1
|
Xu H, Jing H, Shi R, Chen M, Wang C, Xu Q, Bai J, Liu X, Kong M. Effect of Partial Root Drying Stress on Improvement in Tomato Production. Curr Issues Mol Biol 2025; 47:84. [PMID: 39996804 PMCID: PMC11854229 DOI: 10.3390/cimb47020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
Several countries around the world are facing the issue of freshwater availability, where agriculture is highly dependent on irrigation, consuming 70% of this vital resource. Water availability is the most limiting factor for the crop production sector and one of the main regulators of the spatial distribution of plants. It is noted that in recent years, the methods of irrigation water application have been improved. Currently, research is directed towards irrigation strategies that reduce water applications. A partial root drying (PRD) technique involves irrigating one-half of the root zone while leaving the other half in relatively dry soil. This method is used in the production of various crops, such as potatoes and cotton. However, the mechanism of PRD, including the physiological and molecular biological processes involved, is not fully understood. In this study, tomato plants were treated with PRD and nitrogen (N) top-dressing. The results showed that PRD could significantly increase the fruit yield, photosynthetic activities, nitrate reductase activity, and fruit quality in the tomato plants, and PRD could also promote the concentrations of oxygen species (O2-), malondialdehyde (MDA) and proline contents, and activities of antioxidant enzymes. In addition, PRD could enhance stress resistance by increasing disease resistance and NP1 and DRED3 antioxidant enzyme activity. Tomato plants treated with PRD compared to the control showed high photosynthetic activity, high yield, better quality of production, and low leaf blight incidence. Overall, the results indicate that PRD is a feasible approach that could be effectively utilized in tomato fields to improve plant growth and production compared with the control.
Collapse
Affiliation(s)
- Huilian Xu
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China; (H.X.); (H.J.); (R.S.); (M.C.); (X.L.)
| | - Hairong Jing
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China; (H.X.); (H.J.); (R.S.); (M.C.); (X.L.)
| | - Runyu Shi
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China; (H.X.); (H.J.); (R.S.); (M.C.); (X.L.)
| | - Minghao Chen
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China; (H.X.); (H.J.); (R.S.); (M.C.); (X.L.)
| | - Chunfang Wang
- Institute of Hydroecology, MWR & CAS, Wuhan 430079, China;
| | - Qicong Xu
- International Nature Farming Research Center, Matsumoto 390-1401, Japan;
| | - Jianfang Bai
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Xiaoyong Liu
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China; (H.X.); (H.J.); (R.S.); (M.C.); (X.L.)
| | - Mengmeng Kong
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China; (H.X.); (H.J.); (R.S.); (M.C.); (X.L.)
| |
Collapse
|
2
|
Momo J, Kumar A, Islam K, Ahmad I, Rawoof A, Ramchiary N. A comprehensive update on Capsicum proteomics: Advances and future prospects. J Proteomics 2022; 261:104578. [DOI: 10.1016/j.jprot.2022.104578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
|
3
|
Knorr D, Augustin MA. Food systems at a watershed: Unlocking the benefits of technology and ecosystem symbioses. Crit Rev Food Sci Nutr 2022; 63:5680-5697. [PMID: 34989303 DOI: 10.1080/10408398.2021.2023092] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The current food systems require change to improve sustainability resilience. Humans need food and food requires natural resources which have been consistently reduced, destroyed, or eliminated during human development, and excessive during the last 50-70 years. Though essential, there has been less of a focus on the inter-relations and inter-dependences of our food supply with and on the world's eco-system and organisms. Integrating evidence for the importance of plants, the microbiota in plants, animals and humans and their reciprocal effects of their interactions on food systems is essential for creating more inclusive strategies for future food systems. This review examines the role of plants, microorganisms, plant-microbial, animal-microbial, and human-microbial interactions, their co-evolution on the food supply and human and eco-systems well-being. It also recognizes the contribution of indigenous knowledge for lasting protection of the land, managing resources and biodiversity and the usefulness of food processing for producing safe, tasty, and nutritious food sustainably. We demonstrate that new targets and priorities for harnessing science and technology for improving food and nutritional security and avoiding environmental degradation and biodiversity loss are urgently needed. For improved long-term sustainability, the benefits of technology and ecosystem interactions must be unlocked.
