1
|
Abstract
This chronologue seeks to document the discovery and development of an understanding of oligomeric ring protein assemblies known as chaperonins that assist protein folding in the cell. It provides detail regarding genetic, physiologic, biochemical, and biophysical studies of these ATP-utilizing machines from both in vivo and in vitro observations. The chronologue is organized into various topics of physiology and mechanism, for each of which a chronologic order is generally followed. The text is liberally illustrated to provide firsthand inspection of the key pieces of experimental data that propelled this field. Because of the length and depth of this piece, the use of the outline as a guide for selected reading is encouraged, but it should also be of help in pursuing the text in direct order.
Collapse
|
2
|
Evolutionarily Related Dihydrofolate Reductases Perform Coequal Functions Yet Show Divergence in Their Trajectories. Protein J 2018; 37:301-310. [PMID: 30019321 DOI: 10.1007/s10930-018-9784-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The enzyme dihydrofolate reductase (DHFR) catalyzes NADPH dependent reduction of dihydrofolate to tetrahydrofolate. It plays a crucial role in the DNA synthesis. The investigation of evolution of DHFR generates immense curiosity. It aids in predicting how the enzyme has adapted to the surroundings of various cell types. In spite of great similarity in the structure of E. coli DHFR and human DHFR, their primary sequences are divergent to a great extent, which is evident in variations in the kinetics mechanism of their catalysis. In presence of physiological levels of ligands, they possess distinct kinetics and different rate limiting steps. We have reviewed the process of their unfolding and refolding, their behaviour in denaturing conditions and in presence of various chaperones. Although there is structural similarity between these two homologous enzymes yet they have established distinct mechanisms to accomplish the coequal functions.
Collapse
|
3
|
Ansari MY, Mande SC. A Glimpse Into the Structure and Function of Atypical Type I Chaperonins. Front Mol Biosci 2018; 5:31. [PMID: 29696145 PMCID: PMC5904260 DOI: 10.3389/fmolb.2018.00031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/21/2018] [Indexed: 12/22/2022] Open
Abstract
Chaperonins are a subclass of molecular chaperones that assist cellular proteins to fold and assemble into their native shape. Much work has been done on Type I chaperonins, which has elucidated their elegant mechanism. Some debate remains about the details in these mechanisms, but nonetheless the roles of these in helping protein folding have been understood in great depth. In this review we discuss the known functions of atypical Type I chaperonins, highlighting evolutionary aspects that might lead chaperonins to perform alternate functions.
Collapse
|
4
|
Groitl B, Horowitz S, Makepeace KAT, Petrotchenko EV, Borchers CH, Reichmann D, Bardwell JCA, Jakob U. Protein unfolding as a switch from self-recognition to high-affinity client binding. Nat Commun 2016; 7:10357. [PMID: 26787517 PMCID: PMC4735815 DOI: 10.1038/ncomms10357] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/02/2015] [Indexed: 01/20/2023] Open
Abstract
Stress-specific activation of the chaperone Hsp33 requires the unfolding of a central linker region. This activation mechanism suggests an intriguing functional relationship between the chaperone's own partial unfolding and its ability to bind other partially folded client proteins. However, identifying where Hsp33 binds its clients has remained a major gap in our understanding of Hsp33's working mechanism. By using site-specific Fluorine-19 nuclear magnetic resonance experiments guided by in vivo crosslinking studies, we now reveal that the partial unfolding of Hsp33's linker region facilitates client binding to an amphipathic docking surface on Hsp33. Furthermore, our results provide experimental evidence for the direct involvement of conditionally disordered regions in unfolded protein binding. The observed structural similarities between Hsp33's own metastable linker region and client proteins present a possible model for how Hsp33 uses protein unfolding as a switch from self-recognition to high-affinity client binding. Under stress conditions the molecular chaperone Hsp33 is activated to process unfolded proteins. Here, the authors use in vivo and in vitro crosslinking and 19F-NMR to elucidate the binding site for misfolded proteins and are able to propose a model for its mechanism of action.
Collapse
Affiliation(s)
- Bastian Groitl
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N-University Avenue, Ann Arbor, Michigan 48109-1048, USA
| | - Scott Horowitz
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N-University Avenue, Ann Arbor, Michigan 48109-1048, USA.,Howard Hughes Medical Institute, University of Michigan, 830 N-University Avenue, Ann Arbor, Michigan 48109-1048, USA
| | - Karl A T Makepeace
- Department of Biochemistry and Microbiology, Genome BC Proteomics Centre, University of Victoria, 4464 Markham Street #3101, Victoria, British Columbia, Canada V8Z5N3
| | - Evgeniy V Petrotchenko
- Department of Biochemistry and Microbiology, Genome BC Proteomics Centre, University of Victoria, 4464 Markham Street #3101, Victoria, British Columbia, Canada V8Z5N3
| | - Christoph H Borchers
- Department of Biochemistry and Microbiology, Genome BC Proteomics Centre, University of Victoria, 4464 Markham Street #3101, Victoria, British Columbia, Canada V8Z5N3
| | - Dana Reichmann
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N-University Avenue, Ann Arbor, Michigan 48109-1048, USA
| | - James C A Bardwell
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N-University Avenue, Ann Arbor, Michigan 48109-1048, USA.,Howard Hughes Medical Institute, University of Michigan, 830 N-University Avenue, Ann Arbor, Michigan 48109-1048, USA
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N-University Avenue, Ann Arbor, Michigan 48109-1048, USA
| |
Collapse
|
5
|
Decoding Structural Properties of a Partially Unfolded Protein Substrate: En Route to Chaperone Binding. PLoS Comput Biol 2015; 11:e1004496. [PMID: 26394388 PMCID: PMC4578939 DOI: 10.1371/journal.pcbi.1004496] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 08/03/2015] [Indexed: 11/23/2022] Open
Abstract
Many proteins comprising of complex topologies require molecular chaperones to achieve their unique three-dimensional folded structure. The E.coli chaperone, GroEL binds with a large number of unfolded and partially folded proteins, to facilitate proper folding and prevent misfolding and aggregation. Although the major structural components of GroEL are well defined, scaffolds of the non-native substrates that determine chaperone-mediated folding have been difficult to recognize. Here we performed all-atomistic and replica-exchange molecular dynamics simulations to dissect non-native ensemble of an obligate GroEL folder, DapA. Thermodynamics analyses of unfolding simulations revealed populated intermediates with distinct structural characteristics. We found that surface exposed hydrophobic patches are significantly increased, primarily contributed from native and non-native β-sheet elements. We validate the structural properties of these conformers using experimental data, including circular dichroism (CD), 1-anilinonaphthalene-8-sulfonic acid (ANS) binding measurements and previously reported hydrogen-deutrium exchange coupled to mass spectrometry (HDX-MS). Further, we constructed network graphs to elucidate long-range intra-protein connectivity of native and intermediate topologies, demonstrating regions that serve as central “hubs”. Overall, our results implicate that genomic variations (or mutations) in the distinct regions of protein structures might disrupt these topological signatures disabling chaperone-mediated folding, leading to formation of aggregates. Several non-native proteins require molecular chaperones for proper folding. Many unfolded proteins if not folded accurately, become causal factors in various types of misfolding or aggregation induced diseases such as Alzheimer′s, Huntington′s and several other neurodegenerative disorders. However, structural information of non-folded proteins especially chaperone-dependent proteins is difficult to probe experimentally due to their inherent aggregation propensities. In this work, we study DapA protein, which exhibits obligate requirement on GroEL chaperonin machinery for its folding. We use molecular dynamics simulations to reveal populated intermediate structures of DapA in atomic details. The most plausible intermediate was found to be in agreement with recently reported hydrogen-exchange experimental data. Significant increase in surface exposed hydrophobicity was observed in intermediates compared to native, which was further validated using ANS binding experiments. We also constructed network model of these intermediates that provides remarkable insights into stable hubs (or important residues) underlying diverse states of unfolded proteins. In summary, our work provides a molecular picture of an unfolded protein that is en route to chaperone binding, and these underlying structural properties might act as a molecular signal for their productive folding.
Collapse
|
6
|
Burmann BM, Hiller S. Chaperones and chaperone-substrate complexes: Dynamic playgrounds for NMR spectroscopists. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 86-87:41-64. [PMID: 25919198 DOI: 10.1016/j.pnmrs.2015.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 05/20/2023]
Abstract
The majority of proteins depend on a well-defined three-dimensional structure to obtain their functionality. In the cellular environment, the process of protein folding is guided by molecular chaperones to avoid misfolding, aggregation, and the generation of toxic species. To this end, living cells contain complex networks of molecular chaperones, which interact with substrate polypeptides by a multitude of different functionalities: transport them towards a target location, help them fold, unfold misfolded species, resolve aggregates, or deliver them towards a proteolysis machinery. Despite the availability of high-resolution crystal structures of many important chaperones in their substrate-free apo forms, structural information about how substrates are bound by chaperones and how they are protected from misfolding and aggregation is very sparse. This lack of information arises from the highly dynamic nature of chaperone-substrate complexes, which so far has largely hindered their crystallization. This highly dynamic nature makes chaperone-substrate complexes good targets for NMR spectroscopy. Here, we review the results achieved by NMR spectroscopy to understand chaperone function in general and details of chaperone-substrate interactions in particular. We assess the information content and applicability of different NMR techniques for the characterization of chaperones and chaperone-substrate complexes. Finally, we highlight three recent studies, which have provided structural descriptions of chaperone-substrate complexes at atomic resolution.
