1
|
Lyng FM, Azzam EI. Abscopal Effects, Clastogenic Effects and Bystander Effects: 70 Years of Non-Targeted Effects of Radiation. Radiat Res 2024; 202:355-367. [PMID: 38986531 DOI: 10.1667/rade-24-00040.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/29/2024] [Indexed: 07/12/2024]
Abstract
In vitro and in vivo observations accumulated over several decades have firmly shown that the biological effects of ionizing radiation can spread from irradiated cells/tissues to non-targeted cells/tissues. Redox-modulated intercellular communication mechanisms that include a role for secreted factors and gap junctions, can mediate these non-targeted effects. Clearly, the expression of such effects and their transmission to progeny cells has implications for issues related to radiation protection. Their elucidation is also relevant towards enhancing the efficacy of cancer radiotherapy and reducing its impact on the development of normal tissue toxicities. In addition, the study of non-targeted effects is pertinent to our basic understanding of intercellular communications under conditions of oxidative stress. This review will trace the history of non-targeted effects of radiation starting with early reports of abscopal effects which described radiation induced effects in tissues distant from the site of radiation exposure. A related effect involved the production of clastogenic factors in plasma following irradiation which can induce chromosome damage in unirradiated cells. Despite these early reports suggesting non-targeted effects of radiation, the classical paradigm that a direct deposition of energy in the nucleus was required still dominated. This paradigm was challenged by papers describing radiation induced bystander effects. This review will cover mechanisms of radiation-induced bystander effects and the potential impacts on radiation protection and radiation therapy.
Collapse
Affiliation(s)
- Fiona M Lyng
- Radiation and Environmental Science Centre, FOCAS Research Institute
- School of Physics, Clinical and Optometric Sciences, Technological University Dublin, Dublin, Ireland
| | - Edouard I Azzam
- Department of Radiology, Rutgers New Jersey Medical School Cancer Center, Newark, New Jersey
| |
Collapse
|
2
|
Baverstock K. Responses to commentaries on "The gene: An appraisal". PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 188:31-42. [PMID: 38360273 DOI: 10.1016/j.pbiomolbio.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
The central conclusions of "The Gene: An Appraisal" are that genetic variance does not underpin biological evolution, and, therefore, that genes are not Mendel's units of inheritance. In this response, I will address the criticisms I have received via commentaries on that paper by defending the following statements: 1. Epistasis does not explain the power-law fitness profile of the Long-Term Evolution Experiment (LTEE). The data from the evolution of natural systems displays the power-law form ubiquitously. Epistasis plays no role in evolution. 2. The common characteristics of living things (natural systems) are described by the principle of least action in de Maupertuis's original form, which is synonymous with the 2nd law of thermodynamics and Newton's 2nd law of motion in its complete form, i.e., F = dp/dt. Organisms strive to achieve free energy balance with their environments. 3. Based on an appraisal of the scientific environment between 1880 and 1911, I conclude that Johannsen's genotype conception was perhaps, the only option available to him. 4. The power-law fitness profile of the LTEE falsifies Fisher's Genetical Theory of Natural Selection, Johannsen's genotype conception, and the idea that 'Darwinian evolution' is an exception to the generic thermodynamic process of evolution in natural systems. 5. The use of the technique of genome-wide association to identify the causes and the likelihoods of inherited common diseases and behavioural traits is a 'wild goose chase' because genes are not the units of inheritance.
Collapse
Affiliation(s)
- Keith Baverstock
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, Kuopio, Finland.
| |
Collapse
|
3
|
Tran NH, Shtam T, Marchenko YY, Konevega AL, Lebedev D. Current State and Prospectives for Proton Boron Capture Therapy. Biomedicines 2023; 11:1727. [PMID: 37371822 DOI: 10.3390/biomedicines11061727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/19/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
The development of new methods increasing the biological effectiveness of proton therapy (PT) is of high interest in radiation oncology. The use of binary technologies, in which the damaging effect of proton radiation is further enhanced by the selective accumulation of the radiosensitizer in the target tissue, can significantly increase the effectiveness of radiation therapy. To increase the absorbed dose in a tumor target, proton boron capture therapy (PBCT) was proposed based on the reaction of proton capture on the 11B isotope with the formation of three α-particles. This review summarizes data on theoretical and experimental studies on the effectiveness and prospects of proton boron capture therapy.
Collapse
Affiliation(s)
- Nhan Hau Tran
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova roscha 1, Gatchina 188300, Russia
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Politehnicheskaya 29, St. Petersburg 195251, Russia
| | - Tatiana Shtam
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova roscha 1, Gatchina 188300, Russia
- National Research Center "Kurchatov Institute", Akademika Kurchatova pl. 1, Moscow 123182, Russia
| | - Yaroslav Yu Marchenko
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova roscha 1, Gatchina 188300, Russia
| | - Andrey L Konevega
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova roscha 1, Gatchina 188300, Russia
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Politehnicheskaya 29, St. Petersburg 195251, Russia
- National Research Center "Kurchatov Institute", Akademika Kurchatova pl. 1, Moscow 123182, Russia
| | - Dmitry Lebedev
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova roscha 1, Gatchina 188300, Russia
- National Research Center "Kurchatov Institute", Akademika Kurchatova pl. 1, Moscow 123182, Russia
| |
Collapse
|
4
|
Shtam T, Burdakov V, Garina A, Garaeva L, Tran NH, Volnitskiy A, Kuus E, Amerkanov D, Pack F, Andreev G, Lubinskiy A, Shabalin K, Verlov N, Ivanov E, Ezhov V, Lebedev D, Konevega AL. Experimental validation of proton boron capture therapy for glioma cells. Sci Rep 2023; 13:1341. [PMID: 36693879 PMCID: PMC9873635 DOI: 10.1038/s41598-023-28428-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Proton boron capture therapy (PBCT) has emerged from particle acceleration research for enhancing the biological effectiveness of proton therapy. The mechanism responsible for the dose increase was supposed to be related to proton-boron fusion reactions (11B + p → 3α + 8.7 MeV). There has been some experimental evidence that the biological efficiency of protons is significantly higher for boron-11-containing prostate or breast cancer cells. The aim of this study was to evaluate the sensitizing potential of sodium borocaptate (BSH) under proton irradiation at the Bragg peak of cultured glioma cells. To address this problem, cells of two glioma lines were preincubated with 80 or 160 ppm boron-11, irradiated both at the middle of 200 MeV beam Spread-Out Bragg Peak (SOBP) and at the distal end of the 89.7 MeV beam SOBP and assessed for the viability, as well as their ability to form colonies. Our results clearly show that BSH provides for only a slight, if any, enhancement of the effect of proton radiation on the glioma cells in vitro. In addition, we repeated the experiments using the Du145 prostate cancer cell line, for which an increase in the biological efficiency of proton irradiation in the presence of sodium borocaptate was demonstrated previously. The data presented add new argument against the efficiency of proton boron capture therapy when based solely on direct dose-enhancement effect by the proton capture nuclear reaction, underlining the need to investigate the indirect effects of the secondary alpha irradiation depending on the state and treatment conditions of the irradiated tissue.
Collapse
Affiliation(s)
- Tatiana Shtam
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300. .,National Research Center "Kurchatov Institute", Akademika Kurchatova Pl. 1, Moscow, Russian Federation, 123182. .,Institute of Cytology of Russian Academy of Sciences, St. Petersburg, Russian Federation.
| | - Vladimir Burdakov
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300.,National Research Center "Kurchatov Institute", Akademika Kurchatova Pl. 1, Moscow, Russian Federation, 123182
| | - Alina Garina
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300.,National Research Center "Kurchatov Institute", Akademika Kurchatova Pl. 1, Moscow, Russian Federation, 123182.,Peter the Great St.Petersburg Polytechnic University, Politehnicheskaya 29, St. Petersburg, Russian Federation
| | - Luiza Garaeva
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300.,National Research Center "Kurchatov Institute", Akademika Kurchatova Pl. 1, Moscow, Russian Federation, 123182.,Peter the Great St.Petersburg Polytechnic University, Politehnicheskaya 29, St. Petersburg, Russian Federation
| | - Nhan Hau Tran
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300.,Peter the Great St.Petersburg Polytechnic University, Politehnicheskaya 29, St. Petersburg, Russian Federation
| | - Andrey Volnitskiy
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300.,National Research Center "Kurchatov Institute", Akademika Kurchatova Pl. 1, Moscow, Russian Federation, 123182
| | - Eva Kuus
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300.,Peter the Great St.Petersburg Polytechnic University, Politehnicheskaya 29, St. Petersburg, Russian Federation.,Proton Therapy Center MIBS, St. Petersburg, Russian Federation
| | - Dmitry Amerkanov
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300.,National Research Center "Kurchatov Institute", Akademika Kurchatova Pl. 1, Moscow, Russian Federation, 123182
| | - Fedor Pack
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300.,National Research Center "Kurchatov Institute", Akademika Kurchatova Pl. 1, Moscow, Russian Federation, 123182
| | - Georgy Andreev
- Proton Therapy Center MIBS, St. Petersburg, Russian Federation
| | | | - Konstantin Shabalin
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300.,National Research Center "Kurchatov Institute", Akademika Kurchatova Pl. 1, Moscow, Russian Federation, 123182
| | - Nicolay Verlov
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300.,National Research Center "Kurchatov Institute", Akademika Kurchatova Pl. 1, Moscow, Russian Federation, 123182
| | - Evgeniy Ivanov
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300
| | - Victor Ezhov
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300
| | - Dmitry Lebedev
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300.,National Research Center "Kurchatov Institute", Akademika Kurchatova Pl. 1, Moscow, Russian Federation, 123182
| | - Andrey L Konevega
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300. .,National Research Center "Kurchatov Institute", Akademika Kurchatova Pl. 1, Moscow, Russian Federation, 123182. .,Peter the Great St.Petersburg Polytechnic University, Politehnicheskaya 29, St. Petersburg, Russian Federation.
| |
Collapse
|
5
|
Okonkwo UC, Ohagwu CC, Aronu ME, Okafor CE, Idumah CI, Okokpujie IP, Chukwu NN, Chukwunyelu CE. Ionizing radiation protection and the linear No-threshold controversy: Extent of support or counter to the prevailing paradigm. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2022; 253-254:106984. [PMID: 36057228 DOI: 10.1016/j.jenvrad.2022.106984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
This study has developed a relationship that categorized radiation protection and allows for a proper, clear, and concise review of the different classifications in terms of principles of protection, dose criteria, categories, fundamental tools, exposure situations, applications and control measures. With the groundwork laid, advances of the linear no-threshold (LNT) model which has attracted attention in the field of radiobiology and epidemiology were examined in detail. Various plausible dose-response relationship scenarios were x-rayed under low-dose extrapolation. Intensive review of factors opposing the LNT model involving radiophobia (including misdiagnosis, alternative surgery/imaging, suppression of ionizing radiation (IR) research); radiobiology (including DNA damage repair, apoptosis/necrosis, senescence protection) and cost issues (including-high operating cost of LNT, incorrect prioritization, exaggeration of LNT impact, risk-to-benefit analysis) were performed. On the other hand, factors supporting the use of LNT were equally examined, they include regulatory bodies' endorsement, insufficient statistical significance, partial DNA repair, variability of irradiated bodies, different latency periods for cancer, dynamic nature of threshold and conflicting interests. After considering the gaps in the scientific investigations that either support or counter the scientific paradigm on the use of LNT model, further research and advocacy is recommended that will ultimately lead to the acceptance of an alternative paradigm by the international regulators.
