1
|
Liao W, Xiao L, Hao X, Shan C, Zhou Z, Ning M, Tang F. Physiological and Transcriptomic Analysis of Two Types of Hami Melons in Low-Temperature Storage. PLANTS (BASEL, SWITZERLAND) 2025; 14:1153. [PMID: 40284041 PMCID: PMC12030232 DOI: 10.3390/plants14081153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025]
Abstract
The Hami melon is a characteristic economic crop in Xinjiang. Long-term storage at low temperatures can cause cold damage and significantly impact the storage quality of Hami melon fruits. This study investigated the cold resistance of two Hami melon varieties under low temperatures, screened key genes, and further explored their resistance mechanisms. By comparing and analyzing the relationship between phenotypic morphology, physiological indicators, and storage time, it was found that the symptoms of cold damage in Hami melons are related to both storage time and variety. To analyze the response mechanisms of Hami melons to cold stress at the molecular level, we conducted transcriptome sequencing analysis on the cold-sensitive Hami melon variety Gold Queen and the cold-resistant variety Jia Shi. The analysis shows that cold stress induces the expression of these differentially expressed genes, which participate in the AsA-GSH cycling system, form the NADPH-P450 pathway, and establish the ERF-WRKY cold resistance pathway. This, in turn, increases the content of free proline in the fruits, clears denatured proteins within the fruit, maintains the stability of the redox system, and inhibits certain differentially expressed genes that regulate cell wall metabolism, thereby alleviating fruit softening and improving cold resistance.
Collapse
Affiliation(s)
- Wanqin Liao
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi 832000, China
- Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi 832000, China
| | - Linlu Xiao
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi 832000, China
- Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi 832000, China
| | - Xiangshuai Hao
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi 832000, China
- Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi 832000, China
| | - Chunhui Shan
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi 832000, China
- Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi 832000, China
| | - Zhongkai Zhou
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi 832000, China
- Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi 832000, China
| | - Ming Ning
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi 832000, China
- Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi 832000, China
| | - Fengxian Tang
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi 832000, China
- Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi 832000, China
| |
Collapse
|
2
|
Surber SM, Thien Thao NP, Smith CN, Shomo ZD, Barnes AC, Roston RL. Exploring cotton SFR2's conundrum in response to cold stress. PLANT SIGNALING & BEHAVIOR 2024; 19:2362518. [PMID: 38836385 PMCID: PMC11155703 DOI: 10.1080/15592324.2024.2362518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Cotton is an important agricultural crop to many regions across the globe but is sensitive to low-temperature exposure. The activity of the enzyme SENSITIVE TO FREEZING 2 (SFR2) improves cold tolerance of plants and produces trigalactosylsyldiacylglycerol (TGDG), but its role in cold sensitive plants, such as cotton remains unknown. Recently, it was reported that cotton SFR2 produced very little TGDG under normal and cold conditions. Here, we investigate cotton SFR2 activation and TGDG production. Using multiple approaches in the native system and transformation into Arabidopsis thaliana, as well as heterologous yeast expression, we provide evidence that cotton SFR2 activates differently than previously found among other plant species. We conclude with the hypothesis that SFR2 in cotton is not activated in a similar manner regarding acidification or freezing like Arabidopsis and that other regions of SFR2 protein are critical for activation of the enzyme than previously reported.