Collapse
Affiliation(s)
- Björn M Burmann
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| |
Collapse
|
7
|
Weaver J, Rye HS. The C-terminal tails of the bacterial chaperonin GroEL stimulate protein folding by directly altering the conformation of a substrate protein. J Biol Chem 2014; 289:23219-23232. [PMID: 24970895 DOI: 10.1074/jbc.m114.577205] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many essential cellular proteins fold only with the assistance of chaperonin machines like the GroEL-GroES system of Escherichia coli. However, the mechanistic details of assisted protein folding by GroEL-GroES remain the subject of ongoing debate. We previously demonstrated that GroEL-GroES enhances the productive folding of a kinetically trapped substrate protein through unfolding, where both binding energy and the energy of ATP hydrolysis are used to disrupt the inhibitory misfolded states. Here, we show that the intrinsically disordered yet highly conserved C-terminal sequence of the GroEL subunits directly contributes to substrate protein unfolding. Interactions between the C terminus and the non-native substrate protein alter the binding position of the substrate protein on the GroEL apical surface. The C-terminal tails also impact the conformational state of the substrate protein during capture and encapsulation on the GroEL ring. Importantly, removal of the C termini results in slower overall folding, reducing the fraction of the substrate protein that commits quickly to a productive folding pathway and slowing several kinetically distinct folding transitions that occur inside the GroEL-GroES cavity. The conserved C-terminal tails of GroEL are thus important for protein folding from the beginning to the end of the chaperonin reaction cycle.
Collapse
Affiliation(s)
- Jeremy Weaver
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Hays S Rye
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843.
| |
Collapse
|
8
|
Mande SC, Kumar CMS, Sharma A. Evolution of Bacterial Chaperonin 60 Paralogues and Moonlighting Activity. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-94-007-6787-4_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
9
|
Yagi-Utsumi M, Kunihara T, Nakamura T, Uekusa Y, Makabe K, Kuwajima K, Kato K. NMR characterization of the interaction of GroEL with amyloid β as a model ligand. FEBS Lett 2013; 587:1605-9. [PMID: 23603391 DOI: 10.1016/j.febslet.2013.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/14/2013] [Accepted: 04/05/2013] [Indexed: 10/26/2022]
Abstract
Here we report an NMR study on the substrate interaction modes of GroEL using amyloid β (Aβ) as a model ligand. We found that GroEL could suppress Aβ(1-40) amyloid formation by interacting with its two hydrophobic segments Leu17-Ala21 and Ala30-Val36, which involve key residues in fibril formation. The binding site of Aβ(1-40) was mapped on a pair of α-helices located in the GroEL apical domain. These results provide insights into chaperonin recognition of amyloidogenic proteins of pathological interest.
Collapse
Affiliation(s)
- Maho Yagi-Utsumi
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Myodaiji, Okazaki, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Owenius R, Jarl A, Jonsson BH, Carlsson U, Hammarström P. GroEL-induced topological dislocation of a substrate protein β-sheet core: a solution EPR spin-spin distance study. J Chem Biol 2010; 3:127-39. [PMID: 21479077 DOI: 10.1007/s12154-010-0038-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 03/12/2010] [Indexed: 10/19/2022] Open
Abstract
The Hsp60-type chaperonin GroEL assists in the folding of the enzyme human carbonic anhydrase II (HCA II) and protects it from aggregation. This study was aimed to monitor conformational rearrangement of the substrate protein during the initial GroEL capture (in the absence of ATP) of the thermally unfolded HCA II molten-globule. Single- and double-cysteine mutants were specifically spin-labeled at a topological breakpoint in the β-sheet rich core of HCA II, where the dominating antiparallel β-sheet is broken and β-strands 6 and 7 are parallel. Electron paramagnetic resonance (EPR) was used to monitor the GroEL-induced structural changes in this region of HCA II during thermal denaturation. Both qualitative analysis of the EPR spectra and refined inter-residue distance calculations based on magnetic dipolar interaction show that the spin-labeled positions F147C and K213C are in proximity in the native state of HCA II at 20 °C (as close as ∼8 Å), and that this local structure is virtually intact in the thermally induced molten-globule state that binds to GroEL. In the absence of GroEL, the molten globule of HCA II irreversibly aggregates. In contrast, a substantial increase in spin-spin distance (up to >20 Å) was observed within minutes, upon interaction with GroEL (at 50 and 60 °C), which demonstrates a GroEL-induced conformational change in HCA II. The GroEL binding-induced disentanglement of the substrate protein core at the topological break-point is likely a key event for rearrangement of this potent aggregation initiation site, and hence, this conformational change averts HCA II misfolding.
Collapse
|
11
|
Jewett AI, Shea JE. Reconciling theories of chaperonin accelerated folding with experimental evidence. Cell Mol Life Sci 2010; 67:255-76. [PMID: 19851829 PMCID: PMC11115962 DOI: 10.1007/s00018-009-0164-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 09/14/2009] [Accepted: 09/25/2009] [Indexed: 10/20/2022]
Abstract
For the last 20 years, a large volume of experimental and theoretical work has been undertaken to understand how chaperones like GroEL can assist protein folding in the cell. The most accepted explanation appears to be the simplest: GroEL, like most other chaperones, helps proteins fold by preventing aggregation. However, evidence suggests that, under some conditions, GroEL can play a more active role by accelerating protein folding. A large number of models have been proposed to explain how this could occur. Focused experiments have been designed and carried out using different protein substrates with conclusions that support many different mechanisms. In the current article, we attempt to see the forest through the trees. We review all suggested mechanisms for chaperonin-mediated folding and weigh the plausibility of each in light of what we now know about the most stringent, essential, GroEL-dependent protein substrates.
Collapse
Affiliation(s)
- Andrew I. Jewett
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106 USA
- Department of Physics, University of California, Santa Barbara, CA 93106 USA
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106 USA
- Department of Physics, University of California, Santa Barbara, CA 93106 USA
| |
Collapse
|
12
|
Chaperonin-mediated protein folding: using a central cavity to kinetically assist polypeptide chain folding. Q Rev Biophys 2009; 42:83-116. [PMID: 19638247 DOI: 10.1017/s0033583509004764] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The chaperonin ring assembly GroEL provides kinetic assistance to protein folding in the cell by binding non-native protein in the hydrophobic central cavity of an open ring and subsequently, upon binding ATP and the co-chaperonin GroES to the same ring, releasing polypeptide into a now hydrophilic encapsulated cavity where productive folding occurs in isolation. The fate of polypeptide during binding, encapsulation, and folding in the chamber has been the subject of recent experimental studies and is reviewed and considered here. We conclude that GroEL, in general, behaves passively with respect to its substrate proteins during these steps. While binding appears to be able to rescue non-native polypeptides from kinetic traps, such rescue is most likely exerted at the level of maximizing hydrophobic contact, effecting alteration of the topology of weakly structured states. Encapsulation does not appear to involve 'forced unfolding', and if anything, polypeptide topology is compacted during this step. Finally, chamber-mediated folding appears to resemble folding in solution, except that major kinetic complications of multimolecular association are prevented.
Collapse
|
13
|
Patra AK, Udgaonkar JB. GroEL Can Unfold Late Intermediates Populated on the Folding Pathways of Monellin. J Mol Biol 2009; 389:759-75. [DOI: 10.1016/j.jmb.2009.04.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 04/10/2009] [Accepted: 04/20/2009] [Indexed: 10/20/2022]
|
14
|
Horst R, Fenton WA, Englander SW, Wüthrich K, Horwich AL. Folding trajectories of human dihydrofolate reductase inside the GroEL GroES chaperonin cavity and free in solution. Proc Natl Acad Sci U S A 2007; 104:20788-92. [PMID: 18093916 PMCID: PMC2410080 DOI: 10.1073/pnas.0710042105] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Indexed: 11/18/2022] Open
Abstract
The chaperonin GroEL binds non-native polypeptides in an open ring via hydrophobic contacts and then, after ATP and GroES binding to the same ring as polypeptide, mediates productive folding in the now hydrophilic, encapsulated cis chamber. The nature of the folding reaction in the cis cavity remains poorly understood. In particular, it is unclear whether polypeptides take the same route to the native state in this cavity as they do when folding spontaneously free in solution. Here, we have addressed this question by using NMR measurements of the time course of acquisition of amide proton exchange protection of human dihydrofolate reductase (DHFR) during folding in the presence of methotrexate and ATP either free in solution or inside the stable cavity formed between a single ring variant of GroEL, SR1, and GroES. Recovery of DHFR refolded by the SR1/GroES-mediated reaction is 2-fold higher than in the spontaneous reaction. Nevertheless, DHFR folding was found to proceed by the same trajectories inside the cis folding chamber and free in solution. These observations are consistent with the description of the chaperonin chamber as an "Anfinsen cage" where polypeptide folding is determined solely by the amino acid sequence, as it is in solution. However, if misfolding occurs in the confinement of the chaperonin cavity, the polypeptide chain cannot undergo aggregation but rather finds its way back to a productive pathway in a manner that cannot be accomplished in solution, resulting in the observed high overall recovery.
