1
|
Abstract
ATP synthase is an essential enzyme found in all known forms of life, generating the majority of cellular energy via a rotary catalytic mechanism. Here, we describe the in-depth methods for expression, purification, and functional assessment of E. coli ATP synthase.
Collapse
|
2
|
Abstract
F1Fo ATP synthases produce most of the ATP in the cell. F-type ATP synthases have been investigated for more than 50 years, but a full understanding of their molecular mechanisms has become possible only with the recent structures of complete, functionally competent complexes determined by electron cryo-microscopy (cryo-EM). High-resolution cryo-EM structures offer a wealth of unexpected new insights. The catalytic F1 head rotates with the central γ-subunit for the first part of each ATP-generating power stroke. Joint rotation is enabled by subunit δ/OSCP acting as a flexible hinge between F1 and the peripheral stalk. Subunit a conducts protons to and from the c-ring rotor through two conserved aqueous channels. The channels are separated by ∼6 Å in the hydrophobic core of Fo, resulting in a strong local field that generates torque to drive rotary catalysis in F1. The structure of the chloroplast F1Fo complex explains how ATPase activity is turned off at night by a redox switch. Structures of mitochondrial ATP synthase dimers indicate how they shape the inner membrane cristae. The new cryo-EM structures complete our picture of the ATP synthases and reveal the unique mechanism by which they transform an electrochemical membrane potential into biologically useful chemical energy.
Collapse
Affiliation(s)
- Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt, Germany;
| |
Collapse
|
3
|
Nicoludis JM, Gaudet R. Applications of sequence coevolution in membrane protein biochemistry. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:895-908. [PMID: 28993150 PMCID: PMC5807202 DOI: 10.1016/j.bbamem.2017.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/28/2017] [Accepted: 10/02/2017] [Indexed: 12/22/2022]
Abstract
Recently, protein sequence coevolution analysis has matured into a predictive powerhouse for protein structure and function. Direct methods, which use global statistical models of sequence coevolution, have enabled the prediction of membrane and disordered protein structures, protein complex architectures, and the functional effects of mutations in proteins. The field of membrane protein biochemistry and structural biology has embraced these computational techniques, which provide functional and structural information in an otherwise experimentally-challenging field. Here we review recent applications of protein sequence coevolution analysis to membrane protein structure and function and highlight the promising directions and future obstacles in these fields. We provide insights and guidelines for membrane protein biochemists who wish to apply sequence coevolution analysis to a given experimental system.
Collapse
Affiliation(s)
- John M Nicoludis
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, United States.
| |
Collapse
|
4
|
Abstract
Mitochondria are the power stations of the eukaryotic cell, using the energy released by the oxidation of glucose and other sugars to produce ATP. Electrons are transferred from NADH, produced in the citric acid cycle in the mitochondrial matrix, to oxygen by a series of large protein complexes in the inner mitochondrial membrane, which create a transmembrane electrochemical gradient by pumping protons across the membrane. The flow of protons back into the matrix via a proton channel in the ATP synthase leads to conformational changes in the nucleotide binding pockets and the formation of ATP. The three proton pumping complexes of the electron transfer chain are NADH-ubiquinone oxidoreductase or complex I, ubiquinone-cytochrome c oxidoreductase or complex III, and cytochrome c oxidase or complex IV. Succinate dehydrogenase or complex II does not pump protons, but contributes reduced ubiquinone. The structures of complex II, III and IV were determined by x-ray crystallography several decades ago, but complex I and ATP synthase have only recently started to reveal their secrets by advances in x-ray crystallography and cryo-electron microscopy. The complexes I, III and IV occur to a certain extent as supercomplexes in the membrane, the so-called respirasomes. Several hypotheses exist about their function. Recent cryo-electron microscopy structures show the architecture of the respirasome with near-atomic detail. ATP synthase occurs as dimers in the inner mitochondrial membrane, which by their curvature are responsible for the folding of the membrane into cristae and thus for the huge increase in available surface that makes mitochondria the efficient energy plants of the eukaryotic cell.
Collapse
Affiliation(s)
- Joana S Sousa
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Edoardo D'Imprima
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| |
Collapse
|
5
|
Sánchez-Vásquez L, Vázquez-Acevedo M, de la Mora J, Vega-deLuna F, Cardol P, Remacle C, Dreyfus G, González-Halphen D. Near-neighbor interactions of the membrane-embedded subunits of the mitochondrial ATP synthase of a chlorophycean alga. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:497-509. [DOI: 10.1016/j.bbabio.2017.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/25/2017] [Accepted: 04/29/2017] [Indexed: 12/24/2022]
|
6
|
Analysis of an N-terminal deletion in subunit a of the Escherichia coli ATP synthase. J Bioenerg Biomembr 2017; 49:171-181. [PMID: 28078625 DOI: 10.1007/s10863-017-9694-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 01/04/2017] [Indexed: 10/20/2022]
Abstract
Subunit a is a membrane-bound stator subunit of the ATP synthase and is essential for proton translocation. The N-terminus of subunit a in E. coli is localized to the periplasm, and contains a sequence motif that is conserved among some bacteria. Previous work has identified mutations in this region that impair enzyme activity. Here, an internal deletion was constructed in subunit a in which residues 6-20 were replaced by a single lysine residue, and this mutant was unable to grow on succinate minimal medium. Membrane vesicles prepared from this mutant lacked ATP synthesis and ATP-driven proton translocation, even though immunoblots showed a significant level of subunit a. Similar results were obtained after purification and reconstitution of the mutant ATP synthase into liposomes. The location of subunit a with respect to its neighboring subunits b and c was probed by introducing cysteine substitutions that were known to promote cross-linking: a_L207C + c_I55C, a_L121C + b_N4C, and a_T107C + b_V18C. The last pair was unable to form cross-links in the background of the deletion mutant. The results indicate that loss of the N-terminal region of subunit a does not generally disrupt its structure, but does alter interactions with subunit b.
Collapse
|
7
|
Sobti M, Smits C, Wong AS, Ishmukhametov R, Stock D, Sandin S, Stewart AG. Cryo-EM structures of the autoinhibited E. coli ATP synthase in three rotational states. eLife 2016; 5. [PMID: 28001127 PMCID: PMC5214741 DOI: 10.7554/elife.21598] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/15/2016] [Indexed: 12/28/2022] Open
Abstract
A molecular model that provides a framework for interpreting the wealth of functional information obtained on the E. coli F-ATP synthase has been generated using cryo-electron microscopy. Three different states that relate to rotation of the enzyme were observed, with the central stalk’s ε subunit in an extended autoinhibitory conformation in all three states. The Fo motor comprises of seven transmembrane helices and a decameric c-ring and invaginations on either side of the membrane indicate the entry and exit channels for protons. The proton translocating subunit contains near parallel helices inclined by ~30° to the membrane, a feature now synonymous with rotary ATPases. For the first time in this rotary ATPase subtype, the peripheral stalk is resolved over its entire length of the complex, revealing the F1 attachment points and a coiled-coil that bifurcates toward the membrane with its helices separating to embrace subunit a from two sides. DOI:http://dx.doi.org/10.7554/eLife.21598.001 ATP synthase is a biological motor that produces a molecule called adenosine tri-phosphate (ATP for short), which acts as the major store of chemical energy in cells. A single molecule of ATP contains three phosphate groups: the cell can remove one of these phosphates to make a molecule called adenosine di-phosphate (ADP) and release energy to drive a variety of biological processes. ATP synthase sits in the membranes that separate cell compartments or form barriers around cells. When cells break down food they transport hydrogen ions across these membranes so that each side of the membrane has a different level (or “concentration”) of hydrogen ions. Movement of hydrogen ions from an area with a high concentration to a low concentration causes ATP synthase to rotate like a turbine. This rotation of the enzyme results in ATP synthase adding a phosphate group to ADP to make a new molecule of ATP. In certain conditions cells need to switch off the ATP synthase and this is done by changing the shape of the central shaft in a process called autoinhibition, which blocks the rotation. The ATP synthase from a bacterium known as E. coli – which is commonly found in the human gut –has been used as a model to study how this biological motor works. However, since the precise details of the three-dimensional structure of ATP synthase have remained unclear it has been difficult to interpret the results of these studies. Sobti et al. used a technique called Cryo-electron microscopy to investigate the structure of ATP synthase from E. coli. This made it possible to develop a three-dimensional model of the ATP synthase in its autoinhibited form. The structural data could also be split into three distinct shapes that relate to dwell points in the rotation of the motor where the rotation has been inhibited. These models further our understanding of ATP synthases and provide a template to understand the findings of previous studies. Further work will be needed to understand this essential biological process at the atomic level in both its inhibited and uninhibited form. This will reveal the inner workings of a marvel of the natural world and may also lead to the discovery of new antibiotics against related bacteria that cause diseases in humans. DOI:http://dx.doi.org/10.7554/eLife.21598.002
Collapse
Affiliation(s)
- Meghna Sobti
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Callum Smits
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Andrew Sw Wong
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Robert Ishmukhametov
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, United Kingdom
| | - Daniela Stock
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Sara Sandin
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Alastair G Stewart
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,Faculty of Medicine, The University of New South Wales, Sydney, Australia
| |
Collapse
|
8
|
Leone V, Faraldo-Gómez JD. Structure and mechanism of the ATP synthase membrane motor inferred from quantitative integrative modeling. J Gen Physiol 2016; 148:441-457. [PMID: 27821609 PMCID: PMC5129741 DOI: 10.1085/jgp.201611679] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/13/2016] [Indexed: 01/31/2023] Open
Abstract
The ATP synthase is a molecular rotor that recycles ADP into ATP. Leone and Faraldo-Gómez use structural modeling to reinterpret and reconcile recent cryo-EM data for its membrane domain with other experimental evidence, gaining insights into its mechanism and the mode of inhibition by oligomycin. Two subunits within the transmembrane domain of the ATP synthase—the c-ring and subunit a—energize the production of 90% of cellular ATP by transducing an electrochemical gradient of H+ or Na+ into rotational motion. The nature of this turbine-like energy conversion mechanism has been elusive for decades, owing to the lack of definitive structural information on subunit a or its c-ring interface. In a recent breakthrough, several structures of this complex were resolved by cryo–electron microscopy (cryo-EM), but the modest resolution of the data has led to divergent interpretations. Moreover, the unexpected architecture of the complex has cast doubts on a wealth of earlier biochemical analyses conducted to probe this structure. Here, we use quantitative molecular-modeling methods to derive a structure of the a–c complex that is not only objectively consistent with the cryo-EM data, but also with correlated mutation analyses of both subunits and with prior cross-linking and cysteine accessibility measurements. This systematic, integrative approach reveals unambiguously the topology of subunit a and its relationship with the c-ring. Mapping of known Cd2+ block sites and conserved protonatable residues onto the structure delineates two noncontiguous pathways across the complex, connecting two adjacent proton-binding sites in the c-ring to the space on either side of the membrane. The location of these binding sites and of a strictly conserved arginine on subunit a, which serves to prevent protons from hopping between them, explains the directionality of the rotary mechanism and its strict coupling to the proton-motive force. Additionally, mapping of mutations conferring resistance to oligomycin unexpectedly reveals that this prototypical inhibitor may bind to two distinct sites at the a–c interface, explaining its ability to block the mechanism of the enzyme irrespective of the direction of rotation of the c-ring. In summary, this study is a stepping stone toward establishing the mechanism of the ATP synthase at the atomic level.
