1
|
Bheemireddy S, Sowdhamini R, Srinivasan N. Computational analysis of the effect of a binding protein (RbpA) on the dynamics of Mycobacterium tuberculosis RNA polymerase assembly. PLoS One 2025; 20:e0317187. [PMID: 39883746 PMCID: PMC11781615 DOI: 10.1371/journal.pone.0317187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/23/2024] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND RNA polymerase-binding protein A (RbpA) is an actinomycetes-specific protein crucial for the growth and survival of the pathogen Mycobacterium tuberculosis. Its role is essential and influences the transcription and antibiotic responses. However, the regulatory mechanisms underlying RbpA-mediated transcription remain unknown. In this study, we employed various computational techniques to investigate the role of RbpA in the formation and dynamics of the RNA polymerase complex. RESULTS Our analysis reveals significant structural rearrangements in RNA polymerase happen upon interaction with RbpA. Hotspot residues, crucial amino acids in the RbpA-mediated transcriptional regulation, were identified through our examination. The study elucidates the dynamic behavior within the complex, providing insights into the flexibility and functional dynamics of the RbpA-RNA polymerase interaction. Notably, potential allosteric mechanisms, involving the interface of subunits α1 and α2 were uncovered, shedding light on how RbpA modulates transcriptional activity. CONCLUSIONS Finally, potential ligands meant for the α1-α2 binding site were identified through virtual screening. The outcomes of our computational study serve as a foundation for experimental investigations into inhibitors targeting the RbpA-regulated dynamics in RNA polymerase. Overall, this research contributes valuable information for understanding the intricate regulatory networks of RbpA in the context of transcription and suggests potential avenues for the development of RbpA-targeted therapeutics.
Collapse
Affiliation(s)
- Sneha Bheemireddy
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bengaluru, Karnataka, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bengaluru, Karnataka, India
| | | |
Collapse
|
2
|
Åberg A, Gideonsson P, Bhat A, Ghosh P, Arnqvist A. Molecular insights into the fine-tuning of pH-dependent ArsR-mediated regulation of the SabA adhesin in Helicobacter pylori. Nucleic Acids Res 2024; 52:5572-5595. [PMID: 38499492 PMCID: PMC11162790 DOI: 10.1093/nar/gkae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024] Open
Abstract
Adaptation to variations in pH is crucial for the ability of Helicobacter pylori to persist in the human stomach. The acid responsive two-component system ArsRS, constitutes the global regulon that responds to acidic conditions, but molecular details of how transcription is affected by the ArsR response regulator remains poorly understood. Using a combination of DNA-binding studies, in vitro transcription assays, and H. pylori mutants, we demonstrate that phosphorylated ArsR (ArsR-P) forms an active protein complex that binds DNA with high specificity in order to affect transcription. Our data showed that DNA topology is key for DNA binding. We found that AT-rich DNA sequences direct ArsR-P to specific sites and that DNA-bending proteins are important for the effect of ArsR-P on transcription regulation. The repression of sabA transcription is mediated by ArsR-P with the support of Hup and is affected by simple sequence repeats located upstream of the sabA promoter. Here stochastic events clearly contribute to the fine-tuning of pH-dependent gene regulation. Our results reveal important molecular aspects for how ArsR-P acts to repress transcription in response to acidic conditions. Such transcriptional control likely mediates shifts in bacterial positioning in the gastric mucus layer.
Collapse
Affiliation(s)
- Anna Åberg
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | - Pär Gideonsson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | - Abhayprasad Bhat
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | - Prachetash Ghosh
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | - Anna Arnqvist
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| |
Collapse
|
3
|
Tewary A, Prajapati RK, Mukhopadhyay J. Mechanism of δ Mediated Transcription Activation in Bacillus subtilis: Interaction with α CTD of RNA Polymerase Stabilizes δ and Successively Facilitates the Open Complex Formation. J Mol Biol 2023; 435:168366. [PMID: 37972688 DOI: 10.1016/j.jmb.2023.168366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
The α CTD (C-terminal domain of the α subunit) of RNA polymerase (RNAP) is a target for transcriptional regulators. In the transcription activation at Class I, Class II, and Class III promoters of bacteria, the transcriptional regulator, binds to DNA at different sites and interacts with the α CTD to stabilize the RNAP at the promoter or it binds to the α CTD to form a prerecruitment complex that searches for its cognate binding site. This 'simple recruitment mechanism' of the transcriptional machinery at the promoter is responsible for the activation of transcription. Strikingly, in B. subtilis the binding of RNAP at the promoter stabilizes the transcriptional regulator, δ at the -41 site of the promoter DNA through an interaction with its α CTD and successively facilitates the open complex formation. Two residues R293 and K294 of α CTD (equivalent to K297 and K298 of E. coli) are involved in the interactions with δ and essential for the activation of transcription. R293 is responsible for the stabilization of δ, while K294 is responsible for facilitating the open complex formation. Based on our data we propose a new model of transcription activation by δ of B. subtilis that is similar to (its binding location and interaction with α CTD), but distinct from (the recruitment of transcription factor by RNAP at the DNA, and enhancement of the open complex formation) the model Class II promoters in bacteria.
Collapse
Affiliation(s)
- Aniruddha Tewary
- Department of Chemical Science, Bose Institute, EN80 Sector V, Kolkata 700091, India.
| | | | - Jayanta Mukhopadhyay
- Department of Chemical Science, Bose Institute, EN80 Sector V, Kolkata 700091, India.
| |
Collapse
|
4
|
Stephanie F, Tambunan USF, Siahaan TJ. M. tuberculosis Transcription Machinery: A Review on the Mycobacterial RNA Polymerase and Drug Discovery Efforts. Life (Basel) 2022; 12:1774. [PMID: 36362929 PMCID: PMC9695777 DOI: 10.3390/life12111774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 09/08/2023] Open
Abstract
Mycobacterium tuberculosis (MTB) is the main source of tuberculosis (TB), one of the oldest known diseases in the human population. Despite the drug discovery efforts of past decades, TB is still one of the leading causes of mortality and claimed more than 1.5 million lives worldwide in 2020. Due to the emergence of drug-resistant strains and patient non-compliance during treatments, there is a pressing need to find alternative therapeutic agents for TB. One of the important areas for developing new treatments is in the inhibition of the transcription step of gene expression; it is the first step to synthesize a copy of the genetic material in the form of mRNA. This further translates to functional protein synthesis, which is crucial for the bacteria living processes. MTB contains a bacterial DNA-dependent RNA polymerase (RNAP), which is the key enzyme for the transcription process. MTB RNAP has been targeted for designing and developing antitubercular agents because gene transcription is essential for the mycobacteria survival. Initiation, elongation, and termination are the three important sequential steps in the transcription process. Each step is complex and highly regulated, involving multiple transcription factors. This review is focused on the MTB transcription machinery, especially in the nature of MTB RNAP as the main enzyme that is regulated by transcription factors. The mechanism and conformational dynamics that occur during transcription are discussed and summarized. Finally, the current progress on MTB transcription inhibition and possible drug target in mycobacterial RNAP are also described to provide insight for future antitubercular drug design and development.
Collapse
Affiliation(s)
- Filia Stephanie
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - Usman Sumo Friend Tambunan
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - Teruna J. Siahaan
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
5
|
Bacterial H-NS contacts DNA at the same irregularly spaced sites in both bridged and hemi-sequestered linear filaments. iScience 2022; 25:104429. [PMID: 35669520 PMCID: PMC9162952 DOI: 10.1016/j.isci.2022.104429] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/01/2022] [Accepted: 05/13/2022] [Indexed: 11/22/2022] Open
Abstract
Gene silencing in bacteria is mediated by chromatin proteins, of which Escherichia coli H-NS is a paradigmatic example. H-NS forms nucleoprotein filaments with either one or two DNA duplexes. However, the structures, arrangements of DNA-binding domains (DBDs), and positions of DBD-DNA contacts in linear and bridged filaments are uncertain. To characterize the H-NS DBD contacts that silence transcription by RNA polymerase, we combined ·OH footprinting, molecular dynamics, statistical modeling, and DBD mapping using a chemical nuclease (Fe2+-EDTA) tethered to the DBDs (TEN-map). We find that H-NS DBDs contact DNA at indistinguishable locations in bridged or linear filaments and that the DBDs vary in orientation and position with ∼10-bp average spacing. Our results support a hemi-sequestration model of linear-to-bridged H-NS switching. Linear filaments able to inhibit only transcription initiation switch to bridged filaments able to inhibit both initiation and elongation using the same irregularly spaced DNA contacts.
Collapse
|
6
|
Sengupta S, Bhawsinghka N, Shaw R, Patra MM, Das Gupta SK. Mycobacteriophage D29 induced association of Mycobacterial RNA polymerase with ancillary factors leads to increased transcriptional activity. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35353035 DOI: 10.1099/mic.0.001158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mycobacteriophage D29 infects species belonging to the genus Mycobacterium including the deadly pathogen Mycobacterium tuberculosis. D29 is a lytic phage, although, related to the lysogenic mycobacteriophage L5. This phage is unable to lysogenize in mycobacteria as it lacks the gene encoding the phage repressor. Infection by many mycobacteriophages cause various changes in the host that ultimately leads to inactivation of the latter. One of the host targets often modified in the process is RNA polymerase. During our investigations with phage D29 infected Mycobacterium smegmatis (Msm) we observed that the promoters from both phage, and to a lesser extent those of the host were found to be more active in cells that were exposed to D29, as compared to the unexposed. Further experiments indicate that the RNA polymerase purified from phage infected cells possessed higher affinity for promoters particularly those that were phage derived. Comparison of the purified RNA polymerase preparations from infected and uninfected cells showed that several ancillary transcription factors, Sigma factor F, Sigma factor H, CarD and RbpA are prominently associated with the RNA polymerase from infected cells. Based on our observations we conclude that the higher activity of RNA polymerase observed in D29 infected cells is due to its increased association with ancillary transcription factors.