Collapse
Affiliation(s)
- Dietrich Knorr
- Food Biotechnology and Food Process Engineering, Technische Universität Berlin, Berlin, Germany
| | | |
Collapse
|
4
|
Robb EJ, Nazar RN. Tomato Ve-resistance locus: resilience in the face of adversity? PLANTA 2021; 254:126. [PMID: 34811576 DOI: 10.1007/s00425-021-03783-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
The Ve-resistance locus in tomato acts as a resilience gene by affecting both the stress/defense cascade and growth, constituting a signaling intercept with a competitive regulatory mechanism. For decades, the tomato Ve-gene has been recognized as a classical resistance R-gene, inherited as a dominant Mendelian trait and encoding a receptor protein that binds with a fungal effector to provide defense against Verticillium dahliae and V. albo-atrum. However, recent molecular studies suggest that the function and role(s) of the Ve-locus and the two proteins that it encodes are more complex than previously understood. This review summarizes both the background and recent molecular evidence and provides a reinterpretation of the function and role(s) of the Ve1- and Ve2-genes and proteins that better accommodates existing data. It is proposed that these two plasma membrane proteins interact to form a signaling intercept that directly links defense and growth. The induction of Ve1 by infection or wounding promotes growth but also downregulates Ve2 signaling, resulting in a decreased biosynthesis of PR proteins. In this context, the Ve1 R-gene acts as a Resilience gene rather than a Resistance gene, promoting taller more robust tomato plants with reduced symptoms (biotic and abiotic) and Verticillium concentration.
Collapse
Affiliation(s)
- E Jane Robb
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Ross N Nazar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
5
|
Meristematic Connectome: A Cellular Coordinator of Plant Responses to Environmental Signals? Cells 2021; 10:cells10102544. [PMID: 34685524 PMCID: PMC8533771 DOI: 10.3390/cells10102544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022] Open
Abstract
Mechanical stress in tree roots induces the production of reaction wood (RW) and the formation of new branch roots, both functioning to avoid anchorage failure and limb damage. The vascular cambium (VC) is the factor responsible for the onset of these responses as shown by their occurrence when all primary tissues and the root tips are removed. The data presented confirm that the VC is able to evaluate both the direction and magnitude of the mechanical forces experienced before coordinating the most fitting responses along the root axis whenever and wherever these are necessary. The coordination of these responses requires intense crosstalk between meristematic cells of the VC which may be very distant from the place where the mechanical stress is first detected. Signaling could be facilitated through plasmodesmata between meristematic cells. The mechanism of RW production also seems to be well conserved in the stem and this fact suggests that the VC could behave as a single structure spread along the plant body axis as a means to control the relationship between the plant and its environment. The observation that there are numerous morphological and functional similarities between different meristems and that some important regulatory mechanisms of meristem activity, such as homeostasis, are common to several meristems, supports the hypothesis that not only the VC but all apical, primary and secondary meristems present in the plant body behave as a single interconnected structure. We propose to name this structure “meristematic connectome” given the possibility that the sequence of meristems from root apex to shoot apex could represent a pluricellular network that facilitates long-distance signaling in the plant body. The possibility that the “meristematic connectome” could act as a single structure active in adjusting the plant body to its surrounding environment throughout the life of a plant is now proposed.
Collapse
|
6
|
Mei C, Liu Y, Dong X, Song Q, Wang H, Shi H, Feng R. Genome-Wide Identification and Characterization of the Potato IQD Family During Development and Stress. Front Genet 2021; 12:693936. [PMID: 34386041 PMCID: PMC8354571 DOI: 10.3389/fgene.2021.693936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/16/2021] [Indexed: 12/05/2022] Open
Abstract
Calmodulin-binding proteins belong to the IQ67 domain (IQD) gene family and play essential roles in plant development and stress responses. However, the role of IQD gene family in potato (Solanum tuberosum L.) is yet to be known. In the present study, 23 StIQDs were identified in the potato genome and named StIQD1 to StIQD23. They were unevenly distributed on 10 of the 12 chromosomes. Phylogenetic analysis divided the IQDs into four subfamilies (IQD I–IV). StIQDs found in three of the four subfamilies. Synteny analysis confirmed that potato and tomato shared a close evolutionary relationship. Besides, RNA-Seq data analysis revealed that the expression of 19 of the 23 StIQDs was detected in at least one of the 12 tissues, and some of which showed a tissue-specific pattern. Quantitative reverse transcriptase–polymerase chain reaction results further confirmed that 14 StIQDs responded differently to various abiotic stresses, including drought, extreme temperature, and CaCl2 treatment, suggesting their significance in stress response. This study presents a comprehensive overview of the potato IQD gene family and lays a foundation for further analysis of the StIQDs functions in plant development and stress response.