Collapse
Affiliation(s)
- Vanessa Leone
- Theoretical Molecular Biophysics Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - José D Faraldo-Gómez
- Theoretical Molecular Biophysics Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
9
|
Hahn A, Parey K, Bublitz M, Mills DJ, Zickermann V, Vonck J, Kühlbrandt W, Meier T. Structure of a Complete ATP Synthase Dimer Reveals the Molecular Basis of Inner Mitochondrial Membrane Morphology. Mol Cell 2016; 63:445-56. [PMID: 27373333 PMCID: PMC4980432 DOI: 10.1016/j.molcel.2016.05.037] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/21/2016] [Accepted: 05/26/2016] [Indexed: 11/28/2022]
Abstract
We determined the structure of a complete, dimeric F1Fo-ATP synthase from yeast Yarrowia lipolytica mitochondria by a combination of cryo-EM and X-ray crystallography. The final structure resolves 58 of the 60 dimer subunits. Horizontal helices of subunit a in Fo wrap around the c-ring rotor, and a total of six vertical helices assigned to subunits a, b, f, i, and 8 span the membrane. Subunit 8 (A6L in human) is an evolutionary derivative of the bacterial b subunit. On the lumenal membrane surface, subunit f establishes direct contact between the two monomers. Comparison with a cryo-EM map of the F1Fo monomer identifies subunits e and g at the lateral dimer interface. They do not form dimer contacts but enable dimer formation by inducing a strong membrane curvature of ∼100°. Our structure explains the structural basis of cristae formation in mitochondria, a landmark signature of eukaryotic cell morphology. Cryo-EM structure of a yeast F1Fo-ATP synthase dimer Inhibitor-free X-ray structure of the F1 head and rotor complex Mechanism of ATP generation by rotary catalysis Structural basis of cristae formation in the inner mitochondrial membrane
Collapse
Affiliation(s)
- Alexander Hahn
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | - Kristian Parey
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | - Maike Bublitz
- Institute of Biochemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Deryck J Mills
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | - Volker Zickermann
- Institute of Biochemistry II, Medical School, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany.
| | - Thomas Meier
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
10
|
Kühlbrandt W, Davies KM. Rotary ATPases: A New Twist to an Ancient Machine. Trends Biochem Sci 2015; 41:106-116. [PMID: 26671611 DOI: 10.1016/j.tibs.2015.10.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 01/15/2023]
Abstract
Rotary ATPases are energy-converting nanomachines found in the membranes of all living organisms. The mechanism by which proton translocation through the membrane drives ATP synthesis, or how ATP hydrolysis generates a transmembrane proton gradient, has been unresolved for decades because the structure of a critical subunit in the membrane was unknown. Electron cryomicroscopy (cryoEM) studies of two rotary ATPases have now revealed a hairpin of long, horizontal, membrane-intrinsic α-helices in the a-subunit next to the c-ring rotor. The horizontal helices create a pair of aqueous half-channels in the membrane that provide access to the proton-binding sites in the rotor ring. These recent findings help to explain the highly conserved mechanism of ion translocation by rotary ATPases.
Collapse
Affiliation(s)
- Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany.
| | - Karen M Davies
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany
| |
Collapse
|
11
|
Abstract
The F1F0-ATP synthase (EC 3.6.1.34) is a remarkable enzyme that functions as a rotary motor. It is found in the inner membranes of Escherichia coli and is responsible for the synthesis of ATP in response to an electrochemical proton gradient. Under some conditions, the enzyme functions reversibly and uses the energy of ATP hydrolysis to generate the gradient. The ATP synthase is composed of eight different polypeptide subunits in a stoichiometry of α3β3γδεab2c10. Traditionally they were divided into two physically separable units: an F1 that catalyzes ATP hydrolysis (α3β3γδε) and a membrane-bound F0 sector that transports protons (ab2c10). In terms of rotary function, the subunits can be divided into rotor subunits (γεc10) and stator subunits (α3β3δab2). The stator subunits include six nucleotide binding sites, three catalytic and three noncatalytic, formed primarily by the β and α subunits, respectively. The stator also includes a peripheral stalk composed of δ and b subunits, and part of the proton channel in subunit a. Among the rotor subunits, the c subunits form a ring in the membrane, and interact with subunit a to form the proton channel. Subunits γ and ε bind to the c-ring subunits, and also communicate with the catalytic sites through interactions with α and β subunits. The eight subunits are expressed from a single operon, and posttranscriptional processing and translational regulation ensure that the polypeptides are made at the proper stoichiometry. Recent studies, including those of other species, have elucidated many structural and rotary properties of this enzyme.
Collapse
|
12
|
Abstract
Oxygenic photosynthesis is the principal converter of sunlight into chemical energy. Cyanobacteria and plants provide aerobic life with oxygen, food, fuel, fibers, and platform chemicals. Four multisubunit membrane proteins are involved: photosystem I (PSI), photosystem II (PSII), cytochrome b6f (cyt b6f), and ATP synthase (FOF1). ATP synthase is likewise a key enzyme of cell respiration. Over three billion years, the basic machinery of oxygenic photosynthesis and respiration has been perfected to minimize wasteful reactions. The proton-driven ATP synthase is embedded in a proton tight-coupling membrane. It is composed of two rotary motors/generators, FO and F1, which do not slip against each other. The proton-driven FO and the ATP-synthesizing F1 are coupled via elastic torque transmission. Elastic transmission decouples the two motors in kinetic detail but keeps them perfectly coupled in thermodynamic equilibrium and (time-averaged) under steady turnover. Elastic transmission enables operation with different gear ratios in different organisms.
Collapse
Affiliation(s)
- Wolfgang Junge
- Department of Biophysics, Universität Osnabrück, DE-49069 Osnabrück, Germany;
| | | |
Collapse
|
13
|
Horizontal membrane-intrinsic α-helices in the stator a-subunit of an F-type ATP synthase. Nature 2015; 521:237-40. [PMID: 25707805 DOI: 10.1038/nature14185] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/29/2014] [Indexed: 12/12/2022]
Abstract
ATP, the universal energy currency of cells, is produced by F-type ATP synthases, which are ancient, membrane-bound nanomachines. F-type ATP synthases use the energy of a transmembrane electrochemical gradient to generate ATP by rotary catalysis. Protons moving across the membrane drive a rotor ring composed of 8-15 c-subunits. A central stalk transmits the rotation of the c-ring to the catalytic F1 head, where a series of conformational changes results in ATP synthesis. A key unresolved question in this fundamental process is how protons pass through the membrane to drive ATP production. Mitochondrial ATP synthases form V-shaped homodimers in cristae membranes. Here we report the structure of a native and active mitochondrial ATP synthase dimer, determined by single-particle electron cryomicroscopy at 6.2 Å resolution. Our structure shows four long, horizontal membrane-intrinsic α-helices in the a-subunit, arranged in two hairpins at an angle of approximately 70° relative to the c-ring helices. It has been proposed that a strictly conserved membrane-embedded arginine in the a-subunit couples proton translocation to c-ring rotation. A fit of the conserved carboxy-terminal a-subunit sequence places the conserved arginine next to a proton-binding c-subunit glutamate. The map shows a slanting solvent-accessible channel that extends from the mitochondrial matrix to the conserved arginine. Another hydrophilic cavity on the lumenal membrane surface defines a direct route for the protons to an essential histidine-glutamate pair. Our results provide unique new insights into the structure and function of rotary ATP synthases and explain how ATP production is coupled to proton translocation.