Collapse
Affiliation(s)
- Ugochukwu C Okonkwo
- Department of Mechanical Engineering, Nnamdi Azikiwe University, Awka, Nigeria.
| | - Christopher C Ohagwu
- Department of Radiography and Radiological Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Michael E Aronu
- Department of Radiology, Nnamdi Azikiwe University, Awka, Nigeria
| | - Christian E Okafor
- Department of Mechanical Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - Christopher I Idumah
- Department of Polymer and Textile Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - Imhade P Okokpujie
- Department of Mechanical and Mechatronic Engineering, Afe-Babalola University, Ado-Ekiti, Nigeria
| | - Nelson N Chukwu
- National Engineering Design Development Institute, Nnewi, Anambra State, Nigeria
| | | |
Collapse
|
6
|
Mucinous adenocarcinoma of the prostatic urethra after brachytherapy for prostatic adenocarcinoma: a case series. Hum Pathol 2022; 128:101-109. [PMID: 35926810 DOI: 10.1016/j.humpath.2022.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/30/2022]
Abstract
Mucinous adenocarcinoma of the urethra is extremely rare, even more so in a setting of postradiation therapy, with only 3 cases reported up to date including the first case published by our group in 2011. In the present study, we included the long-term follow-up on our previously reported case and report 3 additional cases. This is the first case series to date of this rare disease entity. The aim of this study is to review the clinicopathologic features of mucinous adenocarcinoma of the prostatic urethra in patients after receiving brachytherapy for prostatic adenocarcinoma. We identified 4 patients with a mean age of 72 years, and a mean interval of 14.8 years from brachytherapy for prostate carcinoma (grade group 1). Patients presented with hematuria or urinary retention. A colonoscopy was performed in three-fourth of patients and was within normal limits. Three patients underwent cystoprostatectomy and 1 had a transurethral resection of the prostate. On gross examination, only tumor formed a 3.5 cm tan-gray, ulcerated, friable, and necrotic mass and 2 displayed either irregular red granular or thickened areas within the prostatic urethra. Abundant extracellular mucin pools dissecting the prostatic stroma were present in all tumors, with clusters of tumor cells floating in the mucin. The mucin pools were lined by pleomorphic pseudostratified columnar mucinous epithelium. Tumors were diffusely positive for CK20, CDX2 (4/4), and AMACR (2/2); they focally expressed CK7 (2/4), and lacked nuclear β-catenin expression (3/3). PSA, PSAP, NKX3.1, p63, and GATA3 were negative in the tumors tested. Among the 3 patients who underwent radical surgery, 2 had stage 2 tumors (confined to the prostatic urethra and prostate), and 1 had a stage 3 tumor, with seminal vesicle involvement. All 4 patients were alive without disease with a mean follow-up of 4.9 years. In conclusion, brachytherapy-associated mucinous adenocarcinoma of the prostatic urethra displays intestinal-type features as its non-radiation-related counterpart. It appears to lack a villous adenoma component, displays a different immunohistochemical profile with diffuse CK20 and CDX2 positivity, and is associated with lower stage and less aggressive behavior.
Collapse
|
7
|
Kadhim M, Tuncay Cagatay S, Elbakrawy EM. Non-targeted effects of radiation: a personal perspective on the role of exosomes in an evolving paradigm. Int J Radiat Biol 2021; 98:410-420. [PMID: 34662248 DOI: 10.1080/09553002.2021.1980630] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE Radiation-induced non-targeted effects (NTE) have implications in a variety of areas relevant to radiation biology. Here we evaluate the various cargo associated with exosomal signalling and how they work synergistically to initiate and propagate the non-targeted effects including Genomic Instability and Bystander Effects. CONCLUSIONS Extra cellular vesicles, in particular exosomes, have been shown to carry bystander signals. Exosome cargo may contain nucleic acids, both DNA and RNA, as well as proteins, lipids and metabolites. These cargo molecules have all been considered as potential mediators of NTE. A review of current literature shows mounting evidence of a role for ionizing radiation in modulating both the numbers of exosomes released from affected cells as well as the content of their cargo, and that these exosomes can instigate functional changes in recipient cells. However, there are significant gaps in our understanding, particularly regarding modified exosome cargo after radiation exposure and the functional changes induced in recipient cells.
Collapse
Affiliation(s)
- Munira Kadhim
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Seda Tuncay Cagatay
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Eman Mohammed Elbakrawy
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom.,Department of Radiation Physics, National Center for Radiation Research and Technology, Atomic Energy Authority, 3 Ahmed El-Zomor Al Manteqah Ath Thamenah, Nasr City, Cairo 11787, Egypt
| |
Collapse
|
8
|
Averbeck D, Rodriguez-Lafrasse C. Role of Mitochondria in Radiation Responses: Epigenetic, Metabolic, and Signaling Impacts. Int J Mol Sci 2021; 22:ijms222011047. [PMID: 34681703 PMCID: PMC8541263 DOI: 10.3390/ijms222011047] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Until recently, radiation effects have been considered to be mainly due to nuclear DNA damage and their management by repair mechanisms. However, molecular biology studies reveal that the outcomes of exposures to ionizing radiation (IR) highly depend on activation and regulation through other molecular components of organelles that determine cell survival and proliferation capacities. As typical epigenetic-regulated organelles and central power stations of cells, mitochondria play an important pivotal role in those responses. They direct cellular metabolism, energy supply and homeostasis as well as radiation-induced signaling, cell death, and immunological responses. This review is focused on how energy, dose and quality of IR affect mitochondria-dependent epigenetic and functional control at the cellular and tissue level. Low-dose radiation effects on mitochondria appear to be associated with epigenetic and non-targeted effects involved in genomic instability and adaptive responses, whereas high-dose radiation effects (>1 Gy) concern therapeutic effects of radiation and long-term outcomes involving mitochondria-mediated innate and adaptive immune responses. Both effects depend on radiation quality. For example, the increased efficacy of high linear energy transfer particle radiotherapy, e.g., C-ion radiotherapy, relies on the reduction of anastasis, enhanced mitochondria-mediated apoptosis and immunogenic (antitumor) responses.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Correspondence:
| | - Claire Rodriguez-Lafrasse
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| |
Collapse
|
9
|
Perry CC, Ramos-Méndez J, Milligan JR. Boronated Condensed DNA as a Heterochromatic Radiation Target Model. Biomacromolecules 2021; 22:1675-1684. [PMID: 33750108 DOI: 10.1021/acs.biomac.1c00106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The compound 4-dihydroxyboryl-l-phenylalanine (BPA) has found use in clinical trials of boron neutron capture therapy (BNCT). Here, we have examined the interaction with DNA of an amide-blocked BPA derivative of hexa-l-arginine (Ac-BPA-Arg6-NH2). Physical and spectroscopic assays show that this peptide binds to and condenses DNA. The resulting condensates are highly resistant to the effects of nuclease incubation (68-fold) and gamma (38-fold) irradiation. Radioprotection was modeled by Monte Carlo track structure simulations of DNA single strand breaks (SSBs) with TOPAS-nBio. The differences between experimental and simulated SSB yields for uncondensed and condensed DNAs were ca. 2 and 18%, respectively. These observations indicate that the combination of a plasmid DNA target, the BPA-containing peptide, and track structure simulation provides a powerful approach to characterize DNA damage by the high-LET radiation associated with neutron capture on boron.
Collapse
Affiliation(s)
- Christopher C Perry
- Department of Basic Sciences, School of Medicine, Loma Linda University, 11085 Campus Street, Loma Linda, California 92350, United States
| | - José Ramos-Méndez
- Department of Radiation Oncology, University of California San Francisco, 1600 Divisadero Street, San Francisco, California 94115, United States
| | - Jamie R Milligan
- Department of Basic Sciences, School of Medicine, Loma Linda University, 11085 Campus Street, Loma Linda, California 92350, United States
| |
Collapse
|
10
|
The role of connexin proteins and their channels in radiation-induced atherosclerosis. Cell Mol Life Sci 2021; 78:3087-3103. [PMID: 33388835 PMCID: PMC8038956 DOI: 10.1007/s00018-020-03716-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/29/2020] [Accepted: 11/17/2020] [Indexed: 02/08/2023]
Abstract
Radiotherapy is an effective treatment for breast cancer and other thoracic tumors. However, while high-energy radiotherapy treatment successfully kills cancer cells, radiation exposure of the heart and large arteries cannot always be avoided, resulting in secondary cardiovascular disease in cancer survivors. Radiation-induced changes in the cardiac vasculature may thereby lead to coronary artery atherosclerosis, which is a major cardiovascular complication nowadays in thoracic radiotherapy-treated patients. The underlying biological and molecular mechanisms of radiation-induced atherosclerosis are complex and still not fully understood, resulting in potentially improper radiation protection. Ionizing radiation (IR) exposure may damage the vascular endothelium by inducing DNA damage, oxidative stress, premature cellular senescence, cell death and inflammation, which act to promote the atherosclerotic process. Intercellular communication mediated by connexin (Cx)-based gap junctions and hemichannels may modulate IR-induced responses and thereby the atherosclerotic process. However, the role of endothelial Cxs and their channels in atherosclerotic development after IR exposure is still poorly defined. A better understanding of the underlying biological pathways involved in secondary cardiovascular toxicity after radiotherapy would facilitate the development of effective strategies that prevent or mitigate these adverse effects. Here, we review the possible roles of intercellular Cx driven signaling and communication in radiation-induced atherosclerosis.
Collapse
|
11
|
Elbakrawy EM, Mayah A, Hill MA, Kadhim M. Induction of Genomic Instability in a Primary Human Fibroblast Cell Line Following Low-Dose Alpha-Particle Exposure and the Potential Role of Exosomes. BIOLOGY 2020; 10:biology10010011. [PMID: 33379152 PMCID: PMC7824692 DOI: 10.3390/biology10010011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE To study the induction of genomic instability (GI) in the progeny of cell populations irradiated with low doses of alpha-particles and the potential role of exosome-encapsulated bystander signalling. METHODS The induction of GI in HF19 normal fibroblast cells was assessed by determining the formation of micronuclei (MN) in binucleate cells along with using the alkaline comet assay to assess DNA damage. RESULTS Low dose alpha-particle exposure (0.0001-1 Gy) was observed to produce a significant induction of micronuclei and DNA damage shortly after irradiation (assays performed at 5 and 1 h post exposure, respectively). This damage was not only still evident and statistically significant in all irradiated groups after 10 population doublings, but similar trends were observed after 20 population doublings. Exosomes from irradiated cells were also observed to enhance the level of DNA damage in non-irradiated bystander cells at early times. CONCLUSION very low doses of alpha-particles are capable of inducing GI in the progeny of irradiated cells even at doses where <1% of the cells are traversed, where the level of response was similar to that observed at doses where 100% of the cells were traversed. This may have important implications with respect to the evaluation of cancer risk associated with very low-dose alpha-particle exposure and deviation from a linear dose response.