Collapse
Affiliation(s)
- Chao Mei
- College of Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Yuwei Liu
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Xue Dong
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, China
| | - Qianna Song
- College of Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Huijie Wang
- College of Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Hongwei Shi
- College of Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Ruiyun Feng
- College of Agriculture, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
7
|
Dhiman N, Sharma NK, Thapa P, Sharma I, Kumar Swarnkar M, Chawla A, Shankar R, Bhattacharya A. De novo transcriptome provides insights into the growth behaviour and resveratrol and trans-stilbenes biosynthesis in Dactylorhiza hatagirea - An endangered alpine terrestrial orchid of western Himalaya. Sci Rep 2019; 9:13133. [PMID: 31511556 PMCID: PMC6739469 DOI: 10.1038/s41598-019-49446-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/22/2019] [Indexed: 11/18/2022] Open
Abstract
This is the first report on de novo transcriptome of Dactylorhiza hatagirea, a critically-endangered, terrestrial orchid of alpine Himalayas. The plant is acclaimed for medicinal properties but little is known about its secondary-metabolites profile or cues regulating their biosynthesis. De novo transcriptome analysis was therefore, undertaken to gain basic understanding on these aspects, while circumventing the acute limitation of plant material availability. 65,384 transcripts and finally, 37,371 unigenes were assembled de novo from a total of 236 million reads obtained from shoot, tuber and leaves of the plant. Dominance of differentially-expressing-genes (DEGs) related to cold-stress-response and plant-hormone-signal-transduction; and those involved in photosynthesis, sugar-metabolism and secondary-metabolite-synthesis provided insights into carbohydrate-partitioning in the plant during its preparation for freezing winter at natural habitat. DEGs of glucomannan, ascorbic acid, carotenoids, phylloquinone/naphthoquinones, indole alkaloids, resveratrol and stilbene biosynthesis revealed the secondary-metabolite profile of D. hatagirea. UHPLC results confirmed appreciable amounts of resveratrol and trans-stilbene in D. hatagirea tubers, for the first time. Expression analysis of 15 selected genes including those of phenylpropanoid pathway confirmed the validity of RNA-seq data. Opportunistic growth, temperature- and tissue-specific-differential-expression of secondary metabolite biosynthesis and stress tolerant genes were confirmed using clonal plants growing at 8, 15 and 25 °C.
Collapse
Affiliation(s)
- Nisha Dhiman
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, H.P., India
- Academy of Scientific and Innovative Research(AcSIR), CSIR-Institute of Himalayan Bio-Resource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Nitesh Kumar Sharma
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, H.P., India
- Academy of Scientific and Innovative Research(AcSIR), CSIR-Institute of Himalayan Bio-Resource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Pooja Thapa
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, H.P., India
| | - Isha Sharma
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, H.P., India
| | - Mohit Kumar Swarnkar
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, H.P., India
| | - Amit Chawla
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, H.P., India
- Academy of Scientific and Innovative Research(AcSIR), CSIR-Institute of Himalayan Bio-Resource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Ravi Shankar
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, H.P., India.
- Academy of Scientific and Innovative Research(AcSIR), CSIR-Institute of Himalayan Bio-Resource Technology, Palampur, 176061, Himachal Pradesh, India.
| | - Amita Bhattacharya
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, H.P., India.
- Academy of Scientific and Innovative Research(AcSIR), CSIR-Institute of Himalayan Bio-Resource Technology, Palampur, 176061, Himachal Pradesh, India.
| |
Collapse
|
8
|
Abstract
Despite considerable research on the responses of plants to stimuli and a recent surge of interest in "plant intelligence," few studies have been conducted on classical or respondent conditioning in plants. Studies of respondent conditioning in plants were reviewed, the majority of which used the sensitive plant (Mimosa pudica) as the subjects with seismonastic responses (leaflet-folding and leaf-drooping) as the unconditioned responses, and all of which used group designs. The reported results are mixed, with no replications of positive results. Issues have been noted with the methodology of these studies, including the lack of within-subject demonstrations, choice of putative conditioned stimuli, and potential unplanned interactions between subjects across experimental groups. Recommendations are made for addressing these issues in future research.