Collapse
Affiliation(s)
- Shreya Sengupta
- Department of Microbiology, Bose Institute, P-1/12 C.I.T Road. Scheme VIIM, Kolkata-700054, West Bengal, India
| | - Niketa Bhawsinghka
- Department of Microbiology, Bose Institute, P-1/12 C.I.T Road. Scheme VIIM, Kolkata-700054, West Bengal, India.,Present address: Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Rahul Shaw
- Department of Microbiology, Bose Institute, P-1/12 C.I.T Road. Scheme VIIM, Kolkata-700054, West Bengal, India
| | - Madhu Manti Patra
- Department of Microbiology, Bose Institute, P-1/12 C.I.T Road. Scheme VIIM, Kolkata-700054, West Bengal, India
| | - Sujoy K Das Gupta
- Department of Microbiology, Bose Institute, P-1/12 C.I.T Road. Scheme VIIM, Kolkata-700054, West Bengal, India
| |
Collapse
|
7
|
Villegas Kcam MC, Tsong AJ, Chappell J. Rational engineering of a modular bacterial CRISPR-Cas activation platform with expanded target range. Nucleic Acids Res 2021; 49:4793-4802. [PMID: 33823546 PMCID: PMC8096225 DOI: 10.1093/nar/gkab211] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 11/14/2022] Open
Abstract
CRISPR-Cas activator (CRISPRa) systems that selectively turn on transcription of a target gene are a potentially transformative technology for programming cellular function. While in eukaryotes versatile CRISPRa systems exist, in bacteria these systems suffer from a limited ability to activate different genes due to strict distance-dependent requirements of functional target binding sites, and require greater customization to optimize performance in different genetic and cellular contexts. To address this, we apply a rational protein engineering approach to create a new CRISPRa platform that is highly modular to allow for easy customization and has increased targeting flexibility through harnessing engineered Cas proteins. We first demonstrate that transcription activation domains can be recruited by CRISPR-Cas through noncovalent protein-protein interactions, which allows each component to be encoded on separate and easily interchangeable plasmid elements. We then exploit this modularity to rapidly screen a library of different activation domains, creating new systems with distinct regulatory properties. Furthermore, we demonstrate that by harnessing a library of circularly permuted Cas proteins, we can create CRISPRa systems that have different target binding site requirements, which together, allow for expanded target range.
Collapse
Affiliation(s)
| | - Annette J Tsong
- Department of BioSciences, Rice University, 6100 Main Street, MS 140, Houston, TX 77005, USA
| | - James Chappell
- Department of BioSciences, Rice University, 6100 Main Street, MS 140, Houston, TX 77005, USA
- Department of Bioengineering, Rice University, 6100 Main Street, MS 142, Houston, TX 77005, USA
| |
Collapse
|
8
|
Shin Y, Qayyum MZ, Pupov D, Esyunina D, Kulbachinskiy A, Murakami KS. Structural basis of ribosomal RNA transcription regulation. Nat Commun 2021; 12:528. [PMID: 33483500 PMCID: PMC7822876 DOI: 10.1038/s41467-020-20776-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/14/2020] [Indexed: 01/30/2023] Open
Abstract
Ribosomal RNA (rRNA) is most highly expressed in rapidly growing bacteria and is drastically downregulated under stress conditions by the global transcriptional regulator DksA and the alarmone ppGpp. Here, we determined cryo-electron microscopy structures of the Escherichia coli RNA polymerase (RNAP) σ70 holoenzyme during rRNA promoter recognition with and without DksA/ppGpp. RNAP contacts the UP element using dimerized α subunit carboxyl-terminal domains and scrunches the template DNA with the σ finger and β' lid to select the transcription start site favorable for rapid promoter escape. Promoter binding induces conformational change of σ domain 2 that opens a gate for DNA loading and ejects σ1.1 from the RNAP cleft to facilitate open complex formation. DksA/ppGpp binding also opens the DNA loading gate, which is not coupled to σ1.1 ejection and impedes open complex formation. These results provide a molecular basis for the exceptionally active rRNA transcription and its vulnerability to DksA/ppGpp.
Collapse
Affiliation(s)
- Yeonoh Shin
- grid.29857.310000 0001 2097 4281Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802 USA
| | - M. Zuhaib Qayyum
- grid.29857.310000 0001 2097 4281Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802 USA
| | - Danil Pupov
- grid.4886.20000 0001 2192 9124Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182 Russia
| | - Daria Esyunina
- grid.4886.20000 0001 2192 9124Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182 Russia
| | - Andrey Kulbachinskiy
- grid.4886.20000 0001 2192 9124Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182 Russia
| | - Katsuhiko S. Murakami
- grid.29857.310000 0001 2097 4281Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802 USA
| |
Collapse
|
9
|
Lara-Gonzalez S, Dantas Machado AC, Rao S, Napoli AA, Birktoft J, Di Felice R, Rohs R, Lawson CL. The RNA Polymerase α Subunit Recognizes the DNA Shape of the Upstream Promoter Element. Biochemistry 2020; 59:4523-4532. [PMID: 33205945 DOI: 10.1021/acs.biochem.0c00571] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We demonstrate here that the α subunit C-terminal domain of Escherichia coli RNA polymerase (αCTD) recognizes the upstream promoter (UP) DNA element via its characteristic minor groove shape and electrostatic potential. In two compositionally distinct crystallized assemblies, a pair of αCTD subunits bind in tandem to the UP element consensus A-tract that is 6 bp in length (A6-tract), each with their arginine 265 guanidinium group inserted into the minor groove. The A6-tract minor groove is significantly narrowed in these crystal structures, as well as in computationally predicted structures of free and bound DNA duplexes derived by Monte Carlo and molecular dynamics simulations, respectively. The negative electrostatic potential of free A6-tract DNA is substantially enhanced compared to that of generic DNA. Shortening the A-tract by 1 bp is shown to "knock out" binding of the second αCTD through widening of the minor groove. Furthermore, in computationally derived structures with arginine 265 mutated to alanine in either αCTD, either with or without the "knockout" DNA mutation, contact with the DNA is perturbed, highlighting the importance of arginine 265 in achieving αCTD-DNA binding. These results demonstrate that the importance of the DNA shape in sequence-dependent recognition of DNA by RNA polymerase is comparable to that of certain transcription factors.
Collapse
Affiliation(s)
- Samuel Lara-Gonzalez
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Ana Carolina Dantas Machado
- Quantitative and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Satyanarayan Rao
- Quantitative and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Andrew A Napoli
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Jens Birktoft
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Rosa Di Felice
- Quantitative and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States.,Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States.,CNR-NANO Modena, Via Campi 213/A, 41125 Modena, Italy
| | - Remo Rohs
- Quantitative and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States.,Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States.,Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.,Department of Computer Science, University of Southern California, Los Angeles, California 90089, United States
| | - Catherine L Lawson
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States.,Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
10
|
Sutherland C, Murakami KS. An Introduction to the Structure and Function of the Catalytic Core Enzyme of Escherichia coli RNA Polymerase. EcoSal Plus 2018; 8:10.1128/ecosalplus.ESP-0004-2018. [PMID: 30109846 PMCID: PMC6095464 DOI: 10.1128/ecosalplus.esp-0004-2018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Indexed: 01/02/2023]
Abstract
RNA polymerase (RNAP) is the essential enzyme responsible for transcribing genetic information stored in DNA to RNA. Understanding the structure and function of RNAP is important for those who study basic principles in gene expression, such as the mechanism of transcription and its regulation, as well as translational sciences such as antibiotic development. With over a half-century of investigations, there is a wealth of information available on the structure and function of Escherichia coli RNAP. This review introduces the structural features of E. coli RNAP, organized by subunit, giving information on the function, location, and conservation of these features to early stage investigators who have just started their research of E. coli RNAP.
Collapse
Affiliation(s)
- Catherine Sutherland
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Katsuhiko S Murakami
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
11
|
Pan L, Gardner CL, Pagliai FA, Gonzalez CF, Lorca GL. Identification of the Tolfenamic Acid Binding Pocket in PrbP from Liberibacter asiaticus. Front Microbiol 2017; 8:1591. [PMID: 28878750 PMCID: PMC5572369 DOI: 10.3389/fmicb.2017.01591] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 08/04/2017] [Indexed: 12/31/2022] Open
Abstract
In Liberibacter asiaticus, PrbP is an important transcriptional accessory protein that was found to regulate gene expression through interactions with the RNA polymerase β-subunit and a specific sequence on the promoter region. It was found that inactivation of PrbP, using the inhibitor tolfenamic acid, resulted in a significant decrease in the overall transcriptional activity of L. asiaticus, and the suppression of L. asiaticus infection in HLB symptomatic citrus seedlings. The molecular interactions between PrbP and tolfenamic acid, however, were yet to be elucidated. In this study, we modeled the structure of PrbP and identified a ligand binding pocket, TaP, located at the interface of the predicted RNA polymerase interaction domain (N-terminus) and the DNA binding domain (C-terminus). The molecular interactions of PrbP with tolfenamic acid were predicted using in silico docking. Site-directed mutagenesis of specific amino acids was followed by electrophoresis mobility shift assays and in vitro transcription assays, where residues N107, G109, and E148 were identified as the primary amino acids involved in interactions with tolfenamic acid. These results provide insight into the binding mechanism of PrbP to a small inhibitory molecule, and a starting scaffold for the identification and development of therapeutics targeting PrbP and other homologs in the CarD_CdnL_TRCF family.
Collapse
Affiliation(s)
| | | | | | | | - Graciela L. Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Science, University of FloridaGainesville, FL, United States
| |
Collapse
|
12
|
Maeda M, Shimada T, Ishihama A. Strength and Regulation of Seven rRNA Promoters in Escherichia coli. PLoS One 2015; 10:e0144697. [PMID: 26717514 PMCID: PMC4696680 DOI: 10.1371/journal.pone.0144697] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 11/23/2015] [Indexed: 11/18/2022] Open
Abstract
The model prokaryote Escherichia coli contains seven copies of the rRNA operon in the genome. The presence of multiple rRNA operons is an advantage for increasing the level of ribosome, the key apparatus of translation, in response to environmental conditions. The complete sequence of E. coli genome, however, indicated the micro heterogeneity between seven rRNA operons, raising the possibility in functional heterogeneity and/or differential mode of expression. The aim of this research is to determine the strength and regulation of the promoter of each rRNA operon in E. coli. For this purpose, we used the double-fluorescent protein reporter pBRP system that was developed for accurate and precise determination of the promoter strength of protein-coding genes. For application of this promoter assay vector for measurement of the rRNA operon promoters devoid of the signal for translation, a synthetic SD sequence was added at the initiation codon of the reporter GFP gene, and then approximately 500 bp-sequence upstream each 16S rRNA was inserted in front of this SD sequence. Using this modified pGRS system, the promoter activity of each rrn operon was determined by measuring the rrn promoter-directed GFP and the reference promoter-directed RFP fluorescence, both encoded by a single and the same vector. Results indicated that: the promoter activity was the highest for the rrnE promoter under all growth conditions analyzed, including different growth phases of wild-type E. coli grown in various media; but the promoter strength of other six rrn promoters was various depending on the culture conditions. These findings altogether indicate that seven rRNA operons are different with respect to the regulation mode of expression, conferring an advantage to E. coli through a more fine-tuned control of ribosome formation in a wide range of environmental situations. Possible difference in the functional role of each rRNA operon is also discussed.