Collapse
Affiliation(s)
- Samantha M. Surber
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Cailin N. Smith
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Zachery D. Shomo
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Allison C. Barnes
- United States Department of Agriculture, North Carolina State University, Raleigh, NC, USA
| | - Rebecca L. Roston
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
3
|
Lee K, Kang H. Recent Insights into the Physio-Biochemical and Molecular Mechanisms of Low Temperature Stress in Tomato. PLANTS (BASEL, SWITZERLAND) 2024; 13:2715. [PMID: 39409585 PMCID: PMC11478575 DOI: 10.3390/plants13192715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
Climate change has emerged as a crucial global issue that significantly threatens the survival of plants. In particular, low temperature (LT) is one of the critical environmental factors that influence plant morphological, physiological, and biochemical changes during both the vegetative and reproductive growth stages. LT, including abrupt drops in temperature, as well as winter conditions, can cause detrimental effects on the growth and development of tomato plants, ranging from sowing, transplanting, truss appearance, flowering, fertilization, flowering, fruit ripening, and yields. Therefore, it is imperative to understand the comprehensive mechanisms underlying the adaptation and acclimation of tomato plants to LT, from the morphological changes to the molecular levels. In this review, we discuss the previous and current knowledge of morphological, physiological, and biochemical changes, which contain vegetative and reproductive parameters involving the leaf length (LL), plant height (PH) stem diameter (SD), fruit set (FS), fruit ripening (FS), and fruit yield (FY), as well as photosynthetic parameters, cell membrane stability, osmolytes, and ROS homeostasis via antioxidants scavenging systems during LT stress in tomato plants. Moreover, we highlight recent advances in the understanding of molecular mechanisms, including LT perception, signaling transduction, gene regulation, and fruit ripening and epigenetic regulation. The comprehensive understanding of LT response provides a solid basis to develop the LT-resistant varieties for sustainable tomato production under the ever-changing temperature fluctuations.
Collapse
Affiliation(s)
- Kwanuk Lee
- Department of Biology, Jeju National University, Jeju 63243, Republic of Korea
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
4
|
Zhong R, Zhou D, Chen L, Rose JP, Wang BC, Ye ZH. Plant Cell Wall Polysaccharide O-Acetyltransferases. PLANTS (BASEL, SWITZERLAND) 2024; 13:2304. [PMID: 39204739 PMCID: PMC11360243 DOI: 10.3390/plants13162304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Plant cell walls are largely composed of polysaccharide polymers, including cellulose, hemicelluloses (xyloglucan, xylan, mannan, and mixed-linkage β-1,3/1,4-glucan), and pectins. Among these cell wall polysaccharides, xyloglucan, xylan, mannan, and pectins are often O-acetylated, and polysaccharide O-acetylation plays important roles in cell wall assembly and disease resistance. Genetic and biochemical analyses have implicated the involvement of three groups of proteins in plant cell wall polysaccharide O-acetylation: trichome birefringence-like (TBL)/domain of unknown function 231 (DUF231), reduced wall acetylation (RWA), and altered xyloglucan 9 (AXY9). Although the exact roles of RWAs and AXY9 are yet to be identified, members of the TBL/DUF231 family have been found to be O-acetyltransferases responsible for the O-acetylation of xyloglucan, xylan, mannan, and pectins. Here, we provide a comprehensive overview of the occurrence of O-acetylated cell wall polysaccharides, the biochemical properties, structural features, and evolution of cell wall polysaccharide O-acetyltransferases, and the potential biotechnological applications of manipulations of cell wall polysaccharide acetylation. Further in-depth studies of the biochemical mechanisms of cell wall polysaccharide O-acetylation will not only enrich our understanding of cell wall biology, but also have important implications in engineering plants with increased disease resistance and reduced recalcitrance for biofuel production.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Dayong Zhou
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Lirong Chen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - John P. Rose
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Bi-Cheng Wang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
5
|
