1
|
van Werven FJ, Neuert G, Hendrick N, Lardenois A, Buratowski S, van Oudenaarden A, Primig M, Amon A. Transcription of two long noncoding RNAs mediates mating-type control of gametogenesis in budding yeast. Cell 2012; 150:1170-81. [PMID: 22959267 DOI: 10.1016/j.cell.2012.06.049] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 04/30/2012] [Accepted: 06/29/2012] [Indexed: 12/26/2022]
Abstract
The cell-fate decision leading to gametogenesis is essential for sexual reproduction. In S. cerevisiae, only diploid MATa/α but not haploid MATa or MATα cells undergo gametogenesis, known as sporulation. We find that transcription of two long noncoding RNAs (lncRNAs) mediates mating-type control of sporulation. In MATa or MATα haploids, expression of IME1, the central inducer of gametogenesis, is inhibited in cis by transcription of the lncRNA IRT1, located in the IME1 promoter. IRT1 transcription recruits the Set2 histone methyltransferase and the Set3 histone deacetylase complex to establish repressive chromatin at the IME1 promoter. Inhibiting expression of IRT1 and an antisense transcript that antagonizes the expression of the meiotic regulator IME4 allows cells expressing the haploid mating type to sporulate with kinetics that are indistinguishable from that of MATa/α diploids. Conversely, expression of the two lncRNAs abolishes sporulation in MATa/α diploids. Thus, transcription of two lncRNAs governs mating-type control of gametogenesis in yeast.
Collapse
Affiliation(s)
- Folkert J van Werven
- David H. Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Govin J, Berger SL. Genome reprogramming during sporulation. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2009; 53:425-32. [PMID: 19412896 DOI: 10.1387/ijdb.082687jg] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
When environmental conditions compromise survival, single celled organisms, such as the budding yeast S. cerevisiae, induce and complete a differentiation program called sporulation. The first step consists of meiosis, which generates genetic diversity within the eventual haploid cells. The post-meiotic maturation stage reinforces protective barriers, such as the spore wall, against deleterious external conditions. In later stages of sporulation, the spore nucleus becomes highly compacted, likely sharing certain characteristics with the metazoan male gamete, the spermatozoon. The sporulation differentiation program involves many chromatin-related events, including execution of a precise transcription program involving more than one thousand genes. Here, we review how chromatin structure and genome reprogramming regulate the sporulation transcription program, and how post-meiotic events reorganize spore chromatin.
Collapse
Affiliation(s)
- Jerome Govin
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA19104, USA
| | | |
Collapse
|
3
|
Morohashi N, Nakajima K, Kuwana S, Tachiwana H, Kurumizaka H, Shimizu M. In vivo and in vitro footprinting of nucleosomes and transcriptional activators using an infrared-fluorescence DNA sequencer. Biol Pharm Bull 2008; 31:187-92. [PMID: 18239271 DOI: 10.1248/bpb.31.187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The analysis of nucleosome positions and transcription factor binding in chromatin is a central issue for understanding the mechanisms of gene expression in eukaryotes. Here, we have developed a footprinting technique, using multi-cycle primer extension with an infrared-fluorescence DNA sequencer, to analyze chromatin structure in isolated yeast nuclei and transcriptional activator binding in living yeast cells. Using this technique, the binding of the yeast activators Hap1 and Hap2/3/4/5 to their cognate sites was detectable as hypersensitive sites by in vivo UV-photofootprinting, and the locations of nucleosomes in yeast minichromosomes were determined by micrococcal nuclease mapping. We also applied this method to determine the position of the nucleosome in the 5S DNA fragment reconstituted in vitro. This technique allowed us to eliminate the use of radioactive materials and to perform experiments on common benches. Thus, the footprinting procedure established in this study will be useful to researchers studying DNA-protein interactions and chromatin structure in vivo and in vitro.