Collapse
Affiliation(s)
- Barry E. Adelman
- The Arc of Indian River County, 1375 16th Avenue, Vero Beach, FL 32960 USA
| |
Collapse
|
9
|
Finatto T, Viana VE, Woyann LG, Busanello C, da Maia LC, de Oliveira AC. Can WRKY transcription factors help plants to overcome environmental challenges? Genet Mol Biol 2018; 41:533-544. [PMID: 30235398 PMCID: PMC6136380 DOI: 10.1590/1678-4685-gmb-2017-0232] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 01/22/2018] [Indexed: 12/13/2022] Open
Abstract
WRKY transcription factors (TFs) are responsible for the regulation of genes responsive to many plant growth and developmental cues, as well as to biotic and abiotic stresses. The modulation of gene expression by WRKY proteins primarily occurs by DNA binding at specific cis-regulatory elements, the W-box elements, which are short sequences located in the promoter region of certain genes. In addition, their action can occur through interaction with other TFs and the cellular transcription machinery. The current genome sequences available reveal a relatively large number of WRKY genes, reaching hundreds of copies. Recently, functional genomics studies in model plants have enabled the identification of function and mechanism of action of several WRKY TFs in plants. This review addresses the more recent studies in plants regarding the function of WRKY TFs in both model and crop plants for coping with environmental challenges, including a wide variety of abiotic and biotic stresses.
Collapse
Affiliation(s)
- Taciane Finatto
- Centro de Genômica e Fitomelhoramento, Departamento de Fitotecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Vívian Ebeling Viana
- Centro de Genômica e Fitomelhoramento, Departamento de Fitotecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS, Brazil
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnologico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Leomar Guilherme Woyann
- Centro de Genômica e Fitomelhoramento, Departamento de Fitotecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Carlos Busanello
- Centro de Genômica e Fitomelhoramento, Departamento de Fitotecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Luciano Carlos da Maia
- Centro de Genômica e Fitomelhoramento, Departamento de Fitotecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Antonio Costa de Oliveira
- Centro de Genômica e Fitomelhoramento, Departamento de Fitotecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS, Brazil
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnologico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
10
|
Barah P, Bones AM. Multidimensional approaches for studying plant defence against insects: from ecology to omics and synthetic biology. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:479-93. [PMID: 25538257 DOI: 10.1093/jxb/eru489] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The biggest challenge for modern biology is to integrate multidisciplinary approaches towards understanding the organizational and functional complexity of biological systems at different hierarchies, starting from the subcellular molecular mechanisms (microscopic) to the functional interactions of ecological communities (macroscopic). The plant-insect interaction is a good model for this purpose with the availability of an enormous amount of information at the molecular and the ecosystem levels. Changing global climatic conditions are abruptly resetting plant-insect interactions. Integration of discretely located heterogeneous information from the ecosystem to genes and pathways will be an advantage to understand the complexity of plant-insect interactions. This review will present the recent developments in omics-based high-throughput experimental approaches, with particular emphasis on studying plant defence responses against insect attack. The review highlights the importance of using integrative systems approaches to study plant-insect interactions from the macroscopic to the microscopic level. We analyse the current efforts in generating, integrating and modelling multiomics data to understand plant-insect interaction at a systems level. As a future prospect, we highlight the growing interest in utilizing the synthetic biology platform for engineering insect-resistant plants.