Collapse
|
14
|
Matthies D, Zhou W, Klyszejko AL, Anselmi C, Yildiz Ö, Brandt K, Müller V, Faraldo-Gómez JD, Meier T. High-resolution structure and mechanism of an F/V-hybrid rotor ring in a Na⁺-coupled ATP synthase. Nat Commun 2014; 5:5286. [PMID: 25381992 PMCID: PMC4228694 DOI: 10.1038/ncomms6286] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 09/16/2014] [Indexed: 01/03/2023] Open
Abstract
All rotary ATPases catalyse the interconversion of ATP and ADP-Pi through a mechanism that is coupled to the transmembrane flow of H(+) or Na(+). Physiologically, however, F/A-type enzymes specialize in ATP synthesis driven by downhill ion diffusion, while eukaryotic V-type ATPases function as ion pumps. To begin to rationalize the molecular basis for this functional differentiation, we solved the crystal structure of the Na(+)-driven membrane rotor of the Acetobacterium woodii ATP synthase, at 2.1 Å resolution. Unlike known structures, this rotor ring is a 9:1 heteromer of F- and V-type c-subunits and therefore features a hybrid configuration of ion-binding sites along its circumference. Molecular and kinetic simulations are used to dissect the mechanisms of Na(+) recognition and rotation of this c-ring, and to explain the functional implications of the V-type c-subunit. These structural and mechanistic insights indicate an evolutionary path between synthases and pumps involving adaptations in the rotor ring.
Collapse
Affiliation(s)
- Doreen Matthies
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | - Wenchang Zhou
- Theoretical Molecular Biophysics Section, National Heart, Lung and Blood Institute, National Institutes of Health, Building 5635FL, Suite T-800, Bethesda, Maryland 20892, USA
| | - Adriana L Klyszejko
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | - Claudio Anselmi
- Theoretical Molecular Biophysics Section, National Heart, Lung and Blood Institute, National Institutes of Health, Building 5635FL, Suite T-800, Bethesda, Maryland 20892, USA
| | - Özkan Yildiz
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | - Karsten Brandt
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Volker Müller
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - José D Faraldo-Gómez
- 1] Theoretical Molecular Biophysics Section, National Heart, Lung and Blood Institute, National Institutes of Health, Building 5635FL, Suite T-800, Bethesda, Maryland 20892, USA [2] Cluster of Excellence Macromolecular Complexes, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Thomas Meier
- 1] Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany [2] Cluster of Excellence Macromolecular Complexes, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| |
Collapse
|
15
|
Interacting cytoplasmic loops of subunits a and c of Escherichia coli F1F0 ATP synthase gate H+ transport to the cytoplasm. Proc Natl Acad Sci U S A 2014; 111:16730-5. [PMID: 25385585 DOI: 10.1073/pnas.1414660111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
H(+)-transporting F1F0 ATP synthase catalyzes the synthesis of ATP via coupled rotary motors within F0 and F1. H(+) transport at the subunit a-c interface in transmembranous F0 drives rotation of a cylindrical c10 oligomer within the membrane, which is coupled to rotation of subunit γ within the α3β3 sector of F1 to mechanically drive ATP synthesis. F1F0 functions in a reversible manner, with ATP hydrolysis driving H(+) transport. ATP-driven H(+) transport in a select group of cysteine mutants in subunits a and c is inhibited after chelation of Ag(+) and/or Cd(+2) with the substituted sulfhydryl groups. The H(+) transport pathway mapped via these Ag(+)(Cd(+2))-sensitive Cys extends from the transmembrane helices (TMHs) of subunits a and c into cytoplasmic loops connecting the TMHs, suggesting these loop regions could be involved in gating H(+) release to the cytoplasm. Here, using select loop-region Cys from the single cytoplasmic loop of subunit c and multiple cytoplasmic loops of subunit a, we show that Cd(+2) directly inhibits passive H(+) transport mediated by F0 reconstituted in liposomes. Further, in extensions of previous studies, we show that the regions mediating passive H(+) transport can be cross-linked to each other. We conclude that the loop-regions in subunits a and c that are implicated in H(+) transport likely interact in a single structural domain, which then functions in gating H(+) release to the cytoplasm.
Collapse
|
16
|
Fillingame RH, Steed PR. Half channels mediating H+ transport and the mechanism of gating in the Fo sector of Escherichia coli F1Fo ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1063-8. [DOI: 10.1016/j.bbabio.2014.03.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/06/2014] [Accepted: 03/10/2014] [Indexed: 11/29/2022]
|
17
|
Steed PR, Fillingame RH. Residues in the polar loop of subunit c in Escherichia coli ATP synthase function in gating proton transport to the cytoplasm. J Biol Chem 2013; 289:2127-38. [PMID: 24297166 DOI: 10.1074/jbc.m113.527879] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rotary catalysis in F1F0 ATP synthase is powered by proton translocation through the membrane-embedded F0 sector. Proton binding and release occur in the middle of the membrane at Asp-61 on the second transmembrane helix (TMH) of subunit c, which folds in a hairpin-like structure with two TMHs. Previously, the aqueous accessibility of Cys substitutions in the transmembrane regions of subunit c was probed by testing the inhibitory effects of Ag(+) or Cd(2+) on function, which revealed extensive aqueous access in the region around Asp-61 and on the half of TMH2 extending to the cytoplasm. In the current study, we surveyed the Ag(+) and Cd(2+) sensitivity of Cys substitutions in the loop of the helical hairpin and used a variety of assays to categorize the mechanisms by which Ag(+) or Cd(2+) chelation with the Cys thiolates caused inhibition. We identified two distinct metal-sensitive regions in the cytoplasmic loop where function was inhibited by different mechanisms. Metal binding to Cys substitutions in the N-terminal half of the loop resulted in an uncoupling of F1 from F0 with release of F1 from the membrane. In contrast, substitutions in the C-terminal half of the loop retained membrane-bound F1 after metal treatment. In several of these cases, inhibition was shown to be due to blockage of passive H(+) translocation through F0 as assayed with F0 reconstituted into liposomes. The results suggest that the C-terminal domain of the cytoplasmic loop may function in gating H(+) translocation to the cytoplasm.
Collapse
Affiliation(s)
- P Ryan Steed
- From the Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706
| | | |
Collapse
|
18
|
Moore KJ, Fillingame RH. Obstruction of transmembrane helical movements in subunit a blocks proton pumping by F1Fo ATP synthase. J Biol Chem 2013; 288:25535-25541. [PMID: 23864659 DOI: 10.1074/jbc.m113.496794] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Subunit a plays a key role in promoting H(+) transport-coupled rotary motion of the subunit c ring in F1Fo ATP synthase. H(+) binding and release occur at Asp-61 in the middle of the second transmembrane helix (TMH) of Fo subunit c. H(+) are thought to reach cAsp61 via aqueous half-channels formed by TMHs 2-5 of subunit a. Movements of TMH4 and TMH5 have been proposed to facilitate protonation of cAsp61 from a half channel centered in a four helix bundle at the periplasmic side of subunit a. The possible necessity of these proposed TMH movements was investigated by assaying ATP driven H(+) pumping function before and after cross-linking paired Cys substitutions at the center of TMHs within subunit a. The cross-linking of the Cys pairs aG218C/I248C in TMH4 and TMH5, and aL120C/H245C in TMH2 and TMH5, inhibited H(+) pumping by 85-90%. H(+) pumping function was largely unaffected by modification of the same Cys residues in the absence of cross-link formation. The inhibition is consistent with the proposed requirement for TMH movements during the gating of periplasmic H(+) access to cAsp61. The cytoplasmic loops of subunit a have been implicated in gating H(+) release to the cytoplasm, and previous cross-linking experiments suggest that the chemically reactive regions of the loops may pack as a single domain. Here we show that Cys substitutions in these domains can be cross-linked with retention of function and conclude that these domains need not undergo large conformational changes during enzyme function.
Collapse
Affiliation(s)
- Kyle J Moore
- From the Department of Biomolecular Chemistry, School of Medicine, and Public Health, University of Wisconsin, Madison, Wisconsin 53706
| | - Robert H Fillingame
- From the Department of Biomolecular Chemistry, School of Medicine, and Public Health, University of Wisconsin, Madison, Wisconsin 53706.
| |
Collapse
|
19
|
Ekberg K, Wielandt AG, Buch-Pedersen MJ, Palmgren MG. A conserved asparagine in a P-type proton pump is required for efficient gating of protons. J Biol Chem 2013; 288:9610-9618. [PMID: 23420846 DOI: 10.1074/jbc.m112.417345] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The minimal proton pumping machinery of the Arabidopsis thaliana P-type plasma membrane H(+)-ATPase isoform 2 (AHA2) consists of an aspartate residue serving as key proton donor/acceptor (Asp-684) and an arginine residue controlling the pKa of the aspartate. However, other important aspects of the proton transport mechanism such as gating, and the ability to occlude protons, are still unclear. An asparagine residue (Asn-106) in transmembrane segment 2 of AHA2 is conserved in all P-type plasma membrane H(+)-ATPases. In the crystal structure of the plant plasma membrane H(+)-ATPase, this residue is located in the putative ligand entrance pathway, in close proximity to the central proton donor/acceptor Asp-684. Substitution of Asn-106 resulted in mutant enzymes with significantly reduced ability to transport protons against a membrane potential. Sensitivity toward orthovanadate was increased when Asn-106 was substituted with an aspartate residue, but decreased in mutants with alanine, lysine, glutamine, or threonine replacement of Asn-106. The apparent proton affinity was decreased for all mutants, most likely due to a perturbation of the local environment of Asp-684. Altogether, our results demonstrate that Asn-106 is important for closure of the proton entrance pathway prior to proton translocation across the membrane.