Collapse
Affiliation(s)
- Nobuyuki Morohashi
- Department of Chemistry, Graduate School of Science and Engineering, Meisei University, Hino, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
4
|
Morohashi N, Nakajima K, Kurihara D, Mukai Y, Mitchell AP, Shimizu M. A nucleosome positioned by alpha2/Mcm1 prevents Hap1 activator binding in vivo. Biochem Biophys Res Commun 2007; 364:583-8. [PMID: 17959145 DOI: 10.1016/j.bbrc.2007.10.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2007] [Accepted: 10/09/2007] [Indexed: 11/24/2022]
Abstract
Nucleosome positioning has been proposed as a mechanism of transcriptional repression. Here, we examined whether nucleosome positioning affects activator binding in living yeast cells. We introduced the cognate Hap1 binding site (UAS1) at a location 24-43 bp, 29-48 bp, or 61-80 bp interior to the edge of a nucleosome positioned by alpha2/Mcm1 in yeast minichromosomes. Hap1 binding to the UAS1 was severely inhibited, not only at the pseudo-dyad but also in the peripheral region of the positioned nucleosome in alpha cells, while it was detectable in a cells, in which the nucleosomes were not positioned. Hap1 binding was restored in alpha cells with tup1 or isw2 mutations, which caused the loss of nucleosome positioning. These results support the mechanism in which alpha2/Mcm1-dependent nucleosome positioning has a regulatory function to limit the access of transcription factors.
Collapse
Affiliation(s)
- Nobuyuki Morohashi
- Department of Chemistry, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-8506, Japan
| | | | | | | | | | | |
Collapse
|
5
|
Thomas MC, Chiang CM. E6 oncoprotein represses p53-dependent gene activation via inhibition of protein acetylation independently of inducing p53 degradation. Mol Cell 2005; 17:251-64. [PMID: 15664194 DOI: 10.1016/j.molcel.2004.12.016] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2004] [Revised: 07/08/2004] [Accepted: 12/15/2004] [Indexed: 02/04/2023]
Abstract
The mechanism employed by DNA tumor viruses to inhibit p53-dependent transcription from chromatin is poorly understood. Here, we use in vitro-reconstituted chromatin and UV-irradiated cells to define the mechanism of human papillomavirus E6 oncoprotein in repressing p53-dependent transcription. We demonstrate that E6 does not prevent p53 or p300 recruitment to the chromatin but inhibits p300-mediated acetylation on p53 and nucleosomal core histones. This suppression of protein acetylation requires the E6-interacting regions of p300. Moreover, E6 mutants unable to interact with p53 or p300, but not deficient in inducing p53 degradation, fail to inhibit p53-mediated activation, indicating that a p53-E6-p300-containing protein complex is critical for repressing p53-targeted gene activation. That E6 acts as a molecular switch converting p53-p300 from an activating complex to a repressing entity on the chromatin, which occurs independently of E6AP-mediated protein degradation pathway, may represent a general mechanism for gene regulation.
Collapse
Affiliation(s)
- Mary C Thomas
- Department of Biochemistry, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | |
Collapse
|
6
|
van Dyk D, Hansson G, Pretorius IS, Bauer FF. Cellular differentiation in response to nutrient availability: The repressor of meiosis, Rme1p, positively regulates invasive growth in Saccharomyces cerevisiae. Genetics 2004; 165:1045-58. [PMID: 14668363 PMCID: PMC1462853 DOI: 10.1093/genetics/165.3.1045] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, the transition from a nutrient-rich to a nutrient-limited growth medium typically leads to the implementation of a cellular adaptation program that results in invasive growth and/or the formation of pseudohyphae. Complete depletion of essential nutrients, on the other hand, leads either to entry into a nonbudding, metabolically quiescent state referred to as G0 in haploid strains or to meiosis and sporulation in diploids. Entry into meiosis is repressed by the transcriptional regulator Rme1p, a zinc-finger-containing DNA-binding protein. In this article, we show that Rme1p positively regulates invasive growth and starch metabolism in both haploid and diploid strains by directly modifying the transcription of the FLO11 (also known as MUC1) and STA2 genes, which encode a cell wall-associated protein essential for invasive growth and a starch-degrading glucoamylase, respectively. Genetic evidence suggests that Rme1p functions independently of identified signaling modules that regulate invasive growth and of other transcription factors that regulate FLO11 and that the activation of FLO11 is dependent on the presence of a promoter sequence that shows significant homology to identified Rme1p response elements (RREs). The data suggest that Rme1p functions as a central switch between different cellular differentiation pathways.