Barbut FR, Cavel E, Donev EN, Gaboreanu I, Urbancsok J, Pandey G, Demailly H, Jiao D, Yassin Z, Derba-Maceluch M, Master ER, Scheepers G, Gutierrez L, Mellerowicz EJ. Integrity of xylan backbone affects plant responses to drought. FRONTIERS IN PLANT SCIENCE 2024; 15:1422701. [PMID: 38984158 PMCID: PMC11231379 DOI: 10.3389/fpls.2024.1422701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024]
Abstract
Drought is a major factor affecting crops, thus efforts are needed to increase plant resilience to this abiotic stress. The overlapping signaling pathways between drought and cell wall integrity maintenance responses create a possibility of increasing drought resistance by modifying cell walls. Here, using herbaceous and woody plant model species, Arabidopsis and hybrid aspen, respectively, we investigated how the integrity of xylan in secondary walls affects the responses of plants to drought stress. Plants, in which secondary wall xylan integrity was reduced by expressing fungal GH10 and GH11 xylanases or by affecting genes involved in xylan backbone biosynthesis, were subjected to controlled drought while their physiological responses were continuously monitored by RGB, fluorescence, and/or hyperspectral cameras. For Arabidopsis, this was supplemented with survival test after complete water withdrawal and analyses of stomatal function and stem conductivity. All Arabidopsis xylan-impaired lines showed better survival upon complete watering withdrawal, increased stomatal density and delayed growth inhibition by moderate drought, indicating increased resilience to moderate drought associated with modified xylan integrity. Subtle differences were recorded between xylan biosynthesis mutants (irx9, irx10 and irx14) and xylanase-expressing lines. irx14 was the most drought resistant genotype, and the only genotype with increased lignin content and unaltered xylem conductivity despite its irx phenotype. Rosette growth was more affected by drought in GH11- than in GH10-expressing plants. In aspen, mild downregulation of GT43B and C genes did not affect drought responses and the transgenic plants grew better than the wild-type in drought and well-watered conditions. Both GH10 and GH11 xylanases strongly inhibited stem elongation and root growth in well-watered conditions but growth was less inhibited by drought in GH11-expressing plants than in wild-type. Overall, plants with xylan integrity impairment in secondary walls were less affected than wild-type by moderately reduced water availability but their responses also varied among genotypes and species. Thus, modifying the secondary cell wall integrity can be considered as a potential strategy for developing crops better suited to withstand water scarcity, but more research is needed to address the underlying molecular causes of this variability.
Collapse
Affiliation(s)
- Félix R Barbut
- Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Department of Forest Genetics and Plant Physiology, Umeå, Sweden
| | - Emilie Cavel
- Centre de Ressources Régionales en Biologie Moléculaire (CRRBM), University of Picardie Jules Verne, Amiens, France
| | - Evgeniy N Donev
- Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Department of Forest Genetics and Plant Physiology, Umeå, Sweden
| | - Ioana Gaboreanu
- Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Department of Forest Genetics and Plant Physiology, Umeå, Sweden
| | - János Urbancsok
- Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Department of Forest Genetics and Plant Physiology, Umeå, Sweden
| | - Garima Pandey
- Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Department of Forest Genetics and Plant Physiology, Umeå, Sweden
| | - Hervé Demailly
- Centre de Ressources Régionales en Biologie Moléculaire (CRRBM), University of Picardie Jules Verne, Amiens, France
| | - Dianyi Jiao
- Centre de Ressources Régionales en Biologie Moléculaire (CRRBM), University of Picardie Jules Verne, Amiens, France
| | - Zakiya Yassin
- RISE Research Institutes of Sweden, Built Environment Division, Stockholm, Sweden
| | - Marta Derba-Maceluch
- Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Department of Forest Genetics and Plant Physiology, Umeå, Sweden
| | - Emma R Master
- Department of Chemical Engineering and Applied Chemistry Department, University of Toronto, Toronto, ON, Canada
| | - Gerhard Scheepers
- RISE Research Institutes of Sweden, Built Environment Division, Stockholm, Sweden
| | - Laurent Gutierrez
- Centre de Ressources Régionales en Biologie Moléculaire (CRRBM), University of Picardie Jules Verne, Amiens, France