Collapse
Affiliation(s)
- Kira Ekberg
- Department of Plant and Environmental Sciences, Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| | - Alex G Wielandt
- Department of Plant and Environmental Sciences, Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| | - Morten J Buch-Pedersen
- Department of Plant and Environmental Sciences, Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| | - Michael G Palmgren
- Department of Plant and Environmental Sciences, Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark.
| |
Collapse
|
20
|
DeLeon-Rangel J, Ishmukhametov RR, Jiang W, Fillingame RH, Vik SB. Interactions between subunits a and b in the rotary ATP synthase as determined by cross-linking. FEBS Lett 2013; 587:892-7. [PMID: 23416299 DOI: 10.1016/j.febslet.2013.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/01/2013] [Accepted: 02/04/2013] [Indexed: 11/30/2022]
Abstract
The interaction of the membrane traversing stator subunits a and b of the rotary ATP synthase was probed by substitution of a single Cys into each subunit with subsequent Cu(2+) catalyzed cross-linking. Extensive interaction between the transmembrane (TM) region of one b subunit and TM2 of subunit a was indicated by cross-linking with 6 Cys pairs introduced into these regions. Additional disulfide cross-linking was observed between the N-terminus of subunit b and the periplasmic loop connecting TM4 and TM5 of subunit a. Finally, benzophenone-4-maleimide derivatized Cys in the 2-3 periplasmic loop of subunit a were shown to cross-link with the periplasmic N-terminal region of subunit b. These experiments help to define the juxtaposition of subunits b and a in the ATP synthase.
Collapse
Affiliation(s)
- Jessica DeLeon-Rangel
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | | | | | | | | |
Collapse
|
21
|
Sielaff H, Börsch M. Twisting and subunit rotation in single F(O)(F1)-ATP synthase. Philos Trans R Soc Lond B Biol Sci 2012; 368:20120024. [PMID: 23267178 DOI: 10.1098/rstb.2012.0024] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
F(O)F(1)-ATP synthases are ubiquitous proton- or ion-powered membrane enzymes providing ATP for all kinds of cellular processes. The mechanochemistry of catalysis is driven by two rotary nanomotors coupled within the enzyme. Their different step sizes have been observed by single-molecule microscopy including videomicroscopy of fluctuating nanobeads attached to single enzymes and single-molecule Förster resonance energy transfer. Here we review recent developments of approaches to monitor the step size of subunit rotation and the transient elastic energy storage mechanism in single F(O)F(1)-ATP synthases.
Collapse
Affiliation(s)
- Hendrik Sielaff
- Single-Molecule Microscopy Group, Jena University Hospital, Nonnenplan 2-4, 07743 Jena, Germany
| | | |
Collapse
|
22
|
Gohlke H, Schlieper D, Groth G. Resolving the negative potential side (n-side) water-accessible proton pathway of F-type ATP synthase by molecular dynamics simulations. J Biol Chem 2012; 287:36536-43. [PMID: 22942277 DOI: 10.1074/jbc.m112.398396] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The rotation of F(1)F(o)-ATP synthase is powered by the proton motive force across the energy-transducing membrane. The protein complex functions like a turbine; the proton flow drives the rotation of the c-ring of the transmembrane F(o) domain, which is coupled to the ATP-producing F(1) domain. The hairpin-structured c-protomers transport the protons by reversible protonation/deprotonation of a conserved Asp/Glu at the outer transmembrane helix (TMH). An open question is the proton transfer pathway through the membrane at atomic resolution. The protons are thought to be transferred via two half-channels to and from the conserved cAsp/Glu in the middle of the membrane. By molecular dynamics simulations of c-ring structures in a lipid bilayer, we mapped a water channel as one of the half-channels. We also analyzed the suppressor mutant cP24D/E61G in which the functional carboxylate is shifted to the inner TMH of the c-protomers. Current models concentrating on the "locked" and "open" conformations of the conserved carboxylate side chain are unable to explain the molecular function of this mutant. Our molecular dynamics simulations revealed an extended water channel with additional water molecules bridging the distance of the outer to the inner TMH. We suggest that the geometry of the water channel is an important feature for the molecular function of the membrane part of F(1)F(o)-ATP synthase. The inclination of the proton pathway isolates the two half-channels and may contribute to a favorable clockwise rotation in ATP synthesis mode.
Collapse
Affiliation(s)
- Holger Gohlke
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, 40204 Düsseldorf, Germany
| | | | | |
Collapse
|
23
|
Structural study on the architecture of the bacterial ATP synthase Fo motor. Proc Natl Acad Sci U S A 2012; 109:E2050-6. [PMID: 22736796 DOI: 10.1073/pnas.1203971109] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We purified the F(o) complex from the Ilyobacter tartaricus Na(+)-translocating F(1)F(o)-ATP synthase and performed a biochemical and structural study. Laser-induced liquid bead ion desorption MS analysis demonstrates that all three subunits of the isolated F(o) complex were present and in native stoichiometry (ab(2)c(11)). Cryoelectron microscopy of 2D crystals yielded a projection map at a resolution of 7.0 Å showing electron densities from the c(11) rotor ring and up to seven adjacent helices. A bundle of four helices belongs to the stator a-subunit and is in contact with c(11). A fifth helix adjacent to the four-helix bundle interacts very closely with a c-subunit helix, which slightly shifts its position toward the ring center. Atomic force microscopy confirms the presence of the F(o) stator, and a height profile reveals that it protrudes less from the membrane than c(11). The data limit the dimensions of the subunit a/c-ring interface: Three helices from the stator region are in contact with three c(11) helices. The location and distances of the stator helices impose spatial restrictions on the bacterial F(o) complex.
Collapse
|
24
|
Pierson HE, Uhlemann EME, Dmitriev OY. Interaction with monomeric subunit c drives insertion of ATP synthase subunit a into the membrane and primes a-c complex formation. J Biol Chem 2011; 286:38583-38591. [PMID: 21900248 DOI: 10.1074/jbc.m111.294868] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Subunit a is the main part of the membrane stator of the ATP synthase molecular turbine. Subunit c is the building block of the membrane rotor. We have generated two molecular fusions of a and c subunits with different orientations of the helical hairpin of subunit c. The a/c fusion protein with correct orientation of transmembrane helices was inserted into the membrane, and co-incorporated into the F(0) complex of ATP synthase with wild type subunit c. The fused c subunit was incorporated into the c-ring tethering the ATP synthase rotor to the stator. The a/c fusion with incorrect orientation of the c-helices required wild type subunit c for insertion into the membrane. In this case, the fused c subunit remained on the periphery of the c-ring and did not interfere with rotor movement. Wild type subunit a inserted into the membrane equally well with wild type subunit c and c-ring assembly mutants that remained monomeric in the membrane. These results show that interaction with monomeric subunit c triggers insertion of subunit a into the membrane, and initiates formation of the a-c complex, the ion-translocating module of the ATP synthase. Correct assembly of the ATP synthase incorporating topologically correct fusion of subunits a and c validates using this model protein for high resolution structural studies of the ATP synthase proton channel.
Collapse
Affiliation(s)
- Hannah E Pierson
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Eva-Maria E Uhlemann
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Oleg Y Dmitriev
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| |
Collapse
|
25
|
Structure of the rotor ring modified with N,N'-dicyclohexylcarbodiimide of the Na+-transporting vacuolar ATPase. Proc Natl Acad Sci U S A 2011; 108:13474-9. [PMID: 21813759 DOI: 10.1073/pnas.1103287108] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The prokaryotic V-ATPase of Enterococcus hirae, closely related to the eukaryotic enzymes, provides a unique opportunity to study the ion-translocation mechanism because it transports Na(+), which can be detected by radioisotope (22Na(+)) experiments and X-ray crystallography. In this study, we demonstrated that the binding affinity of the rotor ring (K ring) for 22Na(+) decreased approximately 30-fold by reaction with N,N(')-dicyclohexylcarbodiimide (DCCD), and determined the crystal structures of Na(+)-bound and Na(+)-unbound K rings modified with DCCD at 2.4- and 3.1-Å resolutions, respectively. Overall these structures were similar, indicating that there is no global conformational change associated with release of Na(+) from the DCCD-K ring. A conserved glutamate residue (E139) within all 10 ion-binding pockets of the K ring was neutralized by modification with DCCD, and formed an "open" conformation by losing hydrogen bonds with the Y68 and T64 side chains, resulting in low affinity for Na(+). This open conformation is likely to be comparable to that of neutralized E139 forming a salt bridge with the conserved arginine of the stator during the ion-translocation process. Based on these findings, we proposed the ion-translocation model that the binding affinity for Na(+) decreases due to the neutralization of E139, thus releasing bound Na(+), and that the structures of Na(+)-bound and Na(+)-unbound DCCD-K rings are corresponding to intermediate states before and after release of Na(+) during rotational catalysis of V-ATPase, respectively.