Collapse
Affiliation(s)
- Dewald van Dyk
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, ZA-7600, South Africa
| | | | | | | |
Collapse
|
7
|
Schröder M, Clark R, Kaufman RJ. IRE1- and HAC1-independent transcriptional regulation in the unfolded protein response of yeast. Mol Microbiol 2003; 49:591-606. [PMID: 12864846 DOI: 10.1046/j.1365-2958.2003.03585.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The unfolded protein response (UPR) is a signalling pathway leading to transcriptional activation of genes that protect cells from accumulation of unfolded proteins in the lumen of the endoplasmic reticulum (ER). In yeast, the only known ER stress signalling pathway originates at the type I transmembrane protein kinase/endoribonuclease Ire1p. Ire1p regulates synthesis of the basic leucine-zipper (bZIP)-containing transcription factor Hac1p by controlling splicing of HAC1 mRNA. Only spliced HAC1 mRNA (HAC1i) is translated, and Hac1ip activates transcription of genes that contain a conserved UPR element (UPRE) in their promoters. Here, we demonstrate that in addition to this well-understood ER stress signalling pathway, a second, IRE1, HAC1 and UPRE-independent mechanism for transcriptional activation upon ER stress, exists in yeast. A genetic screen identified recessive SIN4 alleles as suppressors of a defective UPR in ire1 Delta strains. Elevation of basal transcription in sin4 strains or by tethering the RNA polymerase II holoenzyme with LexAp-holoenzyme component fusion proteins to a promoter allowed for activation of the promoter by ER stress in an IRE1, HAC1 and UPRE-independent manner. We propose that this novel second ER-to-nucleus signal transduction pathway culminates in core promoter activation (CPA) through stimulation of RNA polymerase II holoenzyme activity. Core promoter activation was observed upon diverse cellular stresses, suggesting it represents a primordial stress-induced gene activation mechanism.
Collapse
Affiliation(s)
- Martin Schröder
- Howard Hughes Medical Institute, University of Michigan Medical Center, Ann Arbor, MI, USA
| | | | | |
Collapse
|
8
|
Hanlon SE, Norris DN, Vershon AK. Depletion of H2A-H2B dimers in Saccharomyces cerevisiae triggers meiotic arrest by reducing IME1 expression and activating the BUB2-dependent branch of the spindle checkpoint. Genetics 2003; 164:1333-44. [PMID: 12930743 PMCID: PMC1462647 DOI: 10.1093/genetics/164.4.1333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, diploid strains carrying homozygous hta1-htb1Delta mutations express histone H2A-H2B dimers at a lower level than do wild-type cells. Although this mutation has only minor effects on mitotic growth, it causes an arrest in sporulation prior to the first meiotic division. In this report, we show that the hta1-htb1Delta mutant exhibits reduced expression of early and middle-sporulation-specific genes and that the meiotic arrest of the hta1-htb1Delta mutant can be partially bypassed by overexpression of IME1. Additionally, deletions of BUB2 or BFA1, components of one branch of the spindle checkpoint pathway, bypass the meiotic arrest. Mutations in the other branch of the pathway or in the pachytene checkpoint are unable to suppress the meiotic block. These observations indicate that depletion of the H2A-H2B dimer blocks sporulation by at least two mechanisms: disruption of the expression of meiotic regulatory genes and activation of the spindle checkpoint. Our results show that the failure to progress through the meiotic pathway is not the result of global chromosomal alterations but that specific aspects of meiosis are sensitive to depletion of the H2A-H2B dimer.
