1
|
Ferdoush J, Kadir RA, Ogle M, Saha A. Regulation of eukaryotic transcription initiation in response to cellular stress. Gene 2024; 924:148616. [PMID: 38795856 DOI: 10.1016/j.gene.2024.148616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Transcription initiation is a vital step in the regulation of eukaryotic gene expression. It can be dysregulated in response to various cellular stressors which is associated with numerous human diseases including cancer. Transcription initiation is facilitated via many gene-specific trans-regulatory elements such as transcription factors, activators, and coactivators through their interactions with transcription pre-initiation complex (PIC). These trans-regulatory elements can uniquely facilitate PIC formation (hence, transcription initiation) in response to cellular nutrient stress. Cellular nutrient stress also regulates the activity of other pathways such as target of rapamycin (TOR) pathway. TOR pathway exhibits distinct regulatory mechanisms of transcriptional activation in response to stress. Like TOR pathway, the cell cycle regulatory pathway is also found to be linked to transcriptional regulation in response to cellular stress. Several transcription factors such as p53, C/EBP Homologous Protein (CHOP), activating transcription factor 6 (ATF6α), E2F, transforming growth factor (TGF)-β, Adenomatous polyposis coli (APC), SMAD, and MYC have been implicated in regulation of transcription of target genes involved in cell cycle progression, apoptosis, and DNA damage repair pathways. Additionally, cellular metabolic and oxidative stressors have been found to regulate the activity of long non-coding RNAs (lncRNA). LncRNA regulates transcription by upregulating or downregulating the transcription regulatory proteins involved in metabolic and cell signaling pathways. Numerous human diseases, triggered by chronic cellular stressors, are associated with abnormal regulation of transcription. Hence, understanding these mechanisms would help unravel the molecular regulatory insights with potential therapeutic interventions. Therefore, here we emphasize the recent advances of regulation of eukaryotic transcription initiation in response to cellular stress.
Collapse
Affiliation(s)
- Jannatul Ferdoush
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA.
| | - Rizwaan Abdul Kadir
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Matthew Ogle
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Ayan Saha
- Department of Bioinformatics and Biotechnology, Asian University for Women, Chattogram, Bangladesh
| |
Collapse
|
2
|
Kefalas G, Rotin D. Primate-specific isoform of Nedd4-1 regulates substrate binding via Ser/Thr phosphorylation and 14-3-3 binding. Sci Rep 2023; 13:17903. [PMID: 37863970 PMCID: PMC10589272 DOI: 10.1038/s41598-023-44761-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023] Open
Abstract
Nedd4 (Nedd4-1) is an E3 ubiquitin ligase involved in crucial biological processes such as growth factor receptor signaling. While canonical Nedd4-1 comprises a C2-WW(4)-HECT domain architecture, alternative splicing produces non-canonical isoforms that are poorly characterized. Here we characterized Nedd4-1(NE), a primate-specific isoform of Nedd4-1 that contains a large N-terminal Extension (NE) that replaces most of the C2 domain. We show that Nedd4-1(NE) mRNA is ubiquitously expressed in human tissues and cell lines. Moreover, we found that Nedd4-1(NE) is more active than the canonical Nedd4-1 isoform, likely due to the absence of a C2 domain-mediated autoinhibitory mechanism. Additionally, we identified two Thr/Ser phosphoresidues in the NE region that act as binding sites for 14-3-3 proteins, and show that phosphorylation on these sites reduces substrate binding. Finally, we show that the NE region can act as a binding site for the RPB2 subunit of RNA polymerase II, a unique substrate of Nedd4-1(NE) but not the canonical Nedd4-1. Taken together, our results demonstrate that alternative splicing of the ubiquitin ligase Nedd4-1 can produce isoforms that differ in their catalytic activity, binding partners and substrates, and mechanisms of regulation.
Collapse
Affiliation(s)
- George Kefalas
- Cell Biology Program, the Hospital for Sick Children, PGCRL 19-9715, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Biochemistry Department, University of Toronto, Toronto, ON, M5G 0A4, Canada
| | - Daniela Rotin
- Cell Biology Program, the Hospital for Sick Children, PGCRL 19-9715, 686 Bay Street, Toronto, ON, M5G 0A4, Canada.
- Biochemistry Department, University of Toronto, Toronto, ON, M5G 0A4, Canada.
| |
Collapse
|
3
|
Pitts S, Liu H, Ibrahim A, Garg A, Felgueira CM, Begum A, Fan W, Teh S, Low JY, Ford B, Schneider DA, Hay R, Laiho M. Identification of an E3 ligase that targets the catalytic subunit of RNA Polymerase I upon transcription stress. J Biol Chem 2022; 298:102690. [PMID: 36372232 PMCID: PMC9727647 DOI: 10.1016/j.jbc.2022.102690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022] Open
Abstract
RNA Polymerase I (Pol I) synthesizes rRNA, which is the first and rate-limiting step in ribosome biogenesis. Factors governing the stability of the polymerase complex are not known. Previous studies characterizing Pol I inhibitor BMH-21 revealed a transcriptional stress-dependent pathway for degradation of the largest subunit of Pol I, RPA194. To identify the E3 ligase(s) involved, we conducted a cell-based RNAi screen for ubiquitin pathway genes. We establish Skp-Cullin-F-box protein complex F-box protein FBXL14 as an E3 ligase for RPA194. We show that FBXL14 binds to RPA194 and mediates RPA194 ubiquitination and degradation in cancer cells treated with BMH-21. Mutation analysis in yeast identified lysines 1150, 1153, and 1156 on Rpa190 relevant for the protein degradation. These results reveal the regulated turnover of Pol I, showing that the stability of the catalytic subunit is controlled by the F-box protein FBXL14 in response to transcription stress.
Collapse
Affiliation(s)
- Stephanie Pitts
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hester Liu
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Adel Ibrahim
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, Scotland, United Kingdom
| | - Amit Garg
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, Scotland, United Kingdom
| | - Catarina Mendes Felgueira
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Asma Begum
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Wenjun Fan
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Selina Teh
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jin-Yih Low
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brittany Ford
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ronald Hay
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, Scotland, United Kingdom
| | - Marikki Laiho
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
4
|
Regulation of RNA Polymerase I Stability and Function. Cancers (Basel) 2022; 14:cancers14235776. [PMID: 36497261 PMCID: PMC9737084 DOI: 10.3390/cancers14235776] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
RNA polymerase I is a highly processive enzyme with fast initiation and elongation rates. The structure of Pol I, with its in-built RNA cleavage ability and incorporation of subunits homologous to transcription factors, enables it to quickly and efficiently synthesize the enormous amount of rRNA required for ribosome biogenesis. Each step of Pol I transcription is carefully controlled. However, cancers have highjacked these control points to switch the enzyme, and its transcription, on permanently. While this provides an exceptional benefit to cancer cells, it also creates a potential cancer therapeutic vulnerability. We review the current research on the regulation of Pol I transcription, and we discuss chemical biology efforts to develop new targeted agents against this process. Lastly, we highlight challenges that have arisen from the introduction of agents with promiscuous mechanisms of action and provide examples of agents with specificity and selectivity against Pol I.
Collapse
|
5
|
Lehner MH, Walker J, Temcinaite K, Herlihy A, Taschner M, Berger AC, Corbett AH, Dirac Svejstrup AB, Svejstrup JQ. Yeast Smy2 and its human homologs GIGYF1 and -2 regulate Cdc48/VCP function during transcription stress. Cell Rep 2022; 41:111536. [PMID: 36288698 PMCID: PMC9638028 DOI: 10.1016/j.celrep.2022.111536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/09/2022] [Accepted: 09/29/2022] [Indexed: 12/02/2022] Open
Abstract
The "last resort" pathway results in ubiquitylation and degradation of RNA polymerase II in response to transcription stress and is governed by factors such as Def1 in yeast. Here, we show that the SMY2 gene acts as a multi-copy suppressor of DEF1 deletion and functions at multiple steps of the last resort pathway. We also provide genetic and biochemical evidence from disparate cellular processes that Smy2 works more broadly as a hitherto overlooked regulator of Cdc48 function. Similarly, the Smy2 homologs GIGYF1 and -2 affect the transcription stress response in human cells and regulate the function of the Cdc48 homolog VCP/p97, presently being explored as a target for cancer therapy. Indeed, we show that the apoptosis-inducing effect of VCP inhibitors NMS-873 and CB-5083 is GIGYF1/2 dependent.
Collapse
Affiliation(s)
- Michelle Harreman Lehner
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jane Walker
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Kotryna Temcinaite
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Anna Herlihy
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael Taschner
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Adam C Berger
- Department of Biology, RRC 1021, Emory University, 1510 Clifton Road, NE, Atlanta 30322, GA, USA
| | - Anita H Corbett
- Department of Biology, RRC 1021, Emory University, 1510 Clifton Road, NE, Atlanta 30322, GA, USA
| | - A Barbara Dirac Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| |
Collapse
|
6
|
Herlihy AE, Boeing S, Weems JC, Walker J, Dirac-Svejstrup AB, Lehner MH, Conaway RC, Conaway JW, Svejstrup JQ. UBAP2/UBAP2L regulate UV-induced ubiquitylation of RNA polymerase II and are the human orthologues of yeast Def1. DNA Repair (Amst) 2022; 115:103343. [PMID: 35633597 DOI: 10.1016/j.dnarep.2022.103343] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022]
Abstract
During transcription, RNA polymerase II (RNAPII) faces numerous obstacles, including DNA damage, which can lead to stalling or arrest. One mechanism to contend with this situation is ubiquitylation and degradation of the largest RNAPII subunit, RPB1 - the 'last resort' pathway. This conserved, multi-step pathway was first identified in yeast, and the functional human orthologues of all but one protein, RNAPII Degradation Factor 1 (Def1), have been discovered. Here we show that following UV-irradiation, human Ubiquitin-associated protein 2 (UBAP2) or its paralogue UBAP2-like (UBAP2L) are involved in the ubiquitylation and degradation of RNAPII through the recruitment of Elongin-Cul5 ubiquitin ligase. Together, our data indicate that UBAP2 and UBAP2L are the human orthologues of yeast Def1, and so identify the key missing proteins in the human last resort pathway.