Collapse
|
26
|
Affiliation(s)
- Ross E. Dalbey
- The Ohio State University, Department of Chemistry, Columbus, Ohio 43210;
| | - Peng Wang
- The Ohio State University, Department of Chemistry, Columbus, Ohio 43210;
| | - Andreas Kuhn
- Institute of Microbiology and Molecular Biology, University of Hohenheim, 70599 Stuttgart, Germany;
| |
Collapse
|
27
|
Meinke G, Phelan P, Fradet-Turcotte A, Archambault J, Bullock PA. Structure-based design of a disulfide-linked oligomeric form of the simian virus 40 (SV40) large T antigen DNA-binding domain. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:560-7. [PMID: 21636896 PMCID: PMC3107053 DOI: 10.1107/s0907444911014302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 04/16/2011] [Indexed: 12/13/2022]
Abstract
The modular multifunctional protein large T antigen (T-ag) from simian virus 40 orchestrates many of the events needed for replication of the viral double-stranded DNA genome. This protein assembles into single and double hexamers on specific DNA sequences located at the origin of replication. This complicated process begins when the origin-binding domain of large T antigen (T-ag ODB) binds the GAGGC sequences in the central region (site II) of the viral origin of replication. While many of the functions of purified T-ag OBD can be studied in isolation, it is primarily monomeric in solution and cannot assemble into hexamers. To overcome this limitation, the possibility of engineering intermolecular disulfide bonds in the origin-binding domain which could oligomerize in solution was investigated. A recent crystal structure of the wild-type T-ag OBD showed that this domain forms a left-handed spiral in the crystal with six subunits per turn. Therefore, we analyzed the protein interface of this structure and identified two residues that could potentially support an intermolecular disulfide bond if changed to cysteines. SDS-PAGE analysis established that the mutant T-ag OBD formed higher oligomeric products in a redox-dependent manner. In addition, the 1.7 Å resolution crystal structure of the engineered disulfide-linked T-ag OBD is reported, which establishes that oligomerization took place in the expected manner.
Collapse
Affiliation(s)
- Gretchen Meinke
- Department of Biochemistry, Tufts School of Medicine and the Sackler School of Graduate Biomedical Sciences, 136 Harrison Avenue, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
AbstractThe rotary ATPase family of membrane protein complexes may have only three members, but each one plays a fundamental role in biological energy conversion. The F1Fo-ATPase (F-ATPase) couples ATP synthesis to the electrochemical membrane potential in bacteria, mitochondria and chloroplasts, while the vacuolar H+-ATPase (V-ATPase) operates as an ATP-driven proton pump in eukaryotic membranes. In different species of archaea and bacteria, the A1Ao-ATPase (A-ATPase) can function as either an ATP synthase or an ion pump. All three of these multi-subunit complexes are rotary molecular motors, sharing a fundamentally similar mechanism in which rotational movement drives the energy conversion process. By analogy to macroscopic systems, individual subunits can be assigned to rotor, axle or stator functions. Recently, three-dimensional reconstructions from electron microscopy and single particle image processing have led to a significant step forward in understanding of the overall architecture of all three forms of these complexes and have allowed the organisation of subunits within the rotor and stator parts of the motors to be more clearly mapped out. This review describes the emerging consensus regarding the organisation of the rotor and stator components of V-, A- and F-ATPases, examining core similarities that point to a common evolutionary origin, and highlighting key differences. In particular, it discusses how newly revealed variation in the complexity of the inter-domain connections may impact on the mechanics and regulation of these molecular machines.
Collapse
|
29
|
Ishmukhametov R, Hornung T, Spetzler D, Frasch WD. Direct observation of stepped proteolipid ring rotation in E. coli F₀F₁-ATP synthase. EMBO J 2010; 29:3911-23. [PMID: 21037553 DOI: 10.1038/emboj.2010.259] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 09/21/2010] [Indexed: 11/09/2022] Open
Abstract
Although single-molecule experiments have provided mechanistic insight for several molecular motors, these approaches have proved difficult for membrane bound molecular motors like the F₀F₁-ATP synthase, in which proton transport across a membrane is used to synthesize ATP. Resolution of smaller steps in F₀ has been particularly hampered by signal-to-noise and time resolution. Here, we show the presence of a transient dwell between F₀ subunits a and c by improving the time resolution to 10 μs at unprecedented S/N, and by using Escherichia coli F₀F₁ embedded in lipid bilayer nanodiscs. The transient dwell interaction requires 163 μs to form and 175 μs to dissociate, is independent of proton transport residues aR210 and cD61, and behaves as a leash that allows rotary motion of the c-ring to a limit of ∼36° while engaged. This leash behaviour satisfies a requirement of a Brownian ratchet mechanism for the F₀ motor where c-ring rotational diffusion is limited to 36°.
Collapse
Affiliation(s)
- Robert Ishmukhametov
- Faculty of Biomedicine and Biotechnology, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | |
Collapse
|
30
|
Dong H, Fillingame RH. Chemical reactivities of cysteine substitutions in subunit a of ATP synthase define residues gating H+ transport from each side of the membrane. J Biol Chem 2010; 285:39811-8. [PMID: 20943664 DOI: 10.1074/jbc.m110.175844] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Subunit a plays a key role in coupling H(+) transport to rotations of the subunit c-ring in F(1)F(o) ATP synthase. In Escherichia coli, H(+) binding and release occur at Asp-61 in the middle of the second transmembrane helix (TMH) of F(o) subunit c. Based upon the Ag(+) sensitivity of Cys substituted into subunit a, H(+) are thought to reach Asp-61 via aqueous pathways mapping to surfaces of TMH 2-5. In this study we have extended characterization of the most Ag(+)-sensitive residues in subunit a with cysteine reactive methanethiosulfonate (MTS) reagents and Cd(2+). The effect of these reagents on ATPase-coupled H(+) transport was measured using inside-out membrane vesicles. Cd(2+) inhibited the activity of all Ag(+)-sensitive Cys on the cytoplasmic side of the TMHs, and three of these substitutions were also sensitive to inhibition by MTS reagents. On the other hand, Cd(2+) did not inhibit the activities of substitutions at residues 119 and 120 on the periplasmic side of TMH2, and residues 214 and 215 in TMH4 and 252 in TMH5 at the center of the membrane. When inside-out membrane vesicles from each of these substitutions were sonicated during Cd(2+) treatment to expose the periplasmic surface, the ATPase-coupled H(+) transport activity was strongly inhibited. The periplasmic access to N214C and Q252C, and their positioning in the protein at the a-c interface, is consistent with previous proposals that these residues may be involved in gating H(+) access from the periplasmic half-channel to Asp-61 during the protonation step.
Collapse
Affiliation(s)
- Hui Dong
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
31
|
Todokoro Y, Kobayashi M, Sato T, Kawakami T, Yumen I, Aimoto S, Fujiwara T, Akutsu H. Structure analysis of membrane-reconstituted subunit c-ring of E. coli H+-ATP synthase by solid-state NMR. JOURNAL OF BIOMOLECULAR NMR 2010; 48:1-11. [PMID: 20596883 DOI: 10.1007/s10858-010-9432-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 06/15/2010] [Indexed: 05/29/2023]
Abstract
The subunit c-ring of H(+)-ATP synthase (F(o) c-ring) plays an essential role in the proton translocation across a membrane driven by the electrochemical potential. To understand its structure and function, we have carried out solid-state NMR analysis under magic-angle sample spinning. The uniformly [(13)C, (15)N]-labeled F(o) c from E. coli (EF(o) c) was reconstituted into lipid membranes as oligomers. Its high resolution two- and three-dimensional spectra were obtained, and the (13)C and (15)N signals were assigned. The obtained chemical shifts suggested that EF(o) c takes on a hairpin-type helix-loop-helix structure in membranes as in an organic solution. The results on the magnetization transfer between the EF(o) c and deuterated lipids indicated that Ile55, Ala62, Gly69 and F76 were lined up on the outer surface of the oligomer. This is in good agreement with the cross-linking results previously reported by Fillingame and his colleagues. This agreement reveals that the reconstituted EF(o) c oligomer takes on a ring structure similar to the intact one in vivo. On the other hand, analysis of the (13)C nuclei distance of [3-(13)C]Ala24 and [4-(13)C]Asp61 in the F(o) c-ring did not agree with the model structures proposed for the EF(o) c-decamer and dodecamer. Interestingly, the carboxyl group of the essential Asp61 in the membrane-embedded EF(o) c-ring turned out to be protonated as COOH even at neutral pH. The hydrophobic surface of the EF(o) c-ring carries relatively short side chains in its central region, which may allow soft and smooth interactions with the hydrocarbon chains of lipids in the liquid-crystalline state.