Collapse
Affiliation(s)
- Michihisa Maeda
- Meiji University, Faculty of Agriculture Chemistry, Kawasaki, Kanagawa 214–8571, Japan
| | - Tomohiro Shimada
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuda, Yokohama 226–8503, Japan
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo 184–8584, Japan
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo 184–8584, Japan
- * E-mail:
| |
Collapse
|
13
|
Araki Y, Ku WC, Akioka M, May AI, Hayashi Y, Arisaka F, Ishihama Y, Ohsumi Y. Atg38 is required for autophagy-specific phosphatidylinositol 3-kinase complex integrity. ACTA ACUST UNITED AC 2013; 203:299-313. [PMID: 24165940 PMCID: PMC3812978 DOI: 10.1083/jcb.201304123] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Atg38 provides a physical linkage between the Vps15–Vps34 and Atg14–Vps30 subcomplexes to facilitate PI3-kinase complex I formation. Autophagy is a conserved eukaryotic process of protein and organelle self-degradation within the vacuole/lysosome. Autophagy is characterized by the formation of an autophagosome, for which Vps34-dervied phosphatidylinositol 3-phosphate (PI3P) is essential. In yeast, Vps34 forms two distinct protein complexes: complex I, which functions in autophagy, and complex II, which is involved in protein sorting to the vacuole. Here we identify and characterize Atg38 as a stably associated subunit of complex I. In atg38Δ cells, autophagic activity was significantly reduced and PI3-kinase complex I dissociated into the Vps15–Vps34 and Atg14–Vps30 subcomplexes. We find that Atg38 physically interacted with Atg14 and Vps34 via its N terminus. Further biochemical analyses revealed that Atg38 homodimerizes through its C terminus and that this homodimer formation is indispensable for the integrity of complex I. These data suggest that the homodimer of Atg38 functions as a physical linkage between the Vps15–Vps34 and Atg14–Vps30 subcomplexes to facilitate complex I formation.
Collapse
Affiliation(s)
- Yasuhiro Araki
- Frontier Research Center, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Ishihama A. Prokaryotic genome regulation: a revolutionary paradigm. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2012; 88:485-508. [PMID: 23138451 PMCID: PMC3511978 DOI: 10.2183/pjab.88.485] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/31/2012] [Indexed: 06/01/2023]
Abstract
After determination of the whole genome sequence, the research frontier of bacterial molecular genetics has shifted to reveal the genome regulation under stressful conditions in nature. The gene selectivity of RNA polymerase is modulated after interaction with two groups of regulatory proteins, 7 sigma factors and 300 transcription factors. For identification of regulation targets of transcription factors in Escherichia coli, we have developed Genomic SELEX system and subjected to screening the binding sites of these factors on the genome. The number of regulation targets by a single transcription factor was more than those hitherto recognized, ranging up to hundreds of promoters. The number of transcription factors involved in regulation of a single promoter also increased to as many as 30 regulators. The multi-target transcription factors and the multi-factor promoters were assembled into complex networks of transcription regulation. The most complex network was identified in the regulation cascades of transcription of two master regulators for planktonic growth and biofilm formation.
Collapse
Affiliation(s)
- Akira Ishihama
- Department of Frontier Bioscience and Micro-Nano Technology Research Center, Hosei University, Koganei, Tokyo 184-8584, Japan.
| |
Collapse
|
15
|
Rhodius VA, Mutalik VK, Gross CA. Predicting the strength of UP-elements and full-length E. coli σE promoters. Nucleic Acids Res 2011; 40:2907-24. [PMID: 22156164 PMCID: PMC3326320 DOI: 10.1093/nar/gkr1190] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Predicting the location and strength of promoters from genomic sequence requires accurate sequenced-based promoter models. We present the first model of a full-length bacterial promoter, encompassing both upstream sequences (UP-elements) and core promoter modules, based on a set of 60 promoters dependent on σ(E), an alternative ECF-type σ factor. UP-element contribution, best described by the length and frequency of A- and T-tracts, in combination with a PWM-based core promoter model, accurately predicted promoter strength both in vivo and in vitro. This model also distinguished active from weak/inactive promoters. Systematic examination of promoter strength as a function of RNA polymerase (RNAP) concentration revealed that UP-element contribution varied with RNAP availability and that the σ(E) regulon is comprised of two promoter types, one of which is active only at high concentrations of RNAP. Distinct promoter types may be a general mechanism for increasing the regulatory capacity of the ECF group of alternative σ's. Our findings provide important insights into the sequence requirements for the strength and function of full-length promoters and establish guidelines for promoter prediction and for forward engineering promoters of specific strengths.
Collapse
Affiliation(s)
- Virgil A Rhodius
- Department of Microbiology and Immunology, University of California at San Francisco, 600 16th Street, San Francisco, CA 94158, USA.
| | | | | |
Collapse
|
16
|
Mukhamedyarov D, Makarova KS, Severinov K, Kuznedelov K. Francisella RNA polymerase contains a heterodimer of non-identical α subunits. BMC Mol Biol 2011; 12:50. [PMID: 22108176 PMCID: PMC3294249 DOI: 10.1186/1471-2199-12-50] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 11/22/2011] [Indexed: 11/11/2022] Open
Abstract
Background All sequenced genomes of representatives of the Francisella genus contain two rpoA genes, which encode non-identical RNA polymerase (RNAP) subunits, α1 and α2. In all other bacteria studied to date, a dimer of identical α subunits initiates the assembly of the catalytically proficient RNAP core (subunit composition α2ββ'). Based on an observation that both α1 and α2 are incorporated into Francisella RNAP, Charity et al. (2007) previously suggested that up to four different species of RNAP core enzyme might form in the same Francisella cell. Results By in vitro assembly from fully denatured state, we determined that both Francisella α subunits are required for efficient dimerization; no homodimer formation was detected. Bacterial two-hybrid system analysis likewise indicated strong interactions between the α1 and α2 N-terminal domains (NTDs, responsible for dimerization). NTDs of α2 did not interact detectably, while weak interaction between α1 NTDs was observed. This weak homotypic interaction may explain low-level transcription activity observed in in vitro RNAP reconstitution reactions containing Francisella large subunits (β', β) and α1. No activity was observed with RNAP reconstitution reactions containing α2, while robust transcription activity was detected in reactions containing α1 and α2. Phylogenetic analysis based on RpoA resulted in a tree compatible with standard bacterial taxonomy with both Francisella RpoA branches positioned within γ-proteobacteria. The observed phylogeny and analysis of constrained trees are compatible with Francisella lineage-specific rpoA duplication followed by acceleration of evolutionary rate and subfunctionalization. Conclusions The results strongly suggest that most Francisella RNAP contains α heterodimer with a minor subfraction possibly containing α1 homodimer. Comparative sequence analysis suggests that this heterodimer is oriented, in a sense that only one monomer, α1, interacts with the β subunit during the α2β RNAP subassembly formation. Most likely the two rpoA copies in Francisella have emerged through a lineage-specific duplication followed by subfunctionalization of interacting paralogs.
Collapse
Affiliation(s)
- Damir Mukhamedyarov
- Department of Biochemistry and Molecular Biology and Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
17
|
Shimada T, Fujita N, Yamamoto K, Ishihama A. Novel roles of cAMP receptor protein (CRP) in regulation of transport and metabolism of carbon sources. PLoS One 2011; 6:e20081. [PMID: 21673794 PMCID: PMC3105977 DOI: 10.1371/journal.pone.0020081] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 04/18/2011] [Indexed: 12/17/2022] Open
Abstract
CRP (cAMP receptor protein), the global regulator of genes for carbon source utilization in the absence of glucose, is the best-studied prokaryotic transcription factor. A total of 195 target promoters on the Escherichia coli genome have been proposed to be under the control of cAMP-bound CRP. Using the newly developed Genomic SELEX screening system of transcription factor-binding sequences, however, we have identified a total of at least 254 CRP-binding sites. Based on their location on the E. coli genome, we predict a total of at least 183 novel regulation target operons, altogether with the 195 hitherto known targets, reaching to the minimum of 378 promoters as the regulation targets of cAMP-CRP. All the promoters selected from the newly identified targets and examined by using the lacZ reporter assay were found to be under the control of CRP, indicating that the Genomic SELEX screening allowed to identify the CRP targets with high accuracy. Based on the functions of novel target genes, we conclude that CRP plays a key regulatory role in the whole processes from the selective transport of carbon sources, the glycolysis-gluconeogenesis switching to the metabolisms downstream of glycolysis, including tricarboxylic acid (TCA) cycle, pyruvate dehydrogenase (PDH) pathway and aerobic respiration. One unique regulation mode is that a single and the same CRP molecule bound within intergenic regions often regulates both of divergently transcribed operons.
Collapse
Affiliation(s)
- Tomohiro Shimada
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | | | | | | |
Collapse
|
18
|
Yan P, Wang T, Newton GJ, Knyushko TV, Xiong Y, Bigelow DJ, Squier TC, Mayer MU. A targeted releasable affinity probe (TRAP) for in vivo photocrosslinking. Chembiochem 2009; 10:1507-18. [PMID: 19441027 DOI: 10.1002/cbic.200900029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein crosslinking, especially coupled to mass-spectrometric identification, is increasingly used to determine protein binding partners and protein-protein interfaces for isolated protein complexes. The modification of crosslinkers to permit their targeted use in living cells is of considerable importance for studying protein-interaction networks, which are commonly modulated through weak interactions that are formed transiently to permit rapid cellular response to environmental changes. We have therefore synthesized a targeted and releasable affinity probe (TRAP) consisting of a biarsenical fluorescein linked to benzophenone that binds to a tetracysteine sequence in a protein engineered for specific labeling. Here, the utility of TRAP for capturing protein binding partners upon photoactivation of the benzophenone moiety has been demonstrated in living bacteria and mammalian cells. In addition, ligand exchange of the arsenic-sulfur bonds between TRAP and the tetracysteine sequence to added dithiols results in fluorophore transfer to the crosslinked binding partner. In isolated protein complexes, this release from the original binding site permits the identification of the proximal binding interface through mass spectrometric fragmentation and computational sequence identification.