Collapse
Affiliation(s)
- Anna E Herlihy
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Stefan Boeing
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Juston C Weems
- Department of Biochemistry & Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jane Walker
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - A Barbara Dirac-Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Blegdamsvej 3B, Copenhagen N 2200, Denmark
| | - Michelle Harreman Lehner
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ronald C Conaway
- Department of Biochemistry & Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Joan W Conaway
- Department of Biochemistry & Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Blegdamsvej 3B, Copenhagen N 2200, Denmark.
| |
Collapse
|
7
|
Zhang X, Yin M, Hu J. Nucleotide excision repair: a versatile and smart toolkit. Acta Biochim Biophys Sin (Shanghai) 2022; 54:807-819. [PMID: 35975604 PMCID: PMC9828404 DOI: 10.3724/abbs.2022054] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Nucleotide excision repair (NER) is a major pathway to deal with bulky adducts induced by various environmental toxins in all cellular organisms. The two sub-pathways of NER, global genome repair (GGR) and transcription-coupled repair (TCR), differ in the damage recognition modes. In this review, we describe the molecular mechanism of NER in mammalian cells, especially the details of damage recognition steps in both sub-pathways. We also introduce new sequencing methods for genome-wide mapping of NER, as well as recent advances about NER in chromatin by these methods. Finally, the roles of NER factors in repairing oxidative damages and resolving R-loops are discussed.
Collapse
Affiliation(s)
| | | | - Jinchuan Hu
- Correspondence address. Tel: +86-21-54237702; E-mail:
| |
Collapse
|
8
|
Wang Y, Fang S, Chen G, Ganti R, Chernova TA, Zhou L, Duong D, Kiyokawa H, Li M, Zhao B, Shcherbik N, Chernoff YO, Yin J. Regulation of the endocytosis and prion-chaperoning machineries by yeast E3 ubiquitin ligase Rsp5 as revealed by orthogonal ubiquitin transfer. Cell Chem Biol 2021; 28:1283-1297.e8. [PMID: 33667410 PMCID: PMC8380759 DOI: 10.1016/j.chembiol.2021.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/22/2020] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
Attachment of the ubiquitin (UB) peptide to proteins via the E1-E2-E3 enzymatic machinery regulates diverse biological pathways, yet identification of the substrates of E3 UB ligases remains a challenge. We overcame this challenge by constructing an "orthogonal UB transfer" (OUT) cascade with yeast E3 Rsp5 to enable the exclusive delivery of an engineered UB (xUB) to Rsp5 and its substrate proteins. The OUT screen uncovered new Rsp5 substrates in yeast, such as Pal1 and Pal2, which are partners of endocytic protein Ede1, and chaperones Hsp70-Ssb, Hsp82, and Hsp104 that counteract protein misfolding and control self-perpetuating amyloid aggregates (prions), resembling those involved in human amyloid diseases. We showed that prion formation and effect of Hsp104 on prion propagation are modulated by Rsp5. Overall, our work demonstrates the capacity of OUT to deconvolute the complex E3-substrate relationships in crucial biological processes such as endocytosis and protein assembly disorders through protein ubiquitination.
Collapse
Affiliation(s)
- Yiyang Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA; Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Shuai Fang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA; Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Geng Chen
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA; Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China
| | - Rakhee Ganti
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Tatiana A Chernova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Li Zhou
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Duc Duong
- Integrated Proteomics Core, Emory University, Atlanta, GA 30322, USA
| | - Hiroaki Kiyokawa
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - Ming Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48019, USA
| | - Bo Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.
| | - Natalia Shcherbik
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA.
| | - Yury O Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA; Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg 199034, Russia.
| | - Jun Yin
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
9
|
Liao PC, Wolken DMA, Serrano E, Srivastava P, Pon LA. Mitochondria-Associated Degradation Pathway (MAD) Function beyond the Outer Membrane. Cell Rep 2021; 32:107902. [PMID: 32668258 PMCID: PMC7391283 DOI: 10.1016/j.celrep.2020.107902] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/07/2020] [Accepted: 06/23/2020] [Indexed: 12/01/2022] Open
Abstract
The mitochondria-associated degradation pathway (MAD) mediates ubiquitination and degradation of mitochondrial outer membrane (MOM) proteins by the proteasome. We find that the MAD, but not other quality-control pathways including macroautophagy, mitophagy, or mitochondrial chaperones and proteases, is critical for yeast cellular fitness under conditions of paraquat (PQ)-induced oxidative stress in mitochondria. Specifically, inhibition of the MAD increases PQ-induced defects in growth and mitochondrial quality and decreases chronological lifespan. We use mass spectrometry analysis to identify possible MAD substrates as mitochondrial proteins that exhibit increased ubiquitination in response to PQ treatment and inhibition of the MAD. We identify candidate substrates in the mitochondrial matrix and inner membrane and confirm that two matrix proteins are MAD substrates. Our studies reveal a broader function for the MAD in mitochondrial protein surveillance beyond the MOM and a major role for the MAD in cellular and mitochondrial fitness in response to chronic, low-level oxidative stress in mitochondria.
Collapse
Affiliation(s)
- Pin-Chao Liao
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | | | - Edith Serrano
- Department of Chemistry, Barnard College, Columbia University, New York, NY 10027, USA
| | - Pallavi Srivastava
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G1H9, Canada
| | - Liza A Pon
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
10
|
Eyboulet F, Jeronimo C, Côté J, Robert F. The deubiquitylase Ubp15 couples transcription to mRNA export. eLife 2020; 9:e61264. [PMID: 33226341 PMCID: PMC7682988 DOI: 10.7554/elife.61264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022] Open
Abstract
Nuclear export of messenger RNAs (mRNAs) is intimately coupled to their synthesis. pre-mRNAs assemble into dynamic ribonucleoparticles as they are being transcribed, processed, and exported. The role of ubiquitylation in this process is increasingly recognized but, while a few E3 ligases have been shown to regulate nuclear export, evidence for deubiquitylases is currently lacking. Here we identified deubiquitylase Ubp15 as a regulator of nuclear export in Saccharomyces cerevisiae. Ubp15 interacts with both RNA polymerase II and the nuclear pore complex, and its deletion reverts the nuclear export defect of E3 ligase Rsp5 mutants. The deletion of UBP15 leads to hyper-ubiquitylation of the main nuclear export receptor Mex67 and affects its association with THO, a complex coupling transcription to mRNA processing and involved in the recruitment of mRNA export factors to nascent transcripts. Collectively, our data support a role for Ubp15 in coupling transcription to mRNA export.
Collapse
Affiliation(s)
- Fanny Eyboulet
- Institut de recherches cliniques de MontréalMontréalCanada
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Axe Oncologie du Centre de Recherche du CHU de Québec-Université LavalQuébec CityCanada
| | - Célia Jeronimo
- Institut de recherches cliniques de MontréalMontréalCanada
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Axe Oncologie du Centre de Recherche du CHU de Québec-Université LavalQuébec CityCanada
| | - François Robert
- Institut de recherches cliniques de MontréalMontréalCanada
- Département de Médecine, Faculté de Médecine, Université de MontréalMontréalCanada
| |
Collapse
|
11
|
Quintero-Cadena P, Lenstra TL, Sternberg PW. RNA Pol II Length and Disorder Enable Cooperative Scaling of Transcriptional Bursting. Mol Cell 2020; 79:207-220.e8. [DOI: 10.1016/j.molcel.2020.05.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/09/2020] [Accepted: 05/19/2020] [Indexed: 12/15/2022]
|
12
|
Willis SD, Hanley SE, Beishke T, Tati PD, Cooper KF. Ubiquitin-proteasome-mediated cyclin C degradation promotes cell survival following nitrogen starvation. Mol Biol Cell 2020; 31:1015-1031. [PMID: 32160104 PMCID: PMC7346723 DOI: 10.1091/mbc.e19-11-0622] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Environmental stress elicits well-orchestrated programs that either restore cellular homeostasis or induce cell death depending on the insult. Nutrient starvation triggers the autophagic pathway that requires the induction of several Autophagy (ATG) genes. Cyclin C-cyclin-dependent kinase (Cdk8) is a component of the RNA polymerase II Mediator complex that predominantly represses the transcription of stress-responsive genes in yeast. To relieve this repression following oxidative stress, cyclin C translocates to the mitochondria where it induces organelle fragmentation and promotes cell death prior to its destruction by the ubiquitin-proteasome system (UPS). Here we report that cyclin C-Cdk8, together with the Ume6-Rpd3 histone deacetylase complex, represses the essential autophagy gene ATG8. Similar to oxidative stress, cyclin C is destroyed by the UPS following nitrogen starvation. Removing this repression is important as deleting CNC1 allows enhanced cell growth under mild starvation. However, unlike oxidative stress, cyclin C is destroyed prior to its cytoplasmic translocation. This is important as targeting cyclin C to the mitochondria induces both mitochondrial fragmentation and cell death following nitrogen starvation. These results indicate that cyclin C destruction pathways are fine tuned depending on the stress and that its terminal subcellular address influences the decision between initiating cell death or cell survival pathways.