| | - Ewa J Mellerowicz
- Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Department of Forest Genetics and Plant Physiology, Umeå, Sweden
| |
Collapse
|
6
|
Xu P, Zhang W, Wang X, Zhu Y, Liang W, He Y, Yu X. Multiomics analysis reveals a link between Brassica-specific miR1885 and rapeseed tolerance to low temperature. PLANT, CELL & ENVIRONMENT 2023; 46:3405-3419. [PMID: 37564020 DOI: 10.1111/pce.14690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 06/26/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
Brassica crops include various edible vegetable and plant oil crops, and their production is limited by low temperature beyond their tolerant capability. The key regulators of low-temperature resistance in Brassica remain largely unexplored. To identify posttranscriptional regulators of plant response to low temperature, we performed small RNA profiling, and found that 16 known miRNAs responded to cold treatment in Brassica rapa. The cold response of seven of those miRNAs were further confirmed by qRT-PCR and/or northern blot analyses. In parallel, a genome-wide association study of 220 accessions of Brassica napus identified four candidate MIRNA genes, all of which were cold-responsive, at the loci associated with low-temperature resistance. Specifically, these large-scale data analyses revealed a link between miR1885 and the plant response to low temperature in both B. rapa and B. napus. Using 5' rapid amplification of cDNA ends approach, we validated that miR1885 can cleave its putative target gene transcripts, Bn.TIR.A09 and Bn.TNL.A03, in B. napus. Furthermore, overexpression of miR1885 in Semiwinter type B. napus decreased the mRNA abundance of Bn.TIR.A09 and Bn.TNL.A03 and resulted in increased sensitivity to low temperature. Knocking down of miR1885 in Spring type B. napus led to increased mRNA abundance of its targets and improved rapeseed tolerance to low temperature. Together, our results suggested that the loci of miR1885 and its targets could be potential candidates for the molecular breeding of low temperature-tolerant Spring type Brassica crops.
Collapse
Affiliation(s)
- Pengfei Xu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Wenting Zhang
- Guangdong Provincial Key Laboratory of Crops Genetics & Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xuan Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yantao Zhu
- Hybrid Rape Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuke He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xiang Yu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Mega R, Kim JS, Tanaka H, Ishii T, Abe F, Okamoto M. Metabolic and transcriptomic profiling during wheat seed development under progressive drought conditions. Sci Rep 2023; 13:15001. [PMID: 37696863 PMCID: PMC10495411 DOI: 10.1038/s41598-023-42093-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 09/05/2023] [Indexed: 09/13/2023] Open
Abstract
Globally, bread wheat (Triticum aestivum) is one of the most important staple foods; when exposed to drought, wheat yields decline. Although much research has been performed to generate higher yield wheat cultivars, there have been few studies on improving end-product quality under drought stress, even though wheat is processed into flour to produce so many foods, such as bread, noodles, pancakes, cakes, and cookies. Recently, wheat cultivation has been affected by severe drought caused by global climate change. In previous studies, seed shrinkage was observed in wheat exposed to continuous drought stress during seed development. In this study, we investigated how progressive drought stress affected seed development by metabolomic and transcriptomic analyses. Metabolite profiling revealed the drought-sensitive line reduced accumulation of proline and sugar compared with the water-saving, drought-tolerant transgenic line overexpressing the abscisic acid receptor TaPYL4 under drought conditions in spikelets with developing seeds. Meanwhile, the expressions of genes involved in translation, starch biosynthesis, and proline and arginine biosynthesis was downregulated in the drought-sensitive line. These findings suggest that seed shrinkage, exemplifying a deficiency in endosperm, arose from the hindered biosynthesis of crucial components including seed storage proteins, starch, amino acids, and sugars, ultimately leading to their inadequate accumulation within spikelets. Water-saving drought tolerant traits of wheat would aid in supporting seed formation under drought conditions.
Collapse
Affiliation(s)
- Ryosuke Mega
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan.