Collapse
Affiliation(s)
- Ping Yan
- Novozymes, Inc., 1445 Drew Ave, Davis, CA 95618, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Time-resolved footprinting for the study of the structural dynamics of DNA–protein interactions. Biochem Soc Trans 2008; 36:745-8. [DOI: 10.1042/bst0360745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Transcription is often regulated at the level of initiation by the presence of transcription factors or nucleoid proteins or by changing concentrations of metabolites. These can influence the kinetic properties and/or structures of the intermediate RNA polymerase–DNA complexes in the pathway. Time-resolved footprinting techniques combine the high temporal resolution of a stopped-flow apparatus with the specific structural information obtained by the probing agent. Combined with a careful quantitative analysis of the evolution of the signals, this approach allows for the identification and kinetic and structural characterization of the intermediates in the pathway of DNA sequence recognition by a protein, such as a transcription factor or RNA polymerase. The combination of different probing agents is especially powerful in revealing different aspects of the conformational changes taking place at the protein–DNA interface. For example, hydroxyl radical footprinting, owing to their small size, provides a map of the solvent-accessible surface of the DNA backbone at a single nucleotide resolution; modification of the bases using potassium permanganate can reveal the accessibility of the bases when the double helix is distorted or melted; cross-linking experiments report on the formation of specific amino acid–DNA contacts, and DNase I footprinting results in a strong signal-to-noise ratio from DNA protection at the binding site and hypersensitivity at curved or kinked DNA sites. Recent developments in protein footprinting allow for the direct characterization of conformational changes of the proteins in the complex.
Collapse
|
20
|
Kedzierska B, Szambowska A, Herman-Antosiewicz A, Lee DJ, Busby SJ, Wegrzyn G, Thomas MS. The C-terminal domain of the Escherichia coli RNA polymerase alpha subunit plays a role in the CI-dependent activation of the bacteriophage lambda pM promoter. Nucleic Acids Res 2007; 35:2311-20. [PMID: 17389649 PMCID: PMC1874639 DOI: 10.1093/nar/gkm123] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 02/14/2007] [Accepted: 02/14/2007] [Indexed: 11/26/2022] Open
Abstract
The bacteriophage lambda p(M) promoter is required for maintenance of the lambda prophage in Escherichia coli, as it facilitates transcription of the cI gene, encoding the lambda repressor (CI). CI levels are maintained through a transcriptional feedback mechanism whereby CI can serve as an activator or a repressor of p(M). CI activates p(M) through cooperative binding to the O(R)1 and O(R)2 sites within the O(R) operator, with the O(R)2-bound CI dimer making contact with domain 4 of the RNA polymerase sigma subunit (sigma(4)). Here we demonstrate that the 261 and 287 determinants of the C-terminal domain of the RNA polymerase alpha subunit (alphaCTD), as well as the DNA-binding determinant, are important for CI-dependent activation of p(M). We also show that the location of alphaCTD at the p(M) promoter changes in the presence of CI. Thus, in the absence of CI, one alphaCTD is located on the DNA at position -44 relative to the transcription start site, whereas in the presence of CI, alphaCTD is located at position -54, between the CI-binding sites at O(R)1 and O(R)2. These results suggest that contacts between CI and both alphaCTD and sigma are required for efficient CI-dependent activation of p(M).
Collapse
Affiliation(s)
- Barbara Kedzierska
- Department of Molecular Biology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK and School of Medicine and Biomedical Sciences, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Anna Szambowska
- Department of Molecular Biology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK and School of Medicine and Biomedical Sciences, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Anna Herman-Antosiewicz
- Department of Molecular Biology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK and School of Medicine and Biomedical Sciences, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - David J. Lee
- Department of Molecular Biology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK and School of Medicine and Biomedical Sciences, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Stephen J.W. Busby
- Department of Molecular Biology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK and School of Medicine and Biomedical Sciences, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Grzegorz Wegrzyn
- Department of Molecular Biology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK and School of Medicine and Biomedical Sciences, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Mark S. Thomas
- Department of Molecular Biology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK and School of Medicine and Biomedical Sciences, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
21
|
Ma J, Howe MM. Binding of the C-terminal domain of the alpha subunit of RNA polymerase to the phage mu middle promoter. J Bacteriol 2004; 186:7858-64. [PMID: 15547256 PMCID: PMC529059 DOI: 10.1128/jb.186.23.7858-7864.2004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The C-terminal domain of the alpha subunit (alpha CTD) of Escherichia coli RNA polymerase is often involved in transcriptional regulation. The alpha CTD typically stimulates transcription via interactions with promoter UP element DNA and transcriptional activators. DNase I footprinting and gel mobility shift assays were used to look for potential interaction of the alpha CTD with the phage Mu middle promoter P(m) and its activator protein Mor. Binding of RNA polymerase to P(m) in the presence of Mor resulted in production of a DNase I footprint downstream of Mor due to open complex formation and generation of a second footprint just upstream of the Mor binding site. Generation of the upstream footprint did not require open complex formation and also occurred in reactions in which the alpha CTD or His-alpha proteins were substituted for RNA polymerase. In gel mobility shift assays, the formation of a supershifted ternary complex demonstrated that Mor and His-alpha bind synergistically to P(m) DNA. Gel shift assays with short DNA fragments demonstrated that only the Mor binding site and a single upstream alpha CTD binding site were required for ternary complex formation. These results suggest that the alpha CTD plays a role in P(m) transcription by binding to P(m) DNA just upstream from Mor and making protein-protein interactions with Mor that stabilize the binding of both proteins.
Collapse
Affiliation(s)
- Ji Ma
- Department of Molecular Sciences, University of Tennessee Health Science Center, 858 Madison Ave., Memphis, TN 38163, USA
| | | |
Collapse
|
22
|
Strasser R, Ehrlinger JM, Bingman VP. Transitive Behavior in Hippocampal-Lesioned Pigeons. BRAIN, BEHAVIOR AND EVOLUTION 2004; 63:181-8. [PMID: 14745244 DOI: 10.1159/000076442] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2003] [Accepted: 10/27/2003] [Indexed: 11/19/2022]
Abstract
The hippocampus of birds and mammals is critical for the learning of map-like memory representations of environmental space. It has been suggested that the hippocampus of rats also participates in non-spatial relational learning, including the learning of non-spatial transitive relationships among odor stimuli [Bunsey and Eichenbaum, Nature 1996]. Although transitive-like learning has been demonstrated in a variety of vertebrate species, from a comparative perspective the role of the hippocampus in this form of learning has not been tested in other amniote groups. We trained control and hippocampal-lesioned homing pigeons on a series of visual, non-spatial, go/no-go conditional discriminations and then tested them on novel transitivity probe trials. The hippocampal-lesioned pigeons were as successful as control pigeons in responding appropriately to correct and incorrect transitivity pairs. The finding that the homing pigeon hippocampal formation is not necessary for solving this serial, conditional discrimination task is important for further understanding hippocampal function across species, and represents one of the few studies that have attempted to localize a brain region responsible for the phenomenon of transitive behavior learning.
Collapse
Affiliation(s)
- Rosemary Strasser
- University of Nebraska at Omaha, Psychology Department, Omaha, Nebr. 68182-0274, USA.
| | | | | |
Collapse
|
23
|
Barnard AML, Lloyd GS, Green J, Busby SJW, Lee DJ. Location of the Escherichia coli RNA polymerase alpha subunit C-terminal domain at an FNR-dependent promoter: analysis using an artificial nuclease. FEBS Lett 2004; 558:13-8. [PMID: 14759508 DOI: 10.1016/s0014-5793(03)01518-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2003] [Revised: 12/22/2003] [Accepted: 12/22/2003] [Indexed: 11/28/2022]
Abstract
The Escherichia coli FNR protein is a global transcription regulator that activates gene expression via interactions with the RNA polymerase alpha subunit C-terminal domain. Using preparations of E. coli RNA polymerase holoenzyme, specifically labelled with a DNA cleavage reagent, we have determined the location and orientation of the C-terminal domain of the RNA polymerase alpha subunit in transcriptionally competent complexes at a class II FNR-dependent promoter. We conclude that one alpha subunit C-terminal domain binds immediately upstream of FNR, and that its position and orientation is the same as at similar promoters dependent on CRP, another E. coli transcription activator that is related to FNR. In complementary experiments, we show that the second alpha subunit C-terminal domain of RNA polymerase can be repositioned by upstream-bound CRP, but not by upstream-bound FNR.
Collapse
Affiliation(s)
- Anne M L Barnard
- School of Biosciences, The University of Birmingham, Birmingham B15 2TT, UK
| | | | | | | | | |
Collapse
|
24
|
Kedzierska B, Lee DJ, Wegrzyn G, Busby SJW, Thomas MS. Role of the RNA polymerase alpha subunits in CII-dependent activation of the bacteriophage lambda pE promoter: identification of important residues and positioning of the alpha C-terminal domains. Nucleic Acids Res 2004; 32:834-41. [PMID: 14762211 PMCID: PMC373352 DOI: 10.1093/nar/gkh230] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The bacteriophage lambda CII protein stimulates the activity of three phage promoters, p(E), p(I) and p(aQ), upon binding to a site overlapping the -35 element at each promoter. Here we used preparations of RNA polymerase carrying a DNA cleavage reagent attached to specific residues in the C-terminal domain of the RNA polymerase alpha subunit (alphaCTD) to demonstrate that one alphaCTD binds near position -41 at p(E), whilst the other alphaCTD binds further upstream. The alphaCTD bound near position -41 is oriented such that its 261 determinant is in close proximity to sigma(70). The location of alphaCTD in CII-dependent complexes at the p(E) promoter is very similar to that found at many activator-independent promoters, and represents an alternative configuration for alphaCTD at promoters where activators bind sites overlapping the -35 region. We also used an in vivo alanine scan analysis to show that the DNA-binding determinant of alphaCTD is involved in stimulation of the p(E) promoter by CII, and this was confirmed by in vitro transcription assays. We also show that whereas the K271E substitution in alphaCTD results in a drastic decrease in CII-dependent activation of p(E), the p(I) and p(aQ) promoters are less sensitive to this substitution, suggesting that the role of alphaCTD at the three lysogenic promoters may be different.