Collapse
Affiliation(s)
- Stephen D Willis
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084
| | - Sara E Hanley
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084
| | - Thomas Beishke
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084
| | - Prasanna D Tati
- School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084
| | - Katrina F Cooper
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084
| |
Collapse
|
13
|
E3 Ligase ITCH Interacts with the Z Matrix Protein of Lassa and Mopeia Viruses and Is Required for the Release of Infectious Particles. Viruses 2019; 12:v12010049. [PMID: 31906112 PMCID: PMC7019300 DOI: 10.3390/v12010049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 12/18/2022] Open
Abstract
Lassa virus (LASV) and Mopeia virus (MOPV) are two closely related, rodent-born mammarenaviruses. LASV is the causative agent of Lassa fever, a deadly hemorrhagic fever endemic in West Africa, whereas MOPV is non-pathogenic in humans. The Z matrix protein of arenaviruses is essential to virus assembly and budding by recruiting host factors, a mechanism that remains partially defined. To better characterize the interactions involved, a yeast two-hybrid screen was conducted using the Z proteins from LASV and MOPV as a bait. The cellular proteins ITCH and WWP1, two members of the Nedd4 family of HECT E3 ubiquitin ligases, were found to bind the Z proteins of LASV, MOPV and other arenaviruses. The PPxY late-domain motif of the Z proteins is required for the interaction with ITCH, although the E3 ubiquitin-ligase activity of ITCH is not involved in Z ubiquitination. The silencing of ITCH was shown to affect the replication of the old-world mammarenaviruses LASV, MOPV, Lymphocytic choriomeningitis virus (LCMV) and to a lesser extent Lujo virus (LUJV). More precisely, ITCH was involved in the egress of virus-like particles and the release of infectious progeny viruses. Thus, ITCH constitutes a novel interactor of LASV and MOPV Z proteins that is involved in virus assembly and release.
Collapse
|
14
|
A SUMO-dependent pathway controls elongating RNA Polymerase II upon UV-induced damage. Sci Rep 2019; 9:17914. [PMID: 31784551 PMCID: PMC6884465 DOI: 10.1038/s41598-019-54027-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/30/2019] [Indexed: 02/01/2023] Open
Abstract
RNA polymerase II (RNAPII) is the workhorse of eukaryotic transcription and produces messenger RNAs and small nuclear RNAs. Stalling of RNAPII caused by transcription obstacles such as DNA damage threatens functional gene expression and is linked to transcription-coupled DNA repair. To restore transcription, persistently stalled RNAPII can be disassembled and removed from chromatin. This process involves several ubiquitin ligases that have been implicated in RNAPII ubiquitylation and proteasomal degradation. Transcription by RNAPII is heavily controlled by phosphorylation of the C-terminal domain of its largest subunit Rpb1. Here, we show that the elongating form of Rpb1, marked by S2 phosphorylation, is specifically controlled upon UV-induced DNA damage. Regulation of S2-phosphorylated Rpb1 is mediated by SUMOylation, the SUMO-targeted ubiquitin ligase Slx5-Slx8, the Cdc48 segregase as well as the proteasome. Our data suggest an RNAPII control pathway with striking parallels to known disassembly mechanisms acting on defective RNA polymerase III.
Collapse
|
15
|
Tomita T, Matouschek A. Substrate selection by the proteasome through initiation regions. Protein Sci 2019; 28:1222-1232. [PMID: 31074920 DOI: 10.1002/pro.3642] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 01/04/2023]
Abstract
Proteins in the cell have to be eliminated once their function is no longer desired or they become damaged. Most regulated protein degradation is achieved by a large enzymatic complex called the proteasome. Many proteasome substrates are targeted for degradation by the covalent attachment of ubiquitin molecules. Ubiquitinated proteins can be bound by the proteasome, but for proteolysis to occur the proteasome needs to find a disordered tail somewhere in the target at which it initiates degradation. The initiation step contributes to the specificity of proteasomal degradation. Here, we review how the proteasome selects initiation sites within its substrates and discuss how the initiation step affects physiological processes.
Collapse
Affiliation(s)
- Takuya Tomita
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, 78712
| | - Andreas Matouschek
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, 78712
| |
Collapse
|
16
|
Ccr4-Not maintains genomic integrity by controlling the ubiquitylation and degradation of arrested RNAPII. Genes Dev 2019; 33:705-717. [PMID: 30948432 PMCID: PMC6546055 DOI: 10.1101/gad.322453.118] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/14/2019] [Indexed: 12/23/2022]
Abstract
The Ccr4-Not complex regulates essentially every aspect of gene expression, from mRNA synthesis to protein destruction. The Not4 subunit of the complex contains an E3 RING domain and targets proteins for ubiquitin-dependent proteolysis. Ccr4-Not associates with elongating RNA polymerase II (RNAPII), which raises the possibility that it controls the degradation of elongation complex components. Here, we demonstrate that Ccr4-Not controls the ubiquitylation and turnover of Rpb1, the largest subunit of RNAPII, during transcription arrest. Deleting NOT4 or mutating its RING domain strongly reduced the DNA damage-dependent ubiquitylation and destruction of Rpb1. Surprisingly, in vitro ubiquitylation assays indicate that Ccr4-Not does not directly ubiquitylate Rpb1 but instead promotes Rpb1 ubiquitylation by the HECT domain-containing ligase Rsp5. Genetic analyses suggest that Ccr4-Not acts upstream of RSP5, where it acts to initiate the destruction process. Ccr4-Not binds Rsp5 and forms a ternary complex with it and the RNAPII elongation complex. Analysis of mutant Ccr4-Not lacking the RING domain of Not4 suggests that it both recruits Rsp5 and delivers the E2 Ubc4/5 to RNAPII. Our work reveals a previously unknown function of Ccr4-Not and identifies an essential new regulator of RNAPII turnover during genotoxic stress.
Collapse
|
17
|
Leśniewska E, Cieśla M, Boguta M. Repression of yeast RNA polymerase III by stress leads to ubiquitylation and proteasomal degradation of its largest subunit, C160. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:25-34. [PMID: 30342998 DOI: 10.1016/j.bbagrm.2018.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/04/2018] [Accepted: 10/12/2018] [Indexed: 12/29/2022]
Abstract
Respiratory growth and various stress conditions repress RNA polymerase III (Pol III) transcription in Saccharomyces cerevisiae. Here we report a degradation of the largest Pol III catalytic subunit, C160 as a consequence of Pol III transcription repression. We observed C160 degradation in response to transfer of yeast from fermentation to respiration conditions, as well as treatment with rapamycin or inhibition of nucleotide biosynthesis. We also detected ubiquitylated forms of C160 and demonstrated that C160 protein degradation is dependent on proteasome activity. A comparable time-course study of Pol III repression upon metabolic shift from fermentation to respiration shows that the transcription inhibition is correlated with Pol III dissociation from chromatin but that the degradation of C160 subunit is a downstream event. Despite blocking degradation of C160 by proteasome, Pol III-transcribed genes are under proper regulation. We postulate that the degradation of C160 is activated under stress conditions to reduce the amount of existing Pol III complex and prevent its de novo assembly.
Collapse
Affiliation(s)
- Ewa Leśniewska
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Małgorzata Cieśla
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Magdalena Boguta
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland.
| |
Collapse
|
18
|
Papapetridis I, Verhoeven MD, Wiersma SJ, Goudriaan M, van Maris AJA, Pronk JT. Laboratory evolution for forced glucose-xylose co-consumption enables identification of mutations that improve mixed-sugar fermentation by xylose-fermenting Saccharomyces cerevisiae. FEMS Yeast Res 2018; 18:4996351. [PMID: 29771304 PMCID: PMC6001886 DOI: 10.1093/femsyr/foy056] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/14/2018] [Indexed: 01/18/2023] Open
Abstract
Simultaneous fermentation of glucose and xylose can contribute to improved productivity and robustness of yeast-based processes for bioethanol production from lignocellulosic hydrolysates. This study explores a novel laboratory evolution strategy for identifying mutations that contribute to simultaneous utilisation of these sugars in batch cultures of Saccharomyces cerevisiae. To force simultaneous utilisation of xylose and glucose, the genes encoding glucose-6-phosphate isomerase (PGI1) and ribulose-5-phosphate epimerase (RPE1) were deleted in a xylose-isomerase-based xylose-fermenting strain with a modified oxidative pentose-phosphate pathway. Laboratory evolution of this strain in serial batch cultures on glucose-xylose mixtures yielded mutants that rapidly co-consumed the two sugars. Whole-genome sequencing of evolved strains identified mutations in HXK2, RSP5 and GAL83, whose introduction into a non-evolved xylose-fermenting S. cerevisiae strain improved co-consumption of xylose and glucose under aerobic and anaerobic conditions. Combined deletion of HXK2 and introduction of a GAL83G673T allele yielded a strain with a 2.5-fold higher xylose and glucose co-consumption ratio than its xylose-fermenting parental strain. These two modifications decreased the time required for full sugar conversion in anaerobic bioreactor batch cultures, grown on 20 g L-1 glucose and 10 g L-1 xylose, by over 24 h. This study demonstrates that laboratory evolution and genome resequencing of microbial strains engineered for forced co-consumption is a powerful approach for studying and improving simultaneous conversion of mixed substrates.