| | - June-Sik Kim
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Hiroyuki Tanaka
- Faculty of Agriculture, Tottori University, Tottori, 680-8553, Japan
| | - Takayoshi Ishii
- Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan
| | - Fumitaka Abe
- Division of Basic Research, Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8518, Japan
| | - Masanori Okamoto
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, 321-8505, Japan
| |
Collapse
|
8
|
Gai Z, Zhang M, Zhang P, Zhang J, Liu J, Cai L, Yang X, Zhang N, Yan Z, Liu L, Feng G. 2-Oxoglutarate contributes to the effect of foliar nitrogen on enhancing drought tolerance during flowering and grain yield of soybean. Sci Rep 2023; 13:7274. [PMID: 37142711 PMCID: PMC10160060 DOI: 10.1038/s41598-023-34403-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/28/2023] [Indexed: 05/06/2023] Open
Abstract
Drought severely affects the growth and yield of soybean plants especially during the flowering period. To investigate the effect of 2-oxoglutarate (2OG) in combination with foliar nitrogen (N) at flowering stage on drought resistance and seed yield of soybean under drought stress. This experiment was conducted in 2021 and 2022 on drought-resistant variety (Hefeng 50) and drought-sensitive variety (Hefeng 43) soybean plants treated with foliar N (DS + N) and 2-oxoglutarate (DS + 2OG) at flowering stage under drought stress. The results showed that drought stress at flowering stage significantly increased leaf malonaldehyde (MDA) content and reduced soybean yield per plant. However, superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities were significantly increased by foliar N treatment, and 2-oxoglutarate synergistically with foliar N treatment (DS + N + 2OG) was more beneficial to plant photosynthesis. 2-oxoglutarate significantly enhanced plant N content, glutamine synthetase (GS) and glutamate synthase (GOGAT) activity. Furthermore, 2-oxoglutarate increased the accumulation of proline and soluble sugars under drought stress. Under drought stress, soybean seed yield was increased by DS + N + 2OG treatment by 16.48-17.10% and 14.96-18.84% in 2021 and 2022, respectively. Thus, the combination of foliar N and 2-oxoglutarate better mitigated the adverse effects of drought stress and could better compensate for the yield loss of soybean under drought stress.
Collapse
Affiliation(s)
- Zhijia Gai
- Jiamusi Branch, Heilongjiang Academy of Agricultural Sciences/Key Laboratory of Breeding and Cultivation of Main Crops in Sanjiang Plain, Jiamusi, 154007, China
| | - Maoming Zhang
- Jiamusi Branch, Heilongjiang Academy of Agricultural Sciences/Key Laboratory of Breeding and Cultivation of Main Crops in Sanjiang Plain, Jiamusi, 154007, China
| | - Pengfei Zhang
- Department of Agronomy, Northeast Agricultural University, Harbin, 15000, China
| | - Jingtao Zhang
- Jiamusi Branch, Heilongjiang Academy of Agricultural Sciences/Key Laboratory of Breeding and Cultivation of Main Crops in Sanjiang Plain, Jiamusi, 154007, China
| | - Jingqi Liu
- Jiamusi Branch, Heilongjiang Academy of Agricultural Sciences/Key Laboratory of Breeding and Cultivation of Main Crops in Sanjiang Plain, Jiamusi, 154007, China
| | - Lijun Cai
- Jiamusi Branch, Heilongjiang Academy of Agricultural Sciences/Key Laboratory of Breeding and Cultivation of Main Crops in Sanjiang Plain, Jiamusi, 154007, China
| | - Xu Yang
- Jiamusi Branch, Heilongjiang Academy of Agricultural Sciences/Key Laboratory of Breeding and Cultivation of Main Crops in Sanjiang Plain, Jiamusi, 154007, China
| | - Na Zhang
- Jiamusi Branch, Heilongjiang Academy of Agricultural Sciences/Key Laboratory of Breeding and Cultivation of Main Crops in Sanjiang Plain, Jiamusi, 154007, China
| | - Zhengnan Yan
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lei Liu
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China.