Collapse
Affiliation(s)
- Barbara Kedzierska
- Division of Genomic Medicine, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield S10 2RX, UK
| | | | | | | | | |
Collapse
|
25
|
Lee DJ, Busby SJW, Lloyd GS. Exploitation of a Chemical Nuclease to Investigate the Location and Orientation of the Escherichia coli RNA Polymerase α Subunit C-terminal Domains at Simple Promoters That Are Activated by Cyclic AMP Receptor Protein. J Biol Chem 2003; 278:52944-52. [PMID: 14530288 DOI: 10.1074/jbc.m308300200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C-terminal domain of the alpha subunit (alphaCTD) of bacterial RNA polymerase plays an important role in promoter recognition. It is known that alphaCTD binds to the DNA minor groove at different locations at different promoters via a surface-exposed determinant, the 265 determinant. Here we describe experiments that permit us to determine the location and orientation of binding of alphaCTD at any promoter. In these experiments, a DNA cleavage reagent is attached to specific locations on opposite faces of the RNA polymerase alpha subunit. After incorporation of the tagged alpha subunits into holo-RNA polymerase, patterns of DNA cleavage due to the reagent are determined in open complexes. The locations of DNA cleavage due to the reagent attached at different positions allow the position and orientation of alphaCTD to be deduced. Here we present data from experiments with simple Escherichia coli promoters that are activated by the cyclic AMP receptor protein.
Collapse
Affiliation(s)
- David J Lee
- School of Biosciences, the University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | |
Collapse
|
26
|
Abstract
RNA polymerase II (Pol II) is recruited to promoters by interaction with general transcription factors. The zinc ribbon domain of the general factor TFIIB is essential for Pol II recruitment. Site-specific photocrosslinking and directed hydroxyl radical probing were used to map the location of the TFIIB zinc ribbon domain on Pol II within the transcription preinitiation complex (PIC). These results, along with mutational analysis, suggest that in the PIC, the TFIIB ribbon domain interacts with a surface of the Pol II Dock domain where it overlaps the RNA exit point. This surface is best conserved in polymerases that require a TFIIB-like factor. Our results suggest a general mechanism for interaction of TFIIB-like factors and RNA polymerases and a mechanism for the function of the ribbon domain.
Collapse
Affiliation(s)
- Hung-Ta Chen
- Fred Hutchinson Cancer Research Center and Howard Hughes Medical Institute, 1100 Fairview Avenue N., Mail Stop A1-162, Seattle, WA 98109, USA
| | | |
Collapse
|
27
|
Macchi R, Montesissa L, Murakami K, Ishihama A, De Lorenzo V, Bertoni G. Recruitment of sigma54-RNA polymerase to the Pu promoter of Pseudomonas putida through integration host factor-mediated positioning switch of alpha subunit carboxyl-terminal domain on an UP-like element. J Biol Chem 2003; 278:27695-702. [PMID: 12754257 DOI: 10.1074/jbc.m303031200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interactions between the sigma54-containing RNA polymerase (sigma54-RNAP) and the region of the Pseudomonas putida Pu promoter spanning from the enhancer to the binding site for the integration host factor (IHF) were analyzed both by DNase I and hydroxyl radical footprinting. A short Pu region centered at position -104 was found to be involved in the interaction with sigma54-RNAP, both in the absence and in the presence of IHF protein. Deletion or scrambling of the -104 region strongly reduced promoter affinity in vitro and promoter activity in vivo, respectively. The reduction in promoter affinity coincided with the loss of IHF-mediated recruitment of the sigma54-RNAP in vitro. The experiments with oriented-alpha sigma54-RNAP derivatives containing bound chemical nuclease revealed interchangeable positioning of only one of the two alpha subunit carboxyl-terminal domains (alphaCTDs) both at the -104 region and in the surroundings of position -78. The addition of IHF resulted in perfect position symmetry of the two alphaCTDs. These results indicate that, in the absence of IHF, the sigma54-RNAP asymmetrically uses only one alphaCTD subunit to establish productive contacts with upstream sequences of the Pu promoter. In the presence of IHF-induced curvature, the closer proximity of the upstream DNA to the body of the sigma54-RNAP can allow the other alphaCTD to be engaged in and thus favor closed complex formation.
Collapse
Affiliation(s)
- Raffaella Macchi
- Dipartimento di Genetica e Biologia dei Microrganismi, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Snapyan M, Lecocq M, Guével L, Arnaud MC, Ghochikyan A, Sakanyan V. Dissecting DNA-protein and protein-protein interactions involved in bacterial transcriptional regulation by a sensitive protein array method combining a near-infrared fluorescence detection. Proteomics 2003; 3:647-57. [PMID: 12748944 DOI: 10.1002/pmic.200300390] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The protein array methodology is used to study DNA-protein and protein-protein interactions governing gene expression from the Bacillus stearothermophilus PargCo promoter-operator region. Using probes labelled with near-infrared fluorescence dyes with exitation characteristics close to 700 or 800 nm, it is possible to detect signals from proteins (purified or non-purified in Escherichia coli cell extracts) immobilised on a nitrocellulose membrane with a high sensitivity (almost 12 amol of a spotted protein for protein-DNA interactions). Protein array data are confirmed by other methods indicating that molecular interactions of the order 10(-7) M can be monitored with the proposed protein array approach. We show that the PargCo region is a target for binding at least three types of regulatory proteins, ArgR repressors from thermophilic bacteria, the E. coli RNA polymerase alpha subunit and cyclic AMP binding protein CRP. We also demonstrate that the high strength of the PargC promoter is related to an upstream element that binds to the E. coli RNA polymerase alpha subunit.
Collapse
Affiliation(s)
- Marina Snapyan
- Laboratoire de Biotechnologie, FRE-CNRS 2230 Biocatalyse, Université de Nantes, Nantes, France
| | | | | | | | | | | |
Collapse
|
29
|
Grainger DC, Belyaeva TA, Lee DJ, Hyde EI, Busby SJW. Binding of the Escherichia coli MelR protein to the melAB promoter: orientation of MelR subunits and investigation of MelR-DNA contacts. Mol Microbiol 2003; 48:335-48. [PMID: 12675795 DOI: 10.1046/j.1365-2958.2003.t01-1-03434.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Escherichia coli MelR protein is a melibiose-triggered transcription factor, belonging to the AraC family, that activates transcription initiation at the melAB promoter. Activation is dependent on the binding of MelR to four 18 bp sites, centred at position -42.5 (site 2'), position -62.5 (site 2), position -100.5 (site 1) and position -120.5 (site 1') relative to the melAB transcription start point. Activation also depends on the binding of CRP to a single site located between MelR binding site 1 and site 2. All members of the AraC family contain two helix-turn-helix (HTH) motifs that contact two segments of the DNA major groove at target sites on the same DNA face. In this work, we have studied the binding of MelR to different sites at the melAB promoter, focusing on the orientation of binding of the two MelR HTH motifs, and the juxtaposition of the different bound MelR subunits with respect to each other. To do this, MelR was engineered to contain a single cysteine residue adjacent to either one or the other HTH motif. The MelR derivatives were purified, and the cysteine residues were tagged with p-bromoacetamidobenzyl-EDTA-Fe, an inorganic DNA cleavage reagent. Patterns of DNA cleavage after MelR binding were then used to determine the positions of the two HTH motifs at target sites. In order to simplify our analysis, we exploited an engineered derivative of the melAB promoter in which MelR binding to site 2 and site 2', in the absence of CRP, is sufficient for transcription activation. To assist in the interpretation of our results, we also used a shortened derivative of MelR, MelR173, that is able to bind to site 2 but not to site 2'. Our results show that MelR binds as a direct repeat to site 2 and site 2' with the C-terminal HTH located towards the promoter-proximal end of each site. The orientation in which MelR binds to site 2' appears to be determined by MelR-MelR interactions rather than by MelR-DNA interactions. In complementary experiments, we used genetic analysis to investigate the importance of different residues in the two HTH motifs of MelR. Epistasis experiments provided evidence that supports the proposed orientation of binding of MelR at its target site.
Collapse
Affiliation(s)
- David C Grainger
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | |
Collapse
|
30
|
Yamamoto K, Ishihama A. Two different modes of transcription repression of the Escherichia coli acetate operon by IclR. Mol Microbiol 2003; 47:183-94. [PMID: 12492863 DOI: 10.1046/j.1365-2958.2003.03287.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
IclR is a repressor for the Escherichia coli aceBAK operon, which encodes isocitrate lyase (aceB), malate synthase (aceA) and isocitrate dehydroge-nase kinase/phosphorylase (aceK) in the glyoxylate bypass. IclR also represses the expression of iclR in an autogenous manner. DNase I footprinting and in vitro transcription assays indicated that IclR binds to an IclR box (-21 to +14), which overlaps the iclR promoter and thus competes with the RNA polymerase for DNA binding, leading to transcription repression. In the case of the aceBAK operon, IclR binds to IclR box II between -52 and -19 of the aceB promoter and interferes with binding of the RNA polymerase to this promoter. A secondary IclR binding site (IclR box I) was identified between -125 and -99 of the aceB promoter. IclR binds to this IclR box I even after formation of the aceB promoter open complex and, moreover, induces disassembly of the open complex, leading to repression of aceB transcription. In parallel, the location of the C-terminal domain of the RNA polymerase alpha subunit (alphaCTD) on DNA is shifted close to the IclR box I, indicating that direct interaction between the alphaCTD and the IclR box I-associated IclR caused the repression.
Collapse
Affiliation(s)
- Kaneyoshi Yamamoto
- Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8504, Japan
| | | |
Collapse
|
31
|
Lloyd GS, Niu W, Tebbutt J, Ebright RH, Busby SJW. Requirement for two copies of RNA polymerase alpha subunit C-terminal domain for synergistic transcription activation at complex bacterial promoters. Genes Dev 2002; 16:2557-65. [PMID: 12368266 PMCID: PMC187446 DOI: 10.1101/gad.237502] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Transcription activation by the Escherichia coli cyclic AMP receptor protein (CRP) at different promoters has been studied using RNA polymerase holoenzyme derivatives containing two full-length alpha subunits, or containing one full-length alpha subunit and one truncated alpha subunit lacking the alpha C-terminal domain (alpha CTD). At a promoter having a single DNA site for CRP, activation requires only one full-length alpha subunit. Likewise, at a promoter having a single DNA site for CRP and one adjacent UP-element subsite (high-affinity DNA site for alpha CTD), activation requires only one full-length alpha subunit. In contrast, at promoters having two DNA sites for CRP, or one DNA site for CRP and two UP-element subsites, activation requires two full-length alpha subunits. We conclude that a single copy of alpha CTD is sufficient to interact with one CRP molecule and one adjacent UP-element subsite, but two copies of alpha CTD are required to interact with two CRP molecules or with one CRP molecule and two UP-element subsites.