Collapse
Affiliation(s)
- Eman Mohammed Elbakrawy
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (E.M.E.); (A.M.)
- Department of Radiation Physics, National Center for Radiation Research and Technology, Atomic Energy Authority, 3 Ahmed El-Zomor Al Manteqah Ath Thamenah, Nasr City, Cairo 11787, Egypt
| | - Ammar Mayah
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (E.M.E.); (A.M.)
| | - Mark A. Hill
- Gray Laboratories, MRC Oxford Institute for Radiation Oncology, University of Oxford, ORCRB Roosevelt Drive, Oxford OX3 7DQ, UK;
| | - Munira Kadhim
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (E.M.E.); (A.M.)
- Correspondence: ; Tel.: +44-0-1865-483954
| |
Collapse
|
12
|
Belli M, Indovina L. The Response of Living Organisms to Low Radiation Environment and Its Implications in Radiation Protection. Front Public Health 2020; 8:601711. [PMID: 33384980 PMCID: PMC7770185 DOI: 10.3389/fpubh.2020.601711] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Life has evolved on Earth for about 4 billion years in the presence of the natural background of ionizing radiation. It is extremely likely that it contributed, and still contributes, to shaping present form of life. Today the natural background radiation is extremely small (few mSv/y), however it may be significant enough for living organisms to respond to it, perhaps keeping memory of this exposure. A better understanding of this response is relevant not only for improving our knowledge on life evolution, but also for assessing the robustness of the present radiation protection system at low doses, such as those typically encountered in everyday life. Given the large uncertainties in epidemiological data below 100 mSv, quantitative evaluation of these health risk is currently obtained with the aid of radiobiological models. These predict a health detriment, caused by radiation-induced genetic mutations, linearly related to the dose. However a number of studies challenged this paradigm by demonstrating the occurrence of non-linear responses at low doses, and of radioinduced epigenetic effects, i.e., heritable changes in genes expression not related to changes in DNA sequence. This review is focused on the role that epigenetic mechanisms, besides the genetic ones, can have in the responses to low dose and protracted exposures, particularly to natural background radiation. Many lines of evidence show that epigenetic modifications are involved in non-linear responses relevant to low doses, such as non-targeted effects and adaptive response, and that genetic and epigenetic effects share, in part, a common origin: the reactive oxygen species generated by ionizing radiation. Cell response to low doses of ionizing radiation appears more complex than that assumed for radiation protection purposes and that it is not always detrimental. Experiments conducted in underground laboratories with very low background radiation have even suggested positive effects of this background. Studying the changes occurring in various living organisms at reduced radiation background, besides giving information on the life evolution, have opened a new avenue to answer whether low doses are detrimental or beneficial, and to understand the relevance of radiobiological results to radiation protection.
Collapse
Affiliation(s)
| | - Luca Indovina
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
13
|
Exosomes and exosomal microRNA in non-targeted radiation bystander and abscopal effects in the central nervous system. Cancer Lett 2020; 499:73-84. [PMID: 33160002 DOI: 10.1016/j.canlet.2020.10.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022]
Abstract
Localized cranial radiotherapy is a dominant treatment for brain cancers. After being subjected to radiation, the central nervous system (CNS) exhibits targeted effects as well as non-targeted radiation bystander effects (RIBE) and abscopal effects (RIAE). Radiation-induced targeted effects in the CNS include autophagy and various changes in tumor cells due to radiation sensitivity, which can be regulated by microRNAs. Non-targeted radiation effects are mainly induced by gap junctional communication between cells, exosomes containing microRNAs can be transduced by intracellular endocytosis to regulate RIBE and RIAE. In this review, we discuss the involvement of microRNAs in radiation-induced targeted effects, as well as exosomes and/or exosomal microRNAs in non-targeted radiation effects in the CNS. As a target pathway, we also discuss the Akt pathway which is regulated by microRNAs, exosomes, and/or exosomal microRNAs in radiation-induced targeted effects and RIBE in CNS tumor cells. As the CNS-derived exosomes can cross the blood-brain-barrier (BBB) into the bloodstream and be isolated from peripheral blood, exosomes and exosomal microRNAs can emerge as promising minimally invasive biomarkers and therapeutic targets for radiation-induced targeted and non-targeted effects in the CNS.
Collapse
|
14
|
Zawierucha K, Porazinska DL, Ficetola GF, Ambrosini R, Baccolo G, Buda J, Ceballos JL, Devetter M, Dial R, Franzetti A, Fuglewicz U, Gielly L, Łokas E, Janko K, Novotna Jaromerska T, Kościński A, Kozłowska A, Ono M, Parnikoza I, Pittino F, Poniecka E, Sommers P, Schmidt SK, Shain D, Sikorska S, Uetake J, Takeuchi N. A hole in the nematosphere: tardigrades and rotifers dominate the cryoconite hole environment, whereas nematodes are missing. J Zool (1987) 2020. [DOI: 10.1111/jzo.12832] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- K. Zawierucha
- Department of Animal Taxonomy and Ecology Adam Mickiewicz University Poznań Poland
| | - D. L. Porazinska
- Department of Entomology and Nematology University of Florida Gainesville FL USA
| | - G. F. Ficetola
- Department of Environmental Science and Policy University of Milan Milan Italy
- Laboratoire d'Ecologie Alpine University Grenoble Alpes Univ. Savoie Mont Blanc CNRS LECA Grenoble France
| | - R. Ambrosini
- Department of Environmental Science and Policy University of Milan Milan Italy
| | - G. Baccolo
- Earth and Environmental Sciences Department University of Milano‐Bicocca Milan Italy
| | - J. Buda
- Department of Animal Taxonomy and Ecology Adam Mickiewicz University Poznań Poland
| | - J. L. Ceballos
- Institute of Hydrology, Meteorology and Environmental Studies IDEAM Bogota' Colombia
| | - M. Devetter
- Institute of soil Biology Biology Centre CAS České Budějovice Czech Republic
- Centre for Polar Ecology Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | - R. Dial
- Institute of Culture and the Environment Alaska Pacific University Anchorage AK USA
| | - A. Franzetti
- Earth and Environmental Sciences Department University of Milano‐Bicocca Milan Italy
| | | | - L. Gielly
- Laboratoire d'Ecologie Alpine University Grenoble Alpes Univ. Savoie Mont Blanc CNRS LECA Grenoble France
| | - E. Łokas
- Department of Mass Spectroscopy Institute of Nuclear Physics Polish Academy of Sciences Kraków Poland
| | - K. Janko
- Laboratory of Fish Genetics Institute of Animal Physiology and Genetics Academy of Sciences of the Czech Republic Libechov Czech Republic
- Department of Biology and Ecology Faculty of Science University of Ostrava Ostrava Czech Republic
| | | | | | - A. Kozłowska
- Department of Animal Taxonomy and Ecology Adam Mickiewicz University Poznań Poland
| | - M. Ono
- Graduate School of Science and Engineering Chiba University Chiba Japan
| | - I. Parnikoza
- State Institution National Antarctic Center of Ministry of Education and Science of Ukraine Kyiv Ukraine
- Institute of Molecular Biology and Genetics National Academy of Sciences of Ukraine Kyiv Ukraine
| | - F. Pittino
- Earth and Environmental Sciences Department University of Milano‐Bicocca Milan Italy
| | - E. Poniecka
- School of Earth and Ocean Sciences Cardiff University Cardiff UK
| | - P. Sommers
- Ecology and Evolutionary Biology Department University of Colorado Boulder CO USA
| | - S. K. Schmidt
- Ecology and Evolutionary Biology Department University of Colorado Boulder CO USA
| | - D. Shain
- Biology Department Rutgers, The State University of New Jersey Camden NJ USA
| | - S. Sikorska
- Department of Animal Taxonomy and Ecology Adam Mickiewicz University Poznań Poland
| | - J. Uetake
- The Arctic Environment Research Center National Institute of Polar Research Tachikawa Japan
| | - N. Takeuchi
- Department of Earth Sciences Graduate School of Science Chiba University Chiba Japan
| |
Collapse
|
15
|
The Effect of Low Temperatures on Environmental Radiation Damage in Living Systems: Does Hypothermia Show Promise for Space Travel? Int J Mol Sci 2020; 21:ijms21176349. [PMID: 32882991 PMCID: PMC7504535 DOI: 10.3390/ijms21176349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 12/23/2022] Open
Abstract
Low-temperature treatments (i.e., hypothermia) may be one way of regulating environmental radiation damage in living systems. With this in mind, hibernation under hypothermic conditions has been proposed as a useful approach for long-term human space flight. However, the underlying mechanisms of hypothermia-induced radioresistance are as yet undetermined, and the conventional risk assessment of radiation exposure during hibernation remains insufficient for estimating the effects of chronic exposure to galactic cosmic rays (GCRs). To promote scientific discussions on the application of hibernation in space travel, this literature review provides an overview of the progress to date in the interdisciplinary research field of radiation biology and hypothermia and addresses possible issues related to hypothermic treatments as countermeasures against GCRs. At present, there are concerns about the potential effects of chronic radiation exposure on neurological disorders, carcinogenesis, ischemia heat failures, and infertility in astronauts; these require further study. These concerns may be resolved by comparing and integrating data gleaned from experimental and epidemiological studies.
Collapse
|
16
|
Ionizing Radiation-Induced Epigenetic Modifications and Their Relevance to Radiation Protection. Int J Mol Sci 2020; 21:ijms21175993. [PMID: 32825382 PMCID: PMC7503247 DOI: 10.3390/ijms21175993] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
The present system of radiation protection assumes that exposure at low doses and/or low dose-rates leads to health risks linearly related to the dose. They are evaluated by a combination of epidemiological data and radiobiological models. The latter imply that radiation induces deleterious effects via genetic mutation caused by DNA damage with a linear dose-dependence. This picture is challenged by the observation of radiation-induced epigenetic effects (changes in gene expression without altering the DNA sequence) and of non-linear responses, such as non-targeted and adaptive responses, that in turn can be controlled by gene expression networks. Here, we review important aspects of the biological response to ionizing radiation in which epigenetic mechanisms are, or could be, involved, focusing on the possible implications to the low dose issue in radiation protection. We examine in particular radiation-induced cancer, non-cancer diseases and transgenerational (hereditary) effects. We conclude that more realistic models of radiation-induced cancer should include epigenetic contribution, particularly in the initiation and progression phases, while the impact on hereditary risk evaluation is expected to be low. Epigenetic effects are also relevant in the dispute about possible "beneficial" effects at low dose and/or low dose-rate exposures, including those given by the natural background radiation.