Collapse
Affiliation(s)
| | - Wayne A. Fenton
- Department of Molecular Biology and
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510
| | - S. Walter Englander
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Kurt Wüthrich
- Department of Molecular Biology and
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Arthur L. Horwich
- Department of Molecular Biology and
- Howard Hughes Medical Institute and
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510
| |
Collapse
|
15
|
Elad N, Farr GW, Clare DK, Orlova EV, Horwich AL, Saibil HR. Topologies of a substrate protein bound to the chaperonin GroEL. Mol Cell 2007; 26:415-26. [PMID: 17499047 PMCID: PMC1885994 DOI: 10.1016/j.molcel.2007.04.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 03/19/2007] [Accepted: 04/04/2007] [Indexed: 12/22/2022]
Abstract
The chaperonin GroEL assists polypeptide folding through sequential steps of binding nonnative protein in the central cavity of an open ring, via hydrophobic surfaces of its apical domains, followed by encapsulation in a hydrophilic cavity. To examine the binding state, we have classified a large data set of GroEL binary complexes with nonnative malate dehydrogenase (MDH), imaged by cryo-electron microscopy, to sort them into homogeneous subsets. The resulting electron density maps show MDH associated in several characteristic binding topologies either deep inside the cavity or at its inlet, contacting three to four consecutive GroEL apical domains. Consistent with visualization of bound polypeptide distributed over many parts of the central cavity, disulfide crosslinking could be carried out between a cysteine in a bound substrate protein and cysteines substituted anywhere inside GroEL. Finally, substrate binding induced adjustments in GroEL itself, observed mainly as clustering together of apical domains around sites of substrate binding.
Collapse
Affiliation(s)
- Nadav Elad
- Department of Crystallography, Birkbeck College London, Malet Street, London WC1E 7HX, UK
| | - George W. Farr
- Department of Genetics, Yale University School of Medicine, Boyer Center, 295 Congress Avenue, New Haven, CT 06510, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, Boyer Center, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Daniel K. Clare
- Department of Crystallography, Birkbeck College London, Malet Street, London WC1E 7HX, UK
| | - Elena V. Orlova
- Department of Crystallography, Birkbeck College London, Malet Street, London WC1E 7HX, UK
| | - Arthur L. Horwich
- Department of Genetics, Yale University School of Medicine, Boyer Center, 295 Congress Avenue, New Haven, CT 06510, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, Boyer Center, 295 Congress Avenue, New Haven, CT 06510, USA
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Helen R. Saibil
- Department of Crystallography, Birkbeck College London, Malet Street, London WC1E 7HX, UK
- Corresponding author
| |
Collapse
|
16
|
Park ES, Fenton WA, Horwich AL. Disulfide formation as a probe of folding in GroEL-GroES reveals correct formation of long-range bonds and editing of incorrect short-range ones. Proc Natl Acad Sci U S A 2007; 104:2145-50. [PMID: 17283341 PMCID: PMC1793900 DOI: 10.1073/pnas.0610989104] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The chaperonin GroEL assists protein folding by binding nonnative forms through exposed hydrophobic surfaces in an open ring and mediating productive folding in an encapsulated hydrophilic chamber formed when it binds GroES. Little is known about the topology of nonnative proteins during folding inside the GroEL-GroES cis chamber. Here, we have monitored topology employing disulfide bond formation of a secretory protein, trypsinogen (TG), that behaves in vitro as a stringent, GroEL-GroES-requiring substrate. Inside the long-lived cis chamber formed by SR1, a single-ring version of GroEL, complexed with GroES, we observed an ordered formation of disulfide bonds. First, short-range disulfides relative to the primary structure formed, both native and nonnative. Next, the two long-range native disulfides that "pin" the two beta-barrel domains together formed. Notably, no long-range nonnative bonds were ever observed, suggesting that a native-like long-range topology is favored. At both this time and later, however, the formation of several medium-range nonnative bonds mapping to one of the beta-barrels was observed, reflecting that the population of local nonnative structure can occur even within the cis cavity. Yet both these and the short-range nonnative bonds were ultimately "edited" to native, as evidenced by the nearly complete recovery of native TG. We conclude that folding in the GroEL-GroES cavity can favor the formation of a native-like topology, here involving the proper apposition of the two domains of TG; but it also involves an ATP-independent conformational "editing" of locally incorrect structures produced during the dwell time in the cis cavity.
Collapse
Affiliation(s)
- Eun Sun Park
- *Department of Genetics and
- Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT 06510; and
| | | | - Arthur L. Horwich
- *Department of Genetics and
- Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT 06510; and
- Scripps Research Institute, La Jolla, CA 92037
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
17
|
Abstract
Protein folding is a spontaneous process that is essential for life, yet the concentrated and complex interior of a cell is an inherently hostile environment for the efficient folding of many proteins. Some proteins-constrained by sequence, topology, size, and function-simply cannot fold by themselves and are instead prone to misfolding and aggregation. This problem is so deeply entrenched that a specialized family of proteins, known as molecular chaperones, evolved to assist in protein folding. Here we examine one essential class of molecular chaperones, the large, oligomeric, and energy utilizing chaperonins or Hsp60s. The bacterial chaperonin GroEL, along with its co-chaperonin GroES, is probably the best-studied example of this family of protein-folding machine. In this review, we examine some of the general properties of proteins that do not fold well in the absence of GroEL and then consider how folding of these proteins is enhanced by GroEL and GroES. Recent experimental and theoretical studies suggest that chaperonins like GroEL and GroES employ a combination of protein isolation, unfolding, and conformational restriction to drive protein folding under conditions where it is otherwise not possible.
Collapse
Affiliation(s)
- Zong Lin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
18
|
Affiliation(s)
- Arthur L Horwich
- Department of Genetics and Howard Hughes Medical Institute, Yale School of Medicine, Boyer Center, 295 Congress Avenue, New Haven, Connecticut 06510, USA.
| | | | | |
Collapse
|
19
|
Abstract
Chaperonin-mediated protein folding is complex. There have been diverse results on folding behavior, and the chaperonin molecules have been investigated as enhancing or retarding the folding rate. To understand the diversity of chaperonin-mediated protein folding, we report a study based on simulations using a simplified Gō-type model. By considering effects of affinity between the substrate protein and the chaperonin wall and spatial confinement of the chaperonin cavity, we study the thermodynamics and kinetics of folding of an unfrustrated substrate protein encapsulated in a chaperonin cavity. The affinity makes the hydrophobic residues of the protein bind to the chaperonin wall, and a strong (or weak) affinity results in a large (or small) effect of binding. Compared with the folding in bulk, the folding in chaperonin cavity with different strengths of affinity shows two kinds of behaviors: one with less dependence on the affinity but more reliance on the spatial confinement effect and the other relying strongly on the affinity. It is found that the enhancement or retardation of the folding rate depends on the competition between the spatial confinement and the affinity due to the chaperonin cavity, and a strong affinity produces a slow folding while a weak affinity induces a fast folding. The crossover between two kinds of folding behaviors happens in the case that the favorable effect of confinement is balanced by the unfavorable effect of the affinity, and a critical affinity strength is roughly defined. By analyzing the contacts formed between the residues of the protein and the chaperonin wall and between the residues of the protein themselves, the role of the affinity in the folding processes is studied. The binding of the residues with the chaperonin wall reduces the formation of both native contacts and nonnative contact or mis-contacts, providing a loose structure for further folding after allosteric change of the chaperonin cavity. In addition, 15 single-site-mutated mutants are simulated in order to test the validity of our model and to investigate the importance of affinity. Inspiringly, our results of the folding rates have a good correlation with those obtained from experiments. The folding rates are inversely correlated with the strength of the binding interactions, i.e., the weaker the binding, the faster the folding. We also find that the inner hydrophobic residues have larger effects on the folding kinetics than those of the exterior hydrophobic residues. We suggest that, besides the confinement effect, the affinity acts as another important factor to affect the folding of the substrate proteins in chaperonin systems, providing an understanding of the folding mechanism of the molecular chaperonin systems.
Collapse
Affiliation(s)
- Wei-Xin Xu
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China
| | | | | |
Collapse
|
20
|
Berezov A, McNeill MJ, Iriarte A, Martinez-Carrion M. Electron Paramagnetic Resonance and Fluorescence Studies of the Conformation of Aspartate Aminotransferase Bound to GroEL. Protein J 2005; 24:465-78. [PMID: 16328739 DOI: 10.1007/s10930-005-7642-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The interaction of the precursor to mitochondrial aspartate aminotransferase (pmAAT) with GroEL has been studied by electron paramagnetic resonance (EPR) and fluorescence spectroscopy. In the native protein, the spin probe was immobilized when attached to Cys166 at the domain interface, but was fully mobile when introduced at Cys(-19) in the N-terminal presequence peptide. Unfolding of the protein resulted in a highly mobile EPR spectrum for probes introduced at either site. However, the nitroxide group in GroEL-bound pmAAT showed either intermediate or high mobility depending on the spin probe used. Power saturation experiments indicated that the accessibility of the nitroxide side chain to Ni(EDDA) in the GroEL-pmAAT complex was higher than in the native state when in position 166 but lower when at position -19. Similar results were obtained in fluorescence quenching experiments. These data suggest that GroEL binds partly folded states of pmAAT with the presequence peptide probably in direct contact with GroEL. GroES and ATP, but not AMP-PNP or ADP, support refolding of pmAAT. During refolding, the rate of recovery of the native spectroscopic properties of labeled Cys166 is nearly identical to the rate-limiting reactivation step. Thus, correct docking of the large and small domains of pmAAT may be a key structural event in the regain of catalytic activity.