Collapse
Affiliation(s)
- Sean E Hanlon
- Waksman Institute of Microbiology and The Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
9
|
Shimizu M, Takahashi K, Lamb TM, Shindo H, Mitchell AP. Yeast Ume6p repressor permits activator binding but restricts TBP binding at the HOP1 promoter. Nucleic Acids Res 2003; 31:3033-7. [PMID: 12799429 PMCID: PMC162329 DOI: 10.1093/nar/gkg425] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ume6p plays essential roles in the regulation of early meiotic genes in Saccharomyces cerevisiae. Ume6p exerts repression via recruitment of the Sin3p-Rpd3p histone deacetylase and Isw2p chromatin remodeling complexes. The transcriptional step that is ultimately inhibited by Ume6p is unknown. Here, in vivo footprinting shows that transcriptional activators Hap1p and Abf1p occupy upstream sites in repressed and derepressed promoters. In contrast, chromatin immunoprecipitation shows that TATA box-binding protein (TBP)- promoter binding is reduced upon repression of HOP1. Fusion of TBP to a zinc cluster DNA binding domain relieves repression at a HOP1 promoter modified to include the zinc cluster target site. We suggest that TBP binding is inhibited through chromatin modification by the Sin3p-Rpd3p and Isw2p complexes recruited by Ume6p.
Collapse
Affiliation(s)
- Mitsuhiro Shimizu
- Department of Chemistry, Meisei University, Hino, Tokyo 191-8506, Japan.
| | | | | | | | | |
Collapse
|
10
|
Shimizu M, Mitchell AP. Hap1p photofootprinting as an in vivo assay of repression mechanism in Saccharomyces cerevisiae. Methods Enzymol 2003; 370:479-87. [PMID: 14712669 DOI: 10.1016/s0076-6879(03)70041-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Blumental-Perry A, Li W, Simchen G, Mitchell AP. Repression and activation domains of RME1p structurally overlap, but differ in genetic requirements. Mol Biol Cell 2002; 13:1709-21. [PMID: 12006664 PMCID: PMC111138 DOI: 10.1091/mbc.01-09-0468] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Rme1p, a repressor of meiosis in the yeast Saccharomyces cerevisiae, acts as both a transcriptional repressor and activator. Rme1p is a zinc-finger protein with no other homology to any protein of known function. The C-terminal DNA binding domain of Rme1p is essential for function. We find that mutations and progressive deletions in all three zinc fingers can be rescued by fusion of RME1 to the DNA binding domain of another protein. Thus, structural integrity of the zinc fingers is not required for the Rme1p-mediated effects on transcription. Using a series of mutant Rme1 proteins, we have characterized domains responsible for repression and activation. We find that the minimal transcriptional repression and activation domains completely overlap and lie in an 88-amino-acid N-terminal segment (aa 61-148). An additional transcriptional effector determinant lies in the first 31 amino acids of the protein. Notwithstanding the complete overlap between repression and activation domains of Rme1p, we demonstrated a functional difference between repression and activation: Rgr1p and Sin4p are absolutely required for repression but dispensable for activation.
Collapse
|
12
|
Shimizu M, Murase A, Hara M, Shindo H, Mitchell AP. A C-terminal segment with properties of alpha-helix is essential for DNA binding and in vivo function of zinc finger protein Rme1p. J Biol Chem 2001; 276:37680-5. [PMID: 11466318 DOI: 10.1074/jbc.m105342200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rme1p plays important roles in the control of meiosis and in cell cycle progression through binding to upstream regions of IME1 and CLN2 in Saccharomyces cerevisiae. Rme1p has three zinc finger segments, and two of them are atypical. To determine DNA binding domain of Rme1p, a series of Rme1p derivatives fused with maltose-binding protein were purified and characterized by gel mobility shift assay. We show that not only three zinc fingers, but also the neighboring C-terminal region is essential for DNA binding. Mutational analysis of this region revealed that basic residues Arg-287, Lys-290, and Arg-291 and the hydrophobic residues Phe-288, Leu-292, Ile-295, and Leu-296 are critical for DNA binding. In addition, double substitutions by proline at Asn-289 and Lys-293, each of which was not essential for DNA binding, abolished DNA binding. These results suggest that the C-terminal segment forms an amphipathic helical structure. Furthermore, it was shown that the mutations in the important basic residues abolish or impair Rme1p function in vivo for repression and inhibition of spore formation. Thus, the C-terminal segment is essential and acts as a novel accessory domain for DNA binding by zinc fingers.