Collapse
|
17
|
Shemetun OV, Pilinska MA. RADIATION-INDUCED BYSTANDER EFFECT - MODELING, MANIFESTATION, MECHANISMS, PERSISTENCE, CANCER RISKS (literature review). PROBLEMY RADIAT︠S︡IĬNOÏ MEDYT︠S︡YNY TA RADIOBIOLOHIÏ 2020; 24:65-92. [PMID: 31841459 DOI: 10.33145/2304-8336-2019-24-65-92] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Indexed: 01/02/2023]
Abstract
The review summarizes and analyzes the data of world scientific literature and the results of the own research con- cerning one of the main non-targeted effects of ionizing radiation - the radiation induced bystander effect (RIBE) - the ability of irradiated target cells to induce secondary biological changes in non-irradiated receptor cells. The his- tory of studies of this phenomenon is presented - it described under various names since 1905, began to study from the end of the twentieth century when named as RIBE and caused particular interest in the scientific community during recent decades. It is shown that the development of biological science and the improvement of research methods allowed to get new in-depth data on the development of RIBE not only at the level of the whole organism, but even at the genome level. The review highlights the key points of numerous RIBE investigations including mod- eling; methodological approaches to studying; classification; features of interaction between irradiated and intact cells; the role of the immune system, oxidative stress, cytogenetic disorders, changes in gene expression in the mechanism of development of RIBE; rescue effect, abscopal effect, persistence, modification, medical effects. It is emphasized that despite the considerable amount of research concerning the bystander response as the universal phenomenon and RIBE as one of its manifestations, there are still enough «white spots» in determining the mech- anisms of the RIBE formation and assessing the possible consequences of its development for human health.
Collapse
Affiliation(s)
- O V Shemetun
- State Institution «National Research Center for Radiation Medicine of the National Academy of MedicalSciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| | - M A Pilinska
- State Institution «National Research Center for Radiation Medicine of the National Academy of MedicalSciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| |
Collapse
|
18
|
Enhancement of DNA damage repair potential in germ cells of Caenorhabditis elegans by a volatile signal from their irradiated partners. DNA Repair (Amst) 2019; 86:102755. [PMID: 31812126 DOI: 10.1016/j.dnarep.2019.102755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 11/21/2022]
Abstract
Radiation-induced bystander effects have been demonstrated within organisms. Recently, it is found that the organisms can also signal irradiation cues to their co-cultured partners in a waterborne manner. In contrast, there is a limited understanding of radiation-induced airborne signaling between individuals, especially on the aspect of DNA damage responses (DDR). Here, we establish a co-culture experimental system using Caenorhabdis elegans in a top-bottom layout, where communication between "top" and "bottom" worms is airborne. The radiation response of top worms is evaluated using radio-adaptive response (RAR) of embryonic lethality (F1), which reflects an enhancement in repair potential of germ cells to subsequent DNA damage. It is shown that gamma-irradiation of bottom worms alleviates the embryonic lethality of top worms caused by 25 Gy of subsequent gamma-irradiation, i.e. RAR, indicating that a volatile signal might play an essential role in radiation-induced inter-worm communication. The RAR is absent in the top worms impaired in DNA damage checkpoint, nucleotide excision repair, and olfactory sensory neurons, respectively. The induction of RAR is restricted to the mitotic zone of the female germline of hermaphrodites. These results indicate that the top worms sense the volatile signal through cephalic sensory neurons, and the neural stimulation distantly modulates the DDR in germ mitotic cells, leading to the enhancement of DNA damage repair potential. The volatile signal is produced specifically by the L3-stage bottom worms and functionally distinct from the known sex pheromone. Its production and/or release are regulated by water-soluble ascaroside pheromones in a population-dependent manner.
Collapse
|
19
|
Cathepsin B inhibitors block multiple radiation-induced side effects in C. elegans. Cell Res 2019; 29:1042-1045. [PMID: 31664165 DOI: 10.1038/s41422-019-0247-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/23/2019] [Indexed: 01/01/2023] Open
|
20
|
Elbakrawy EM, Hill MA, Kadhim MA. Radiation-induced Chromosome Instability: The Role of Dose and Dose Rate. Genome Integr 2019; 10:3. [PMID: 31897286 PMCID: PMC6862263 DOI: 10.4103/genint.genint_5_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Nontargeted effects include radiation-induced genomic instability (RIGI) which is observed in the progeny of cells exposed to ionizing radiation and can be manifested in different ways, including chromosomal instability and micronucleus (MN) formation. Since genomic instability is commonly observed in tumors and has a role in tumor progression, RIGI has the potential of being an important mechanism for radiation-induced cancer. The work presented explores the role of dose and dose rate on RIGI, determined using a MN assay, in normal primary human fibroblast (HF19) cells exposed to either 0.1 Gy or 1 Gy of X-rays delivered either as an acute (0.42 Gy/min) or protracted (0.0031 Gy/min) exposure. While the expected increase in MN was observed following the first mitosis of the irradiated cells compared to unirradiated controls, the results also demonstrate a significant increase in MN yields in the progeny of these cells at 10 and 20 population doublings following irradiation. Minimal difference was observed between the two doses used (0.1 and 1 Gy) and the dose rates (acute and protracted). Therefore, these nontargeted effects have the potential to be important for the low-dose and dose-rate exposure. The results also show an enhancement of the cellular levels of reactive oxygen species after 20 population doublings, which suggests that ionising radiation (IR) could potentially perturb the homeostasis of oxidative stress and so modify the background rate of endogenous DNA damage induction. In conclusion, the investigations have demonstrated that normal primary human fibroblast (HF19) cells are susceptible to the induction of early DNA damage and RIGI, not only after a high dose and high dose rate exposure to low linear energy transfer, but also following low dose, low dose rate exposures. The results suggest that the mechanism of radiation induced RIGI in HF19 cells can be correlated with the induction of reactive oxygen species levels following exposure to 0.1 and 1 Gy low-dose rate and high-dose rate x-ray irradiation.
Collapse
Affiliation(s)
- Eman Mohammed Elbakrawy
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, England, UK.,Department of Radiation Physics, National Center for Radiation Research and Technology, Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Mark A Hill
- Department of Oncology, Gray Laboratories, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, England, UK
| | - Munira A Kadhim
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, England, UK
| |
Collapse
|
21
|
Heeran AB, Berrigan HP, O'Sullivan J. The Radiation-Induced Bystander Effect (RIBE) and its Connections with the Hallmarks of Cancer. Radiat Res 2019; 192:668-679. [PMID: 31618121 DOI: 10.1667/rr15489.1] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Radiation therapy is one of the pillars of cancer treatment, with approximately one half of all cancer patients receiving it as part of their standard of care. Emerging evidence indicates that the biological effects of radiation are not limited to targeted cells. The radiation-induced bystander effect (RIBE) refers to the plethora of biological phenomena occurring in nonirradiated cells as a result of signal transmission from an irradiated cell. Experimental evidence has linked RIBE to numerous hallmarks of cancer including resisting cell death, tumor immune evasion, genomic instability, deregulated cellular energetics, tumor-promoting inflammation and sustained proliferative signaling as well as enhanced radioresistance, thus highlighting the potential role of RIBE events in patient treatment response. The mechanisms underlying RIBE events in vivo are poorly understood. However, elucidating the molecular mechanisms involved in their manifestation may reveal novel therapeutic targets to improve radiation response in cancer patients.
Collapse
Affiliation(s)
- Aisling B Heeran
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin and St. James's Hospital, Dublin 8, Ireland
| | - Helen P Berrigan
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin and St. James's Hospital, Dublin 8, Ireland
| | - Jacintha O'Sullivan
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin and St. James's Hospital, Dublin 8, Ireland
| |
Collapse
|
22
|
Perry CC, Ramos-Méndez J, Milligan JR. DNA Condensation with a Boron-Containing Cationic Peptide for Modeling Boron Neutron Capture Therapy. Radiat Phys Chem Oxf Engl 1993 2019; 166. [PMID: 32454570 DOI: 10.1016/j.radphyschem.2019.108521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The amino acid derivative 4-borono-L-phenylalanine (BPA) has been used in the radiation medicine technique boron neutron capture therapy (BNCT). Here we have characterized its interaction with DNA when incorporated into a positively charged hexa-L-arginine peptide. This ligand binds strongly to DNA and induces its condensation, an effect which is attenuated at higher ionic strengths. The use of an additional tetra-L-arginine ligand enables the preparation of a DNA condensate in the presence of a negligible concentration of unbound boron. Under these conditions, Monte Carlo simulation indicates that >85% of energy deposition events resulting from thermal neutron irradiation derive from boron fission. The combination of experimental model systems and simulations that we describe here provides a valuable tool for accurate track structure modeling of the DNA damage produced by the high LET particles involved in BNCT.
Collapse
Affiliation(s)
- Chris C Perry
- Department of Basic Sciences, School of Medicine, Loma Linda University, 11085 Campus Street, Loma Linda, CA 92350, USA
| | - Jose Ramos-Méndez
- Department of Radiation Oncology, University of California San Francisco, 1600 Divisadero Street, San Francisco, CA 94115, USA
| | - Jamie R Milligan
- Department of Basic Sciences, School of Medicine, Loma Linda University, 11085 Campus Street, Loma Linda, CA 92350, USA
| |
Collapse
|
23
|
Panzarini E, Vergallo C, Fanizzi FP, Mariano S, Tata AM, Dini L. The dialogue between died and viable cells: in vitro and in vivo bystander effects and 1H-NMR-based metabolic profiling of soluble factors. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2018-1226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The bystander effect (BE) is an important biological phenomenon that induces damages in distant and not directly affected by a chemical/physical stress cells. This effect, well known in ionizing radiation treatment, relies on reactive signals released by exposed cells and transmitted via cell–cell interaction or culture medium. In this study, cycloheximide (CHX)-induced apoptotic U937 cells and untreated THP-1 cells were chosen to investigate the chemical-induced BE. The effects of apoptotic U937 cells culture medium, Conditioned Medium (CM), on THP-1 cells were evaluated by morphological and immunohistochemical analysis performed by light microscopy; 1D 1H and 2D J-resolved (JRES) NMR metabolomic analysis has been used to characterize the molecules involved in the BE. In summary, this study indicates that: CM of CHX-treated U937 cells induces a time-dependent induction of toxicity, probably apoptotic cell death, and macrophagic differentiation in THP-1 cells; CM contains different metabolites respect fresh culture medium; CM recruits in vivo activated fibroblasts, endothelial cells, macrophages and mononuclear inflammatory cells in rat calf muscles. These data suggest that CHX exposed cells could cause BE through the release, during the apoptotic process, of soluble factors into the medium that could be exploited in anticancer protocols.