Collapse
Affiliation(s)
| | | | - Sanne J Wiersma
- Delft University of Technology, Department of Biotechnology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Maaike Goudriaan
- Delft University of Technology, Department of Biotechnology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | | | | |
Collapse
|
19
|
Torrecilla I, Oehler J, Ramadan K. The role of ubiquitin-dependent segregase p97 (VCP or Cdc48) in chromatin dynamics after DNA double strand breaks. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0282. [PMID: 28847819 PMCID: PMC5577460 DOI: 10.1098/rstb.2016.0282] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2017] [Indexed: 12/27/2022] Open
Abstract
DNA double strand breaks (DSBs) are the most cytotoxic DNA lesions and, if not repaired, lead to chromosomal rearrangement, genomic instability and cell death. Cells have evolved a complex network of DNA repair and signalling molecules which promptly detect and repair DSBs, commonly known as the DNA damage response (DDR). The DDR is orchestrated by various post-translational modifications such as phosphorylation, methylation, ubiquitination or SUMOylation. As DSBs are located in complex chromatin structures, the repair of DSBs is engineered at two levels: (i) at sites of broken DNA and (ii) at chromatin structures that surround DNA lesions. Thus, DNA repair and chromatin remodelling machineries must work together to efficiently repair DSBs. Here, we summarize the current knowledge of the ubiquitin-dependent molecular unfoldase/segregase p97 (VCP in vertebrates and Cdc48 in worms and lower eukaryotes) in DSB repair. We identify p97 as an essential factor that regulates DSB repair. p97-dependent extraction of ubiquitinated substrates mediates spatio-temporal protein turnover at and around the sites of DSBs, thus orchestrating chromatin remodelling and DSB repair. As p97 is a druggable target, p97 inhibition in the context of DDR has great potential for cancer therapy, as shown for other DDR components such as PARP, ATR and CHK1.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.
Collapse
Affiliation(s)
- Ignacio Torrecilla
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Judith Oehler
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Kristijan Ramadan
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|
20
|
Kampmeyer C, Karakostova A, Schenstrøm SM, Abildgaard AB, Lauridsen AM, Jourdain I, Hartmann-Petersen R. The exocyst subunit Sec3 is regulated by a protein quality control pathway. J Biol Chem 2017; 292:15240-15253. [PMID: 28765280 DOI: 10.1074/jbc.m117.789867] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/19/2017] [Indexed: 02/03/2023] Open
Abstract
Exocytosis involves fusion of secretory vesicles with the plasma membrane, thereby delivering membrane proteins to the cell surface and releasing material into the extracellular space. The tethering of the secretory vesicles before membrane fusion is mediated by the exocyst, an essential phylogenetically conserved octameric protein complex. Exocyst biogenesis is regulated by several processes, but the mechanisms by which the exocyst is degraded are unknown. Here, to unravel the components of the exocyst degradation pathway, we screened for extragenic suppressors of a temperature-sensitive fission yeast strain mutated in the exocyst subunit Sec3 (sec3-913). One of the suppressing DNAs encoded a truncated dominant-negative variant of the 26S proteasome subunit, Rpt2, indicating that exocyst degradation is controlled by the ubiquitin-proteasome system. The temperature-dependent growth defect of the sec3-913 strain was gene dosage-dependent and suppressed by blocking the proteasome, Hsp70-type molecular chaperones, the Pib1 E3 ubiquitin-protein ligase, and the deubiquitylating enzyme Ubp3. Moreover, defects in cell septation, exocytosis, and endocytosis in sec3 mutant strains were similarly alleviated by mutation of components in this pathway. We also found that, particularly under stress conditions, wild-type Sec3 degradation is regulated by Pib1 and the 26S proteasome. In conclusion, our results suggest that a cytosolic protein quality control pathway monitors folding and proteasome-dependent turnover of an exocyst subunit and, thereby, controls exocytosis in fission yeast.
Collapse
Affiliation(s)
- Caroline Kampmeyer
- From the Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark and
| | - Antonina Karakostova
- From the Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark and
| | - Signe M Schenstrøm
- From the Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark and
| | - Amanda B Abildgaard
- From the Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark and
| | - Anne-Marie Lauridsen
- From the Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark and
| | - Isabelle Jourdain
- the College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Rasmus Hartmann-Petersen
- From the Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark and
| |
Collapse
|
21
|
O'Connor HF, Huibregtse JM. Enzyme-substrate relationships in the ubiquitin system: approaches for identifying substrates of ubiquitin ligases. Cell Mol Life Sci 2017; 74:3363-3375. [PMID: 28455558 DOI: 10.1007/s00018-017-2529-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/05/2017] [Accepted: 04/18/2017] [Indexed: 02/06/2023]
Abstract
Protein ubiquitylation is an important post-translational modification, regulating aspects of virtually every biochemical pathway in eukaryotic cells. Hundreds of enzymes participate in the conjugation and deconjugation of ubiquitin, as well as the recognition, signaling functions, and degradation of ubiquitylated proteins. Regulation of ubiquitylation is most commonly at the level of recognition of substrates by E3 ubiquitin ligases. Characterization of the network of E3-substrate relationships is a major goal and challenge in the field, as this expected to yield fundamental biological insights and opportunities for drug development. There has been remarkable success in identifying substrates for some E3 ligases, in many instances using the standard protein-protein interaction techniques (e.g., two-hybrid screens and co-immunoprecipitations paired with mass spectrometry). However, some E3s have remained refractory to characterization, while others have simply not yet been studied due to the sheer number and diversity of E3s. This review will discuss the range of tools and techniques that can be used for substrate profiling of E3 ligases.
Collapse
Affiliation(s)
- Hazel F O'Connor
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jon M Huibregtse
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
22
|
Gómez-Navarro N, Peiró-Chova L, Estruch F. Iwr1 facilitates RNA polymerase II dynamics during transcription elongation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:803-811. [PMID: 28258010 DOI: 10.1016/j.bbagrm.2017.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/16/2017] [Accepted: 02/27/2017] [Indexed: 11/16/2022]
Abstract
Iwr1 is an RNA polymerase II (RNPII) interacting protein that directs nuclear import of the enzyme which has been previously assembled in the cytoplasm. Here we present genetic and molecular evidence that links Iwr1 with transcription. Our results indicate that Iwr1 interacts with RNPII during elongation and is involved in the disassembly of the enzyme from chromatin. This function is especially important in resolving problems posed by damage-arrested RNPII, as shown by the sensitivity of iwr1 mutants to genotoxic drugs and the Iwr1's genetic interactions with RNPII degradation pathway mutants. Moreover, absence of Iwr1 causes genome instability that is enhanced by defects in the DNA repair machinery.
Collapse
Affiliation(s)
- Natalia Gómez-Navarro
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, Burjassot, Valencia 46100, Spain
| | - Lorena Peiró-Chova
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, Burjassot, Valencia 46100, Spain
| | - Francisco Estruch
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, Burjassot, Valencia 46100, Spain.
| |
Collapse
|
23
|
Steurer B, Marteijn JA. Traveling Rocky Roads: The Consequences of Transcription-Blocking DNA Lesions on RNA Polymerase II. J Mol Biol 2016; 429:3146-3155. [PMID: 27851891 DOI: 10.1016/j.jmb.2016.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/04/2016] [Accepted: 11/04/2016] [Indexed: 12/13/2022]
Abstract
The faithful transcription of eukaryotic genes by RNA polymerase II (RNAP2) is crucial for proper cell function and tissue homeostasis. However, transcription-blocking DNA lesions of both endogenous and environmental origin continuously challenge the progression of elongating RNAP2. The stalling of RNAP2 on a transcription-blocking lesion triggers a series of highly regulated events, including RNAP2 processing to make the lesion accessible for DNA repair, R-loop-mediated DNA damage signaling, and the initiation of transcription-coupled DNA repair. The correct execution and coordination of these processes is vital for resuming transcription following the successful repair of transcription-blocking lesions. Here, we outline recent insights into the molecular consequences of RNAP2 stalling on transcription-blocking DNA lesions and how these lesions are resolved to restore mRNA synthesis.
Collapse
Affiliation(s)
- Barbara Steurer
- Department of Molecular Genetics, Erasmus MC, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Erasmus MC, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands.
| |
Collapse
|
24
|
Domanska A, Kaminska J. Role of Rsp5 ubiquitin ligase in biogenesis of rRNA, mRNA and tRNA in yeast. RNA Biol 2016; 12:1265-74. [PMID: 26403176 DOI: 10.1080/15476286.2015.1094604] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Rsp5 ubiquitin ligase is required for ubiquitination of a wide variety of proteins involved in essential processes. Rsp5 was shown to be involved in regulation of lipid biosynthesis, intracellular trafficking of proteins, response to various stresses, and many other processes. In this article, we provide a comprehensive review of the nuclear and cytoplasmic functions of Rsp5 with a focus on biogenesis of different RNAs. We also briefly describe the participation of Rsp5 in the regulation of the RNA polymerase II complex, and its potential role in the regulation of other RNA polymerases. Moreover, we emphasize the function of Rsp5 in the coordination of the different steps of rRNA, mRNA and tRNA metabolism in the context of protein biosynthesis. Finally, we highlight the involvement of Rsp5 in controlling diverse cellular mechanisms at multiple levels and in adaptation of the cell to changing growth conditions.