Collapse
Affiliation(s)
- M Shimizu
- Department of Chemistry, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo, 191-8506 Japan.
| | | | | | | | | |
Collapse
|
13
|
Shimizu M, Mori T, Sakurai T, Shindo H. Destabilization of nucleosomes by an unusual DNA conformation adopted by poly(dA) small middle dotpoly(dT) tracts in vivo. EMBO J 2000; 19:3358-65. [PMID: 10880448 PMCID: PMC313933 DOI: 10.1093/emboj/19.13.3358] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Poly(dA) small middle dotpoly(dT) tracts are common and often found upstream of genes in eukaryotes. It has been suggested that poly(dA) small middle dotpoly(dT) promotes transcription in vivo by affecting nucleosome formation. On the other hand, in vitro studies show that poly(dA) small middle dotpoly(dT) can be easily incorporated into nucleosomes. Therefore, the roles of these tracts in nucleosome organization in vivo remain to be established. We have developed an assay system that can evaluate nucleosome formation in yeast cells, and demonstrated that relatively longer tracts such as A(15)TATA(16) and A(34) disrupt an array of positioned nucleosomes, whereas a shorter A(5)TATA(4) tract is incorporated in positioned nucleosomes of yeast minichromosomes. Thus, nucleosomes are destabilized by poly(dA) small middle dotpoly(dT) in vivo in a length-dependent manner. Furthermore, in vivo UV footprinting revealed that the longer tracts adopt an unusual DNA structure in yeast cells that corresponds to the B' conformation described in vitro. Our results support a mechanism in which a unique poly(dA) small middle dot poly(dT) conformation presets chromatin structure to which transcription factors are accessible.
Collapse
Affiliation(s)
- M Shimizu
- Department of Chemistry, Meisei University, Hino, Tokyo 191-8506 and School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo 192-0392, Japan.
| | | | | | | |
Collapse
|
14
|
Martin ME, Berk AJ. Corepressor required for adenovirus E1B 55,000-molecular-weight protein repression of basal transcription. Mol Cell Biol 1999; 19:3403-14. [PMID: 10207064 PMCID: PMC84133 DOI: 10.1128/mcb.19.5.3403] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenovirus E1B 55,000-molecular-weight protein (55K) binds to host cell p53, stabilizing it, greatly increasing its affinity for its cognate DNA-binding site, and converting it from a regulated activator to a constitutive repressor. Here we analyzed the mechanism of repression by the p53-E1B 55K complex. E1B 55K repression requires that 55K be tethered to the promoter by binding directly to DNA-bound p53. Transcription from an assembled, p53-activated preinitiation complex was not repressed by the subsequent addition of E1B 55K, suggesting that either sites of 55K interaction with p53 or targets of 55K in the preinitiation complex are blocked. Specific E1B 55K repression was observed in reactions lacking TFIIA and with recombinant TATA-binding protein in place of TFIID, conditions under which p53 does not activate transcription. Thus, E1B 55K does not simply inhibit a p53-specific activation mechanism but rather blocks basal transcription. As a consequence, E1B 55K may repress transcription from any promoter with an associated p53-binding site, no matter what other activators associate with the promoter. E1B 55K did not repress basal transcription in reactions with recombinant and highly purified general transcription factors and RNA polymerase II but rather required a corepressor that copurifies with the polymerase.