Collapse
Affiliation(s)
- Elisa Panzarini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.) , University of Salento , Lecce , Italy
| | - Cristian Vergallo
- Department of Pharmacy , University of Chieti-Pescara “G. D’Annunzio” , Chieti , Italy
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.) , University of Salento , Lecce , Italy
| | - Stefania Mariano
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.) , University of Salento , Lecce , Italy
| | - Ada Maria Tata
- Department of Biology and Biotechnology “C. Darwin” , Sapienza University of Rome , Rome , Italy
| | - Luciana Dini
- Department of Biology and Biotechnology “C. Darwin” , Sapienza University of Rome , Rome , Italy
- CNR-Nanotec , Lecce , Italy
| |
Collapse
|
24
|
Targeted and non-targeted effects of ionizing radiation. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2015.03.003] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
25
|
Deng C, Wu J, Wang T, Wang G, Wu L, Wu Y, Bian P. Negative Modulation of Bystander DNA Repair Potential by X-Ray Targeted Tissue Volume in Arabidopsis thaliana. Radiat Res 2019; 191:556-565. [PMID: 31017526 DOI: 10.1667/rr15314.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Radiation-induced bystander effects (RIBE) entail a cascade of bystander signals produced by the hit cells to the neighboring cells to regulate various biological processes including DNA damage repair. However, there is little clarity regarding the effect of radiation-targeted volume (hit cell amount) on the DNA repair potential of the bystander cells. This is especially important to understand in the context of the whole organism, where the target usually consists of multiple types of cells/tissues. To address this question, model plant Arabidopsis thaliana was locally irradiated, and the DNA repair potential of bystander root-tip cells was assessed based on their radioresistance to subsequent high-dose radiation, i.e. radioadaptive responses (RAR). We found that X-ray irradiation of the aerial parts (AP) of A. thaliana seedlings (5 Gy) initiated RAR in the root-tip cells, which exhibited an alleviated repression of root growth and root cell division, and reduced amount of DNA strand breaks. We also observed an improvement in the repair efficiency of the homologous recombination (HR) and non-homologous end joining (NHEJ) pathways in the bystander root tip cells. We further expanded the X-ray targeted volume to include the aerial parts with upper parts of the primary root and compared it with X-ray irradiated aerial parts alone. Comparative analysis revealed that RAR for these end points either disappeared or decreased; specifically, the repair efficiency of HR was significantly reduced, indicating that radiation-targeted volume negatively modulates the bystander DNA repair potential. In contrast, X-ray irradiation of upper part of the primary root alone did not induce RAR of the root tip cells. Thus, we propose that additional X-ray irradiation of upper part of the primary root reduces the bystander DNA repair potential, possibly by selectively disturbing the transport of bystander signals responsible for HR repair.
Collapse
Affiliation(s)
- Chenguang Deng
- a Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China.,b University of Science and Technology of China, Hefei 230026, PR China
| | - Jingjing Wu
- a Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China.,b University of Science and Technology of China, Hefei 230026, PR China
| | - Ting Wang
- a Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Gaohong Wang
- c Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lijun Wu
- a Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Yuejin Wu
- a Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Po Bian
- a Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| |
Collapse
|
26
|
Mothersill C, Seymour C. Targets, pools, shoulders, and communication – a reflection on the evolution of low-dose radiobiology. Int J Radiat Biol 2019; 95:851-860. [DOI: 10.1080/09553002.2019.1589016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
27
|
Henry MP, Hawkins JR, Boyle J, Bridger JM. The Genomic Health of Human Pluripotent Stem Cells: Genomic Instability and the Consequences on Nuclear Organization. Front Genet 2019; 9:623. [PMID: 30719030 PMCID: PMC6348275 DOI: 10.3389/fgene.2018.00623] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/23/2018] [Indexed: 12/11/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are increasingly used for cell-based regenerative therapies worldwide, with embryonic and induced pluripotent stem cells as potential treatments for debilitating and chronic conditions, such as age-related macular degeneration, Parkinson's disease, spinal cord injuries, and type 1 diabetes. However, with the level of genomic anomalies stem cells generate in culture, their safety may be in question. Specifically, hPSCs frequently acquire chromosomal abnormalities, often with gains or losses of whole chromosomes. This review discusses how important it is to efficiently and sensitively detect hPSC aneuploidies, to understand how these aneuploidies arise, consider the consequences for the cell, and indeed the individual to whom aneuploid cells may be administered.
Collapse
Affiliation(s)
- Marianne P Henry
- Advanced Therapies Division, National Institute for Biological Standards and Control, Potters Bar, United Kingdom.,Laboratory of Nuclear and Genomic Health, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - J Ross Hawkins
- Advanced Therapies Division, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Jennifer Boyle
- Advanced Therapies Division, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Joanna M Bridger
- Laboratory of Nuclear and Genomic Health, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| |
Collapse
|
28
|
Baulch JE. Radiation-induced genomic instability, epigenetic mechanisms and the mitochondria: a dysfunctional ménage a trois? Int J Radiat Biol 2018; 95:516-525. [DOI: 10.1080/09553002.2018.1549757] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Janet E. Baulch
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
29
|
Yahyapour R, Salajegheh A, Safari A, Amini P, Rezaeyan A, Amraee A, Najafi M. Radiation-induced Non-targeted Effect and Carcinogenesis; Implications in Clinical Radiotherapy. J Biomed Phys Eng 2018; 8:435-446. [PMID: 30568933 PMCID: PMC6280111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/17/2017] [Indexed: 11/25/2022]
Abstract
Bystander or non-targeted effect is known to be an interesting phenomenon in radiobiology. The genetic consequences of bystander effect on non-irradiated cells have shown that this phenomenon can be considered as one of the most important factors involved in secondary cancer after exposure to ionizing radiation. Every year, millions of people around the world undergo radiotherapy in order to cure different types of cancers. The most crucial aim of radiotherapy is to improve treatment efficiency by reducing early and late effects of exposure to clinical doses of radiation. Secondary cancer induction resulted from exposure to high doses of radiation during treatment can reduce the effectiveness of this modality for cancer treatment. The perception of carcinogenesis risk of bystander effects and factors involved in this phenomenon might help reduce secondary cancer incidence years after radiotherapy. Different modalities such as radiation LET, dose and dose rate, fractionation, types of tissue, gender of patients, etc. may be involved in carcinogenesis risk of bystander effects. Therefore, selecting an appropriate treatment modality may improve cost-effectiveness of radiation therapy as well as the quality of life in survived patients. In this review, we first focus on the carcinogenesis evidence of non-targeted effects in radiotherapy and then review physical and biological factors that may influence the risk of secondary cancer induced by this phenomenon.
Collapse
Affiliation(s)
- R. Yahyapour
- School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - A. Salajegheh
- Department of Radiology, School of Paramedical, Shiraz University of Medical Sciences, Shiraz, Iran
| | - A. Safari
- Department of Medical Physics, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - P. Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - A. Rezaeyan
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - A. Amraee
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - M. Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Science, Kermanshah, Iran
| |
Collapse
|
30
|
Affiliation(s)
- Scott Bright
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Munira Kadhim
- Department of Biological and Biomedical Sciences, Oxford Brookes University, Oxford, UK
| |
Collapse
|
31
|
Jella KK, Moriarty R, McClean B, Byrne HJ, Lyng FM. Reactive oxygen species and nitric oxide signaling in bystander cells. PLoS One 2018; 13:e0195371. [PMID: 29621312 PMCID: PMC5886541 DOI: 10.1371/journal.pone.0195371] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 03/21/2018] [Indexed: 12/16/2022] Open
Abstract
It is now well accepted that radiation induced bystander effects can occur in cells exposed to media from irradiated cells. The aim of this study was to follow the bystander cells in real time following addition of media from irradiated cells and to determine the effect of inhibiting these signals. A human keratinocyte cell line, HaCaT cells, was irradiated (0.005, 0.05 and 0.5 Gy) with γ irradiation, conditioned medium was harvested after one hour and added to recipient bystander cells. Reactive oxygen species, nitric oxide, Glutathione levels, caspase activation, cytotoxicity and cell viability was measured after the addition of irradiated cell conditioned media to bystander cells. Reactive oxygen species and nitric oxide levels in bystander cells treated with 0.5Gy ICCM were analysed in real time using time lapse fluorescence microscopy. The levels of reactive oxygen species were also measured in real time after the addition of extracellular signal-regulated kinase and c-Jun amino-terminal kinase pathway inhibitors. ROS and glutathione levels were observed to increase after the addition of irradiated cell conditioned media (0.005, 0.05 and 0.5 Gy ICCM). Caspase activation was found to increase 4 hours after irradiated cell conditioned media treatment (0.005, 0.05 and 0.5 Gy ICCM) and this increase was observed up to 8 hours and there after a reduction in caspase activation was observed. A decrease in cell viability was observed but no major change in cytotoxicity was found in HaCaT cells after treatment with irradiated cell conditioned media (0.005, 0.05 and 0.5 Gy ICCM). This study involved the identification of key signaling molecules such as reactive oxygen species, nitric oxide, glutathione and caspases generated in bystander cells. These results suggest a clear connection between reactive oxygen species and cell survival pathways with persistent production of reactive oxygen species and nitric oxide in bystander cells following exposure to irradiated cell conditioned media.
Collapse
Affiliation(s)
- Kishore Kumar Jella
- Department of Radiation Oncology, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| | - Roisin Moriarty
- Radiation and Environmental Science Centre, Focas Institute, Dublin Institute of Technology, Dublin, Ireland
| | | | - Hugh J. Byrne
- Focas Institute, Dublin Institute of Technology, Dublin, Ireland
| | - Fiona M. Lyng
- Radiation and Environmental Science Centre, Focas Institute, Dublin Institute of Technology, Dublin, Ireland
- School of Physics, Dublin Institute of Technology, Dublin, Ireland
| |
Collapse
|
32
|
Mladenov E, Li F, Zhang L, Klammer H, Iliakis G. Intercellular communication of DNA damage and oxidative status underpin bystander effects. Int J Radiat Biol 2018; 94:719-726. [PMID: 29377786 DOI: 10.1080/09553002.2018.1434323] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE A well-known phenomenon in the field of radiation biology is that cells exposed to ionizing radiation (IR) (targeted cells) can induce in non-irradiated (non-targeted), bystander cells effects reminiscent of DNA damage responses (DDR) normally expected, exclusively in targeted cells. These phenomena are collectively referred to as radiation-induced bystander effects (RIBE) and have different manifestations depending on the endpoint studied. Although it is now recognized that RIBE reflects to a considerable extent communication by the targeted cells to undamaged cells of their damaged status, the molecular underpinnings of this communication and its significance for the organism are only partly understood. In particular, it remains unknown why and how targeted cells induce DNA damage in non-targeted, bystander cells threatening their genomic stability and risking thus their transformation to cancer cells. Here, we outline observations hinting to possible sources of artifacts in experiments designed to detect RIBE and summarize a model according to which targeted cells modulate their redox status as part of their overall response to IR and use this modified redox status as a source to generate signals that are transmitted to non-irradiated cells of the organism. MATERIAL AND METHODS A synthesis of published evidence is presented. RESULTS Depending on type, RIBE signals may be transmitted through various forms of direct intercellular contact, through molecules acting locally in a paracrine fashion, or through molecules acting remotely in an endocrine fashion. We reason that DNA damage generated in bystander cells is unlikely to manifest the clustered character exhibited in directly exposed cells and postulate that RIBE will depend on complications generated when simpler forms of damage encounter the DNA replication fork. CONCLUSIONS We suggest that RIBE result from intercellular communication mechanisms designed to spread within tissues, or the organism, alarm signals of DNA damage inflicted in subsets of the constituent cells. This response likely evolved to protect organisms by appropriately modulating stress response, repair or apoptosis, and may in some instances also cause adverse effects, e.g. as collateral damage.