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Guozhong Feng
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
9
|
Guo Z, Ma W, Cai L, Guo T, Liu H, Wang L, Liu J, Ma B, Feng Y, Liu C, Pan G. Comparison of anther transcriptomes in response to cold stress at the reproductive stage between susceptible and resistant Japonica rice varieties. BMC PLANT BIOLOGY 2022; 22:500. [PMID: 36284279 PMCID: PMC9597962 DOI: 10.1186/s12870-022-03873-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Rice is one of the most important cereal crops in the world but is susceptible to cold stress (CS). In this study, we carried out parallel transcriptomic analysis at the reproductive stage on the anthers of two Japonica rice varieties with contrasting CS resistance: cold susceptible Longjing11 (LJ11) and cold resistant Longjing25 (LJ25). RESULTS According to the obtained results, a total of 16,762 differentially expressed genes (DEGs) were identified under CS, including 7,050 and 14,531 DEGs in LJ25 and LJ11, respectively. Examining gene ontology (GO) enrichment identified 35 up- and 39 down-regulated biological process BP GO terms were significantly enriched in the two varieties, with 'response to heat' and 'response to cold' being the most enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified 33 significantly enriched pathways. Only the carbon metabolism and amino acid biosynthesis pathways with down-regulated DEGs were enriched considerably in LJ11, while the plant hormone signal transduction pathway (containing 153 DEGs) was dramatically improved. Eight kinds of plant hormones were detected in the pathway, while auxin, abscisic acid (ABA), salicylic acid (SA), and ethylene (ETH) signaling pathways were found to be the top four pathways with the most DEGs. Furthermore, the protein-protein interaction (PPI) network analysis identified ten hub genes (co-expressed gene number ≥ 30), including six ABA-related genes. Various DEGs (such as OsDREB1A, OsICE1, OsMYB2, OsABF1, OsbZIP23, OsCATC, and so on) revealed distinct expression patterns among rice types when the DEGs between LJ11 and LJ25 were compared, indicating that they are likely responsible for CS resistance of rice in cold region. CONCLUSION Collectively, our findings provide comprehensive insights into complex molecular mechanisms of CS response and can aid in CS resistant molecular breeding of rice in cold regions.
Collapse
Affiliation(s)
- Zhenhua Guo
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, 154026, Jiamusi, Heilongjiang, China
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, 510642, Guangzhou, Guangdong, China
| | - Wendong Ma
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, 154026, Jiamusi, Heilongjiang, China
| | - Lijun Cai
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, 154007, Jiamusi, Heilongjiang, China.
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, 510642, Guangzhou, Guangdong, China
| | - Hao Liu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, 510640, Guangzhou, Guangdong, China
| | - Linan Wang
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, 154026, Jiamusi, Heilongjiang, China
| | - Junliang Liu
- Jiamusi Longjing Seed Industry Co., LTD, 154026, Jiamusi, Heilongjiang, China
| | - Bo Ma
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, 161006, Qiqihar, Heilongjiang, China
| | - Yanjiang Feng
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, 154026, Jiamusi, Heilongjiang, China.
| | - Chuanxue Liu
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, 154026, Jiamusi, Heilongjiang, China.
| | - Guojun Pan
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, 154026, Jiamusi, Heilongjiang, China.
| |
Collapse
|
10
|
Boursiac Y, Pradal C, Bauget F, Lucas M, Delivorias S, Godin C, Maurel C. Phenotyping and modeling of root hydraulic architecture reveal critical determinants of axial water transport. PLANT PHYSIOLOGY 2022; 190:1289-1306. [PMID: 35708646 PMCID: PMC9516777 DOI: 10.1093/plphys/kiac281] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/15/2022] [Indexed: 05/26/2023]
Abstract
Water uptake by roots is a key adaptation of plants to aerial life. Water uptake depends on root system architecture (RSA) and tissue hydraulic properties that, together, shape the root hydraulic architecture. This work investigates how the interplay between conductivities along radial (e.g. aquaporins) and axial (e.g. xylem vessels) pathways determines the water transport properties of highly branched RSAs as found in adult Arabidopsis (Arabidopsis thaliana) plants. A hydraulic model named HydroRoot was developed, based on multi-scale tree graph representations of RSAs. Root water flow was measured by the pressure chamber technique after successive cuts of a same root system from the tip toward the base. HydroRoot model inversion in corresponding RSAs allowed us to concomitantly determine radial and axial conductivities, providing evidence that the latter is often overestimated by classical evaluation based on the Hagen-Poiseuille law. Organizing principles of Arabidopsis primary and lateral root growth and branching were determined and used to apply the HydroRoot model to an extended set of simulated RSAs. Sensitivity analyses revealed that water transport can be co-limited by radial and axial conductances throughout the whole RSA. The number of roots that can be sectioned (intercepted) at a given distance from the base was defined as an accessible and informative indicator of RSA. The overall set of experimental and theoretical procedures was applied to plants mutated in ESKIMO1 and previously shown to have xylem collapse. This approach will be instrumental to dissect the root water transport phenotype of plants with intricate alterations in root growth or transport functions.