Collapse
Affiliation(s)
- M E Martin
- Molecular Biology Institute and Department of Microbiology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095-1570, USA
| | | |
Collapse
|
15
|
Song W, Carlson M. Srb/mediator proteins interact functionally and physically with transcriptional repressor Sfl1. EMBO J 1998; 17:5757-65. [PMID: 9755175 PMCID: PMC1170903 DOI: 10.1093/emboj/17.19.5757] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Srb/mediator proteins that are associated with RNA polymerase II holoenzyme have been implicated in transcriptional repression in Saccharomyces cerevisiae. We show here that the defect in repression of SUC2 caused by mutation of SRB8, SRB9, SRB11, SIN4 or ROX3 is suppressed by increased dosage of the SFL1 gene, and the genetic behavior of the sfl1Delta mutation provides further evidence for a functional relationship. Sfl1 acts on SUC2 through a repression site located immediately 5' to the TATA box, and Sfl1 binds this DNA sequence in vitro. Moreover, LexA-Sfl1 represses transcription of a reporter, and repression is reduced in an srb9 mutant. Finally, we show that Sfl1 co-immunoprecipitates from cell extracts with Srb9, Srb11, Sin4 and Rox3. We propose that Sfl1, when bound to its site, interacts with Srb/mediator proteins to inhibit transcription by RNA polymerase II holoenzyme.
Collapse
Affiliation(s)
- W Song
- Departments of Genetics and Development, Columbia University, 701 W. 168th St., New York, NY 10032, USA
| | | |
Collapse
|
16
|
Shimizu M, Li W, Covitz PA, Hara M, Shindo H, Mitchell AP. Genomic footprinting of the yeast zinc finger protein Rme1p and its roles in repression of the meiotic activator IME1. Nucleic Acids Res 1998; 26:2329-36. [PMID: 9580682 PMCID: PMC147578 DOI: 10.1093/nar/26.10.2329] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The zinc finger protein Rme1p is a negative regulator of the meiotic activator IME1 in Saccharomyces cerevisiae . Prior studies have shown that Rme1p binds in vitro to a site near nt -2030 in the IME1 upstream region, but a genomic mutation in that site has little effect on repression of IME1 . To identify Rme1p binding sites in vivo , we have examined the binding of Rme1p to genomic sites through in vivo footprinting. We show that Rme1p binds to two sites in the IME1 upstream region, near nt -1950 and -2030. Mutations in both binding sites abolish repression of chromosomal IME1 by Rme1p, whereas a mutation in either single site causes partial derepression. Therefore, both Rme1p binding sites are essential for repression of IME1 . Prior studies have shown that repression by Rme1p depends upon RGR1 and SIN4 , which specify RNA polymerase II mediator subunits that are required for normal nucleosome density. We find that RGR1 and SIN4 are not simply required for Rme1p to bind to DNA in vivo . These results suggest that Rme1p functions directly as a repressor of IME1 and that Rgr1p and Sin4p are required for DNA-bound Rme1p to exert repression.
Collapse
Affiliation(s)
- M Shimizu
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | | | | | | | | | | |
Collapse
|
17
|
Ogbourne S, Antalis TM. Transcriptional control and the role of silencers in transcriptional regulation in eukaryotes. Biochem J 1998; 331 ( Pt 1):1-14. [PMID: 9512455 PMCID: PMC1219314 DOI: 10.1042/bj3310001] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mechanisms controlling transcription and its regulation are fundamental to our understanding of molecular biology and, ultimately, cellular biology. Our knowledge of transcription initiation and integral factors such as RNA polymerase is considerable, and more recently our understanding of the involvement of enhancers and complexes such as holoenzyme and mediator has increased dramatically. However, an understanding of transcriptional repression is also essential for a complete understanding of promoter structure and the regulation of gene expression. Transcriptional repression in eukaryotes is achieved through 'silencers', of which there are two types, namely 'silencer elements' and 'negative regulatory elements' (NREs). Silencer elements are classical, position-independent elements that direct an active repression mechanism, and NREs are position-dependent elements that direct a passive repression mechanism. In addition, 'repressors' are DNA-binding trasncription factors that interact directly with silencers. A review of the recent literature reveals that it is the silencer itself and its context within a given promoter, rather than the interacting repressor, that determines the mechanism of repression. Silencers form an intrinsic part of many eukaryotic promoters and, consequently, knowledge of their interactive role with enchancers and other transcriptional elements is essential for our understanding of gene regulation in eukaryotes.