Collapse
Affiliation(s)
- Yasuto Todokoro
- Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Fujisawa M, Fackelmayer OJ, Liu J, Krulwich TA, Hicks DB. The ATP synthase a-subunit of extreme alkaliphiles is a distinct variant: mutations in the critical alkaliphile-specific residue Lys-180 and other residues that support alkaliphile oxidative phosphorylation. J Biol Chem 2010; 285:32105-15. [PMID: 20716528 DOI: 10.1074/jbc.m110.165084] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A lysine residue in the putative proton uptake pathway of the ATP synthase a-subunit is found only in alkaliphilic Bacillus species and is proposed to play roles in proton capture, retention and passage to the synthase rotor. Here, Lys-180 was replaced with alanine (Ala), glycine (Gly), cysteine (Cys), arginine (Arg), or histidine (His) in the chromosome of alkaliphilic Bacillus pseudofirmus OF4. All mutants exhibited octylglucoside-stimulated ATPase activity and β-subunit levels at least as high as wild-type. Purified mutant F(1)F(0)-ATP synthases all contained substantial a-subunit levels. The mutants exhibited diverse patterns of native (no octylglucoside) ATPase activity and a range of defects in malate growth and in vitro ATP synthesis at pH 10.5. ATP synthesis by the Ala, Gly, and His mutants was also impaired at pH 7.5 in the presence of a protonophoric uncoupler. Thus Lys-180 plays a role when the protonmotive force is reduced at near neutral, not just at high pH. The Arg mutant exhibited no ATP synthesis activity in the alkaliphile setting although activity was reported for a K180R mutant of a thermoalkaliphile synthase (McMillan, D. G., Keis, S., Dimroth, P., and Cook, G. M. (2007) J. Biol. Chem. 282, 17395-17404). The hypothesis that a-subunits from extreme alkaliphiles and the thermoalkaliphile represent distinct variants was supported by demonstration of the importance of additional alkaliphile-specific a-subunit residues, not found in the thermoalkaliphile, for malate growth of B. pseudofirmus OF4. Finally, a mutant B. pseudofirmus OF4 synthase with switched positions of Lys-180 (helix 4) and Gly-212 (helix 5) retained significant coupled synthase activity accompanied by proton leakiness.
Collapse
Affiliation(s)
- Makoto Fujisawa
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | |
Collapse
|
33
|
Essential arginine residue of the F(o)-a subunit in F(o)F(1)-ATP synthase has a role to prevent the proton shortcut without c-ring rotation in the F(o) proton channel. Biochem J 2010; 430:171-7. [PMID: 20518749 DOI: 10.1042/bj20100621] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In F(o)F(1) (F(o)F(1)-ATP synthase), proton translocation through F(o) drives rotation of the oligomer ring of F(o)-c subunits (c-ring) relative to F(o)-a. Previous reports have indicated that a conserved arginine residue in F(o)-a plays a critical role in the proton transfer at the F(o)-a/c-ring interface. Indeed, we show in the present study that thermophilic F(o)F(1s) with substitution of this arginine (aR169) to other residues cannot catalyse proton-coupled reactions. However, mutants with substitution of this arginine residue by a small (glycine, alanine, valine) or acidic (glutamate) residue mediate the passive proton translocation. This translocation requires an essential carboxy group of F(o)-c (cE56) since the second mutation (cE56Q) blocks the translocation. Rotation of the c-ring is not necessary because the same arginine mutants of the 'rotation-impossible' (c(10)-a)F(o)F(1), in which the c-ring and F(o)-a are fused to a single polypeptide, also exhibits the passive proton translocation. The mutant (aR169G/Q217R), in which the arginine residue is transferred to putatively the same topological position in the F(o)-a structure, can block the passive proton translocation. Thus the conserved arginine residue in F(o)-a ensures proton-coupled c-ring rotation by preventing a futile proton shortcut.
Collapse
|
34
|
Sengupta D, Rampioni A, Marrink SJ. Simulations of thec-subunit of ATP-synthase reveal helix rearrangements. Mol Membr Biol 2009; 26:422-34. [DOI: 10.3109/09687680903321073] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
35
|
von Ballmoos C, Wiedenmann A, Dimroth P. Essentials for ATP synthesis by F1F0 ATP synthases. Annu Rev Biochem 2009; 78:649-72. [PMID: 19489730 DOI: 10.1146/annurev.biochem.78.081307.104803] [Citation(s) in RCA: 244] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The majority of cellular energy in the form of adenosine triphosphate (ATP) is synthesized by the ubiquitous F(1)F(0) ATP synthase. Power for ATP synthesis derives from an electrochemical proton (or Na(+)) gradient, which drives rotation of membranous F(0) motor components. Efficient rotation not only requires a significant driving force (DeltamuH(+)), consisting of membrane potential (Deltapsi) and proton concentration gradient (DeltapH), but also a high proton concentration at the source P side. In vivo this is maintained by dynamic proton movements across and along the surface of the membrane. The torque-generating unit consists of the interface of the rotating c ring and the stator a subunit. Ion translocation through this unit involves a sophisticated interplay between the c-ring binding sites, the stator arginine, and the coupling ions on both sides of the membrane. c-ring rotation is transmitted to the eccentric shaft gamma-subunit to elicit conformational changes in the catalytic sites of F(1), leading to ATP synthesis.
Collapse
Affiliation(s)
- Christoph von Ballmoos
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden.
| | | | | |
Collapse
|
36
|
Vollmar M, Schlieper D, Winn M, Büchner C, Groth G. Structure of the c14 rotor ring of the proton translocating chloroplast ATP synthase. J Biol Chem 2009; 284:18228-35. [PMID: 19423706 PMCID: PMC2709358 DOI: 10.1074/jbc.m109.006916] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 04/10/2009] [Indexed: 11/06/2022] Open
Abstract
The structure of the membrane integral rotor ring of the proton translocating F(1)F(0) ATP synthase from spinach chloroplasts was determined to 3.8 A resolution by x-ray crystallography. The rotor ring consists of 14 identical protomers that are symmetrically arranged around a central pore. Comparisons with the c(11) rotor ring of the sodium translocating ATPase from Ilyobacter tartaricus show that the conserved carboxylates involved in proton or sodium transport, respectively, are 10.6-10.8 A apart in both c ring rotors. This finding suggests that both ATPases have the same gear distance despite their different stoichiometries. The putative proton-binding site at the conserved carboxylate Glu(61) in the chloroplast ATP synthase differs from the sodium-binding site in Ilyobacter. Residues adjacent to the conserved carboxylate show increased hydrophobicity and reduced hydrogen bonding. The crystal structure reflects the protonated form of the chloroplast c ring rotor. We propose that upon deprotonation, the conformation of Glu(61) is changed to another rotamer and becomes fully exposed to the periphery of the ring. Reprotonation of Glu(61) by a conserved arginine in the adjacent a subunit returns the carboxylate to its initial conformation.
Collapse
Affiliation(s)
- Melanie Vollmar
- From the Institut für Biochemie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany and
| | - Daniel Schlieper
- From the Institut für Biochemie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany and
| | - Martyn Winn
- the Computational Science and Engineering Department, Science and Technology Facilities Council, Daresbury Laboratory, Daresbury, Warrington WA4 4AD, United Kingdom
| | - Claudia Büchner
- From the Institut für Biochemie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany and
| | - Georg Groth
- From the Institut für Biochemie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany and
| |
Collapse
|
37
|
Steed PR, Fillingame RH. Aqueous accessibility to the transmembrane regions of subunit c of the Escherichia coli F1F0 ATP synthase. J Biol Chem 2009; 284:23243-50. [PMID: 19542218 DOI: 10.1074/jbc.m109.002501] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rotary catalysis in F(1)F(0) ATP synthase is powered by proton translocation through the membrane-embedded F(0) sector. Proton binding and release occur in the middle of the membrane at Asp-61 on transmembrane helix (TMH) 2 of subunit c. Previously the reactivity of Cys substituted into TMH2 revealed extensive aqueous access at the cytoplasmic side as probed with Ag(+) and other thiolate-directed reagents. The analysis of aqueous accessibility of membrane-embedded regions in subunit c was extended here to TMH1 and the periplasmic side of TMH2. The Ag(+) sensitivity of Cys substitutions was more limited on the periplasmic versus cytoplasmic side of TMH2. In TMH1, Ag(+) sensitivity was restricted to a pocket of four residues lying directly behind Asp-61. Aqueous accessibility was also probed using Cd(2+), a membrane-impermeant soft metal ion with properties similar to Ag(+). Cd(2+) inhibition was restricted to the I28C substitution in TMH1 and residues surrounding Asp-61 in TMH2. The overall pattern of inhibition, by all of the reagents tested, indicates highest accessibility on the cytoplasmic side of TMH2 and in a pocket of residues around Asp-61, including proximal residues in TMH1. Additionally subunit a was shown to mediate access to this region by the membrane-impermeant probe 2-(trimethylammonium)ethyl methanethiosulfonate. Based upon these results and other information, a pocket of aqueous accessible residues, bordered by the peripheral surface of TMH4 of subunit a, is proposed to extend from the cytoplasmic side of cTMH2 to Asp-61 in the center of the membrane.