Collapse
Affiliation(s)
- Pankaj Barah
- Cell Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology (NTNU), N 7491 Trondheim, Norway
| | - Atle M Bones
- Cell Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology (NTNU), N 7491 Trondheim, Norway
| |
Collapse
|
11
|
Yoo JH, Cheong MS, Park CY, Moon BC, Kim MC, Kang YH, Park HC, Choi MS, Lee JH, Jung WY, Yoon HW, Chung WS, Lim CO, Lee SY, Cho MJ. Regulation of the Dual Specificity Protein Phosphatase, DsPTP1, through Interactions with Calmodulin. J Biol Chem 2004; 279:848-58. [PMID: 14570888 DOI: 10.1074/jbc.m310709200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Reversible phosphorylation is a key mechanism for the control of intercellular events in eukaryotic cells. In animal cells, Ca2+/CaM-dependent protein phosphorylation and dephosphorylation are implicated in the regulation of a number of cellular processes. However, little is known on the functions of Ca2+/CaM-dependent protein kinases and phosphatases in Ca2+ signaling in plants. From an Arabidopsis expression library, we isolated cDNA encoding a dual specificity protein phosphatase 1, which is capable of hydrolyzing both phosphoserine/threonine and phosphotyrosine residues of the substrates. Using a gel overlay assay, we identified two Ca2+-dependent CaM binding domains (CaMBDI in the N terminus and CaMBDII in the C terminus). Specific binding of CaM to two CaMBD was confirmed by site-directed mutagenesis, a gel mobility shift assay, and a competition assay using a Ca2+/CaM-dependent enzyme. At increasing concentrations of CaM, the biochemical activity of dual specificity protein phosphatase 1 on the p-nitrophenyl phosphate (pNPP) substrate was increased, whereas activity on the phosphotyrosine of myelin basic protein (MBP) was inhibited. Our results collectively indicate that calmodulin differentially regulates the activity of protein phosphatase, dependent on the substrate. Based on these findings, we propose that the Ca2+ signaling pathway is mediated by CaM cross-talks with a protein phosphorylation signal pathway in plants via protein dephosphorylation.
Collapse
Affiliation(s)
- Jae Hyuk Yoo
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Yang CY, Chu FH, Wang YT, Chen YT, Yang SF, Shaw JF. Novel broccoli 1-aminocyclopropane-1-carboxylate oxidase gene (Bo-ACO3) associated with the late stage of postharvest floret senescence. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2003; 51:2569-2575. [PMID: 12696939 DOI: 10.1021/jf034007m] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A novel 1-aminocyclopropane-1-carboxylate (ACC) oxidase gene (Bo-ACO3) was first isolated from senescing broccoli florets by subtractive hybridization. The cDNA clone comprised a 963 bp open reading frame encoding a protein of 321 amino acids. The predicted molecular mass and pI were 36 kDa and 5.42, respectively. Bo-ACO3 shares 68% identity in the coding region with Bo-ACO1 (ACC Ox1) and Bo-ACO2 (ACC Ox2) and is quite divergent from the 3' untranslated regions. Bo-ACO3 transcript was accumulated to high levels only at the late stage of senescence after harvest. Southern blot hybridization using full-length cDNA as a probe suggested that the Bo-ACO3 gene is a single-copy gene in the broccoli genome. The deduced 321 amino acid sequence of Bo-ACO3 shares 70% identity with either Bo-ACO1 or Bo-ACO2. The BO-ACO3 gene was expressed in Escherichia coli as a 38 kDa active ACO enzyme. It was concluded that Bo-ACO3 is a senescence-associated gene involved in the late-phase senescence of postharvest broccoli.
Collapse
Affiliation(s)
- Chih-Yuan Yang
- Life Science Center, Hsing Wu College, No. 11-2 Fen-Liao Road, Lin-Kou, Taipei, Taiwan 11244
| | | | | | | | | | | |
Collapse
|
13
|
Lokhande SD, Ogawa K, Tanaka A, Hara T. Effect of temperature on ascorbate peroxidase activity and flowering of Arabidopsis thaliana ecotypes under different light conditions. JOURNAL OF PLANT PHYSIOLOGY 2003; 160:57-64. [PMID: 12685046 DOI: 10.1078/0176-1617-00990] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Four Arabidopsis thaliana ecotypes were grown at 14 degrees C and 22 degrees C under two light conditions (300 microE m-2 s-1 or 150 microE m-2 s-1) and the effect of temperature on their growth and flowering time was studied. Flowering occurred within 31 days (experimental period) at 22 degrees C, whereas a decrease in growth temperature resulted in a delay in flowering (63 days) under both light conditions. At 14 degrees C, membrane-bound APX (tAPX) activity decreased and total chlorophyll (Chl) content increased with growth under both light conditions. However, at 22 degrees C, the tAPX activity increased and total Chl content decreased with growth under both light conditions. These results suggest that at 22 degrees C oxidative stress was high under both light conditions and consequently Chl content decreased under stressful conditions or vice versa for all the four A. thaliana ecotypes studied. Under both the temperature and light conditions, soluble APX activity showed an irregular pattern of growth. The increase in tAPX activity, with growth only at 22 degrees C but not at 14 degrees C, suggests increased H2O2 formation in flowering plants at 22 degrees C for all the four A. thaliana ecotypes studied. Before flowering, the tAPX activity showed a significantly negative correlation with flowering time. Higher oxidative stress in the lower-latitude ecotypes might induce earlier flowering than the higher-latitude ecotypes. From these results, we propose a hypothesis that H2O2 is one of the possible factors in flower induction.