Collapse
Affiliation(s)
- Georgina S Lloyd
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | | | | |
Collapse
|
32
|
Aiyar SE, McLeod SM, Ross W, Hirvonen CA, Thomas MS, Johnson RC, Gourse RL. Architecture of Fis-activated transcription complexes at the Escherichia coli rrnB P1 and rrnE P1 promoters. J Mol Biol 2002; 316:501-16. [PMID: 11866514 DOI: 10.1006/jmbi.2001.5390] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transcription factor Fis activates the Escherichia coli rRNA promoters rrnB P1 and rrnE P1 by binding to sites centered at -71 and -72, respectively, and interacting with the C-terminal domain of the alpha subunit of RNA polymerase (RNAP alphaCTD). To understand the mechanism of activation by Fis at these promoters, we used oriented alpha-heterodimeric RNAPs and heterodimers of Fis to determine whether one or both subunits of alpha and Fis participate in the alphaCTD-Fis interaction. Our results imply that only one alphaCTD in the alpha dimer and only one activation-proficient subunit in the Fis dimer are required for activation by Fis. A library of alanine substitutions in alpha was used to identify the alphaCTD determinants required for Fis-dependent transcription at rrnB P1 and rrnE P1. We propose that the transcriptional activation region of the promoter-proximal subunit of the Fis dimer interacts with a determinant that includes E273 of one alphaCTD to activate transcription. We further suggest that the Fis contact to alphaCTD results in alphaCTD interactions with DNA that differ somewhat from those that occur at UP elements in the absence of Fis. The accompanying paper shows that the 273 determinant on alphaCTD is also targeted by Fis at the proP P2 promoter where the activator binds overlapping the -35 hexamer. Thus, similar Fis-alphaCTD interactions are used for activation of transcription when the activator is bound at very different positions on the DNA.
Collapse
Affiliation(s)
- Sarah E Aiyar
- Department of Bacteriology, University of Wisconsin, 1550 Linden Drive, Madison, WI 53706-1567, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
McLeod SM, Aiyar SE, Gourse RL, Johnson RC. The C-terminal domains of the RNA polymerase alpha subunits: contact site with Fis and localization during co-activation with CRP at the Escherichia coli proP P2 promoter. J Mol Biol 2002; 316:517-29. [PMID: 11866515 DOI: 10.1006/jmbi.2001.5391] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fis is a versatile transactivator that functions at many different promoters. Fis activates transcription at the RpoS-dependent proP P2 promoter when bound to a site that overlaps the minus sign35 hexamer by a mechanism that requires the C-terminal domain of the alpha subunit of RNA polymerase (alphaCTD). The region on Fis responsible for activating transcription through the alphaCTD has been localized to a short beta-turn near the DNA-binding determinant on one subunit of the Fis homodimer. We report here that Fis-dependent activation of proP P2 transcription requires two discrete regions on the alphaCTD. One region, consisting of residues 264-265 and 296-297, mediates DNA binding. A second patch, comprising amino acid residues 271-273, forms a ridge on the surface of the alphaCTD that we propose interacts with Fis. The accompanying paper shows that these same regions on alphaCTD are utilized for transcriptional activation at the rrnB and rrnE P1 promoters by Fis bound to a site upstream of the core promoter (centered at minus sign71/minus sign72). In addition to stimulation of proP P2 transcription by Fis, CRP co-activates this promoter when bound to a remote site upstream from the promoter (centered at -121.5). RNA polymerase preparations lacking one alphaCTD of the alpha dimer were employed to demonstrate that the beta'-associated alpha(II)CTD was utilized preferentially by Fis at proP P2 in the presence and absence of CRP. These experiments define the overall architecture of the proP P2 initiation complex where Fis and CRP each function through a different alphaCTD.
Collapse
Affiliation(s)
- Sarah M McLeod
- Department of Biological Chemistry, UCLA School of Medicine, Los Angeles, CA 90095-1737, USA
| | | | | | | |
Collapse
|
34
|
Ozoline ON, Fujita N, Ishihama A. Mode of DNA-protein interaction between the C-terminal domain of Escherichia coli RNA polymerase alpha subunit and T7D promoter UP element. Nucleic Acids Res 2001; 29:4909-19. [PMID: 11812819 PMCID: PMC97620 DOI: 10.1093/nar/29.24.4909] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The C-terminal domain (CTD) downstream from residue 235 of Escherichia coli RNA polymerase alpha subunit is involved in recognition of the promoter UP element. Here we have demonstrated, by DNase I and hydroxyl radical mapping, the presence of two UP element subsites on the promoter D of phage T7, each located half and one-and-a-half helix turns, respectively, upstream from the promoter -35 element. This non-typical UP element retained its alphaCTD-binding capability when transferred into the genetic environment of the rrnBP1 basic promoter, leading to transcription stimulation as high as the typical rrnBP1 UP element. Chemical protease FeBABE conjugated to alphaCTD S309C efficiently attacked the T7D UP element but not the rrnBP1 UP element. After alanine scanning, most of the amino acid residues that were involved in rrnBP1 interaction were also found to be involved in T7D UP element recognition, but alanine substitution at three residues had the opposite effect on the transcription activation between rrnBP1 and T7D promoters. Mutation E286A stimulated T7D transcription but inhibited rrnBP1 RNA synthesis, while L290A and K304A stimulated transcription from rrnBP1 but not the T7D promoter. Taken together, we conclude that although the overall sets of amino acid residues responsible for interaction with the two UP elements overlap, the mode of alphaCTD interaction with T7D UP element is different from that with rrnBP1 UP element, involving different residues on helices III and IV.
Collapse
Affiliation(s)
- O N Ozoline
- Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | | | | |
Collapse
|
35
|
Wigneshweraraj SR, Chaney MK, Ishihama A, Buck M. Regulatory sequences in sigma 54 localise near the start of DNA melting. J Mol Biol 2001; 306:681-701. [PMID: 11243780 DOI: 10.1006/jmbi.2000.4393] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transcription initiation by the enhancer-dependent sigma(54) RNA polymerase holoenzyme is positively regulated after promoter binding. The promoter DNA melting process is subject to activation by an enhancer-bound activator protein with nucleoside triphosphate hydrolysis activity. Tethered iron chelate probes attached to amino and carboxyl-terminal domains of sigma(54) were used to map sigma(54)-DNA interaction sites. The two domains localise to form a centre over the -12 promoter region. The use of deletion mutants of sigma(54) suggests that amino-terminal and carboxyl-terminal sequences are both needed for the centre to function. Upon activation, the relationship between the centre and promoter DNA changes. We suggest that the activator re-organises the centre to favour stable open complex formation through adjustments in sigma(54)-DNA contact and sigma(54) conformation. The centre is close to the active site of the RNA polymerase and includes sigma(54) regulatory sequences needed for DNA melting upon activation. This contrasts systems where activators recruit RNA polymerase to promoter DNA, and the protein and DNA determinants required for activation localise away from promoter sequences closely associated with the start of DNA melting.
Collapse
Affiliation(s)
- S R Wigneshweraraj
- Department of Biology, Imperial College of Science Technology and Medicine, Imperial College Road, London, SW7 2AZ, UK
| | | | | | | |
Collapse
|
36
|
Yasuno K, Yamazaki T, Tanaka Y, Kodama TS, Matsugami A, Katahira M, Ishihama A, Kyogoku Y. Interaction of the C-terminal domain of the E. coli RNA polymerase alpha subunit with the UP element: recognizing the backbone structure in the minor groove surface. J Mol Biol 2001; 306:213-25. [PMID: 11237595 DOI: 10.1006/jmbi.2000.4369] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The C-terminal domain of the alpha-subunit of Escherichia coli RNA polymerase (alphaCTD) is responsible for transcriptional activation through interaction with both activator proteins and UP element DNA. Previously, we determined the solution structure of alphaCTD. Here, we investigated the interaction between alphaCTD and UP element DNA by NMR. DNA titration curves and intermolecular NOE measurements indicate that alphaCTD can bind to multiple sites on the UP element DNA. Unlike many transcription factors, alphaCTD does not have a strict base sequence requirement for binding. There is a good correlation between the strength of the interaction and the extent of intrinsic bending of the DNA oligomer estimated from the gel retardation assay. We propose that alphaCTD recognizes the backbone structure of DNA oligomers responsible for the intrinsic bending. Moreover, NMR studies and drug competition experiments indicated that alphaCTD interacts with the UP element on the minor groove side of the DNA. The C-terminal end of helix-1, the N-terminal end of helix-4, and the loop between helices 3 and 4 are used for the interaction. Based on these observations, we propose a model for the UP element-alphaCTD complex.
Collapse
Affiliation(s)
- K Yasuno
- Division of Molecular Biophysics, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Osaka, Suita, 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Xu J, Koudelka GB. DNA sequence requirements for the activation of 434 P(RM) transcription by 434 repressor. DNA Cell Biol 2000; 19:621-30. [PMID: 11058965 DOI: 10.1089/104454900750019380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A dimer of the 434 repressor bound at O(R)2 activated transcription initiation from P(RM) by contacting RNA polymerase. Although DNA-binding site mutations at either end of O(R)2 decreased the ability of the repressor to activate P(RM) transcription, mutations proximal to the promoter had a greater effect on transcription activation. Orienting a repressor subunit bearing the altered specificity Gln-28 --> Ala mutation to the halfsite of O(R)2 proximal to the P(RM) promoter decreased the repressor's ability to activate transcription initiation at 434 P(RM) to a much greater extent than if this subunit was placed in the O(R)2 half-site distal to P(RM). In addition to showing that the downstream (promoter proximal) subunit of the O(R)2-bound 434 repressor functions in activating 434 P(RM), the results indicated that DNA sequence-dependent conformational changes alter the efficiency with which the repressor activates P(RM) transcription. These unexpected findings highlight the importance of the structure of the repressor-DNA interface in activating transcription from P(RM).