Collapse
Affiliation(s)
- P Ryan Steed
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
38
|
Zíková A, Schnaufer A, Dalley RA, Panigrahi AK, Stuart KD. The F(0)F(1)-ATP synthase complex contains novel subunits and is essential for procyclic Trypanosoma brucei. PLoS Pathog 2009; 5:e1000436. [PMID: 19436713 PMCID: PMC2674945 DOI: 10.1371/journal.ppat.1000436] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 04/20/2009] [Indexed: 11/18/2022] Open
Abstract
The mitochondrial F0F1 ATP synthase is an essential multi-subunit protein complex in the vast majority of eukaryotes but little is known about its composition and role in Trypanosoma brucei, an early diverged eukaryotic pathogen. We purified the F0F1 ATP synthase by a combination of affinity purification, immunoprecipitation and blue-native gel electrophoresis and characterized its composition and function. We identified 22 proteins of which five are related to F1 subunits, three to F0 subunits, and 14 which have no obvious homology to proteins outside the kinetoplastids. RNAi silencing of expression of the F1 α subunit or either of the two novel proteins showed that they are each essential for the viability of procyclic (insect stage) cells and are important for the structural integrity of the F0F1-ATP synthase complex. We also observed a dramatic decrease in ATP production by oxidative phosphorylation after silencing expression of each of these proteins while substrate phosphorylation was not severely affected. Our procyclic T. brucei cells were sensitive to the ATP synthase inhibitor oligomycin even in the presence of glucose contrary to earlier reports. Hence, the two novel proteins appear essential for the structural organization of the functional complex and regulation of mitochondrial energy generation in these organisms is more complicated than previously thought. African trypanosomes (Trypanosoma brucei and related subspecies) are unicellular parasites that cause the devastating disease of African sleeping sickness in man and nagana in livestock. Both of these diseases are lethal, killing thousands of people each year and causing major economical complications in the developing world, thus affecting the lives of millions. Furthermore, available drugs are obsolete, difficult to administer and have many undesirable side-effects. Therefore, there is a reinvigorated effort to design new drugs against these parasites. From the pharmacological perspective, unique metabolic processes and protein complexes with singular structure, composition and essential function are of particular interest. One such remarkable protein complex is the mitochondrial F0F1-ATP synthase/ATPase. Here we show that F0F1-ATP synthase complex is essential for viability of procyclic T. brucei cells and it possesses unique and novel subunits. The three F0F1-ATP synthase subunits that were tested were shown to be crucial for the structural integrity of the F0F1-ATP synthase complex and its activities. The compositional and functional characterization of the F0F1-ATP synthase in T. brucei represents a major step towards deciphering the unique and essential properties of the respiratory chain of both an early diverged eukaryote and a lethal human parasite.
Collapse
Affiliation(s)
- Alena Zíková
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Achim Schnaufer
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Rachel A. Dalley
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Aswini K. Panigrahi
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Kenneth D. Stuart
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
39
|
Bae L, Vik SB. A more robust version of the Arginine 210-switched mutant in subunit a of the Escherichia coli ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1129-34. [PMID: 19362069 DOI: 10.1016/j.bbabio.2009.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 03/30/2009] [Accepted: 03/31/2009] [Indexed: 10/20/2022]
Abstract
Previous work has shown that the essential R210 of subunit a in the Escherichia coli ATP synthase can be switched with a conserved glutamine Q252 with retention of a moderate level of function, that a third mutation P204T enhances this function, and that the arginine Q252R can be replaced by lysine without total loss of activity. In this study, the roles of P204T and R210Q were examined. It was concluded that the threonine in P204T is not directly involved in function since its replacement by alanine did not significantly affect growth properties. Similarly, it was concluded that the glutamine in R210Q is not directly involved with function since replacement by glycine results in significantly enhanced function. Not only did the rate of ATP-driven proton translocation increase, but also the sensitivity of ATP hydrolysis to inhibition by N,N'-dicyclohexylcarbodiimide (DCCD) rose to more than 50%. Finally, mutations at position E219, a residue near the proton pathway, were used to test whether the Arginine-switched mutant uses the normal proton pathway. In a wild type background, the E219K mutant was confirmed to have greater function than the E219Q mutant, as has been shown previously. This same unusual result was observed in the triple mutant background, P204T/R210Q/Q252R, suggesting that the Arginine-switched mutants are using the normal proton pathway from the periplasm.
Collapse
Affiliation(s)
- Leon Bae
- Southern Methodist University, Department of Biological Sciences, Dallas, TX 75275-0376, USA
| | | |
Collapse
|
40
|
Abstract
The ATP synthase from Escherichia coli is a prototype of the ATP synthases that are found in many bacteria, in the mitochondria of eukaryotes, and in the chloroplasts of plants. It contains eight different types of subunits that have traditionally been divided into F(1), a water-soluble catalytic sector, and F(o), a membrane-bound ion transporting sector. In the current rotary model for ATP synthesis, the subunits can be divided into rotor and stator subunits. Several lines of evidence indicate that epsilon is one of the three rotor subunits, which rotate through 360 degrees. The three-dimensional structure of epsilon is known and its interactions with other subunits have been explored by several approaches. In light of recent work by our group and that of others, the role of epsilon in the ATP synthase from E. coli is discussed.
Collapse
Affiliation(s)
- S B Vik
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275, USA.
| |
Collapse
|
41
|
Abstract
In Propionigenium modestum, ATP is manufactured from ADP and phosphate by the enzyme ATP synthase using the free energy of an electrochemical gradient of Na+ ions. The P. modestum ATP synthase is a clear member of the family of F-type ATP synthases and the only major distinction is an extension of the coupling ion specificity to H+, Li+, or Na+, depending on the conditions. The use of Na+ as a coupling ion offers unique experimental options to decipher the ion-translocation mechanism and the osmotic and mechanical behavior of the enzyme. The single a subunit and the oligomer of c subunits are part of the stator and rotor, respectively, and operate together in the ion-translocation mechanism. During ATP synthesis, Na+ diffuses from the periplasm through the a subunit channel onto the Na+ binding site on a c subunit. From there it dissociates into the cytoplasm after the site has rotated out of the interface with subunit a. In the absence of a membrane potential, the rotor performs Brownian motions into either direction and Na+ ions are exchanged between the two compartments separated by the membrane. Upon applying voltage, however, the direction of Na+ flux and of rotation is biased by the potential. The motor generates torque to drive the rotation of the gamma subunit, thereby releasing tightly bound ATP from catalytic sites in F(1). Hence, the membrane potential plays a pivotal role in the torque-generating mechanism. This is corroborated by the fact that for ATP synthesis, at physiological rates, the membrane potential is indispensable. We propose a catalytic mechanism for torque generation by the F(o) motor that is in accord with all experimental data and is in quantitative agreement with the requirement for ATP synthesis.
Collapse
Affiliation(s)
- P Dimroth
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, ETH-Zentrum, CH-8092 Zürich, Switzerland. micro.biol.ethz.ch
| | | | | |
Collapse
|
42
|
Fillingame RH, Jiang W, Dmitriev OY. The oligomeric subunit C rotor in the fo sector of ATP synthase: unresolved questions in our understanding of function. J Bioenerg Biomembr 2009; 32:433-9. [PMID: 15254378 DOI: 10.1023/a:1005604722178] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have proposed a model for the oligomeric c-rotor of the F(o) sector of ATP synthase and its interaction with subunit a during H+-transport driven rotation. The model is based upon the solution structure of monomeric subunit c, determined by NMR, and an extensive series of cross-linking distance constraints between c subunits and between subunits c and a. To explain the complete set of cross-linking data, we have suggested that the second transmembrane helix rotates during its interaction with subunit a in the course of the H+-translocation cycle. The H+-transport coupled rotation of this helix is proposed to drive the stepwise movement of the c-oligomeric rotor. The model is testable and provides a useful framework for addressing questions raised by other experiments.
Collapse
Affiliation(s)
- R H Fillingame
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, 1300 University Avenue, Madison, Wisconsin 53706, USA.
| | | | | |
Collapse
|
43
|
Moore KJ, Fillingame RH. Structural interactions between transmembrane helices 4 and 5 of subunit a and the subunit c ring of Escherichia coli ATP synthase. J Biol Chem 2008; 283:31726-35. [PMID: 18786930 DOI: 10.1074/jbc.m803848200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Subunit a plays a key role in promoting H+ transport and the coupled rotary motion of the subunit c ring in F1F0-ATP synthase. H+ binding and release occur at Asp-61 in the middle of the second transmembrane helix (TMH) of F0 subunit c. H+ are thought to reach Asp-61 via aqueous pathways mapping to the surfaces of TMHs 2-5 of subunit a. TMH4 of subunit a is thought to pack close to TMH2 of subunit c based upon disulfide cross-link formation between Cys substitutions in both TMHs. Here we substituted Cys into the fifth TMH of subunit a and the second TMH of subunit c and tested for cross-linking using bis-methanethiosulfonate (bis-MTS) reagents. A total of 62 Cys pairs were tested and 12 positive cross-links were identified with variable alkyl length linkers. Cross-linking was achieved near the middle of the bilayer for the Cys pairs a248C/c62C, a248C/ c63C, a248C/c65C, a251C/c57C, a251C/c59C, a251C/c62C, a252C/c62C, and a252C/c65C. Cross-linking was achieved near the cytoplasmic side of the bilayer for Cys pairs a262C/c53C, a262C/c54C, a262C/c55C, and a263C/c54C. We conclude that both aTMH4 and aTMH5 pack proximately to cTMH2 of the c-ring. In other experiments we demonstrate that aTMH4 and aTMH5 can be simultaneously cross-linked to different subunit c monomers in the c-ring. Five mutants showed pH-dependent cross-linking consistent with aTMH5 changing conformation at lower pH values to facilitate cross-linking. We suggest that the pH-dependent conformational change may be related to the proposed role of aTMH5 in gating H+ access from the periplasm to the cAsp-61 residue in cTMH2.