Collapse
Affiliation(s)
- Alan Berezov
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri, Kansas City, Missouri 64110-2499, USA
| | | | | | | |
Collapse
|
21
|
Horst R, Bertelsen EB, Fiaux J, Wider G, Horwich AL, Wüthrich K. Direct NMR observation of a substrate protein bound to the chaperonin GroEL. Proc Natl Acad Sci U S A 2005; 102:12748-53. [PMID: 16116078 PMCID: PMC1188259 DOI: 10.1073/pnas.0505642102] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The reaction cycle and the major structural states of the molecular chaperone GroEL and its cochaperone, GroES, are well characterized. In contrast, very little is known about the nonnative states of the substrate polypeptide acted on by the chaperonin machinery. In this study, we investigated the substrate protein human dihydrofolate reductase (hDHFR) while bound to GroEL or to a single-ring analog, SR1, by NMR spectroscopy in solution under conditions where hDHFR was efficiently recovered as a folded, enzymatically active protein from the stable complexes upon addition of ATP and GroES. By using the NMR techniques of transverse relaxation-optimized spectroscopy (TROSY), cross-correlated relaxation-induced polarization transfer (CRIPT), and cross-correlated relaxation-enhanced polarization transfer (CRINEPT), bound hDHFR could be observed directly. Measurements of the buildup of hDHFR NMR signals by different magnetization transfer mechanisms were used to characterize the dynamic properties of the NMR-observable parts of the bound substrate. The NMR data suggest that the bound state includes random coil conformations devoid of stable native-like tertiary contacts and that the bound hDHFR might best be described as a dynamic ensemble of randomly structured conformers.
Collapse
Affiliation(s)
- Reto Horst
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
22
|
Parent KN, Ranaghan MJ, Teschke CM. A second-site suppressor of a folding defect functions via interactions with a chaperone network to improve folding and assembly in vivo. Mol Microbiol 2005; 54:1036-50. [PMID: 15522085 DOI: 10.1111/j.1365-2958.2004.04326.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Single amino acid substitutions in a protein can cause misfolding and aggregation to occur. Protein misfolding can be rescued by second-site amino acid substitutions called suppressor substitutions (su), commonly through stabilizing the native state of the protein or by increasing the rate of folding. Here we report evidence that su substitutions that rescue bacteriophage P22 temperature-sensitive-folding (tsf) coat protein variants function in a novel way. The ability of tsf:su coat proteins to fold and assemble under a variety of cellular conditions was determined by monitoring levels of phage production. The tsf:su coat proteins were found to more effectively utilize P22 scaffolding protein, an assembly chaperone, as compared with their tsf parents. Phage-infected cells were radioactively labelled to quantify the associations between coat protein variants and folding and assembly chaperones. Phage carrying the tsf:su coat proteins induced more GroEL and GroES, and increased formation of protein:chaperone complexes as compared with their tsf parents. We propose that the su substitutions result in coat proteins that are more assembly competent in vivo because of a chaperone-driven kinetic partitioning between aggregation-prone intermediates and the final assembled state. Through more proficient use of this chaperone network, the su substitutions exhibit a novel means of suppression of a folding defect.
Collapse
Affiliation(s)
- Kristin N Parent
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA
| | | | | |
Collapse
|
23
|
Park ES, Fenton WA, Horwich AL. No evidence for a forced-unfolding mechanism during ATP/GroES binding to substrate-bound GroEL: no observable protection of metastable Rubisco intermediate or GroEL-bound Rubisco from tritium exchange. FEBS Lett 2005; 579:1183-6. [PMID: 15710410 DOI: 10.1016/j.febslet.2005.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Revised: 12/29/2004] [Accepted: 01/09/2005] [Indexed: 11/18/2022]
Abstract
In tritium-hydrogen exchange experiments, the large GroEL substrate Rubisco was unfolded and exchanged in urea/acid/tritiated water, then diluted into either protic buffer or protic buffer containing GroEL. The respective Rubisco metastable folding intermediate or Rubisco-GroEL binary complex was then separated from residual tritium after varying times of exchange by centrifugation through P-10 or G-25 resin. No significant tritium was recovered in either case, in contrast to an earlier report. Thus, although the earlier-proposed forced unfolding mechanism for the action of GroEL on a bound polypeptide, occurring during ATP/GroES binding, remains an attractive hypothesis, the data here do not provide any indication that it is involved in the folding of Rubisco.
Collapse
Affiliation(s)
- Eun Sun Park
- Howard Hughes Medical Institute, Yale School of Medicine, Boyer Center, 295 Congress Avenue, New Haven, CT 06510, USA
| | | | | |
Collapse
|
24
|
Lin Z, Rye HS. Expansion and compression of a protein folding intermediate by GroEL. Mol Cell 2004; 16:23-34. [PMID: 15469819 PMCID: PMC3759401 DOI: 10.1016/j.molcel.2004.09.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Revised: 07/20/2004] [Accepted: 07/28/2004] [Indexed: 10/26/2022]
Abstract
The GroEL-GroES chaperonin system is required for the assisted folding of many essential proteins. The precise nature of this assistance remains unclear, however. Here we show that denatured RuBisCO from Rhodospirillum rubrum populates a stable, nonaggregating, and kinetically trapped monomeric state at low temperature. Productive folding of this nonnative intermediate is fully dependent on GroEL, GroES, and ATP. Reactivation of the trapped RuBisCO monomer proceeds through a series of GroEL-induced structural rearrangements, as judged by resonance energy transfer measurements between the amino- and carboxy-terminal domains of RuBisCO. A general mechanism used by GroEL to push large, recalcitrant proteins like RuBisCO toward their native states thus appears to involve two steps: partial unfolding or rearrangement of a nonnative protein upon capture by a GroEL ring, followed by spatial constriction within the GroEL-GroES cavity that favors or enforces compact, folding-competent intermediate states.
Collapse
|
25
|
Motojima F, Chaudhry C, Fenton WA, Farr GW, Horwich AL. Substrate polypeptide presents a load on the apical domains of the chaperonin GroEL. Proc Natl Acad Sci U S A 2004; 101:15005-12. [PMID: 15479763 PMCID: PMC523455 DOI: 10.1073/pnas.0406132101] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A conundrum has arisen in the study of the structural states of the GroEL-GroES chaperonin machine: When either ATP or ADP is added along with GroES to GroEL, the same asymmetric complex, with one ring in a GroES-domed state, is observed by either x-ray crystallographic study or cryoelectron microscopy. Yet only ATP/GroES can trigger productive folding inside the GroES-encapsulated cis cavity by ejecting bound polypeptide from hydrophobic apical binding sites during attendant rigid body elevation and twisting of these domains. Here, we show that this difference occurs because polypeptide substrate in fact presents a load on the apical domains, and, although ATP can counter this load effectively, ADP cannot. We monitored apical domain movement in real time by fluorescence resonance energy transfer (FRET) between a fixed equatorial fluorophore and one attached to the mobile apical domain. In the absence of bound polypeptide, addition of either ATP/GroES or ADP/GroES to GroEL produced the same rapid rate and extent of decrease of FRET (t(1/2) < 1 sec), reflecting similarly rapid apical movement to the same end-state and explaining the results of the structural studies, which were all carried out in the absence of substrate polypeptide. But in the presence of bound malate dehydrogenase or rhodanese, whereas similar rapid and extensive FRET changes were observed with ATP/GroES, the rate of FRET change with ADP/GroES was slowed by >100-fold and the extent of change was reduced, indicating that the apical domains opened in a slow and partial fashion. These results indicate that the free energy of gamma-phosphate binding, measured earlier as 43 kcal per mol (1 cal = 4.184 J) of rings, is required for driving the forceful excursion or "power stroke" of the apical domains needed to trigger release of the polypeptide load into the central cavity.
Collapse
Affiliation(s)
- Fumihiro Motojima
- Department of Genetics, Yale School of Medicine, Boyer Center, New Haven, CT 06510, USA
| | | | | | | | | |
Collapse
|
26
|
Fiaux J, Bertelsen EB, Horwich AL, Wüthrich K. Uniform and residue-specific 15N-labeling of proteins on a highly deuterated background. JOURNAL OF BIOMOLECULAR NMR 2004; 29:289-97. [PMID: 15213427 DOI: 10.1023/b:jnmr.0000032523.00554.38] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A general method for stable-isotope labeling of large proteins is introduced and applied for studies of the E. coli GroE chaperone proteins by solution NMR. In addition to enabling the residue-specific (15)N-labeling of proteins on a highly deuterated background, it is also an efficient approach for uniform labeling. The method meets the requirements of high-level deuteration, minimal cross-labeling and high protein yield, which are crucial for NMR studies of structures with sizes above 150 kDa. The results obtained with the new protocol are compared to other strategies for protein labeling, and evaluated with regard to the influence of external factors on the resulting isotope labeling patterns. Applications with the GroE system show that these strategies are efficient tools for studies of structure, dynamics and intermolecular interactions in large supramolecular complexes, when combined with TROSY- and CRINEPT-based experimental NMR schemes.