Collapse
Affiliation(s)
- Anna Domanska
- a Institute of Biochemistry and Biophysics, Polish Academy of Sciences ; Warsaw , Poland
| | - Joanna Kaminska
- a Institute of Biochemistry and Biophysics, Polish Academy of Sciences ; Warsaw , Poland
| |
Collapse
|
25
|
Deubiquitinase activity is required for the proteasomal degradation of misfolded cytosolic proteins upon heat-stress. Nat Commun 2016; 7:12907. [PMID: 27698423 PMCID: PMC5059457 DOI: 10.1038/ncomms12907] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 08/12/2016] [Indexed: 12/25/2022] Open
Abstract
Elimination of misfolded proteins is crucial for proteostasis and to prevent proteinopathies. Nedd4/Rsp5 emerged as a major E3-ligase involved in multiple quality control pathways that target misfolded plasma membrane proteins, aggregated polypeptides and cytosolic heat-induced misfolded proteins for degradation. It remained unclear how in one case cytosolic heat-induced Rsp5 substrates are destined for proteasomal degradation, whereas other Rsp5 quality control substrates are otherwise directed to lysosomal degradation. Here we find that Ubp2 and Ubp3 deubiquitinases are required for the proteasomal degradation of cytosolic misfolded proteins targeted by Rsp5 after heat-shock (HS). The two deubiquitinases associate more with Rsp5 upon heat-stress to prevent the assembly of K63-linked ubiquitin on Rsp5 heat-induced substrates. This activity was required to promote the K48-mediated proteasomal degradation of Rsp5 HS-induced substrates. Our results indicate that ubiquitin chain editing is key to the cytosolic protein quality control under stress conditions. Ubiquitination of misfolded proteins usually results in protein degradation. Here, the authors show that two deubiquitinases—enzymes that remove ubiquitin—are required for the proteasomal degradation of misfolded proteins in response to heat-shock in yeast.
Collapse
|
26
|
Caputi FF, Carboni L, Mazza D, Candeletti S, Romualdi P. Cocaine and ethanol target 26S proteasome activity and gene expression in neuroblastoma cells. Drug Alcohol Depend 2016; 161:265-75. [PMID: 26922280 DOI: 10.1016/j.drugalcdep.2016.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/26/2016] [Accepted: 02/05/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Ethanol and cocaine are widely abused drugs triggering long-lasting changes in neuronal circuits and synaptic transmission through the regulation of enzyme activity and gene expression. Compelling evidence indicates that the ubiquitin-proteasome system plays a role in the molecular changes induced by addictive substances, impacting on several mechanisms implicated in abuse. The goal of these studies was to evaluate the effects of cocaine or ethanol on proteasome activity in neuroblastoma cells. Moreover, the gene expression of specific subunits was assessed. METHODS Chymotrypsin-like activity was measured after 2 h, 24 h, and 48 h exposure to 5 μM cocaine or 40 mM ethanol. Proteasome subunit transcripts were evaluated by qPCR at the same time-points. RESULTS Treatments modified proteasome function in opposite directions, since cocaine increased and ethanol reduced chymotrypsin-like activity. Interestingly, we observed gene expression alterations induced by these drugs. In the core particle, the β1 and α5 subunits were mainly up-regulated by cocaine, whereas α6 transcripts were mostly decreased. β2 and β5 did not change. Similarly, ethanol exposure generally increased β1 and α5 mRNAs. Moreover, the β2 subunit was significantly up-regulated by ethanol only. The β5 and α6 subunits were not altered. In the regulatory particle, Rpt3 was increased by cocaine exposure, whereas it was reduced by ethanol. No significant Rpn9 alterations were observed. CONCLUSIONS These findings support the notion that addictive substances regulate proteasome function, contributing to the dysregulations related to drug abuse since the availability of adequate subunit amounts is necessary for proper complex assembly and function.
Collapse
Affiliation(s)
- Francesca Felicia Caputi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Irnerio 48, 40126 Bologna, Italy.
| | - Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Daria Mazza
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
27
|
Maneix L, Catic A. Touch and go: nuclear proteolysis in the regulation of metabolic genes and cancer. FEBS Lett 2016; 590:908-23. [PMID: 26832397 PMCID: PMC4833644 DOI: 10.1002/1873-3468.12087] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/15/2016] [Accepted: 01/26/2016] [Indexed: 01/07/2023]
Abstract
The recruitment of transcription factors to promoters and enhancers is a critical step in gene regulation. Many of these proteins are quickly removed from DNA after they completed their function. Metabolic genes in particular are dynamically regulated and continuously adjusted to cellular requirements. Transcription factors controlling metabolism are therefore under constant surveillance by the ubiquitin–proteasome system, which can degrade DNA‐bound proteins in a site‐specific manner. Several of these metabolic transcription factors are critical to cancer cells, as they promote uncontrolled growth and proliferation. This review highlights recent findings in the emerging field of nuclear proteolysis and outlines novel paradigms for cancer treatment, with an emphasis on multiple myeloma.
Collapse
Affiliation(s)
- Laure Maneix
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - André Catic
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.,Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
28
|
Lafon A, Taranum S, Pietrocola F, Dingli F, Loew D, Brahma S, Bartholomew B, Papamichos-Chronakis M. INO80 Chromatin Remodeler Facilitates Release of RNA Polymerase II from Chromatin for Ubiquitin-Mediated Proteasomal Degradation. Mol Cell 2015; 60:784-796. [PMID: 26656161 DOI: 10.1016/j.molcel.2015.10.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 08/17/2015] [Accepted: 10/14/2015] [Indexed: 12/13/2022]
Abstract
Stalling of RNA Polymerase II (RNAPII) on chromatin during transcriptional stress results in polyubiquitination and degradation of the largest subunit of RNAPII, Rpb1, by the ubiquitin proteasome system (UPS). Here, we report that the ATP-dependent chromatin remodeling complex INO80 is required for turnover of chromatin-bound RNAPII in yeast. INO80 interacts physically and functionally with Cdc48/p97/VCP, a component of UPS required for degradation of RNAPII. Cells lacking INO80 are defective in Rpb1 degradation and accumulate tightly bound ubiquitinated Rpb1 on chromatin. INO80 forms a ternary complex with RNAPII and Cdc48 and targets Rpb1 primed for degradation. The function of INO80 in RNAPII turnover is required for cell growth and survival during genotoxic stress. Our results identify INO80 as a bona fide component of the proteolytic pathway for RNAPII degradation and suggest that INO80 nucleosome remodeling activity promotes the dissociation of ubiquitinated Rpb1 from chromatin to protect the integrity of the genome.
Collapse
Affiliation(s)
- Anne Lafon
- Institut Curie, PSL Research University, CNRS, UMR3664, 26 rue d'Ulm, 75248 Paris, France
| | - Surayya Taranum
- Institut Curie, PSL Research University, CNRS, UMR3664, 26 rue d'Ulm, 75248 Paris, France
| | - Federico Pietrocola
- Institut Curie, PSL Research University, CNRS, UMR3664, 26 rue d'Ulm, 75248 Paris, France
| | - Florent Dingli
- Institut Curie, PSL Research University, Laboratory of Proteomics and Mass Spectrometry, 26 rue d'Ulm, 75248 Paris, France
| | - Damarys Loew
- Institut Curie, PSL Research University, Laboratory of Proteomics and Mass Spectrometry, 26 rue d'Ulm, 75248 Paris, France
| | - Sandipan Brahma
- UT MD Anderson Cancer Center, Science Park, 1808 Park Road 1C, Smithville, TX 78957, USA
| | - Blaine Bartholomew
- UT MD Anderson Cancer Center, Science Park, 1808 Park Road 1C, Smithville, TX 78957, USA
| | | |
Collapse
|
29
|
O'Connor HF, Lyon N, Leung JW, Agarwal P, Swaim CD, Miller KM, Huibregtse JM. Ubiquitin-Activated Interaction Traps (UBAITs) identify E3 ligase binding partners. EMBO Rep 2015; 16:1699-712. [PMID: 26508657 DOI: 10.15252/embr.201540620] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/28/2015] [Indexed: 12/27/2022] Open
Abstract
We describe a new class of reagents for identifying substrates, adaptors, and regulators of HECT and RING E3s. UBAITs (Ubiquitin-Activated Interaction Traps) are E3-ubiquitin fusion proteins and, in an E1- and E2-dependent manner, the C-terminal ubiquitin moiety forms an amide linkage to proteins that interact with the E3, enabling covalent co-purification of the E3 with partner proteins. We designed UBAITs for both HECT (Rsp5, Itch) and RING (Psh1, RNF126, RNF168) E3s. For HECT E3s, trapping of interacting proteins occurred in vitro either through an E3 thioester-linked lariat intermediate or through an E2 thioester intermediate, and both WT and active-site mutant UBAITs trapped known interacting proteins in yeast and human cells. Yeast Psh1 and human RNF126 and RNF168 UBAITs also trapped known interacting proteins when expressed in cells. Human RNF168 is a key mediator of ubiquitin signaling that promotes DNA double-strand break repair. Using the RNF168 UBAIT, we identify H2AZ--a histone protein involved in DNA repair--as a new target of this E3 ligase. These results demonstrate that UBAITs represent powerful tools for profiling a wide range of ubiquitin ligases.
Collapse
Affiliation(s)
- Hazel F O'Connor
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Nancy Lyon
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Justin W Leung
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Poonam Agarwal
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Caleb D Swaim
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Kyle M Miller
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Jon M Huibregtse
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
30
|
Weems JC, Slaughter BD, Unruh JR, Hall SM, McLaird MB, Gilmore JM, Washburn MP, Florens L, Yasukawa T, Aso T, Conaway JW, Conaway RC. Assembly of the Elongin A Ubiquitin Ligase Is Regulated by Genotoxic and Other Stresses. J Biol Chem 2015; 290:15030-41. [PMID: 25878247 DOI: 10.1074/jbc.m114.632794] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Indexed: 11/06/2022] Open
Abstract
Elongin A performs dual functions in cells as a component of RNA polymerase II (Pol II) transcription elongation factor Elongin and as the substrate recognition subunit of a Cullin-RING E3 ubiquitin ligase that has been shown to target Pol II stalled at sites of DNA damage. Here we investigate the mechanism(s) governing conversion of the Elongin complex from its elongation factor to its ubiquitin ligase form. We report the discovery that assembly of the Elongin A ubiquitin ligase is a tightly regulated process. In unstressed cells, Elongin A is predominately present as part of Pol II elongation factor Elongin. Assembly of Elongin A into the ubiquitin ligase is strongly induced by genotoxic stress; by transcriptional stresses that lead to accumulation of stalled Pol II; and by other stimuli, including endoplasmic reticulum and nutrient stress and retinoic acid signaling, that activate Elongin A-dependent transcription. Taken together, our findings shed new light on mechanisms that control the Elongin A ubiquitin ligase and suggest that it may play a role in Elongin A-dependent transcription.