Collapse
Affiliation(s)
- Kyle J Moore
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
44
|
Abstract
F1F0 ATP synthases convert energy stored in an electrochemical gradient of H+ or Na+ across the membrane into mechanical rotation, which is subsequently converted into the chemical bond energy of ATP. The majority of cellular ATP is produced by the ATP synthase in organisms throughout the biological kingdom and therefore under diverse environmental conditions. The ATP synthase of each particular cell is confronted with specific challenges, imposed by the specific environment, and thus by necessity must adapt to these conditions for optimal operation. Examples of these adaptations include diverse mechanisms for regulating the ATP hydrolysis activity of the enzyme, the utilization of different coupling ions with distinct ion binding characteristics, different ion-to-ATP ratios reflected by variations in the size of the rotor c ring, the mode of ion delivery to the binding sites, and the different contributions of the electrical and chemical gradients to the driving force.
Collapse
Affiliation(s)
- Christoph von Ballmoos
- Institut für Mikrobiologie, ETH Zürich, Wolfgang-Pauli Strasse 10, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
45
|
Krebstakies T, Aldag I, Altendorf K, Greie JC, Deckers-Hebestreit G. The Stoichiometry of Subunit c of Escherichia coli ATP Synthase Is Independent of Its Rate of Synthesis. Biochemistry 2008; 47:6907-16. [DOI: 10.1021/bi800173a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thomas Krebstakies
- Abteilung Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, D-49069 Osnabrück, Germany
| | - Ingo Aldag
- Abteilung Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, D-49069 Osnabrück, Germany
| | - Karlheinz Altendorf
- Abteilung Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, D-49069 Osnabrück, Germany
| | - Jörg-Christian Greie
- Abteilung Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, D-49069 Osnabrück, Germany
| | | |
Collapse
|
46
|
Wittig I, Velours J, Stuart R, Schägger H. Characterization of domain interfaces in monomeric and dimeric ATP synthase. Mol Cell Proteomics 2008; 7:995-1004. [PMID: 18245802 DOI: 10.1074/mcp.m700465-mcp200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
We disassembled monomeric and dimeric yeast ATP synthase under mild conditions to identify labile proteins and transiently stable subcomplexes that had not been observed before. Specific removal of subunits alpha, beta, oligomycin sensitivity conferring protein (OSCP), and h disrupted the ATP synthase at the gamma-alpha(3)beta(3) rotor-stator interface. Loss of two F(1)-parts from dimeric ATP synthase led to the isolation of a dimeric subcomplex containing membrane and peripheral stalk proteins thus identifying the membrane/peripheral stalk sectors immediately as the dimerizing parts of ATP synthase. Almost all subunit a was found associated with a ring of 10 c-subunits in two-dimensional blue native/SDS gels. We therefore postulate that c10a1-complex is a stable structure in resting ATP synthase until the entry of protons induces a breaking of interactions and stepwise rotation of the c-ring relative to the a-subunit in the catalytic mechanism. Dimeric subunit a was identified in SDS gels in association with two c10-rings suggesting that a c10a2c10-complex may constitute an important part of the monomer-monomer interface in dimeric ATP synthase that seems to be further tightened by subunits b, i, e, g, and h. In contrast to the monomer-monomer interface, the interface between dimers in higher oligomeric structures remains largely unknown. However, we could show that the natural inhibitor protein Inh1 is not required for oligomerization.
Collapse
Affiliation(s)
- Ilka Wittig
- Zentrum der Biologischen Chemie, Molekulare Bioenergetik, Cluster of Excellence "Macromolecular Complexes", Johann Wolfgang Goethe-Universität Frankfurt, D-60590 Frankfurt, Germany
| | | | | | | |
Collapse
|
47
|
Vorburger T, Ebneter JZ, Wiedenmann A, Morger D, Weber G, Diederichs K, Dimroth P, von Ballmoos C. Arginine-induced conformational change in the c-ring/a-subunit interface of ATP synthase. FEBS J 2008; 275:2137-50. [DOI: 10.1111/j.1742-4658.2008.06368.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Moore KJ, Angevine CM, Vincent OD, Schwem BE, Fillingame RH. The cytoplasmic loops of subunit a of Escherichia coli ATP synthase may participate in the proton translocating mechanism. J Biol Chem 2008; 283:13044-52. [PMID: 18337242 DOI: 10.1074/jbc.m800900200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Subunit a plays a key role in promoting H(+) transport and the coupled rotary motion of the subunit c ring in F(1)F(0)-ATP synthase. H(+) binding and release occur at Asp-61 in the middle of the second transmembrane helix (TMH) of F(0) subunit c. H(+) are thought to reach Asp-61 via aqueous pathways mapping to the surfaces of TMHs 2-5 of subunit a based upon the chemical reactivity of Cys substituted into these helices. Here we substituted Cys into loops connecting TMHs 1 and 2 (loop 1-2) and TMHs 3 and 4 (loop 3-4). A large segment of loop 3-4 extending from loop residue 192 loop to residue 203 in TMH4 at the lipid bilayer surface proved to be very sensitive to inhibition by Ag(+). Cys-161 and -165 at the other end of the loop bordering TMH3 were also sensitive to inhibition by Ag(+). Further Cys substitutions in residues 86 and 93 in the middle of the 1-2 loop proved to be Ag(+)-sensitive. We next asked whether the regions of Ag(+)-sensitive residues clustered together near the surface of the membrane by combining Cys substitutions from two domains and testing for cross-linking. Cys-161 and -165 in loop 3-4 were found to cross-link with Cys-202, -203, or -205, which extend into TMH4 from the cytoplasm. Further Cys at residues 86 and 93 in loop 1-2 were found to cross-link with Cys-195 in loop 3-4. We conclude that the Ag(+)-sensitive regions of loops 1-2 and 3-4 may pack in a single domain that packs at the ends of TMHs 3 and 4. We suggest that the Ag(+)-sensitive domain may be involved in gating H(+) release at the cytoplasmic side of the aqueous access channel extending through F(0).
Collapse
Affiliation(s)
- Kyle J Moore
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
49
|
Steed PR, Fillingame RH. Subunit a facilitates aqueous access to a membrane-embedded region of subunit c in Escherichia coli F1F0 ATP synthase. J Biol Chem 2008; 283:12365-72. [PMID: 18332132 DOI: 10.1074/jbc.m800901200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rotary catalysis in F(1)F(0) ATP synthase is powered by proton translocation through the membrane-embedded F(0) sector. Proton binding and release occurs in the middle of the membrane at Asp-61 on transmembrane helix 2 of subunit c. Previously, the reactivity of cysteines substituted into F(0) subunit a revealed two regions of aqueous access, one extending from the periplasm to the middle of the membrane and a second extending from the middle of the membrane to the cytoplasm. To further characterize aqueous accessibility at the subunit a-c interface, we have substituted Cys for residues on the cytoplasmic side of transmembrane helix 2 of subunit c and probed the accessibility to these substituted positions using thiolate-reactive reagents. The Cys substitutions tested were uniformly inhibited by Ag(+) treatment, which suggested widespread aqueous access to this generally hydrophobic region. Sensitivity to N-ethylmaleimide (NEM) and methanethiosulfonate reagents was localized to a membrane-embedded pocket surrounding Asp-61. The cG58C substitution was profoundly inhibited by all the reagents tested, including membrane impermeant methanethiosulfonate reagents. Further studies of the highly reactive cG58C substitution revealed that NEM modification of a single c subunit in the oligomeric c-ring was sufficient to cause complete inhibition. In addition, NEM modification of subunit c was dependent upon the presence of subunit a. The results described here provide further evidence for an aqueous-accessible region at the interface of subunits a and c extending from the middle of the membrane to the cytoplasm.
Collapse
Affiliation(s)
- P Ryan Steed
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
50
|
Interaction of transmembrane helices in ATP synthase subunit a in solution as revealed by spin label difference NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1777:227-37. [PMID: 18178144 DOI: 10.1016/j.bbabio.2007.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 11/28/2007] [Accepted: 11/29/2007] [Indexed: 11/30/2022]
Abstract
Subunit a in the membrane traversing F0 sector of Escherichia coli ATP synthase is known to fold with five transmembrane helices (TMHs) with residue 218 in TMH IV packing close to residue 248 in TMH V. In this study, we have introduced a spin label probe at Cys residues substituted at positions 222 or 223 and measured the effects on the Trp epsilon NH indole NMR signals of the seven Trp residues in the protein. The protein was purified and NMR experiments were carried out in a chloroform-methanol-H2O (4:4:1) solvent mixture. The spin label at positions 222 or 223 proved to broaden the signals of W231, W232, W235 and W241 located at the periplasmic ends of TMH IV and TMH V and the connecting loop between these helices. The broadening of W241 would require that the loop residues fold back on themselves in a hairpin-like structure much like it is predicted to fold in the native membrane. Placement of the spin label probe at several other positions also proved to have broadening effects on some of these Trp residues and provided additional constraints on folding of TMH IV and TMH V. The effects of the 223 probes on backbone amide resonances of subunit a were also measured by an HNCO experiment and the results are consistent with the two helices folding back on themselves in this solvent mixture. When Cys and Trp were substituted at residues 206 and 254 at the cytoplasmic ends of TMHs IV and V respectively, the W254 resonance was not broadened by the spin label at position 206. We conclude that the helices fold back on themselves in this solvent system and then pack at an angle such that the cytoplasmic ends of the polypeptide backbone are significantly displaced from each other.
Collapse
|