Collapse
Affiliation(s)
- Jocelyne Fiaux
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
27
|
Musch MW, Kapil A, Chang EB. Heat shock protein 72 binds and protects dihydrofolate reductase against oxidative injury. Biochem Biophys Res Commun 2004; 313:185-92. [PMID: 14672716 DOI: 10.1016/j.bbrc.2003.11.096] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Although heat shock protein Hsp72 confers resistance to oxidative injury, the mechanisms are unknown. These studies demonstrate that Hsp72 protects dihydrofolate reductase (DHFR) against injury caused by the thiol oxidant monochloramine (NH(2)Cl). When exposed to NH(2)Cl, DHFR catalytic activity is impaired and SDS-PAGE migration retarded. These may be blocked by prior addition of Hsp72 or the folate analog methotrexate. Methotrexate binding to DHFR is diminished by oxidant treatment, preventable by prior Hsp72 incubation. Hsp72 also protects DHFR in IEC-18 cells following oxidant exposure. Hsp72 co-immunoprecipitates with DHFR, especially after partial oxidation. The DHFR-Hsp72 interaction is modulated by cofactor/substrate binding for both Hsp72 (ATP) and DHFR (methotrexate). Thiol oxidation of DHFR increases susceptibility for tryptic proteolysis. Preincubation of DHFR with Hsp72 prevents the NH(2)Cl-induced sensitivity to proteolysis. Thus, Hsp72 binds DHFR through enhanced protein-chaperone interactions upon oxidant exposure, a process that may protect against irreversible modification of DHFR catalytic and structural integrity.
Collapse
Affiliation(s)
- Mark W Musch
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
28
|
Sot B, Bañuelos S, Valpuesta JM, Muga A. GroEL stability and function. Contribution of the ionic interactions at the inter-ring contact sites. J Biol Chem 2003; 278:32083-90. [PMID: 12796493 DOI: 10.1074/jbc.m303958200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chaperonin GroEL consists of a double ring structure made of identical subunits that display different modes of allosteric communication. The protein folding cycle requires the simultaneous positive intra-ring and negative inter-ring cooperativities of ATP binding. This ensures GroES binding to one ring and release of the ligands from the opposite one. To better characterize inter-ring allosterism, the thermal stability as well as the temperature dependence of the functional and conformational properties of wild type GroEL, a single ring mutant (SR1) and two single point mutants suppressing one interring salt bridge (E434K and E461K) were studied. The results indicate that ionic interactions at the two interring contact sites are essential to maintain the negative cooperativity for protein substrate binding and to set the protein thermostat at 39 degrees C. These electrostatic interactions contribute distinctly to the stability of the inter-ring interface and the overall protein stability, e.g. the E434K thermal inactivation curve is shifted to lower temperatures, and its unfolding temperature and activation energy are also lowered. An analysis of the ionic interactions at the inter-ring contact sites reveals that at the so called "left site" a network of electrostatic interactions involving three charged residues might be established, in contrast to what is found at the "right site" where only two oppositely charged residues interact. Our data suggest that electrostatic interactions stabilize protein-protein interfaces depending on both the number of ionic interactions and the number of residues engaged in each of these interactions. In the case of GroEL, this combination sets the thermostat of the protein so that the chaperonin distinguishes physiological from stress temperatures.
Collapse
Affiliation(s)
- Begoña Sot
- Unidad de Biofísica, Consejo Superior de Investigaciones Científicas-Universidad del País Vasco Euskal Herriko Unibertsitatea and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, 48080 Bilbao, Spain
| | | | | | | |
Collapse
|
29
|
Wang J, Boisvert DC. Structural basis for GroEL-assisted protein folding from the crystal structure of (GroEL-KMgATP)14 at 2.0A resolution. J Mol Biol 2003; 327:843-55. [PMID: 12654267 DOI: 10.1016/s0022-2836(03)00184-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nucleotide regulates the affinity of the bacterial chaperonin GroEL for protein substrates. GroEL binds protein substrates with high affinity in the absence of ATP and with low affinity in its presence. We report the crystal structure of (GroEL-KMgATP)(14) refined to 2.0 A resolution in which the ATP triphosphate moiety is directly coordinated by both K(+) and Mg(2+). Upon the binding of KMgATP, we observe previously unnoticed domain rotations and a 102 degrees rotation of the apical domain surface helix I. Two major consequences are a large lateral displacement of, and a dramatic reduction of hydrophobicity in, the apical domain surface. These results provide a basis for the nucleotide-dependent regulation of protein substrate binding and suggest a mechanism for GroEL-assisted protein folding by forced unfolding.
Collapse
Affiliation(s)
- J Wang
- Department of Molecular Biophysics and Biochemistry Yale University, 266 Whitney Avenue, Bass Center, Room 418, New Haven, CT 06520-8114, USA.
| | | |
Collapse
|
30
|
Gozu M, Hoshino M, Higurashi T, Kato H, Goto Y. The interaction of beta(2)-glycoprotein I domain V with chaperonin GroEL: the similarity with the domain V and membrane interaction. Protein Sci 2002; 11:2792-803. [PMID: 12441378 PMCID: PMC2373745 DOI: 10.1110/ps.0216602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To clarify the mechanism of interaction between chaperonin GroEL and substrate proteins, we studied the conformational changes; of the fifth domain of human beta(2)-glycoprotein I upon binding to GroEL. The fifth domain has a large flexible loop, containing several hydrophobic residues surrounded by positively charged residues, which has been proposed to be responsible for the binding of beta(2)-glycoprotein I to negatively charged phospholipid membranes. The reduction by dithiothreitol of the three intramolecular disulfide bonds of the fifth domain was accelerated in the presence of stoichiometric amounts of GroEL, indicating that the fifth domain was destabilized upon interaction with GroEL. To clarify the GroEL-induced destabilization at the atomic level, we performed H/(2)H exchange of amide protons using heteronuclear NMR spectroscopy. The presence of GroEL promoted the H/(2)H exchange of most of the protected amide protons, suggesting that, although the flexible loop of the fifth domain is likely to be responsible for the initiation of binding to GroEL, the interaction with GroEL destabilizes the overall conformation of the fifth domain.
Collapse
Affiliation(s)
- Masayo Gozu
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Japan
| | | | | | | | | |
Collapse
|
31
|
George RR, Harris R, Nunn CM, Cramer R, Djordjevic S. Chaperonin assisted overexpression, purification, and characterisation of human PP2A methyltransferase. Protein Expr Purif 2002; 26:266-74. [PMID: 12406681 DOI: 10.1016/s1046-5928(02)00540-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Protein phosphatase 2A (PP2A) is a ubiquitous phosphatase found in many eukaryotic cell types and is involved in regulating a number of intracellular signalling pathways. Its activity, in turn, is regulated through covalent modification, involving phosphorylation and methylation reactions. The effect of phosphorylation on the activity of the protein is well known, but the effects of methylation have only recently been documented and the mechanistic details of methylation are lacking. Methylation, which occurs on the catalytic subunit of PP2A, is catalysed by PP2A methyltransferase (PP2Amt). Here, we present a method for the large-scale purification of human PP2Amt using an Escherichia coli host, coexpressing the chaperonins GroEL and GroES. Purified PP2Amt was identified by peptide mass mapping using MALD-MS and peptide sequencing using ESI-LC-MS/MS. The CD spectrum indicated that purified PP2Amt was folded, with about one-third of the protein adopting an alpha-helical conformation. Analytical gel filtration estimated the molecular weight to be 34kDa, equivalent to the monomeric form of the protein. Further CD analysis showed that in the presence and absence of the ligand S-adenosylhomocysteine, the thermal denaturation profiles were biphasic. However, the transition midpoints shifted to a higher temperature in the presence of ligand, indicating stabilisation of ligand-bound PP2Amt compared to the apo-form. We also report on the progress made in determining the structure of PP2Amt, using both X-ray crystallography and NMR spectroscopy.
Collapse
Affiliation(s)
- Roger R George
- Department of Biochemistry and Molecular Biology, University College London, London, WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
32
|
Stelea SD, Keiderling TA. Pretransitional structural changes in the thermal denaturation of ribonuclease S and S protein. Biophys J 2002; 83:2259-69. [PMID: 12324443 PMCID: PMC1302314 DOI: 10.1016/s0006-3495(02)73986-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Two mechanisms have been proposed for the thermal unfolding of ribonuclease S (RNase S). The first is a sequential partial unfolding of the S peptide/S protein complex followed by dissociation, whereas the second is a concerted denaturation/dissociation. The thermal denaturation of ribonuclease S and its fragment, the S protein, were followed with circular dichroism and infrared spectra. These spectra were analyzed by the principal component method of factor analysis. The use of multiple spectral techniques and of factor analysis monitored different aspects of the denaturation simultaneously. The unfolding pathway was compared with that of the parent enzyme ribonuclease A (RNase A), and a model was devised to assess the importance of the dissociation in the unfolding. The unfolding patterns obtained from the melting curves of each protein imply the existence of multiple intermediate states and/or processes. Our data provide evidence that the pretransition in the unfolding of ribonuclease S is due to partial unfolding of the S protein/S peptide complex and that the dissociation occurs at higher temperature. Our observations are consistent with a sequential denaturation mechanism in which at least one partial unfolding step comes before the main conformational transition, which is instead a concerted, final unfolding/dissociation step.