Collapse
Affiliation(s)
- J Xu
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260-1300, USA
| | | |
Collapse
|
38
|
Fritsch PS, Urbanowski ML, Stauffer GV. Role of the RNA polymerase alpha subunits in MetR-dependent activation of metE and metH: important residues in the C-terminal domain and orientation requirements within RNA polymerase. J Bacteriol 2000; 182:5539-50. [PMID: 10986259 PMCID: PMC110999 DOI: 10.1128/jb.182.19.5539-5550.2000] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many transcription factors activate by directly interacting with RNA polymerase (RNAP). The C terminus of the RNAP alpha subunit (alphaCTD) is a common target of activators. We used both random mutagenesis and alanine scanning to identify alphaCTD residues that are crucial for MetR-dependent activation of metE and metH. We found that these residues localize to two distinct faces of the alphaCTD. The first is a complex surface consisting of residues important for alpha-DNA interactions, activation of both genes (residues 263, 293, and 320), and activation of either metE only (residues 260, 276, 302, 306, 309, and 322) or metH only (residues 258, 264, 290, 294, and 295). The second is a distinct cluster of residues important for metE activation only (residues 285, 289, 313, and 314). We propose that a difference in the location of the MetR binding site for activation at these two promoters accounts for the differences in the residues of alpha required for MetR-dependent activation. We have designed an in vitro reconstitution-purification protocol that allows us to specifically orient wild-type or mutant alpha subunits to either the beta-associated or the beta'-associated position within RNAP (comprising alpha(2), beta, beta', and sigma subunits). In vitro transcriptions using oriented alpha RNAP indicate that a single alphaCTD on either the beta- or the beta'-associated alpha subunit is sufficient for MetR activation of metE, while MetR interacts preferentially with the alphaCTD on the beta-associated alpha subunit at metH. We propose that the different alphaCTD requirements at these two promoters are due to a combination of the difference in the location of the activation site and limits on the rotational flexibility of the alphaCTD.
Collapse
Affiliation(s)
- P S Fritsch
- Molecular Biology Graduate Program, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
39
|
Gourse RL, Ross W, Gaal T. UPs and downs in bacterial transcription initiation: the role of the alpha subunit of RNA polymerase in promoter recognition. Mol Microbiol 2000; 37:687-95. [PMID: 10972792 DOI: 10.1046/j.1365-2958.2000.01972.x] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In recent years, it has become clear that promoter recognition by bacterial RNA polymerase involves interactions not only between core promoter elements and the sigma subunit, but also between a DNA element upstream of the core promoter and the alpha subunit. DNA binding by alpha can increase transcription dramatically. Here we review the current state of our understanding of the alpha interaction with DNA during basal transcription initiation (i.e. in the absence of proteins other than RNA polymerase) and activated transcription initiation (i.e. when stimulated by transcription factors).
Collapse
Affiliation(s)
- R L Gourse
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA.
| | | | | |
Collapse
|
40
|
Rausch JW, Sathyanarayana BK, Bona MK, Le Grice SF. Probing contacts between the ribonuclease H domain of HIV-1 reverse transcriptase and nucleic acid by site-specific photocross-linking. J Biol Chem 2000; 275:16015-22. [PMID: 10748161 DOI: 10.1074/jbc.m909808199] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cys(38) and Cys(280) of p66/p51 human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) can be converted to Ser without affecting enzyme function. We have exploited this feature to construct and purify "monocysteine" RT derivatives for site-specific modification with the photoactivable cross-linking agent, p-azidophenacyl bromide. Acylation of a unique cysteine residue introduced at the extreme C terminus of the p66 subunit (C(561)) with an azidophenacyl group allowed us to probe contacts between residues C-terminal to alpha-helix E' of the RNase H domain and structurally divergent nucleic acid duplexes. In a binary complex of RT and template-primer, we demonstrate efficient cross-linking to primer nucleotides -21 to -24/-25, and template nucleotides -18 to -21. Cross-linking specificity was confirmed by an analogous evaluation following limited primer extension, where the profile is displaced by the register of DNA synthesis. Finally, contact with a DNA primer hybridized to an isogenic RNA or DNA template indicates subtle alterations in cross-linking specificity, suggesting differences in nucleic acid geometry between duplex DNA and RNA/DNA hybrids at the RNase H domain. These data exemplify how site-specific acylation of HIV-1 RT can be used to provide high resolution structural data to complement crystallographic studies.
Collapse
Affiliation(s)
- J W Rausch
- HIV Drug Resistance Program, Science Applications International Corporation, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, Maryland 21072, USA
| | | | | | | |
Collapse
|
41
|
Tan Q, Linask KL, Ebright RH, Woychik NA. Activation mutants in yeast RNA polymerase II subunit RPB3 provide evidence for a structurally conserved surface required for activation in eukaryotes and bacteria. Genes Dev 2000. [DOI: 10.1101/gad.14.3.339] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have identified a mutant in RPB3, the third-largest subunit of yeast RNA polymerase II, that is defective in activator-dependent transcription, but not defective in activator-independent, basal transcription. The mutant contains two amino-acid substitutions, C92R and A159G, that are both required for pronounced defects in activator-dependent transcription. Synthetic enhancement of phenotypes of C92R and A159G, and of several other pairs of substitutions, is consistent with a functional relationship between residues 92–95 and 159–161. Homology modeling of RPB3 on the basis of the crystallographic structure of αNTD indicates that residues 92–95 and 159–162 are likely to be adjacent within the structure of RPB3. In addition, homology modeling indicates that the location of residues 159–162 within RPB3 corresponds to the location of an activation target within αNTD (the target of activating region 2 of catabolite activator protein, an activation target involved in a protein–protein interaction that facilitates isomerization of the RNA polymerase promoter closed complex to the RNA polymerase promoter open complex). The apparent finding of a conserved surface required for activation in eukaryotes and bacteria raises the possibility of conserved mechanisms of activation in eukaryotes and bacteria.
Collapse
|
42
|
Tan Q, Linask KL, Ebright RH, Woychik NA. Activation mutants in yeast RNA polymerase II subunit RPB3 provide evidence for a structurally conserved surface required for activation in eukaryotes and bacteria. Genes Dev 2000; 14:339-48. [PMID: 10673505 PMCID: PMC316356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/1999] [Accepted: 12/14/1999] [Indexed: 02/15/2023]
Abstract
We have identified a mutant in RPB3, the third-largest subunit of yeast RNA polymerase II, that is defective in activator-dependent transcription, but not defective in activator-independent, basal transcription. The mutant contains two amino-acid substitutions, C92R and A159G, that are both required for pronounced defects in activator-dependent transcription. Synthetic enhancement of phenotypes of C92R and A159G, and of several other pairs of substitutions, is consistent with a functional relationship between residues 92-95 and 159-161. Homology modeling of RPB3 on the basis of the crystallographic structure of alphaNTD indicates that residues 92-95 and 159-162 are likely to be adjacent within the structure of RPB3. In addition, homology modeling indicates that the location of residues 159-162 within RPB3 corresponds to the location of an activation target within alphaNTD (the target of activating region 2 of catabolite activator protein, an activation target involved in a protein-protein interaction that facilitates isomerization of the RNA polymerase promoter closed complex to the RNA polymerase promoter open complex). The apparent finding of a conserved surface required for activation in eukaryotes and bacteria raises the possibility of conserved mechanisms of activation in eukaryotes and bacteria.
Collapse
Affiliation(s)
- Q Tan
- University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Department of Molecular Genetics and Microbiology, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
43
|
Hu D, Crist M, Duan X, Quiocho FA, Gimble FS. Probing the structure of the PI-SceI-DNA complex by affinity cleavage and affinity photocross-linking. J Biol Chem 2000; 275:2705-12. [PMID: 10644733 DOI: 10.1074/jbc.275.4.2705] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PI-SceI protein is an intein-encoded homing endonuclease that initiates the mobility of its gene by making a double strand break at a single site in the yeast genome. The PI-SceI protein splicing and endonucleolytic active sites are separately located in each of two domains in the PI-SceI structure. To determine the spatial relationship between bases in the PI-SceI recognition sequence and selected PI-SceI amino acids, the PI-SceI-DNA complex was probed by photocross-linking and affinity cleavage methods. Unique solvent-accessible cysteine residues were introduced into the two PI-SceI domains at positions 91, 97, 170, 230, 376, and 378, and the mutant proteins were modified with either 4-azidophenacyl bromide or iron (S)-1-(p-bromoacetamidobenzyl)-ethylenediaminetetraacetate (FeBABE). The phenyl azide-coupled proteins cross-linked to the PI-SceI target sequence, and the FeBABE-modified proteins cleaved the DNA proximal to the derivatized amino acid. The results suggest that an extended beta-hairpin loop in the endonuclease domain that contains residues 376 and 378 contacts the major groove near the PI-SceI cleavage site. Conversely, residues 91, 97, and 170 in the protein splicing domain are in close proximity to a distant region of the substrate. To interpret our results, we used a new PI-SceI structure that is ordered in regions of the protein that bind DNA. The data strongly support a model of the PI-SceI-DNA complex derived from this structure.
Collapse
Affiliation(s)
- D Hu
- Center for Genome Research, Institute of Biosciences and Technology, Department of Medical Biochemistry, The Texas A & M University System Health Science Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
44
|
Ozoline ON, Fujita N, Ishihama A. Transcription activation mediated by the carboxyl-terminal domain of the RNA polymerase alpha-subunit. Multipoint monitoring using a fluorescent probe. J Biol Chem 2000; 275:1119-27. [PMID: 10625654 DOI: 10.1074/jbc.275.2.1119] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Conformational changes within the carboxyl-terminal domain of the Escherichia coli RNA polymerase alpha-subunit (alpha-CTD) upon interaction with the DNA UP element or the transcription factor cAMP receptor protein (CRP) were studied by monitoring the spectral parameters of a fluorescent dye, fluorescein mercuric acetate, conjugated to various positions of alpha-CTD. When fluorescein mercuric acetate was conjugated to Cys located on helix I and the loop between helices III and IV, the spectral changes typical for DNA interaction were observed for the RNA polymerase-promoter binary complex with UP element-dependent rrnBP1 and the ternary complex with the CRP-dependent uxuAB promoter in the presence of cAMP/CRP. Likewise, the chemical nuclease iron-(p-bromoacetamidobenzyl)-EDTA conjugated to Cys-269 or Cys-272 introduced CRP-dependent cleavage of the uxuAB promoter, as in the case of rrnBP1 (Murakami, K., Owens, J. T., Belyaeva, T. A., Meares, C. F., Busby, S. J. W., and Ishihama, A. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 11274-11278), indicating that CRP rearranges the topology of the DNA contact surface in alpha-CTD. Conformational changes in alpha-CTD were also observed upon formation of a binary complex with the uxuAB (in the absence of CRP) and factor-independent T7D promoters. The spectral changes suggested that helix IV of alpha-CTD approaches the negatively charged phosphate moiety of DNA. In agreement with this prediction, iron-(p-bromoacetamidobenzyl)-EDTA conjugated to Cys-309 induced extensive DNA cleavage upstream from the uxuAB promoter -35 element. We propose that helix IV of alpha-CTD is involved in direct interaction with some promoters.