Collapse
Affiliation(s)
- Emil Mladenov
- a Institute of Medical Radiation Biology , University of Duisburg-Essen Medical School , Essen , Germany
| | - Fanghua Li
- a Institute of Medical Radiation Biology , University of Duisburg-Essen Medical School , Essen , Germany
| | - Lihua Zhang
- a Institute of Medical Radiation Biology , University of Duisburg-Essen Medical School , Essen , Germany
| | - Holger Klammer
- a Institute of Medical Radiation Biology , University of Duisburg-Essen Medical School , Essen , Germany
| | - George Iliakis
- a Institute of Medical Radiation Biology , University of Duisburg-Essen Medical School , Essen , Germany
| |
Collapse
|
33
|
Hurem S, Gomes T, Brede DA, Lindbo Hansen E, Mutoloki S, Fernandez C, Mothersill C, Salbu B, Kassaye YA, Olsen AK, Oughton D, Aleström P, Lyche JL. Parental gamma irradiation induces reprotoxic effects accompanied by genomic instability in zebrafish (Danio rerio) embryos. ENVIRONMENTAL RESEARCH 2017; 159:564-578. [PMID: 28892785 DOI: 10.1016/j.envres.2017.07.053] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 06/07/2023]
Abstract
Gamma radiation represents a potential health risk to aquatic and terrestrial biota, due to its ability to ionize atoms and molecules in living tissues. The effects of exposure to 60Co gamma radiation in zebrafish (Danio rerio) were studied during two sensitive life stages: gametogenesis (F0: 53 and 8.7mGy/h for 27 days, total doses 31 and 5.2Gy) and embryogenesis (9.6mGy/h for 65h; total dose 0.62Gy). Progeny of F0 exposed to 53mGy/h showed 100% mortality occurring at the gastrulation stage corresponding to 8h post fertilization (hpf). Control and F0 fish exposed to 8.7mGy/h were used to create four lines in the first filial generation (F1): control, G line (irradiated during parental gametogenesis), E line (irradiated during embryogenesis) and GE line (irradiated during parental gametogenesis and embryogenesis). A statistically significant cumulative mortality of GE larva (9.3%) compared to controls was found at 96 hpf. E line embryos hatched significantly earlier compared to controls, G and GE (48-72 hpf). The deformity frequency was higher in G and GE, but not E line compared to controls at 72 hpf. One month after parental irradiation, the formation of reactive oxygen species (ROS) was increased in the G line, but did not significantly differ from controls one year after parental irradiation, while at the same time point it was significantly increased in the directly exposed E and GE lines from 60 to 120 hpf. Lipid peroxidation (LPO) was significantly increased in the G line one year after parental irradiation, while significant increase in DNA damage was detected in both the G and GE compared to controls and E line at 72 hpf. Radiation-induced bystander effects, triggered by culture media from tissue explants and observed as influx of Ca2+ ions through the cellular membrane of the reporter cells, were significantly increased in 72 hpf G line progeny one month after irradiation of the parents. One year after parental irradiation, the bystander effects were increased in the E line compared to controls, but not in progeny of irradiated parents (G and GE lines). Overall, this study showed that irradiation of parents can result in multigenerational oxidative stress and genomic instability in irradiated (GE) and non-irradiated (G) progeny of irradiated parents, including increases in ROS formation, LPO, DNA damage and bystander effects. The results therefore highlight the necessity for multi- and transgenerational studies to assess the environmental impact of gamma radiation.
Collapse
Affiliation(s)
- Selma Hurem
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Veterinary Medicine and Biosciences, P.O. Box 8146 Dep., 0033 Oslo, Norway.
| | - Tânia Gomes
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian Institute for Water research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway
| | - Dag A Brede
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Elisabeth Lindbo Hansen
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian Radiation Protection Authority (NRPA), Postboks 55, 1332 Østerås, Norway
| | - Stephen Mutoloki
- Norwegian University of Life Sciences (NMBU), Faculty of Veterinary Medicine and Biosciences, P.O. Box 8146 Dep., 0033 Oslo, Norway
| | - Cristian Fernandez
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern, Switzerland
| | - Carmel Mothersill
- McMaster University, Department of Biology, 1280 Main St. West Hamilton, Ontario, Canada
| | - Brit Salbu
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Yetneberk A Kassaye
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Ann-Karin Olsen
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian Institute of Public Health (NIPH), PO Box 4404 Nydalen, 0403 Oslo, Norway
| | - Deborah Oughton
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Peter Aleström
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Veterinary Medicine and Biosciences, P.O. Box 8146 Dep., 0033 Oslo, Norway
| | - Jan L Lyche
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Veterinary Medicine and Biosciences, P.O. Box 8146 Dep., 0033 Oslo, Norway
| |
Collapse
|
34
|
Mothersill C, Rusin A, Seymour C. Low doses and non-targeted effects in environmental radiation protection; where are we now and where should we go? ENVIRONMENTAL RESEARCH 2017; 159:484-490. [PMID: 28863303 DOI: 10.1016/j.envres.2017.08.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/12/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
The field of low dose radiobiology has advanced considerably in the last 30 years from small indications in the 1980's that all was not simple, to a paradigm shift which occurred during the 1990's, which severely dented the dose-driven models and DNA centric theories which had dominated until then. However while the science has evolved, the application of that science in environmental health protection has not. A reason for this appears to be the uncertainties regarding the shape of the low dose response curve, which lead regulators to adopt a precautionary approach to radiation protection. Radiation protection models assume a linear relationship between dose (i.e. energy deposition) and effect (in this case probability of an adverse DNA interaction leading to a mutation). This model does not consider non-targeted effects (NTE) such as bystander effects or delayed effects, which occur in progeny cells or offspring not directly receiving energy deposition from the dose. There is huge controversy concerning the role of NTE with some saying they reflect "biology" and that repair and homeostatic mechanisms sort out the apparent damage while others consider them to be a class of damage which increases the size of the target. One thing which has recently become apparent is that NTE may be very critical for modelling long-term effects at the level of the population rather than the individual. The issue is that NTE resulting from an acute high dose such as occurred after the A-bomb or Chernobyl occur in parallel with chronic effects induced by the continuing residual effects due to radiation dose decay. This means that if ambient radiation doses are measured for example 25 years after the Chernobyl accident, they only represent a portion of the dose effect because the contribution of NTE is not included.
Collapse
Affiliation(s)
- Carmel Mothersill
- Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| | - Andrej Rusin
- Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Colin Seymour
- Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
35
|
Tamari Y, Kashino G, Mori H. Acquisition of radioresistance by IL-6 treatment is caused by suppression of oxidative stress derived from mitochondria after γ-irradiation. JOURNAL OF RADIATION RESEARCH 2017; 58:412-420. [PMID: 28199717 PMCID: PMC5570009 DOI: 10.1093/jrr/rrw084] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/06/2016] [Indexed: 05/22/2023]
Abstract
Interleukin (IL)-6 is a multifunctional cytokine and is one of the radiation-induced bystander factors. This study aimed to clarify the mechanism of acquisition of radioresistance through the control of reactive oxygen species (ROS) by IL-6. We used a rat glioma cell line (C6) as tumor cells and a rat astrocyte cell line (RNB) as non-tumor cells. Our results showed that the surviving fraction of C6 cells after 6 Gy irradiation was increased by the addition of IL-6, but that this was not the case in RNB cells. In addition, the number of 53BP1 foci in C6 cells at 30 min after γ-irradiation were decreased by IL-6. Levels of ROS in whole C6 cells, and superoxide in the mitochondria of C6 cells immediately after γ-irradiation, were reduced by IL-6, but this was not observed in RNB cells. The mitochondrial membrane potential detected by JC-1 in C6 and RNB cells was inhibited by IL-6 alone. Therefore, it was concluded that IL-6 leads specifically to radioresistance in tumor cells by inhibition of increases in ROS after γ-irradiation.
Collapse
Affiliation(s)
- Yuki Tamari
- Department of Radiology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| | - Genro Kashino
- Advanced Molecular Imaging Center, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
- Corresponding author. Advanced Molecular Imaging Center, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan. Tel: +81-97-586-6318; Fax: +81-97-586-6314;
| | - Hiromu Mori
- Department of Radiology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| |
Collapse
|
36
|
Lin X, Wei F, Major P, Al-Nedawi K, Al Saleh HA, Tang D. Microvesicles Contribute to the Bystander Effect of DNA Damage. Int J Mol Sci 2017; 18:ijms18040788. [PMID: 28387728 PMCID: PMC5412372 DOI: 10.3390/ijms18040788] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/27/2017] [Accepted: 04/05/2017] [Indexed: 01/25/2023] Open
Abstract
Genotoxic treatments elicit DNA damage response (DDR) not only in cells that are directly exposed but also in cells that are not in the field of treatment (bystander cells), a phenomenon that is commonly referred to as the bystander effect (BE). However, mechanisms underlying the BE remain elusive. We report here that etoposide and ultraviolet (UV) exposure stimulate the production of microvesicles (MVs) in DU145 prostate cancer cells. MVs isolated from UV-treated DU145 and A431 epidermoid carcinoma cells as well as etoposide-treated DU145 cells induced phosphorylation of ataxia-telangiectasia mutated (ATM) at serine 1981 (indicative of ATM activation) and phosphorylation of histone H2AX at serine 139 (γH2AX) in naïve DU145 cells. Importantly, neutralization of MVs derived from UV-treated cells with annexin V significantly reduced the MV-associated BE activities. Etoposide and UV are known to induce DDR primarily through the ATM and ATM- and Rad3-related (ATR) pathways, respectively. In this regard, MV is likely a common source for the DNA damage-induced bystander effect. However, pre-treatment of DU145 naïve cells with an ATM (KU55933) inhibitor does not affect the BE elicited by MVs isolated from etoposide-treated cells, indicating that the BE is induced upstream of ATM actions. Taken together, we provide evidence supporting that MVs are a source of the DNA damage-induced bystander effect.