Collapse
Affiliation(s)
- Simona D Stelea
- Department of Chemistry, University of Illinois at Chicago, 60607-7061, USA
| | | |
Collapse
|
33
|
Melkani GC, Zardeneta G, Mendoza JA. GroEL interacts transiently with oxidatively inactivated rhodanese facilitating its reactivation. Biochem Biophys Res Commun 2002; 294:893-9. [PMID: 12061791 DOI: 10.1016/s0006-291x(02)00575-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
When the enzyme rhodanese was inactivated with hydrogen peroxide (H(2)O(2)), it underwent significant conformational changes, leading to an increased exposure of hydrophobic surfaces. Thus, this protein seemed to be an ideal substrate for GroEL, since GroEL uses hydrophobic interactions to bind to its substrate polypeptides. Here, we report on the facilitated reactivation (86%) of H(2)O(2)-inactivated rhodanese by GroEL alone. Reactivation by GroEL required a reductant and the enzyme substrate, but not GroES or ATP. Further, we found that GroEL interacted weakly and/or transiently with H(2)O(2)-inactivated rhodanese. A strong interaction with rhodanese was obtained when the enzyme was pre-incubated with urea, indicating that exposure of hydrophobic surfaces alone on oxidized rhodanese was not sufficient for the formation of a strong complex and that a more unfolded structure of rhodanese was required to interact strongly with GroEL. Unlike prior studies that involved denaturation of rhodanese through chemical or thermal means, we have clearly shown that GroEL can function as a molecular chaperone in the reactivation of an oxidatively inactivated protein. Additionally, the mechanism for the GroEL-facilitated reactivation of rhodanese shown here appears to be different than that for the chaperonin-assisted folding of chemically unfolded polypeptides in which a nucleotide and sometimes GroES is required.
Collapse
Affiliation(s)
- Girish C Melkani
- Department of Chemistry and Biochemistry, California State University at San Marcos, 92096-0001, USA
| | | | | |
Collapse
|
34
|
Bettelheim FA. Kinetics of chaperoning of dithiothreitol-denatured alpha-lactalbumin by alpha-crystallin. Int J Biol Macromol 2002; 30:161-9. [PMID: 12063118 DOI: 10.1016/s0141-8130(02)00014-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Molecular chaperones prevent the aggregation of partially folded or misfolded forms of protein. alpha-Crystallin performs such a function in the ocular lens. Dynamic light scattering (DLS) measurements were performed to gain insight into the kinetics and mechanism of alpha-crystallin chaperoning. Experiments were conducted as a function of alpha-lactalbumin concentration as well as the alpha-crystallin/alpha-lactalbumin ratio over a 24 h period. In the particle distribution patterns the lactalbumin concentration was partitioned into three compartments: (a) monomeric free lactalbumin; (b) lactalbumin in the chaperoning complex; and (c) lactalbumin aggregates. DLS intensities were converted to molar concentrations by assuming a model of a spherical chaperoning complex. In the model, alpha-crystallin is the central core and alpha-lactalbumin molecules occupy a ring surrounding the core. The kinetics of chaperoning was studied by proposing a simple scheme with four rate constants. The reversible reaction of the formation of the chaperoning complex is characterized by rate constants k(1) and k(2). The rate constants k(3) and k(4) govern the irreversible aggregation of lactalbumin: the former from the free monomeric lactalbumin pool and the latter describing the aggregation of the denatured lactalbumin released from the chaperoning complex. The rate constants, k(3) and k(4) are four magnitudes larger than k(1) and k(2). The equilibrium constant of chaperoning complex formation lies in favor of the reactants. k(4) is somewhat faster than k(3) and it is three times faster than k(s) governing the self-aggregation of lactalbumin in the absence of alpha-crystallin.
Collapse
|
35
|
Wallace LA, Robert Matthews C. Highly divergent dihydrofolate reductases conserve complex folding mechanisms. J Mol Biol 2002; 315:193-211. [PMID: 11779239 DOI: 10.1006/jmbi.2001.5230] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To test the hypothesis that protein folding mechanisms are better conserved than amino acid sequences, the mechanisms for dihydrofolate reductases (DHFR) from human (hs), Escherichia coli (ec) and Lactobacillus casei (lc) were elucidated and compared using intrinsic Trp fluorescence and fluorescence-detected 8-anilino-1-naphthalenesulfonate (ANS) binding. The development of the native state was monitored using either methotrexate (absorbance at 380 nm) or NADPH (extrinsic fluorescence) binding. All three homologs displayed complex unfolding and refolding kinetic mechanisms that involved partially folded states and multiple energy barriers. Although the pairwise sequence identities are less than 30 %, folding to the native state occurs via parallel folding channels and involves two types of on-pathway kinetic intermediates for all three homologs. The first ensemble of kinetic intermediates, detected within a few milliseconds, has significant secondary structure and exposed hydrophobic cores. The second ensemble is obligatory and has native-like side-chain packing in a hydrophobic core; however, these intermediates are unable to bind active-site ligands. The formation of the ensemble of native states occurs via three channels for hsDHFR, and four channels for lcDHFR and ecDHFR. The binding of active-site ligands (methotrexate and NADPH) accompanies the rate-limiting formation of the native ensemble. The conservation of the fast, intermediate and slow-folding events for this complex alpha/beta motif provides convincing evidence for the hypothesis that evolutionarily related proteins achieve the same fold via similar pathways.
Collapse
Affiliation(s)
- Louise A Wallace
- Department of Chemistry and Center for Biomolecular Structure and Function, The Pennsylvania State University, PA 16802, USA
| | | |
Collapse
|
36
|
Abstract
Many proteins display complex folding kinetics, which represent multiple parallel folding pathways emanating from multiple unfolded forms and converging to the unique native form. The small protein thioredoxin from Escherichia coli is one such protein. The effect of the chaperonin GroEL on modulating the complex energy landscape that separates the unfolded ensemble from the native state of thioredoxin has been studied. It is shown that while the fluorescence change accompanying folding occurs in five kinetic phases in the absence of GroEL, only the two slowest kinetic phases are discernible in the presence of saturating concentrations of GroEL. This result is shown to be consistent with only one out of several available folding routes being operational in the presence of GroEL. It is shown that native protein, which forms via fast as well as slow routes in the absence of GroEL, forms only via a slow route in its presence. The effect of GroEL on the folding of thioredoxin is shown to be the consequence of it binding differentially to the many folding-competent forms. While some of these forms can continue folding when bound to GroEL, others cannot. All molecules are then drawn into the operational folding route by the law of mass action. This observation indicates a new role for GroEL, which is to bias the energy landscape of a folding polypeptide towards fewer available pathways. It is suggested that such channeling might be a mechanism to avoid possible aggregation-prone routes available to a refolding polypeptide in vivo.
Collapse
Affiliation(s)
- N Bhutani
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS-GKVK Campus, Bangalore 560065, India
| | | |
Collapse
|
37
|
Rye HS. Application of fluorescence resonance energy transfer to the GroEL-GroES chaperonin reaction. Methods 2001; 24:278-88. [PMID: 11403576 PMCID: PMC3744193 DOI: 10.1006/meth.2001.1188] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fluorescence resonance energy transfer (FRET) is a sensitive and flexible method for studying protein-protein interactions. Here it is applied to the GroEL-GroES chaperonin system to examine the ATP-driven dynamics that underlie protein folding by this chaperone. Relying on the known structures of GroEL and GroES, sites for attachment of fluorescent probes are designed into the sequence of both proteins. Because these sites are brought close in space when GroEL and GroES form a complex, excitation energy can pass from a donor to an acceptor chromophore by FRET. While in ideal circumstances FRET can be used to measure distances, significant population heterogeneity in the donor-to-acceptor distances in the GroEL-GroES complex makes distance determination difficult. This is due to incomplete labeling of these large, oligomeric proteins and to their rotational symmetry. It is shown, however, that FRET can still be used to follow protein-protein interaction dynamics even in a case such as this, where distance measurements are either not practical or not meaningful. In this way, the FRET signal is used as a simple proximity sensor to score the interaction between GroEL and GroES. Similarly, FRET can also be used to follow interactions between GroEL and a fluorescently labeled substrate polypeptide. Thus, while knowledge of molecular structure aids enormously in the design of FRET experiments, structural information is not necessarily required if the aim is to measure the thermodynamics or kinetics of a protein interaction event by following changes in the binding proximity of two components.