Collapse
Affiliation(s)
- Shubhangi D Lokhande
- The Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan.
| | | | | | | |
Collapse
|
14
|
Kurosaki F, Yamashita A, Arisawa M. Determination of Ca(2+) influx across plant plasma membrane with sealed vesicles reoriented by Brij 58. Anal Biochem 2001; 299:266-8. [PMID: 11730354 DOI: 10.1006/abio.2001.5426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- F Kurosaki
- Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Sugitani, Toyama 930-0194, Japan
| | | | | |
Collapse
|
15
|
Kurosaki F, Yamashita A, Arisawa M. Involvement of GTP-binding protein in the induction of phytoalexin biosynthesis in cultured carrot cells. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2001; 161:273-278. [PMID: 11448758 DOI: 10.1016/s0168-9452(01)00407-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Biosynthetic activity of carrot phytoalexin 6-methoxymellen was induced in cell suspension culture by the treatment with oligogalacturonide elicitor; however, the elicitor-induced activity appreciably reduced in the presence of suramin, a potent inhibitor of GTP-binding proteins. In contrast, addition of G-protein activators, such as mastoparan or GTP-gamma-S, to carrot cell culture triggered 6-methoxymellein production even in the absence of uronide elicitor. An appreciable GTPase activity was found in purified plasma membrane of cultured carrot cells, and the hydrolytic activity was significantly increased by the addition of elicitor. Carrot plasma membrane was capable of associating with GTP-gamma-S, and the binding ability was markedly increased in the presence of elicitor. However, the binding activity markedly decreased when the membrane preparation was pre-incubated with GTP but not with ATP. These observations strongly suggest that a certain GTP-binding protein located at plasma membrane of cultured carrot cells plays an important role in the oligogalacturonide elicitor-induced 6-methoxymellein production.
Collapse
Affiliation(s)
- F Kurosaki
- Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Sugitani, 930-0194, Toyama, Japan
| | | | | |
Collapse
|
16
|
Lu C, Fedoroff N. A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. THE PLANT CELL 2000; 12:2351-2366. [PMID: 11148283 PMCID: PMC102223 DOI: 10.1105/tpc.12.12.2351] [Citation(s) in RCA: 317] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Both physiological and genetic evidence indicate interconnections among plant responses to different hormones. We describe a pleiotropic recessive Arabidopsis transposon insertion mutation, designated hyponastic leaves (hyl1), that alters the plant's responses to several hormones. The mutant is characterized by shorter stature, delayed flowering, leaf hyponasty, reduced fertility, decreased rate of root growth, and an altered root gravitropic response. It also exhibits less sensitivity to auxin and cytokinin and hypersensitivity to abscisic acid (ABA). The auxin transport inhibitor 2,3,5-triiodobenzoic acid normalizes the mutant phenotype somewhat, whereas another auxin transport inhibitor, N-(1-naph-thyl)phthalamic acid, exacerbates the phenotype. The gene, designated HYL1, encodes a 419-amino acid protein that contains two double-stranded RNA (dsRNA) binding motifs, a nuclear localization motif, and a C-terminal repeat structure suggestive of a protein-protein interaction domain. We present evidence that the HYL1 gene is ABA-regulated and encodes a nuclear dsRNA binding protein. We hypothesize that the HYL1 protein is a regulatory protein functioning at the transcriptional or post-transcriptional level.
Collapse
Affiliation(s)
- C Lu
- Biology Department and Biotechnology Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
17
|
Lu C, Fedoroff N. A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. THE PLANT CELL 2000; 12:2351-2366. [PMID: 11148283 DOI: 10.2307/3871234] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Both physiological and genetic evidence indicate interconnections among plant responses to different hormones. We describe a pleiotropic recessive Arabidopsis transposon insertion mutation, designated hyponastic leaves (hyl1), that alters the plant's responses to several hormones. The mutant is characterized by shorter stature, delayed flowering, leaf hyponasty, reduced fertility, decreased rate of root growth, and an altered root gravitropic response. It also exhibits less sensitivity to auxin and cytokinin and hypersensitivity to abscisic acid (ABA). The auxin transport inhibitor 2,3,5-triiodobenzoic acid normalizes the mutant phenotype somewhat, whereas another auxin transport inhibitor, N-(1-naph-thyl)phthalamic acid, exacerbates the phenotype. The gene, designated HYL1, encodes a 419-amino acid protein that contains two double-stranded RNA (dsRNA) binding motifs, a nuclear localization motif, and a C-terminal repeat structure suggestive of a protein-protein interaction domain. We present evidence that the HYL1 gene is ABA-regulated and encodes a nuclear dsRNA binding protein. We hypothesize that the HYL1 protein is a regulatory protein functioning at the transcriptional or post-transcriptional level.