Collapse
Affiliation(s)
- Juston C Weems
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Brian D Slaughter
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Jay R Unruh
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Shawn M Hall
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Merry B McLaird
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Joshua M Gilmore
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Michael P Washburn
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110, the Departments of Pathology and Laboratory Medicine and
| | - Laurence Florens
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Takashi Yasukawa
- the Department of Functional Genomics, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Teijiro Aso
- the Department of Functional Genomics, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Joan W Conaway
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110, Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, and
| | - Ronald C Conaway
- From the Stowers Institute for Medical Research, Kansas City, Missouri 64110, Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, and
| |
Collapse
|
31
|
Fang NN, Chan GT, Zhu M, Comyn SA, Persaud A, Deshaies RJ, Rotin D, Gsponer J, Mayor T. Rsp5/Nedd4 is the main ubiquitin ligase that targets cytosolic misfolded proteins following heat stress. Nat Cell Biol 2014; 16:1227-37. [PMID: 25344756 PMCID: PMC5224936 DOI: 10.1038/ncb3054] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 09/17/2014] [Indexed: 12/14/2022]
Abstract
The heat-shock response is a complex cellular program that induces major changes in protein translation, folding and degradation to alleviate toxicity caused by protein misfolding. Although heat shock has been widely used to study proteostasis, it remained unclear how misfolded proteins are targeted for proteolysis in these conditions. We found that Rsp5 and its mammalian homologue Nedd4 are important E3 ligases responsible for the increased ubiquitylation induced by heat stress. We determined that Rsp5 ubiquitylates mainly cytosolic misfolded proteins upon heat shock for proteasome degradation. We found that ubiquitylation of heat-induced substrates requires the Hsp40 co-chaperone Ydj1 that is further associated with Rsp5 upon heat shock. In addition, ubiquitylation is also promoted by PY Rsp5-binding motifs found primarily in the structured regions of stress-induced substrates, which can act as heat-induced degrons. Our results support a bipartite recognition mechanism combining direct and chaperone-dependent ubiquitylation of misfolded cytosolic proteins by Rsp5.
Collapse
Affiliation(s)
- Nancy N Fang
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall Vancouver, British Columbia V6T1Z4, Canada
| | - Gerard T Chan
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall Vancouver, British Columbia V6T1Z4, Canada
| | - Mang Zhu
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall Vancouver, British Columbia V6T1Z4, Canada
| | - Sophie A Comyn
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall Vancouver, British Columbia V6T1Z4, Canada
| | - Avinash Persaud
- Program in Cell Biology, Hospital for Sick Children, and Biochemistry Department, University of Toronto, Toronto, Ontario M5G 0A4, Canada
| | - Raymond J Deshaies
- Howard Hughes Medical Institute, Division of Biology and Biological Engineering, 114-96 Caltech, 1200 E. California Boulevard Pasadena, California 91125, USA
| | - Daniela Rotin
- Program in Cell Biology, Hospital for Sick Children, and Biochemistry Department, University of Toronto, Toronto, Ontario M5G 0A4, Canada
| | - Joerg Gsponer
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall Vancouver, British Columbia V6T1Z4, Canada
| | - Thibault Mayor
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall Vancouver, British Columbia V6T1Z4, Canada
| |
Collapse
|
32
|
Ali M, Chernova TA, Newnam GP, Yin L, Shanks J, Karpova TS, Lee A, Laur O, Subramanian S, Kim D, McNally JG, Seyfried NT, Chernoff YO, Wilkinson KD. Stress-dependent proteolytic processing of the actin assembly protein Lsb1 modulates a yeast prion. J Biol Chem 2014; 289:27625-39. [PMID: 25143386 PMCID: PMC4183801 DOI: 10.1074/jbc.m114.582429] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/06/2014] [Indexed: 11/06/2022] Open
Abstract
Yeast prions are self-propagating amyloid-like aggregates of Q/N-rich protein that confer heritable traits and provide a model of mammalian amyloidoses. [PSI(+)] is a prion isoform of the translation termination factor Sup35. Propagation of [PSI(+)] during cell division under normal conditions and during the recovery from damaging environmental stress depends on cellular chaperones and is influenced by ubiquitin proteolysis and the actin cytoskeleton. The paralogous yeast proteins Lsb1 and Lsb2 bind the actin assembly protein Las17 (a yeast homolog of human Wiskott-Aldrich syndrome protein) and participate in the endocytic pathway. Lsb2 was shown to modulate maintenance of [PSI(+)] during and after heat shock. Here, we demonstrate that Lsb1 also regulates maintenance of the Sup35 prion during and after heat shock. These data point to the involvement of Lsb proteins in the partitioning of protein aggregates in stressed cells. Lsb1 abundance and cycling between actin patches, endoplasmic reticulum, and cytosol is regulated by the Guided Entry of Tail-anchored proteins pathway and Rsp5-dependent ubiquitination. Heat shock-induced proteolytic processing of Lsb1 is crucial for prion maintenance during stress. Our findings identify Lsb1 as another component of a tightly regulated pathway controlling protein aggregation in changing environments.
Collapse
Affiliation(s)
- Moiez Ali
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Tatiana A Chernova
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322,
| | - Gary P Newnam
- the School of Biology and Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Luming Yin
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - John Shanks
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Tatiana S Karpova
- the Center for Cancer Research Core Fluorescence Imaging Facility, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Andrew Lee
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Oskar Laur
- the Division of Microbiology, Yerkes Research Center, Emory University, Atlanta, Georgia 30329, and
| | - Sindhu Subramanian
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Dami Kim
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - James G McNally
- the Center for Cancer Research Core Fluorescence Imaging Facility, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Nicholas T Seyfried
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Yury O Chernoff
- the School of Biology and Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, the Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia 199034
| | - Keith D Wilkinson
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322,
| |
Collapse
|
33
|
UV damage-induced RNA polymerase II stalling stimulates H2B deubiquitylation. Proc Natl Acad Sci U S A 2014; 111:12811-6. [PMID: 25136098 DOI: 10.1073/pnas.1403901111] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Histone H2B monoubiquitylation plays an important role in RNA polymerase II (RNAPII) elongation. Whether this modification responds to RNAPII stalling is not yet known. We report that both yeast and human cells undergo a rapid and significant H2B deubiquitylation after exposure to UV irradiation. This deubiquitylation occurs concurrently with UV-induced transcription arrest and is significantly reduced in a DNA damage-bypassing RNAPII yeast mutant. Consistent with these results, yeast deubiquitylases Ubp8 and Ubp10 are associated with the RNAPII complex. Moreover, simultaneous deletion of Ubp8 and Ubp10 leads to a lack of H2B deubiquitylation after UV exposure. Consequently, nucleotide excision repair at an actively transcribed gene locus is decreased, whereas UV-induced RNAPII degradation is increased in ubp8Δubp10Δ mutant cells. These results indicate that eukaryotic cells respond to RNAPII arrest by deubiquitylating H2B to coordinate DNA repair and RNAPII degradation.
Collapse
|
34
|
Kimura Y, Kawawaki J, Kakiyama Y, Shimoda A, Tanaka K. The ESCRT-III adaptor protein Bro1 controls functions of regulator for free ubiquitin chains 1 (Rfu1) in ubiquitin homeostasis. J Biol Chem 2014; 289:21760-9. [PMID: 24962567 DOI: 10.1074/jbc.m114.550871] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast Rfu1 (regulator for free ubiquitin chain 1) localizes to endosomes and plays a role in ubiquitin homeostasis by inhibiting the activity of Doa4. We show that Bro1, a member of the class E vacuolar protein sorting proteins that recruits Doa4 to endosomes and stimulates Doa4 deubiquitinating activity, also recruits Rfu1 to endosomes for involvement in ubiquitin homeostasis. This recruitment was mediated by the direct interaction between a region containing the YPEL motif in Rfu1 and the V domain in Bro1, which could be analogous to the interaction between the mammalian Alix V domain and YPXnL motifs of viral and cellular proteins. Furthermore, overexpression of Bro1, particularly the V domain, prevented Rfu1 degradation in response to heat shock. Thus, Bro1, a Doa4 positive regulator, regulated Rfu1, a negative regulator of Doa4. Rfu1 degradation partly involved the proteasome and a ubiquitin ligase Rsp5, suggesting that Rfu1 stability was regulated by ubiquitin-proteasome pathways.
Collapse
Affiliation(s)
- Yoko Kimura
- From the Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 113-8613 and the Department of Applied Biological Chemistry, Graduate School of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan
| | - Junko Kawawaki
- From the Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 113-8613 and
| | - Yukie Kakiyama
- From the Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 113-8613 and
| | - Ayumi Shimoda
- From the Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 113-8613 and
| | - Keiji Tanaka
- From the Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 113-8613 and
| |
Collapse
|
35
|
|
36
|
Wilson MD, Harreman M, Taschner M, Reid J, Walker J, Erdjument-Bromage H, Tempst P, Svejstrup JQ. Proteasome-mediated processing of Def1, a critical step in the cellular response to transcription stress. Cell 2013; 154:983-995. [PMID: 23993092 PMCID: PMC3778974 DOI: 10.1016/j.cell.2013.07.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 05/30/2013] [Accepted: 07/19/2013] [Indexed: 11/25/2022]
Abstract
DNA damage triggers polyubiquitylation and degradation of the largest subunit of RNA polymerase II (RNAPII), a "mechanism of last resort" employed during transcription stress. In yeast, this process is dependent on Def1 through a previously unresolved mechanism. Here, we report that Def1 becomes activated through ubiquitylation- and proteasome-dependent processing. Def1 processing results in the removal of a domain promoting cytoplasmic localization, resulting in nuclear accumulation of the clipped protein. Nuclear Def1 then binds RNAPII, utilizing a ubiquitin-binding domain to recruit the Elongin-Cullin E3 ligase complex via a ubiquitin-homology domain in the Ela1 protein. This facilitates polyubiquitylation of Rpb1, triggering its proteasome-mediated degradation. Together, these results outline the multistep mechanism of Rpb1 polyubiquitylation triggered by transcription stress and uncover the key role played by Def1 as a facilitator of Elongin-Cullin ubiquitin ligase function.