Collapse
Affiliation(s)
- H S Rye
- Department of Molecular Biology, Princeton University, 229 Lewis Thomas Laboratory, Princeton, New Jersey 08544, USA.
| |
Collapse
|
38
|
Lim JH, Martin F, Guiard B, Pfanner N, Voos W. The mitochondrial Hsp70-dependent import system actively unfolds preproteins and shortens the lag phase of translocation. EMBO J 2001; 20:941-50. [PMID: 11230118 PMCID: PMC145481 DOI: 10.1093/emboj/20.5.941] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Unfolding is an essential process during translocation of preproteins into mitochondria; however, controversy exists as to whether mitochondria play an active role in unfolding. We have established an in vitro system with a kinetic saturation of the mitochondrial import machinery, yielding translocation rates comparable to in vivo import rates. Preproteins with short N-terminal segments in front of a folded domain show a characteristic delay of the onset of translocation (lag phase) although the maximal import rate is similar to that of longer preproteins. The lag phase is shortened by extending the N-terminal segment to improve the accessibility to matrix heat shock protein 70 and abolished by unfolding of the preprotein. A mutant mtHsp70 defective in binding to the inner membrane prolongs the lag phase and reduces the translocation activity. A direct comparison of the rate of spontaneous unfolding in solution with that during translocation demonstrates that unfolding by mitochondria is significantly faster, proving an active unfolding process. We conclude that access of mtHsp70 to N-terminal preprotein segments is critical for active unfolding and initiation of translocation.
Collapse
Affiliation(s)
- Joo Hyun Lim
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Fakultät für Biologie, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany and Centre de Génétique Moléculaire, Laboratoire propre du CNRS associeté à l’Université Pierre et Marie Curie, 91190 Gif-sur-Yvette, France Present address: Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel Corresponding author e-mail:
| | - Falk Martin
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Fakultät für Biologie, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany and Centre de Génétique Moléculaire, Laboratoire propre du CNRS associeté à l’Université Pierre et Marie Curie, 91190 Gif-sur-Yvette, France Present address: Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel Corresponding author e-mail:
| | - Bernard Guiard
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Fakultät für Biologie, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany and Centre de Génétique Moléculaire, Laboratoire propre du CNRS associeté à l’Université Pierre et Marie Curie, 91190 Gif-sur-Yvette, France Present address: Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel Corresponding author e-mail:
| | - Nikolaus Pfanner
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Fakultät für Biologie, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany and Centre de Génétique Moléculaire, Laboratoire propre du CNRS associeté à l’Université Pierre et Marie Curie, 91190 Gif-sur-Yvette, France Present address: Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel Corresponding author e-mail:
| | - Wolfgang Voos
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Fakultät für Biologie, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany and Centre de Génétique Moléculaire, Laboratoire propre du CNRS associeté à l’Université Pierre et Marie Curie, 91190 Gif-sur-Yvette, France Present address: Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel Corresponding author e-mail:
| |
Collapse
|
39
|
Abstract
The strong correlation between protein folding rates and the contact order suggests that folding rates are largely determined by the topology of the native structure. However, for a given topology, there may be several possible low free energy paths to the native state and the path that is chosen (the lowest free energy path) may depend on differences in interaction energies and local free energies of ordering in different parts of the structure. For larger proteins whose folding is assisted by chaperones, such as the Escherichia coli chaperonin GroEL, advances have been made in understanding both the aspects of an unfolded protein that GroEL recognizes and the mode of binding to the chaperonin. The possibility that GroEL can remove non-native proteins from kinetic traps by unfolding them either during polypeptide binding to the chaperonin or during the subsequent ATP-dependent formation of folding-active complexes with the co-chaperonin GroES has also been explored.
Collapse
Affiliation(s)
- V Grantcharova
- Center for Genomics Research, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
40
|
Zhang N, Li J, Wang C. GroEL and protein disulfide isomerase each binds with folding intermediates of D-glyceraldehyde-3-phosphate dehydrogenase released from complexes formed with the other. JOURNAL OF PROTEIN CHEMISTRY 2000; 19:569-74. [PMID: 11233170 DOI: 10.1023/a:1007146217946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Simultaneous presence of two chaperones, GroEL and protein disulfide isomerase (PDI), assists the reactivation of denatured D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in an additive way. Delayed addition of chaperones to the refolding solution after dilution of denatured GAPDH indicates an interaction with intermediates formed mainly in the first 5 min for PDI and formed within a longer time period for GroEL-ATP. The above indicate that the two chaperones interact with different folding intermediates of GAPDH. After delayed addition of one chaperone to the refolding mixture containing the other at 4 degrees C, GroEL binds with all GAPDH intermediates dissociated from PDI, and PDI interacts with the intermediates released from GroEL during the first 10-20 min. It is suggested that the GAPDH folding intermediates released from the chaperone-bound complex are still partially folded so as to be rebound by the other chaperone. The above results clearly support the network model of GroEL and PDI.
Collapse
Affiliation(s)
- N Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Academia Sinica, Beijing, China
| | | | | |
Collapse
|
41
|
Abstract
GroEL recognizes proteins that are folding improperly or that have aggregation-prone intermediates. Here we have used as substrates for GroEL, wildtype (WT) coat protein of phage P22 and 3 coat proteins that carry single amino acid substitutions leading to a temperature-sensitive folding (tsf) phenotype. In vivo, WT coat protein does not require GroEL for proper folding, whereas GroEL is necessary for the folding of the tsf coat proteins; thus, the single amino acid substitutions cause coat protein to become a substrate for GroEL. The conformation of WT and tsf coat proteins when in a binary complex with GroEL was investigated using tryptophan fluorescence, quenching of fluorescence, and accessibility of the coat proteins to proteolysis. WT coat protein and the tsf coat protein mutants were each found to be in a different conformation when bound to GroEL. As an additional measure of the changes in the bound conformation, the affinity of binding of WT and tsf coat proteins to GroEL was determined using a fluorescence binding assay. The tsf coat proteins were bound more tightly by GroEL than WT coat protein. Therefore, even though the proteins are identical except for a single amino acid substitution, GroEL did not bind these substrate polypeptides in the same conformation within its central cavity. Therefore, GroEL is likely to bind coat protein in a conformation consistent with a late folding intermediate, with substantial secondary and tertiary structure formed.
Collapse
Affiliation(s)
- M D de Beus
- University of Connecticut, Department of Molecular and Cell Biology, Storrs 06269-3125, USA
| | | | | |
Collapse
|
42
|
Aoki K, Motojima F, Taguchi H, Yomo T, Yoshida M. GroEL binds artificial proteins with random sequences. J Biol Chem 2000; 275:13755-8. [PMID: 10788496 DOI: 10.1074/jbc.275.18.13755] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chaperonin GroEL from Escherichia coli binds to the non-native states of many unrelated proteins, and GroEL-recognizable structural features have been argued. As model substrate proteins of GroEL, we used seven artificial proteins (138 approximately 141 residues), each of which has a unique but randomly chosen amino acid sequence and no propensity to fold into a certain structure. Two of them were water-soluble, and the rest were soluble in 3 m urea. The soluble ones interacted with GroEL in a manner similar to that of a natural substrate; they stimulated the ATPase cycle of GroEL and GroEL/GroES and inhibited GroEL-assisted folding of other protein. All seven artificial proteins were able to bind to GroEL. The results suggest that the secondary structure as well as the specific sequence motif of the substrate proteins are not necessary to be recognized by GroEL.
Collapse
Affiliation(s)
- K Aoki
- Tokyo Institute of Technology, Research Laboratory of Resources Utilization, R-1, 4259 Nagatsuta, Yokohama 226-8503, Japan
| | | | | | | | | |
Collapse
|
43
|
Bhutani N, Udgaonkar JB. A thermodynamic coupling mechanism can explain the GroEL-mediated acceleration of the folding of barstar. J Mol Biol 2000; 297:1037-44. [PMID: 10764571 DOI: 10.1006/jmbi.2000.3648] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite extensive structural and kinetic studies, the mechanism by which the Escherichia coli chaperonin GroEL assists protein folding has remained somewhat elusive. It appears that GroEL might play an active role in facilitating folding, in addition to its role in restricting protein aggregation by secluding folding intermediates. We have investigated the kinetic mechanism of GroEL-mediated refolding of the small protein barstar. GroEL accelerates the observed fast (millisecond) refolding rate, but it does not affect the slow refolding kinetics. A thermodynamic coupling mechanism, in which the concentration of exchange-competent states is increased by the law of mass action, can explain the enhancement of the fast refolding rates. It is not necessary to invoke a catalytic role for GroEL, whereby either the intrinsic refolding rate of a productive folding transition or the unfolding rate of a kinetically trapped off-pathway intermediate is increased by the chaperonin.