Collapse
Affiliation(s)
- Xiaozeng Lin
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON L8N 4A6, Canada.
- Father Sean O'Sullivan Research Institute, Hamilton, ON L8N 4A6, Canada.
- The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, ON L8N 4A6, Canada.
| | - Fengxiang Wei
- The Genetics Laboratory, Longgang District Maternity and Child Healthcare Hospital, Longgang District, Shenzhen 518116, Guangdong, China.
| | - Pierre Major
- Department of Oncology, McMaster University, Hamilton, ON L8V 5C2, Canada.
| | - Khalid Al-Nedawi
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON L8N 4A6, Canada.
- Father Sean O'Sullivan Research Institute, Hamilton, ON L8N 4A6, Canada.
- The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, ON L8N 4A6, Canada.
| | - Hassan A Al Saleh
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON L8N 4A6, Canada.
- Father Sean O'Sullivan Research Institute, Hamilton, ON L8N 4A6, Canada.
- The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, ON L8N 4A6, Canada.
| | - Damu Tang
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON L8N 4A6, Canada.
- Father Sean O'Sullivan Research Institute, Hamilton, ON L8N 4A6, Canada.
- The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, ON L8N 4A6, Canada.
| |
Collapse
|
37
|
Photon hormesis deactivates alpha-particle induced bystander effects between zebrafish embryos. Radiat Phys Chem Oxf Engl 1993 2017. [DOI: 10.1016/j.radphyschem.2016.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
38
|
Affiliation(s)
- Charles L. Limoli
- Department of Radiation Oncology, University of California, Irvine, CA, USA
| |
Collapse
|
39
|
Kong EY, Cheng SH, Yu KN. Zebrafish as an In Vivo Model to Assess Epigenetic Effects of Ionizing Radiation. Int J Mol Sci 2016; 17:ijms17122108. [PMID: 27983682 PMCID: PMC5187908 DOI: 10.3390/ijms17122108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/01/2016] [Accepted: 12/09/2016] [Indexed: 12/14/2022] Open
Abstract
Exposure to ionizing radiations (IRs) is ubiquitous in our environment and can be categorized into “targeted” effects and “non-targeted” effects. In addition to inducing deoxyribonucleic acid (DNA) damage, IR exposure leads to epigenetic alterations that do not alter DNA sequence. Using an appropriate model to study the biological effects of radiation is crucial to better understand IR responses as well as to develop new strategies to alleviate exposure to IR. Zebrafish, Danio rerio, is a scientific model organism that has yielded scientific advances in several fields and recent studies show the usefulness of this vertebrate model in radiation biology. This review briefly describes both “targeted” and “non-targeted” effects, describes the findings in radiation biology using zebrafish as a model and highlights the potential of zebrafish to assess the epigenetic effects of IR, including DNA methylation, histone modifications and miRNA expression. Other in vivo models are included to compare observations made with zebrafish, or to illustrate the feasibility of in vivo models when the use of zebrafish was unavailable. Finally, tools to study epigenetic modifications in zebrafish, including changes in genome-wide DNA methylation, histone modifications and miRNA expression, are also described in this review.
Collapse
Affiliation(s)
- Eva Yi Kong
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, China.
| | - Shuk Han Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong, China.
| | - Kwan Ngok Yu
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, China.
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
40
|
Abstract
It is now apparent that the target for the biological effects of ionizing radiation (IR) is not solely the irradiated cell(s), but also includes the surrounding cells/tissue as well. Radiation-induced bystander effects (BSEs) are defined by the presence of the biological effects of radiation in cells that were not themselves in the field of irradiation. Decreased plating efficiency, increased sister chromatid exchanges, oncogenic transformation, among other endpoints have been used to describe the BSE. Two primary means have been established for the transmission of the bystander signal; one is mediated by gap-junction intracellular communication, and the other is initiated through the secretion of factors from irradiated cells. While the basis for these phenomena have been established in cell culture systems, there is also evidence for their presence in vivo. This in vivo effect may contribute to increased tumor cell killing, and may also play a role in the abscopal effects of radiation, where radiation responses are seen in areas separated from the irradiated tissue. Although the precise molecular components and mechanisms remain unknown, their discovery will shed new light on the role of the BSEs in radiation risk assessment, and clinical radiotherapy in the clinic.
Collapse
Affiliation(s)
- Andrew R Snyder
- Molecular and Cell Biology Graduate Program, Department of Radiation Oncology, University of Maryland, Baltimore, MD 21201-1559, USA.
| |
Collapse
|
41
|
Turchan WT, Shapiro RH, Sevigny GV, Chin-Sinex H, Pruden B, Mendonca MS. Irradiated human endothelial progenitor cells induce bystander killing in human non-small cell lung and pancreatic cancer cells. Int J Radiat Biol 2016; 92:427-33. [PMID: 27258472 DOI: 10.1080/09553002.2016.1186299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Purpose To investigate whether irradiated human endothelial progenitor cells (hEPC) could induce bystander killing in the A549 non-small cell lung cancer (NSCLC) cells and help explain the improved radiation-induced tumor cures observed in A549 tumor xenografts co-injected with hEPC. Materials and methods We investigated whether co-injection of CBM3 hEPC with A549 NSCLC cells would alter tumor xenograft growth rate or tumor cure after a single dose of 0 or 5 Gy of X-rays. We then utilized dual chamber Transwell dishes, to test whether medium from irradiated CBM3 and CBM4 hEPC would induce bystander cell killing in A549 cells, and as an additional control, in human pancreatic cancer MIA PaCa-2 cells. The CBM3 and CBM4 hEPC were plated into the upper Transwell chamber and the A549 or MIA PaCa-2 cells were plated in the lower Transwell chamber. The top inserts with the CBM3 or CBM4 hEPC cells were subsequently removed, irradiated, and then placed back into the Transwell dish for 3 h to allow for diffusion of any potential bystander factors from the irradiated hEPC in the upper chamber through the permeable membrane to the unirradiated cancer cells in the lower chamber. After the 3 h incubation, the cancer cells were re-plated for clonogenic survival. Results We found that co-injection of CBM3 hEPC with A549 NSCLC cells significantly increased the tumor growth rate compared to A549 cells alone, but paradoxically also increased A549 tumor cure after a single dose of 5 Gy of X-rays (p < 0.05). We hypothesized that irradiated hEPC may be inducing bystander killing in the A549 NSCLC cells in tumor xenografts, thus improving tumor cure. Bystander studies clearly showed that exposure to the medium from irradiated CBM3 and CBM4 hEPC induced significant bystander killing and decreased the surviving fraction of A549 and MIA PaCa-2 cells to 0.46 (46%) ± 0.22 and 0.74 ± 0.07 (74%) respectively (p < 0.005, p < 0.0001). In addition, antibody depletion studies demonstrated that the bystander killing induced in both A549 and MIA PaCa-2 cells was mediated by the cytokines TNF-α and TGF-β (p < 0.05). Conclusions These data provide evidence that irradiated hEPC can induce strong bystander killing in A549 and MIA PaCa-2 human cancer cells and that this bystander killing is mediated by the cytokines TNF-α and TGF-β.
Collapse
Affiliation(s)
- William T Turchan
- a Department of Radiation Oncology, Radiation and Cancer Biology Laboratory , Indianapolis , IN 46202 , USA
| | - Ronald H Shapiro
- a Department of Radiation Oncology, Radiation and Cancer Biology Laboratory , Indianapolis , IN 46202 , USA
| | - Garrett V Sevigny
- a Department of Radiation Oncology, Radiation and Cancer Biology Laboratory , Indianapolis , IN 46202 , USA
| | - Helen Chin-Sinex
- a Department of Radiation Oncology, Radiation and Cancer Biology Laboratory , Indianapolis , IN 46202 , USA
| | - Benjamin Pruden
- a Department of Radiation Oncology, Radiation and Cancer Biology Laboratory , Indianapolis , IN 46202 , USA
| | - Marc S Mendonca
- a Department of Radiation Oncology, Radiation and Cancer Biology Laboratory , Indianapolis , IN 46202 , USA ;,b Department of Medical and Molecular Genetics , Indiana University School of Medicine , Indianapolis , IN 46202 , USA
| |
Collapse
|
42
|
Ng CYP, Kong EY, Kobayashi A, Suya N, Uchihori Y, Cheng SH, Konishi T, Yu KN. Non-induction of radioadaptive response in zebrafish embryos by neutrons. JOURNAL OF RADIATION RESEARCH 2016; 57:210-219. [PMID: 26850927 PMCID: PMC4915534 DOI: 10.1093/jrr/rrv089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/13/2015] [Accepted: 11/03/2015] [Indexed: 06/05/2023]
Abstract
In vivo neutron-induced radioadaptive response (RAR) was studied using zebrafish (Danio rerio) embryos. The Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility at the National Institute of Radiological Sciences (NIRS), Japan, was employed to provide 2-MeV neutrons. Neutron doses of 0.6, 1, 25, 50 and 100 mGy were chosen as priming doses. An X-ray dose of 2 Gy was chosen as the challenging dose. Zebrafish embryos were dechorionated at 4 h post fertilization (hpf), irradiated with a chosen neutron dose at 5 hpf and the X-ray dose at 10 hpf. The responses of embryos were assessed at 25 hpf through the number of apoptotic signals. None of the neutron doses studied could induce RAR. Non-induction of RAR in embryos having received 0.6- and 1-mGy neutron doses was attributed to neutron-induced hormesis, which maintained the number of damaged cells at below the threshold for RAR induction. On the other hand, non-induction of RAR in embryos having received 25-, 50- and 100-mGy neutron doses was explained by gamma-ray hormesis, which mitigated neutron-induced damages through triggering high-fidelity DNA repair and removal of aberrant cells through apoptosis. Separate experimental results were obtained to verify that high-energy photons could disable RAR. Specifically, 5- or 10-mGy X-rays disabled the RAR induced by a priming dose of 0.88 mGy of alpha particles delivered to 5-hpf zebrafish embryos against a challenging dose of 2 Gy of X-rays delivered to the embryos at 10 hpf.