Collapse
Affiliation(s)
- Marcus D Wilson
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms EN6 3LD, UK
| | - Michelle Harreman
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms EN6 3LD, UK
| | - Michael Taschner
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms EN6 3LD, UK
| | - James Reid
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms EN6 3LD, UK
| | - Jane Walker
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms EN6 3LD, UK
| | - Hediye Erdjument-Bromage
- Molecular Biology Programme, Memorial Sloan-Kettering Cancer Center, York Avenue 1275, New York, NY 10021, USA
| | - Paul Tempst
- Molecular Biology Programme, Memorial Sloan-Kettering Cancer Center, York Avenue 1275, New York, NY 10021, USA
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms EN6 3LD, UK.
| |
Collapse
|
37
|
Correct assembly of RNA polymerase II depends on the foot domain and is required for multiple steps of transcription in Saccharomyces cerevisiae. Mol Cell Biol 2013; 33:3611-26. [PMID: 23836886 DOI: 10.1128/mcb.00262-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Recent papers have provided insight into the cytoplasmic assembly of RNA polymerase II (RNA pol II) and its transport to the nucleus. However, little is known about the mechanisms governing its nuclear assembly, stability, degradation, and recycling. We demonstrate that the foot of RNA pol II is crucial for the assembly and stability of the complex, by ensuring the correct association of Rpb1 with Rpb6 and of the dimer Rpb4-Rpb7 (Rpb4/7). Mutations at the foot affect the assembly and stability of the enzyme, a defect that is offset by RPB6 overexpression, in coordination with Rpb1 degradation by an Asr1-independent mechanism. Correct assembly is a prerequisite for the proper maintenance of several transcription steps. In fact, assembly defects alter transcriptional activity and the amount of enzyme associated with the genes, affect C-terminal domain (CTD) phosphorylation, interfere with the mRNA-capping machinery, and possibly increase the amount of stalled RNA pol II. In addition, our data show that TATA-binding protein (TBP) occupancy does not correlate with RNA pol II occupancy or transcriptional activity, suggesting a functional relationship between assembly, Mediator, and preinitiation complex (PIC) stability. Finally, our data help clarify the mechanisms governing the assembly and stability of RNA pol II.
Collapse
|
38
|
Orthogonal ubiquitin transfer through engineered E1-E2 cascades for protein ubiquitination. ACTA ACUST UNITED AC 2013; 19:1265-77. [PMID: 23102221 DOI: 10.1016/j.chembiol.2012.07.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 07/26/2012] [Accepted: 07/31/2012] [Indexed: 11/20/2022]
Abstract
Protein modification by ubiquitin (UB) controls diverse cellular processes. UB is conjugated to cellular proteins by sequential transfer through an E1-E2-E3 enzymatic cascade. The cross-activities of 2 E1s, 50 E2s and thousands of E3s encoded by the human genome make it difficult to identify the substrate proteins of a specific E3 enzyme in the cell. One way to solve this problem is to engineer an orthogonal UB transfer (OUT) cascade in which the engineered UB (xUB) is relayed by engineered E1, E2 and E3 enzymes (xE1, xE2, xE3) to modify the substrate proteins of a specific E3. Here, we use phage display and mutagenesis to construct xUB-xE1 and xE1-xE2 pairs that are orthogonal to the native E1 and E2 enzymes. Our work on engineering the UB transfer cascades will enable us to use OUT to map the signal transduction networks mediated by protein ubiquitination.
Collapse
|
39
|
Sasaki T, Takagi H. Phosphorylation of a conserved Thr357 in yeast Nedd4-like ubiquitin ligase Rsp5 is involved in down-regulation of the general amino acid permease Gap1. Genes Cells 2013; 18:459-75. [DOI: 10.1111/gtc.12049] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 02/18/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Toshiya Sasaki
- Graduate School of Biological Sciences; Nara Institute of Science and Technology; 8916-5 Takayama; Ikoma; Nara; 630-0192; Japan
| | - Hiroshi Takagi
- Graduate School of Biological Sciences; Nara Institute of Science and Technology; 8916-5 Takayama; Ikoma; Nara; 630-0192; Japan
| |
Collapse
|
40
|
Novoselova TV, Rose RS, Marks HM, Sullivan JA. SUMOylation regulates the homologous to E6-AP carboxyl terminus (HECT) ubiquitin ligase Rsp5p. J Biol Chem 2013; 288:10308-17. [PMID: 23443663 DOI: 10.1074/jbc.m112.424234] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The post-translational modifiers ubiquitin and small ubiquitin-related modifier (SUMO) regulate numerous critical signaling pathways and are key to controlling the cellular fate of proteins in eukaryotes. The attachment of ubiquitin and SUMO involves distinct, but related, machinery. However, it is now apparent that many substrates can be modified by both ubiquitin and SUMO and that some regulatory interaction takes place between the respective attachment machinery. Here, we demonstrate that the Saccharomyces cerevisiae ubiquitin ligase Rsp5p, a member of the highly conserved Nedd4 family of ubiquitin ligases, is SUMOylated in vivo. We further show that Rsp5p SUMOylation is mediated by the SUMO ligases Siz1p and Siz2p, members of the conserved family of PIAS SUMO ligases that are, in turn, substrates for Rsp5p-mediated ubiquitylation. Our experiments show that SUMOylated Rsp5p has reduced ubiquitin ligase activity, and similarly, ubiquitylated Siz1p demonstrates reduced SUMO ligase activity leading to respective changes in both ubiquitin-mediated sorting of the manganese transporter Smf1p and polySUMO chain formation. This reciprocal regulation of these highly conserved ligases represents an exciting and previously unidentified system of cross talk between the ubiquitin and SUMO systems.
Collapse
|
41
|
Roseaulin LC, Noguchi C, Martinez E, Ziegler MA, Toda T, Noguchi E. Coordinated degradation of replisome components ensures genome stability upon replication stress in the absence of the replication fork protection complex. PLoS Genet 2013; 9:e1003213. [PMID: 23349636 PMCID: PMC3547854 DOI: 10.1371/journal.pgen.1003213] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 11/15/2012] [Indexed: 11/18/2022] Open
Abstract
The stabilization of the replisome complex is essential in order to achieve highly processive DNA replication and preserve genomic integrity. Conversely, it would also be advantageous for the cell to abrogate replisome functions to prevent inappropriate replication when fork progression is adversely perturbed. However, such mechanisms remain elusive. Here we report that replicative DNA polymerases and helicases, the major components of the replisome, are degraded in concert in the absence of Swi1, a subunit of the replication fork protection complex. In sharp contrast, ORC and PCNA, which are also required for DNA replication, were stably maintained. We demonstrate that this degradation of DNA polymerases and helicases is dependent on the ubiquitin-proteasome system, in which the SCF(Pof3) ubiquitin ligase is involved. Consistently, we show that Pof3 interacts with DNA polymerase ε. Remarkably, forced accumulation of replisome components leads to abnormal DNA replication and mitotic catastrophes in the absence of Swi1. Swi1 is known to prevent fork collapse at natural replication block sites throughout the genome. Therefore, our results suggest that the cell elicits a program to degrade replisomes upon replication stress in the absence of Swi1. We also suggest that this program prevents inappropriate duplication of the genome, which in turn contributes to the preservation of genomic integrity.
Collapse
Affiliation(s)
- Laura C. Roseaulin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Chiaki Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Esteban Martinez
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Melissa A. Ziegler
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Takashi Toda
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Field Laboratories, London, United Kingdom
| | - Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
42
|
Wilson MD, Harreman M, Svejstrup JQ. Ubiquitylation and degradation of elongating RNA polymerase II: the last resort. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1829:151-7. [PMID: 22960598 DOI: 10.1016/j.bbagrm.2012.08.002] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/17/2012] [Accepted: 08/18/2012] [Indexed: 01/22/2023]
Abstract
During its journey across a gene, RNA polymerase II has to contend with a number of obstacles to its progression, including nucleosomes, DNA-binding proteins, DNA damage, and sequences that are intrinsically difficult to transcribe. Not surprisingly, a large number of elongation factors have evolved to ensure that transcription stalling or arrest does not occur. If, however, the polymerase cannot be restarted, it becomes poly-ubiquitylated and degraded by the proteasome. This process is highly regulated, ensuring that only RNAPII molecules that cannot otherwise be salvaged are degraded. In this review, we describe the mechanisms and factors responsible for the last resort mechanism of transcriptional elongation. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Marcus D Wilson
- Mechanisms of Transcription Laboratory, Cancer Research UK London Research Institute, South Mimms, UK
| | | | | |
Collapse
|
43
|
Internal amino acids promote Gap1 permease ubiquitylation via TORC1/Npr1/14-3-3-dependent control of the Bul arrestin-like adaptors. Mol Cell Biol 2012; 32:4510-22. [PMID: 22966204 DOI: 10.1128/mcb.00463-12] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ubiquitylation of many plasma membrane proteins promotes their endocytosis followed by degradation in the lysosome. The yeast general amino acid permease, Gap1, is ubiquitylated and downregulated when a good nitrogen source like ammonium is provided to cells growing on a poor nitrogen source. This ubiquitylation requires the Rsp5 ubiquitin ligase and the redundant arrestin-like Bul1 and Bul2 adaptors. Previous studies have shown that Gap1 ubiquitylation involves the TORC1 kinase complex, which inhibits the Sit4 phosphatase. This causes inactivation of the protein kinase Npr1, which protects Gap1 against ubiquitylation. However, the mechanisms inducing Gap1 ubiquitylation after Npr1 inactivation remain unknown. We here show that on a poor nitrogen source, the Bul adaptors are phosphorylated in an Npr1-dependent manner and bound to 14-3-3 proteins that protect Gap1 against downregulation. After ammonium is added and converted to amino acids, the Bul proteins are dephosphorylated, dissociate from the 14-3-3 proteins, and undergo ubiquitylation. Furthermore, dephosphorylation of Bul requires the Sit4 phosphatase, which is essential to Gap1 downregulation. The data support the emerging concept that permease ubiquitylation results from activation of the arrestin-like adaptors of the Rsp5 ubiquitin ligase, this coinciding with their dephosphorylation, dissociation from the inhibitory 14-3-3 proteins, and ubiquitylation.