Collapse
Affiliation(s)
- N Bhutani
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS-GKVK Campus, Bangalore, 5600065, India
| | | |
Collapse
|
44
|
von Ahsen O, Lim JH, Caspers P, Martin F, Schönfeld HJ, Rassow J, Pfanner N. Cyclophilin-promoted folding of mouse dihydrofolate reductase does not include the slow conversion of the late-folding intermediate to the active enzyme. J Mol Biol 2000; 297:809-18. [PMID: 10731431 DOI: 10.1006/jmbi.2000.3574] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclophilins accelerate slow protein folding reactions in vitro by catalyzing the cis/trans isomerization of peptidyl-prolyl bonds. Cyclophilins were reported to be involved in a variety of cellular functions, including the promotion of protein folding by use of the substrate mouse dihydrofolate reductase (DHFR). The interaction of cyclophilin with DHFR has only been studied under limited conditions so far, not taking into account that native DHFR exists in equilibrium with a non-native late-folding intermediate. Here we report a systematic analysis of catalysis of DHFR folding by cyclophilins. The specific ligand methotrexate traps DHFR in its native state, permitting a specific analysis of the action of cyclophilin on both denatured DHFR with non-native prolyl bonds and denatured DHFR with all-native prolyl bonds. Cyclophilins from yeast and Neurospora crassa as well as the related prolyl isomerase b from Escherichia coli promote the folding of different forms of DHFR to the enzymatically active form, demonstrating the generality of cyclophilin-catalyzed folding of DHFR. The slow equilibrium between the late-folding intermediate and native DHFR suggests that prolyl isomerization may be required for this final phase of conversion to native DHFR. However, by reversible trapping of the intermediate, we analyze the slow interconversion between native and late-folding conformations in the backward and forward reactions and show a complete independence of cyclophilin. We conclude that cyclophilin catalyzes folding of DHFR, but surprisingly not in the last slow folding step.
Collapse
Affiliation(s)
- O von Ahsen
- Institut für Biochemie und Molekularbiologie, Hermann-Herder-Strasse 7, Universität Freiburg, D-79104, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Wynn RM, Song JL, Chuang DT. GroEL/GroES promote dissociation/reassociation cycles of a heterodimeric intermediate during alpha(2)beta(2) protein assembly. Iterative annealing at the quaternary structure level. J Biol Chem 2000; 275:2786-94. [PMID: 10644743 DOI: 10.1074/jbc.275.4.2786] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Whereas the mechanism of GroEL/GroES-mediated protein folding has been extensively studied, the role of these chaperonins in oligomeric protein assembly remains poorly understood. In the present study, we investigated the interaction of the chaperonins with an alphabeta heterodimeric intermediate during the alpha(2)beta(2) assembly of human mitochondrial branched-chain alpha-ketoacid dehydrogenase/decarboxylase (BCKD). Incubation of the recombinant His(6)-tagged BCKD in 400 mM KSCN for 45 min at 23 degrees C caused a complete dissociation of the alpha(2)beta(2) heterotetramers into inactive alphabeta heterodimers. Dilution of the denaturant resulted in a rapid recovery of BCKD independent of the chaperonins GroEL/GroES. Prolonged incubation of BCKD in 400 mM KSCN resulted in the generation of nonproductive or "bad" heterodimers, which were unable to undergo spontaneous reactivation but capable of binding to GroEL to form a stable GroEL-alphabeta complex. Incubation of this complex with GroES and Mg-ATP led to the slow reactivation of BCKD with a second-order rate constant k = 480 M(-1) s(-1). Mixing experiments with radiolabeled and unlabeled protein substrates provided direct evidence that GroEL/GroES promote dissociation and subunit exchange between bad heterodimers. This was accompanied by the transformation of bad heterodimers to their "good" or productive counterparts. The good heterodimers were capable of spontaneous dimerization to initially form an inactive heterotetrameric species, followed by conversion to active heterotetramers. However, a large fraction of bad heterodimers were regenerated and rebound to GroEL. The cycle was perpetuated until the reconstitution of active BCKD was complete. Our data support the thesis that chaperonins GroEL/GroES mediate iterative annealing of nonproductive assembly intermediates at the quaternary structure level. This step is essential for an efficient subsequent higher order oligomerization.
Collapse
Affiliation(s)
- R M Wynn
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | |
Collapse
|
46
|
Preuss M, Miller AD. Interaction with GroEL destabilises non-amphiphilic secondary structure in a peptide. FEBS Lett 1999; 461:131-5. [PMID: 10567683 DOI: 10.1016/s0014-5793(99)01442-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The Escherichia coli molecular chaperone GroEL can functionally interact with non-native forms of many proteins. An inherent property of non-native proteins is the exposure of hydrophobic residues and the presence of secondary structure elements. Whether GroEL unfolds or stabilises these structural elements in protein substrates as a result of binding has been the subject of extended debate in the literature. Based on our studies of model peptides of pre-formed helical structure, we conclude that the final state of a GroEL-bound substrate is dependent on the conformational flexibility of the substrate protein and the distribution of hydrophobic residues, with optimal association when these are able to present a cluster of hydrophobic residues in the binding interface.
Collapse
Affiliation(s)
- M Preuss
- Imperial College Genetics Therapies Centre, Department of Chemistry, Imperial College of Science, Technology and Medicine, South Kensington, London, UK
| | | |
Collapse
|
47
|
Abstract
Although we have a rather elaborate "working-cycle" for the 60 kDa molecular chaperones, which possess a cavity, and are called Anfinsen-cage-type chaperones to emphasize that they provide a closed, protected environment to help the folding of their substrates, our understanding of the molecular mechanism of how these chaperones help protein folding is still incomplete. The present study adds two novel elements to the mechanism of how Anfinsen-cage-type chaperones (members of the 60 kDa chaperone family) aid protein folding. It is proposed that (1) these chaperones do not generally unfold their targets, but by a multidirectional expansion preferentially loosen the tight, inner structure of the collapsed target protein; and (2) during the expansion water molecules enter the hydrophobic core of the target, this percolation being a key step in chaperone action. This study compares this chaperone-percolator model with existing explanations and suggests further experiments to test it. BioEssays 1999;21:959-965.
Collapse
Affiliation(s)
- P Csermely
- Department of Medical Chemistry, Semmelweis University, H-1444 Budapest, P.O. Box 260, Hungary.
| |
Collapse
|
48
|
Horwich AL, Weber-Ban EU, Finley D. Chaperone rings in protein folding and degradation. Proc Natl Acad Sci U S A 1999; 96:11033-40. [PMID: 10500119 PMCID: PMC34237 DOI: 10.1073/pnas.96.20.11033] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chaperone rings play a vital role in the opposing ATP-mediated processes of folding and degradation of many cellular proteins, but the mechanisms by which they assist these life and death actions are only beginning to be understood. Ring structures present an advantage to both processes, providing for compartmentalization of the substrate protein inside a central cavity in which multivalent, potentially cooperative interactions can take place between the substrate and a high local concentration of binding sites, while access of other proteins to the cavity is restricted sterically. Such restriction prevents outside interference that could lead to nonproductive fates of the substrate protein while it is present in non-native form, such as aggregation. At the step of recognition, chaperone rings recognize different motifs in their substrates, exposed hydrophobicity in the case of protein-folding chaperonins, and specific "tag" sequences in at least some cases of the proteolytic chaperones. For both folding and proteolytic complexes, ATP directs conformational changes in the chaperone rings that govern release of the bound polypeptide. In the case of chaperonins, ATP enables a released protein to pursue the native state in a sequestered hydrophilic folding chamber, and, in the case of the proteases, the released polypeptide is translocated into a degradation chamber. These divergent fates are at least partly governed by very different cooperating components that associate with the chaperone rings: that is, cochaperonin rings on one hand and proteolytic ring assemblies on the other. Here we review the structures and mechanisms of the two types of chaperone ring system.
Collapse
Affiliation(s)
- A L Horwich
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA.
| | | | | |
Collapse
|
49
|
Abstract
The ability of the GroEL chaperonin to unfold a protein trapped in a misfolded condition was detected and studied by hydrogen exchange. The GroEL-induced unfolding of its substrate protein is only partial, requires the complete chaperonin system, and is accomplished within the 13 seconds required for a single system turnover. The binding of nucleoside triphosphate provides the energy for a single unfolding event; multiple turnovers require adenosine triphosphate hydrolysis. The substrate protein is released on each turnover even if it has not yet refolded to the native state. These results suggest that GroEL helps partly folded but blocked proteins to fold by causing them first to partially unfold. The structure of GroEL seems well suited to generate the nonspecific mechanical stretching force required for forceful protein unfolding.
Collapse
Affiliation(s)
- Mark Shtilerman
- The Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - George H. Lorimer
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - S. Walter Englander
- The Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
50
|
Rye HS, Roseman AM, Chen S, Furtak K, Fenton WA, Saibil HR, Horwich AL. GroEL-GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings. Cell 1999; 97:325-38. [PMID: 10319813 DOI: 10.1016/s0092-8674(00)80742-4] [Citation(s) in RCA: 245] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The double-ring chaperonin GroEL mediates protein folding in the central cavity of a ring bound by ATP and GroES, but it is unclear how GroEL cycles from one folding-active complex to the next. We observe that hydrolysis of ATP within the cis ring must occur before either nonnative polypeptide or GroES can bind to the trans ring, and this is associated with reorientation of the trans ring apical domains. Subsequently, formation of a new cis-ternary complex proceeds on the open trans ring with polypeptide binding first, which stimulates the ATP-dependent dissociation of the cis complex (by 20- to 50-fold), followed by GroES binding. These results indicate that, in the presence of nonnative protein, GroEL alternates its rings as folding-active cis complexes, expending only one round of seven ATPs per folding cycle.
Collapse
Affiliation(s)
- H S Rye
- Howard Hughes Medical Institute, and Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | |
Collapse
|