Collapse
Affiliation(s)
- Candy Y P Ng
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Ave., Kowloon Tong, Hong Kong
| | - Eva Y Kong
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Ave., Kowloon Tong, Hong Kong
| | - Alisa Kobayashi
- Research, Development and Support Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Noriyoshi Suya
- Research, Development and Support Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan
| | - Yukio Uchihori
- Research, Development and Support Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan
| | - Shuk Han Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Ave., Kowloon Tong, Hong Kong State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Ave., Kowloon Tong, Hong Kong
| | - Teruaki Konishi
- Research, Development and Support Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan
| | - Kwan Ngok Yu
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Ave., Kowloon Tong, Hong Kong State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Ave., Kowloon Tong, Hong Kong
| |
Collapse
|
43
|
Burtt JJ, Thompson PA, Lafrenie RM. Non-targeted effects and radiation-induced carcinogenesis: a review. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2016; 36:R23-R35. [PMID: 26910391 DOI: 10.1088/0952-4746/36/1/r23] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Exposure to ionising radiation is clearly associated with an increased risk of developing some types of cancer. However, the contribution of non-targeted effects to cancer development after exposure to ionising radiation is far less clear. The currently used cancer risk model by the international radiation protection community states that any increase in radiation exposure proportionately increases the risk of developing cancer. However, this stochastic cancer risk model does not take into account any contribution from non-targeted effects. Nor does it consider the possibility of a bystander mechanism in the induction of genomic instability. This paper reviews the available evidence to date for a possible role for non-targeted effects to contribute to cancer development after exposure to ionising radiation. An evolution in the understanding of the mechanisms driving non-targeted effects after exposure to ionising radiation is critical to determine the true contribution of non-targeted effects on the risk of developing cancer. Such an evolution will likely only be achievable through coordinated multidisciplinary teams combining several fields of study including: genomics, proteomics, cell biology, molecular epidemiology, and traditional epidemiology.
Collapse
Affiliation(s)
- Julie J Burtt
- Canadian Nuclear Safety Commission, 280 Slater Street, Ottawa, Ontario, K1P 5S9, Canada
| | | | | |
Collapse
|
44
|
Mavragani IV, Laskaratou DA, Frey B, Candéias SM, Gaipl US, Lumniczky K, Georgakilas AG. Key mechanisms involved in ionizing radiation-induced systemic effects. A current review. Toxicol Res (Camb) 2016; 5:12-33. [PMID: 30090323 PMCID: PMC6061884 DOI: 10.1039/c5tx00222b] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/06/2015] [Indexed: 12/11/2022] Open
Abstract
Organisms respond to physical, chemical and biological threats by a potent inflammatory response, aimed at preserving tissue integrity and restoring tissue homeostasis and function. Systemic effects in an organism refer to an effect or phenomenon which originates at a specific point and can spread throughout the body affecting a group of organs or tissues. Ionizing radiation (IR)-induced systemic effects arise usually from a local exposure of an organ or part of the body. This stress induces a variety of responses in the irradiated cells/tissues, initiated by the DNA damage response and DNA repair (DDR/R), apoptosis or immune response, including inflammation. Activation of this IR-response (IRR) system, especially at the organism level, consists of several subsystems and exerts a variety of targeted and non-targeted effects. Based on the above, we believe that in order to understand this complex response system better one should follow a 'holistic' approach including all possible mechanisms and at all organization levels. In this review, we describe the current status of knowledge on the topic, as well as the key molecules and main mechanisms involved in the 'spreading' of the message throughout the body or cells. Last but not least, we discuss the danger-signal mediated systemic immune effects of radiotherapy for the clinical setup.
Collapse
Affiliation(s)
- Ifigeneia V Mavragani
- Physics Department , School of Applied Mathematical and Physical Sciences , National Technical University of Athens (NTUA) , Zografou 15780 , Athens , Greece . ; ; Tel: +30-210-7724453
| | - Danae A Laskaratou
- Physics Department , School of Applied Mathematical and Physical Sciences , National Technical University of Athens (NTUA) , Zografou 15780 , Athens , Greece . ; ; Tel: +30-210-7724453
| | - Benjamin Frey
- Department of Radiation Oncology , University Hospital Erlangen , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Erlangen , Germany
| | - Serge M Candéias
- iRTSV-LCBM , CEA , Grenoble F-38000 , France
- IRTSV-LCBM , CNRS , Grenoble F-38000 , France
- iRTSV-LCBM , Univ. Grenoble Alpes , Grenoble F-38000 , France
| | - Udo S Gaipl
- Department of Radiation Oncology , University Hospital Erlangen , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Erlangen , Germany
| | - Katalin Lumniczky
- Frédéric Joliot-Curie National Research Institute for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Alexandros G Georgakilas
- Physics Department , School of Applied Mathematical and Physical Sciences , National Technical University of Athens (NTUA) , Zografou 15780 , Athens , Greece . ; ; Tel: +30-210-7724453
| |
Collapse
|
45
|
Widel M. Radiation Induced Bystander Effect: From <i>in Vitro</i> Studies to Clinical Application. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/ijmpcero.2016.51001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Martin OA, Yin X, Forrester HB, Sprung CN, Martin RF. Potential strategies to ameliorate risk of radiotherapy-induced second malignant neoplasms. Semin Cancer Biol 2015; 37-38:65-76. [PMID: 26721424 DOI: 10.1016/j.semcancer.2015.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/15/2015] [Accepted: 12/15/2015] [Indexed: 12/18/2022]
Abstract
This review is aimed at the issue of radiation-induced second malignant neoplasms (SMN), which has become an important problem with the increasing success of modern cancer radiotherapy (RT). It is imperative to avoid compromising the therapeutic ratio while addressing the challenge of SMN. The dilemma is illustrated by the role of reactive oxygen species in both the mechanisms of tumor cell kill and of radiation-induced carcinogenesis. We explore the literature focusing on three potential routes of amelioration to address this challenge. An obvious approach to avoiding compromise of the tumor response is the use of radioprotectors or mitigators that are selective for normal tissues. We also explore the opportunities to avoid protection of the tumor by topical/regional radioprotection of normal tissues, although this strategy limits the scope of protection. Finally, we explore the role of the bystander/abscopal phenomenon in radiation carcinogenesis, in association with the inflammatory response. Targeted and non-targeted effects of radiation are both linked to SMN through induction of DNA damage, genome instability and mutagenesis, but differences in the mechanisms and kinetics between targeted and non-targeted effects may provide opportunities to lessen SMN. The agents that could be employed to pursue each of these strategies are briefly reviewed. In many cases, the same agent has potential utility for more than one strategy. Although the parallel problem of chemotherapy-induced SMN shares common features, this review focuses on RT associated SMN. Also, we avoid the burgeoning literature on the endeavor to suppress cancer incidence by use of antioxidants and vitamins either as dietary strategies or supplementation.
Collapse
Affiliation(s)
- Olga A Martin
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia; Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Xiaoyu Yin
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia; Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia.
| | - Helen B Forrester
- Centre for Innate Immunity and Infectious Disease, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia.
| | - Carl N Sprung
- Centre for Innate Immunity and Infectious Disease, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia.
| | - Roger F Martin
- Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
47
|
|
48
|
Kavanagh JN, Waring EJ, Prise KM. Radiation responses of stem cells: targeted and non-targeted effects. RADIATION PROTECTION DOSIMETRY 2015; 166:110-117. [PMID: 25877536 DOI: 10.1093/rpd/ncv161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Stem cells are fundamental to the development of any tissue or organism via their ability to self-renew, which is aided by their unlimited proliferative capacity and their ability to produce fully differentiated offspring, often from multiple lineages. Stems cells are long lived and have the potential to accumulate mutations, including in response to radiation exposure. It is thought that stem cells have the potential to be induced into a cancer stem cell phenotype and that these may play an important role in resistance to radiotherapy. For radiation-induced carcinogenesis, the role of targeted and non-targeted effects is unclear with tissue or origin being important. Studies of genomic instability and bystander responses have shown consistent effects in haematopoietic models. Several models of radiation have predicted that stem cells play an important role in tumour initiation and that bystander responses could play a role in proliferation and self-renewal.
Collapse
Affiliation(s)
- J N Kavanagh
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - E J Waring
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - K M Prise
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| |
Collapse
|
49
|
Kadhim MA, Hill MA. Non-targeted effects of radiation exposure: recent advances and implications. RADIATION PROTECTION DOSIMETRY 2015; 166:118-124. [PMID: 25897137 DOI: 10.1093/rpd/ncv167] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The target theory of radiation-induced effects has been challenged by numerous studies, which indicate that in addition to biological effects resulting from direct DNA damage within the cell, a variety of non-DNA targeted effects (NTE) may make important contributions to the overall outcome. Ionising radiation induces complex, global cellular responses, such as genomic instability (GI) in both irradiated and never-irradiated 'bystander' cells that receive molecular signals produced by irradiated cells. GI is a well-known feature of many cancers, increasing the probability of cells to acquire the 'hallmarks of cancer' during the development of tumours. Although epidemiological data include contributions of both direct and NTE, they lack (i) statistical power at low dose where differences in dose response for NTE and direct effects are likely to be more important and (ii) heterogeneity of non-targeted responses due to genetic variability between individuals. In this article, NTE focussing on GI and bystander effects were critically examined, the specific principles of NTE were discussed and the potential influence on human health risk assessment from low-dose radiation was considered.
Collapse
Affiliation(s)
- M A Kadhim
- Genomic Instability Group, Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK
| | - M A Hill
- CRUK/MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, ORCRB Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|
50
|
Yakovlev VA. Role of nitric oxide in the radiation-induced bystander effect. Redox Biol 2015; 6:396-400. [PMID: 26355395 PMCID: PMC4572387 DOI: 10.1016/j.redox.2015.08.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 11/27/2022] Open
Abstract
Cells that are not irradiated but are affected by “stress signal factors” released from irradiated cells are called bystander cells. These cells, as well as directly irradiated ones, express DNA damage-related proteins and display excess DNA damage, chromosome aberrations, mutations, and malignant transformation. This phenomenon has been studied widely in the past 20 years, since its first description by Nagasawa and Little in 1992, and is known as the radiation-induced bystander effect (RIBE). Several factors have been identified as playing a role in the bystander response. This review will focus on one of them, nitric oxide (NO), and its role in the stimulation and propagation of RIBE. The hydrophobic properties of NO, which permit its diffusion through the cytoplasm and plasma membranes, allow this signaling molecule to easily spread from irradiated cells to bystander cells without the involvement of gap junction intercellular communication. NO produced in irradiated tissues mediates cellular regulation through posttranslational modification of a number of regulatory proteins. The best studied of these modifications are S-nitrosylation (reversible oxidation of cysteine) and tyrosine nitration. These modifications can up- or down-regulate the functions of many proteins modulating different NO-dependent effects. These NO-dependent effects include the stimulation of genomic instability (GI) and the accumulation of DNA errors in bystander cells without direct DNA damage. Ionizing radiation stimulates generation of nitric oxide (NO). NO stimulates genomic instability by inhibiting BRCA1 protein expression. NO can diffuse and stimulate genomic instability in the bystander cells. Propagation of NO from cell-to-cell creates a “mutator fields”. Definition of the “mutator filed” is proposed.
Collapse
Affiliation(s)
- Vasily A Yakovlev
- Department of Radiation Oncology, Massey Cancer Center, Virginia Commonwealth University, VA, USA.
| |
Collapse
|