Collapse
Affiliation(s)
- O N Ozoline
- Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | | | | |
Collapse
|
45
|
Estrem ST, Ross W, Gaal T, Chen ZW, Niu W, Ebright RH, Gourse RL. Bacterial promoter architecture: subsite structure of UP elements and interactions with the carboxy-terminal domain of the RNA polymerase alpha subunit. Genes Dev 1999; 13:2134-47. [PMID: 10465790 PMCID: PMC316962 DOI: 10.1101/gad.13.16.2134] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We demonstrate here that the previously described bacterial promoter upstream element (UP element) consists of two distinct subsites, each of which, by itself, can bind the RNA polymerase holoenzyme alpha subunit carboxy-terminal domain (RNAP alphaCTD) and stimulate transcription. Using binding-site-selection experiments, we identify the consensus sequence for each subsite. The selected proximal subsites (positions -46 to -38; consensus 5'-AAAAAARNR-3') stimulate transcription up to 170-fold, and the selected distal subsites (positions -57 to -47; consensus 5'-AWWWWWTTTTT-3') stimulate transcription up to 16-fold. RNAP has subunit composition alpha(2)betabeta'sigma and thus contains two copies of alphaCTD. Experiments with RNAP derivatives containing only one copy of alphaCTD indicate, in contrast to a previous report, that the two alphaCTDs function interchangeably with respect to UP element recognition. Furthermore, function of the consensus proximal subsite requires only one copy of alphaCTD, whereas function of the consensus distal subsite requires both copies of alphaCTD. We propose that each subsite constitutes a binding site for a copy of alphaCTD, and that binding of an alphaCTD to the proximal subsite region (through specific interactions with a consensus proximal subsite or through nonspecific interactions with a nonconsensus proximal subsite) is a prerequisite for binding of the other alphaCTD to the distal subsite.
Collapse
Affiliation(s)
- S T Estrem
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706 USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Lohrke SM, Nechaev S, Yang H, Severinov K, Jin SJ. Transcriptional activation of Agrobacterium tumefaciens virulence gene promoters in Escherichia coli requires the A. tumefaciens RpoA gene, encoding the alpha subunit of RNA polymerase. J Bacteriol 1999; 181:4533-9. [PMID: 10419950 PMCID: PMC103583 DOI: 10.1128/jb.181.15.4533-4539.1999] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The two-component regulatory system, composed of virA and virG, is indispensable for transcription of virulence genes within Agrobacterium tumefaciens. However, virA and virG are insufficient to activate transcription from virulence gene promoters within Escherichia coli cells, indicating a requirement for additional A. tumefaciens genes. In a search for these additional genes, we have identified the rpoA gene, encoding the alpha subunit of RNA polymerase (RNAP), which confers significant expression of a virB promoter (virBp)::lacZ fusion in E. coli in the presence of an active transcriptional regulator virG gene. We conducted in vitro transcription assays using either reconstituted E. coli RNAP or hybrid RNAP in which the alpha subunit was derived from A. tumefaciens. The two forms of RNAP were equally efficient in transcription from a sigma(70)-dependent E. coli galP1 promoter; however, only the hybrid RNAP was able to transcribe virBp in a virG-dependent manner. In addition, we provide evidence that the alpha subunit from A. tumefaciens, but not from E. coli, is able to interact with the VirG protein. These data suggest that transcription of virulence genes requires specific interaction between VirG and the alpha subunit of A. tumefaciens and that the alpha subunit from E. coli is unable to effectively interact with the VirG protein. This work provides the basis for future studies designed to examine vir gene expression as well as the T-DNA transfer process in E. coli.
Collapse
Affiliation(s)
- S M Lohrke
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | |
Collapse
|
47
|
Law EC, Savery NJ, Busby SJ. Interactions between the Escherichia coli cAMP receptor protein and the C-terminal domain of the alpha subunit of RNA polymerase at class I promoters. Biochem J 1999; 337 ( Pt 3):415-23. [PMID: 9895284 PMCID: PMC1219992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The Escherichia coli cAMP receptor protein (CRP) is a factor that activates transcription at over 100 target promoters. At Class I CRP-dependent promoters, CRP binds immediately upstream of RNA polymerase and activates transcription by making direct contacts with the C-terminal domain of the RNA polymerase alpha subunit (alphaCTD). Since alphaCTD is also known to interact with DNA sequence elements (known as UP elements), we have constructed a series of semi-synthetic Class I CRP-dependent promoters, carrying both a consensus DNA-binding site for CRP and a UP element at different positions. We previously showed that, at these promoters, the CRP-alphaCTD interaction and the CRP-UP element interaction contribute independently and additively to transcription initiation. In this study, we show that the two halves of the UP element can function independently, and that, in the presence of the UP element, the best location for the DNA site for CRP is position -69.5. This suggests that, at Class I CRP-dependent promoters where the DNA site for CRP is located at position -61.5, the two alphaCTDs of RNA polymerase are not optimally positioned. Two experiments to test this hypothesis are presented.
Collapse
Affiliation(s)
- E C Law
- School of Biochemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | | | | |
Collapse
|
48
|
Bown JA, Owens JT, Meares CF, Fujita N, Ishihama A, Busby SJ, Minchin SD. Organization of open complexes at Escherichia coli promoters. Location of promoter DNA sites close to region 2.5 of the sigma70 subunit of RNA polymerase. J Biol Chem 1999; 274:2263-70. [PMID: 9890989 DOI: 10.1074/jbc.274.4.2263] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A cysteine-tethered DNA cleavage agent has been used to locate the position of region 2.5 of sigma70 in transcriptionally competent complexes between Escherichia coli RNA polymerase and promoters. In this study we have engineered sigma70 to introduce a unique cysteine residue at a number of positions in region 2.5. Mutant proteins were purified, and in each case, the single cysteine residue used as the target for covalent coupling of the DNA cleavage agent p-bromoacetamidobenzyl-EDTA.Fe (FeBABE). RNA polymerase core reconstituted with tagged sigma derivatives was shown to be transcriptionally active. Hydroxyl radical-based DNA cleavage mediated by tethered FeBABE was observed for each derivative of RNA polymerase in the open complex. Our results show that region 2.5 is in close proximity to promoter DNA just upstream of the -10 hexamer. This positioning is independent of promoter sequence. A model for the interaction of this region of sigma with promoter DNA is discussed.
Collapse
Affiliation(s)
- J A Bown
- School of Biochemistry, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Growth of enteric bacteria on acetate as the sole source of carbon and energy requires operation of a particular anaplerotic pathway known as the glyoxylate bypass. In this pathway, two specific enzymes, isocitrate lyase and malate synthase, are activated to divert isocitrate from the tricarboxylic acid cycle and prevent the quantitative loss of acetate carbons as carbon dioxide. Bacteria are thus supplied with the metabolic intermediates they need for synthesizing their cellular components. The channeling of isocitrate through the glyoxylate bypass is regulated via the phosphorylation/dephosphorylation of isocitrate dehydrogenase, the enzyme of the tricarboxylic acid cycle which competes for a common substrate with isocitrate lyase. When bacteria are grown on acetate, isocitrate dehydrogenase is phosphorylated and, concomitantly, its activity declines drastically. Conversely, when cells are cultured on a preferred carbon source, such as glucose, the enzyme is dephosphorylated and recovers full activity. Such reversible phosphorylation is mediated by an unusual bifunctional enzyme, isocitrate dehydrogenase kinase/phosphatase, which contains both modifying and demodifying activities on the same polypeptide. The genes coding for malate synthase, isocitrate lyase, and isocitrate dehydrogenase kinase/phosphatase are located in the same operon. Their expression is controlled by a complex dual mechanism that involves several transcriptional repressors and activators. Recent developments have brought new insights into the nature and mode of action of these different regulators. Also, significant advances have been made lately in our understanding of the control of enzyme activity by reversible phosphorylation. In general, analyzing the physiological behavior of bacteria on acetate provides a valuable approach for deciphering at the molecular level the mechanisms of cell adaptation to the environment.
Collapse
Affiliation(s)
- A J Cozzone
- Institut de Biologie et Chimie des Protéines, Université de Lyon, France
| |
Collapse
|
50
|
Aiyar SE, Gourse RL, Ross W. Upstream A-tracts increase bacterial promoter activity through interactions with the RNA polymerase alpha subunit. Proc Natl Acad Sci U S A 1998; 95:14652-7. [PMID: 9843944 PMCID: PMC24504 DOI: 10.1073/pnas.95.25.14652] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Upstream A-tracts stimulate transcription from a variety of bacterial promoters, and this has been widely attributed to direct effects of the intrinsic curvature of A-tract-containing DNA. In this work we report experiments that suggest a different mechanism for the effects of upstream A-tracts on transcription. The similarity of A-tract-containing sequences to the adenine- and thymine-rich upstream recognition elements (UP elements) found in some bacterial promoters suggested that A-tracts might increase promoter activity by interacting with the alpha subunit of RNA polymerase (RNAP). We found that an A-tract-containing sequence placed upstream of the Escherichia coli lac or rrnB P1 promoters stimulated transcription both in vivo and in vitro, and that this stimulation required the C-terminal (DNA-binding) domain of the RNAP alpha subunit. The A-tract sequence was protected by wild-type RNAP but not by alpha-mutant RNAPs in footprints. The effect of the A-tracts on transcription was not as great as that of the most active UP elements, consistent with the degree of similarity of the A-tract sequence to the UP element consensus. A-tracts functioned best when positioned close to the -35 hexamer rather than one helical turn farther upstream, similar to the positioning optimal for UP element function. We conclude that A-tracts function as UP elements, stimulating transcription by providing binding site(s) for the RNAP alphaCTD, and we suggest that these interactions could contribute to the previously described wrapping of promoter DNA around RNAP.
Collapse
Affiliation(s)
- S E Aiyar
- Department of Bacteriology, University of Wisconsin, 1550 Linden Drive, Madison, WI 53706, USA
| | | | | |
Collapse
|