Collapse
Affiliation(s)
- S Ogbourne
- Queensland Cancer Fund Experimental Oncology Program, The Queensland Institute of Medical Research, Brisbane, 4029 Queensland, Australia
| | | |
Collapse
|
18
|
Carlson M. Genetics of transcriptional regulation in yeast: connections to the RNA polymerase II CTD. Annu Rev Cell Dev Biol 1998; 13:1-23. [PMID: 9442866 DOI: 10.1146/annurev.cellbio.13.1.1] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transcriptional regulation is important in all eukaryotic organisms for cell growth, development, and responses to environmental change. Saccharomyces cerevisiae, or bakers' yeast, has provided a powerful system for genetic analysis of transcriptional regulation, and findings from the study of this model system have proven broadly applicable to higher organisms. Transcriptional regulation requires the interactions of regulatory proteins with various components of the transcription machinery. Recently, genetic analysis of a diverse set of transcriptional regulatory responses has converged with studies of the function of the RNA polymerase II carboxy-terminal domain (CTD) to reveal regulatory roles for proteins associated with the CTD. These proteins, designated Srb/mediator proteins, are broadly involved in both positive and negative regulatory responses in vivo. This review focuses on the connections between genetic analysis of transcriptional regulation and the functions of the Srb/mediator proteins associated with the RNA polymerase II CTD.
Collapse
Affiliation(s)
- M Carlson
- Department of Genetics, Columbia University, New York, New York 10032, USA.
| |
Collapse
|
19
|
Huang L, Zhang W, Roth SY. Amino termini of histones H3 and H4 are required for a1-alpha2 repression in yeast. Mol Cell Biol 1997; 17:6555-62. [PMID: 9343419 PMCID: PMC232509 DOI: 10.1128/mcb.17.11.6555] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Saccharomyces cerevisiae alpha2 repressor controls two classes of cell-type-specific genes in yeast through association with different partners. alpha2-Mcm1 complexes repress a cell-specific gene expression in haploid alpha cells and diploid a/alpha cells, while a1-alpha2 complexes repress haploid-specific genes in diploid cells. In both cases, repression is mediated through Ssn6-Tu1 corepressor complexes that are recruited via direct interactions with alpha2. We have previously shown that nucleosomes are positioned adjacent to the alpha2-Mcm1 operator under conditions of repression and that Tupl interacts directly with histones H3 and H4. Here, we examine the role of chromatin in a1-alpha2 repression to determine if chromatin is a general feature of repression by Ssn6-Tup1. We find that mutations in the amino terminus of histone H4 cause a 4- to 11-fold derepression of a reporter gene under a1-alpha2 control, while truncation of the H3 amino terminus has a more modest (3-fold or less) effect. Strikingly, combination of the H3 truncation with an H4 mutation causes a 40-fold decrease in repression, clearly indicating a central role for these histones in a1-alpha2-mediated repression. However, in contrast to the ordered positioning of nucleosomes adjacent to the alpha2-Mcm1 operator, nucleosomes are not positioned adjacent to the a1-alpha2 operator in diploid cells. Our data indicate that chromatin is important to Ssn6-Tup1-mediated repression but that the degrees of chromatin organization directed by these proteins differ at different promoters.
Collapse
Affiliation(s)
- L Huang
- Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Houston 77030, USA
| | | | | |
Collapse
|