Dif and Relish, have shown that the intracellular portion of the Toll to Cactus pathway also controls the innate immune response in Drosophila. Innate immunity and hematopoiesis are regulated by analogous Rel/NF-kappaB-family pathways in mammals. The elucidation of the complex regulation and diverse functions of Drosophila Rel proteins underscores the relevance of basic studies in Drosophila.
Collapse
Affiliation(s)
- S Govind
- Department of Biology, City College and The Graduate Center of The City University of New York, 138th Street and Convent Avenue, New York, NY 10031, USA
| |
Collapse
|
27
|
Grosshans J, Schnorrer F, Nüsslein-Volhard C. Oligomerisation of Tube and Pelle leads to nuclear localisation of dorsal. Mech Dev 1999; 81:127-38. [PMID: 10330490 DOI: 10.1016/s0925-4773(98)00236-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the Drosophila embryo the nuclear localisation of Dorsal, a member of the Rel family, is regulated by an extracellular signal, which is transmitted to the interior of the egg cell by a cascade of proteins involving the novel protein Tube and the protein kinase Pelle. Here we analyse the activation mechanism of Tube and Pelle and the interaction between these two components. We show that both proteins, although having different biochemical activities, are activated by the same mechanism. Membrane association alone is not sufficient, but oligomerisation is required for full activation of Tube and Pelle. By deletion analysis we determined the domains of Tube and Pelle mediating the physical interaction and the signalling to downstream components. In order to investigate the link between Pelle and the target of the signalling cascade, the Dorsal/Cactus complex, we isolated and characterised the novel, but evolutionary conserved protein Pellino, which associates with the kinase domain of Pelle.
Collapse
Affiliation(s)
- J Grosshans
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung III (Genetik), Spemannstrasse 35/III, D-72076, Tübingen, Germany.
| | | | | |
Collapse
|
28
|
Drier EA, Huang LH, Steward R. Nuclear import of the Drosophila Rel protein Dorsal is regulated by phosphorylation. Genes Dev 1999; 13:556-68. [PMID: 10072384 PMCID: PMC316510 DOI: 10.1101/gad.13.5.556] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In Drosophila, dorsal-ventral polarity is determined by a maternally encoded signal transduction pathway that culminates in the graded nuclear localization of the Rel protein, Dorsal. Dorsal is retained in the cytoplasm by the IkappaB protein, Cactus. Signal-dependent phosphorylation of Cactus results in the degradation of Cactus and the nuclear targeting of Dorsal. We present an in-depth study of the functional importance of Dorsal phosphorylation. We find that Dorsal is phosphorylated by the ventral signal while associated with Cactus, and that Dorsal phosphorylation is essential for its nuclear import. In vivo phospholabeling of Dorsal is limited to serine residues in both ovaries and early embryos. A protein bearing mutations in six conserved serines abolishes Dorsal activity, is constitutively cytoplasmic, and appears to eliminate Dorsal phosphorylation, but still interacts with Cactus. Two individual serine-to-alanine mutations produce unexpected results. In a wild-type signaling background, a mutation in the highly conserved PKA site (S312) produces only a weak loss-of-function; however, it completely destabilizes the protein in a cactus mutant background. Significantly, the phosphorylation of another completely conserved serine (S317) regulates the high level of nuclear import found in ventral cells. We conclude that the formation of a wild-type Dorsal nuclear gradient requires the phosphorylation of both Cactus and Dorsal. The strong conservation of the serines suggests that phosphorylation of other Rel proteins is essential for their proper nuclear targeting.
Collapse
Affiliation(s)
- E A Drier
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|
29
|
Towb P, Galindo RL, Wasserman SA. Recruitment of Tube and Pelle to signaling sites at the surface of the Drosophila embryo. Development 1998; 125:2443-50. [PMID: 9609827 DOI: 10.1242/dev.125.13.2443] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A signaling pathway initiated by activation of the transmembrane receptor Toll defines dorsoventral polarity in the Drosophila embryo. Toll, which is present over the entire surface of the embryo, is activated ventrally by interaction with a spatially restricted, extracellular ligand. Tube and Pelle then transduce the signal from activated Toll to a complex of Dorsal and Cactus. Here we demonstrate by an mRNA microinjection assay that targeting of either Tube or Pelle to the plasma membrane by myristylation is sufficient to activate the signal transduction pathway that leads to Dorsal nuclear translocation. Using confocal immunofluorescence microscopy we also show that activated Toll induces a localized recruitment of Tube and Pelle to the plasma membrane. Together, these results strongly support the hypothesis that intracellular signaling requires the Toll-mediated formation of a membrane-associated complex containing both Tube and Pelle.
Collapse
Affiliation(s)
- P Towb
- Department of Molecular Biology and Oncology, UT Southwestern Medical Center, Dallas, Texas, USA
| | | | | |
Collapse
|