Collapse
|
44
|
Dantuma NP, Hoppe T. Growing sphere of influence: Cdc48/p97 orchestrates ubiquitin-dependent extraction from chromatin. Trends Cell Biol 2012; 22:483-91. [PMID: 22818974 DOI: 10.1016/j.tcb.2012.06.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/14/2012] [Accepted: 06/18/2012] [Indexed: 11/30/2022]
Abstract
The AAA (ATPases associated with various cellular activities) family member Cdc48/p97 is best known for its role in ubiquitin-dependent proteasomal degradation of aberrant endoplasmic reticulum (ER) proteins, a process known as ER-associated degradation (ERAD). However, recent studies have also defined Cdc48/p97 as a central player in various chromatin-associated processes linked to cell cycle progression, DNA replication, transcription, and the DNA damage response. Notwithstanding the apparent differences in location and function, the role of Cdc48/p97 in ubiquitin-dependent extraction from chromatin (UDEC) bears striking similarities with its action in ERAD. Here, we discuss recent data that expand our current model of the role of Cdc48/p97 as a ubiquitin-selective segregase in the nuclear chromatin environment.
Collapse
Affiliation(s)
- Nico P Dantuma
- Department of Cell and Molecular Biology, Karolinska Institutet, von Eulers väg 3, S-17177 Stockholm, Sweden.
| | | |
Collapse
|
45
|
Proteasomal Degradation Resolves Competition between Cell Polarization and Cellular Wound Healing. Cell 2012; 150:151-64. [DOI: 10.1016/j.cell.2012.05.030] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/20/2012] [Accepted: 05/10/2012] [Indexed: 01/06/2023]
|
46
|
Evasion of the innate immune response: the Old World alphavirus nsP2 protein induces rapid degradation of Rpb1, a catalytic subunit of RNA polymerase II. J Virol 2012; 86:7180-91. [PMID: 22514352 DOI: 10.1128/jvi.00541-12] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The Old World alphaviruses are emerging human pathogens with an ability to cause widespread epidemics. The latest epidemic of Chikungunya virus, from 2005 to 2007, affected over 40 countries in Africa, Asia, and Europe. The Old World alphaviruses are highly cytopathic and known to evade the cellular antiviral response by inducing global inhibition of transcription in vertebrate cells. This function was shown to be mediated by their nonstructural nsP2 protein; however, the detailed mechanism of this phenomenon has remained unknown. Here, we report that nsP2 proteins of Sindbis, Semliki Forest, and Chikungunya viruses inhibit cellular transcription by inducing rapid degradation of Rpb1, a catalytic subunit of the RNAPII complex. This degradation of Rpb1 is independent of the nsP2-associated protease activity, but, instead, it proceeds through nsP2-mediated Rpb1 ubiquitination. This function of nsP2 depends on the integrity of the helicase and S-adenosylmethionine (SAM)-dependent methyltransferase-like domains, and point mutations in either of these domains abolish Rpb1 degradation. We go on to show that complete degradation of Rpb1 in alphavirus-infected cells occurs within 6 h postinfection, before other previously described virus-induced changes in cell physiology, such as apoptosis, autophagy, and inhibition of STAT1 phosphorylation, are detected. Since Rpb1 is a subunit that catalyzes the polymerase reaction during RNA transcription, degradation of Rpb1 plays an indispensable role in blocking the activation of cellular genes and downregulating cellular antiviral response. This indicates that the nsP2-induced degradation of Rpb1 is a critical mechanism utilized by the Old World alphaviruses to subvert the cellular antiviral response.
Collapse
|
47
|
Yao T, Ndoja A. Regulation of gene expression by the ubiquitin-proteasome system. Semin Cell Dev Biol 2012; 23:523-9. [PMID: 22430757 DOI: 10.1016/j.semcdb.2012.02.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/06/2012] [Accepted: 02/10/2012] [Indexed: 12/26/2022]
Abstract
Transcription is the foremost regulatory point during the process of producing a functional protein. Not only specific genes need to be turned on and off according to growth and environmental conditions, the amounts and quality of transcripts produced are fine-tuned to offer optimal responses. As a result, numerous regulatory mechanisms converge to provide temporal and spatial specificity for this process. In the past decade, the ubiquitin-proteasome system (UPS), which is best known as a pathway for intracellular proteolysis, has emerged as another pivotal player in the control of gene expression. There is increasing evidence that the UPS has both proteolytic and non-proteolytic functions in multiple aspects of the transcription process, including initiation, elongation, mRNA processing as well as chromatin dynamics. In this review, we introduce the many interfaces between the UPS and transcription with focuses on the mechanistic understanding of UPS function in each process.
Collapse
Affiliation(s)
- Tingting Yao
- Colorado State University, Biochemistry and Molecular Biology, 1870 Campus Delivery, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
48
|
Zhang DW, Rodríguez-Molina JB, Tietjen JR, Nemec CM, Ansari AZ. Emerging Views on the CTD Code. GENETICS RESEARCH INTERNATIONAL 2012; 2012:347214. [PMID: 22567385 PMCID: PMC3335543 DOI: 10.1155/2012/347214] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/03/2011] [Indexed: 12/21/2022]
Abstract
The C-terminal domain (CTD) of RNA polymerase II (Pol II) consists of conserved heptapeptide repeats that function as a binding platform for different protein complexes involved in transcription, RNA processing, export, and chromatin remodeling. The CTD repeats are subject to sequential waves of posttranslational modifications during specific stages of the transcription cycle. These patterned modifications have led to the postulation of the "CTD code" hypothesis, where stage-specific patterns define a spatiotemporal code that is recognized by the appropriate interacting partners. Here, we highlight the role of CTD modifications in directing transcription initiation, elongation, and termination. We examine the major readers, writers, and erasers of the CTD code and examine the relevance of describing patterns of posttranslational modifications as a "code." Finally, we discuss major questions regarding the function of the newly discovered CTD modifications and the fundamental insights into transcription regulation that will necessarily emerge upon addressing those challenges.
Collapse
Affiliation(s)
- David W. Zhang
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Juan B. Rodríguez-Molina
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Joshua R. Tietjen
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Corey M. Nemec
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Aseem Z. Ansari
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
- Genome Center of Wisconsin, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| |
Collapse
|
49
|
Wild T, Cramer P. Biogenesis of multisubunit RNA polymerases. Trends Biochem Sci 2012; 37:99-105. [PMID: 22260999 DOI: 10.1016/j.tibs.2011.12.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/08/2011] [Accepted: 12/16/2011] [Indexed: 01/11/2023]
Abstract
Gene transcription in the nucleus of eukaryotic cells is carried out by three related multisubunit RNA polymerases, Pol I, Pol II and Pol III. Although the structure and function of the polymerases have been studied extensively, little is known about their biogenesis and their transport from the cytoplasm (where the subunits are synthesized) to the nucleus. Recent studies have revealed polymerase assembly intermediates and putative assembly factors, as well as factors required for Pol II nuclear import. In this review, we integrate the available data into a model of Pol II biogenesis that provides a framework for future analysis of the biogenesis of all RNA polymerases.
Collapse
Affiliation(s)
- Thomas Wild
- Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | | |
Collapse
|
50
|
Isasa M, Zuin A, Crosas B. Integration of multiple ubiquitin signals in proteasome regulation. Methods Mol Biol 2012; 910:337-70. [PMID: 22821603 DOI: 10.1007/978-1-61779-965-5_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The ubiquitin-proteasome system has emerged in the last decades as a new paradigm in cell physiology. Ubiquitin is found in fundamental levels of cell regulation, as a target for degradation to the proteasome or as a signal that controls protein function in a complex manner. Even though many aspects of the ubiquitin system remain unexplored, the contributions on the field uncover that ubiquitin represents one of the most sophisticated codes in cellular biology. The proteasome is an ATP-dependent protease that degrades a large number of protein substrates in the cell. The proteasome recruits substrates by a number of receptors that interact with polyubiquitin. Recently, it has been shown that one of these receptors, Rpn10, is regulated by monoubiquitination. In this chapter, we show an overview of the central aspects of the pathway and describe the methodology to characterize in vitro the monoubiquitination of proteasome subunits.
Collapse
Affiliation(s)
- Marta Isasa
- Proteasome Regulation Lab, Cell Biology Department, Institute of Molecular Biology of Barcelona (CSIC), Barcelona, Spain
| | | | | |
Collapse
|