Collapse
Affiliation(s)
- C Lu
- Biology Department and Biotechnology Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
18
|
Dong H, Beer SV. Riboflavin induces disease resistance in plants by activating a novel signal transduction pathway. PHYTOPATHOLOGY 2000; 90:801-11. [PMID: 18944500 DOI: 10.1094/phyto.2000.90.8.801] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
ABSTRACT The role of riboflavin as an elicitor of systemic resistance and an activator of a novel signaling process in plants was demonstrated. Following treatment with riboflavin, Arabidopsis thaliana developed systemic resistance to Peronospora parasitica and Pseudomonas syringae pv. Tomato, and tobacco developed systemic resistance to Tobacco mosaic virus (TMV) and Alternaria alternata. Riboflavin, at concentrations necessary for resistance induction, did not cause cell death in plants or directly affect growth of the culturable pathogens. Riboflavin induced expression of pathogenesis-related (PR) genes in the plants, suggesting its ability to trigger a signal transduction pathway that leads to systemic resistance. Both the protein kinase inhibitor K252a and mutation in the NIM1/NPR1 gene which controls transcription of defense genes, impaired responsiveness to riboflavin. In contrast, riboflavin induced resistance and PR gene expression in NahG plants, which fail to accumulate salicylic acid (SA). Thus, riboflavin-induced resistance requires protein kinase signaling mechanisms and a functional NIM1/NPR1 gene, but not accumulation of SA. Riboflavin is an elicitor of systemic resistance, and it triggers resistance signal transduction in a distinct manner.
Collapse
|
19
|
Ashida Y, Matsushima A, Tsuru Y, Hirota T, Hirata T. Isolation and sequencing of a cDNA clone encoding a 20-kDa protein with trypsin inhibitory activity. Biosci Biotechnol Biochem 2000; 64:1305-9. [PMID: 10923810 DOI: 10.1271/bbb.64.1305] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The amino acid sequence of a novel trypsin inhibitor (p20) was completed by the molecular cloning of the protein in cultured soybean cells. The clone nucleotide contains an open reading frame encoding a polypeptide of 206 amino acids that shows 45-50% sequence homology to members of the Kunitz-type trypsin inhibitor family. The p20 transcript is expressed in the roots, stems and leaves of soybean seedlings. DNA gel blot analyses show that the p20 in soybean is encoded by a single gene, and that this gene may not contain an intron.
Collapse
Affiliation(s)
- Y Ashida
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
| | | | | | | | | |
Collapse
|
20
|
Shiu OY, Oetiker JH, Yip WK, Yang SF. The promoter of LE-ACS7, an early flooding-induced 1-aminocyclopropane-1-carboxylate synthase gene of the tomato, is tagged by a Sol3 transposon. Proc Natl Acad Sci U S A 1998; 95:10334-9. [PMID: 9707648 PMCID: PMC21509 DOI: 10.1073/pnas.95.17.10334] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many terrestrial plants respond to flooding with enhanced ethylene production. The roots of flooded plants produce 1-aminocyclopropane-1-carboxylic acid (ACC), which is transported from the root to the shoot, where it is converted to ethylene. In the roots, ACC is synthesized by ACC synthase, which is encoded by a multigene family. Previously, we identified two ACC synthase genes of tomato that are involved in flooding-induced ethylene production. Here, we report the cloning of LE-ACS7, a new tomato ACC synthase with a role early during flooding but also in the early wound response of leaves. The promoter of LE-ACS7 is tagged by a Sol3 transposon. A Sol3 transposon is also present in the tomato polygalacturonase promoter to which it conferred regulatory elements. Thus, Sol3 transposons may affect the regulation of LE-ACS7 and may be involved in the communication between the root and the shoot of waterlogged tomato plants.
Collapse
Affiliation(s)
- O Y Shiu
- Department of Vegetable Crops, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|