Collapse
Affiliation(s)
| | | | | | | | - Stathis Delivorias
- Institute for Plant Sciences of Montpellier (IPSiM), Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier 34060, France
| | | | | |
Collapse
|
11
|
Transcriptomic Analysis Reveals the Correlation between End-of-Day Far Red Light and Chilling Stress in Setaria viridis. Genes (Basel) 2022; 13:genes13091565. [PMID: 36140734 PMCID: PMC9498584 DOI: 10.3390/genes13091565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
Low temperature and end-of-day far-red (EOD-FR) light signaling are two key factors limiting plant production and geographical location worldwide. However, the transcriptional dynamics of EOD-FR light conditions during chilling stress remain poorly understood. Here, we performed a comparative RNA-Seq-based approach to identify differentially expressed genes (DEGs) related to EOD-FR and chilling stress in Setaria viridis. A total of 7911, 324, and 13431 DEGs that responded to low temperature, EOD-FR and these two stresses were detected, respectively. Further DEGs analysis revealed that EOD-FR may enhance cold tolerance in plants by regulating the expression of genes related to cold tolerance. The result of weighted gene coexpression network analysis (WGCNA) using 13431 nonredundant DEGs exhibited 15 different gene network modules. Interestingly, a CO-like transcription factor named BBX2 was highly expressed under EOD-FR or chilling conditions. Furthermore, we could detect more expression levels when EOD-FR and chilling stress co-existed. Our dataset provides a valuable resource for the regulatory network involved in EOD-FR signaling and chilling tolerance in C4 plants.
Collapse
|
12
|
Gai Z, Liu J, Cai L, Zhang J, Liu L. Foliar application of alpha-ketoglutarate plus nitrogen improves drought resistance in soybean (Glycine max L. Merr.). Sci Rep 2022; 12:14421. [PMID: 36002532 PMCID: PMC9402593 DOI: 10.1038/s41598-022-18660-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/17/2022] [Indexed: 11/09/2022] Open
Abstract
The aim of the present research was to understand the impacts of foliar nitrogen and α-oxoglutarate on proline accumulation, photosynthesis, and ammonium assimilation of soybean seedlings subjected to drought stress. The data in the present study demonstrated that foliar α-oxoglutarate and nitrogen significantly enhanced leaf glutamine synthetase (GS) activity, glutamate dehydrogenase (GDH) activity, glutamate content, proline content, relative water content (RWC) and photosynthesis of soybean seedlings exposed to drought stress at each stage. Accordingly, the ammonium content was significantly reduced by foliar α-oxoglutarate and nitrogen. These results suggested that a combination of foliar nitrogen plus α-oxoglutarate had an advantage over either foliar nitrogen or foliar α-oxoglutarate in increasing the proline accumulation under drought stress and a combination of foliar nitrogen plus α-oxoglutarate could better mitigate the adverse impacts of drought stress.
Collapse
Affiliation(s)
- Zhijia Gai
- Jiamusi Branch, Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154007, Heilongjiang Province, China
| | - Jingqi Liu
- Jiamusi Branch, Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154007, Heilongjiang Province, China
| | - Lijun Cai
- Jiamusi Branch, Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154007, Heilongjiang Province, China
| | - Jingtao Zhang
- Jiamusi Branch, Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154007, Heilongjiang Province, China
| | - Lei Liu
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130102, Jilin Province, China. .,Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin Province, China.
| |
Collapse
|
13
|
Guo Z, Cai L, Liu C, Chen Z, Guan S, Ma W, Pan G. Low-temperature stress affects reactive oxygen species, osmotic adjustment substances, and antioxidants in rice (Oryza sativa L.) at the reproductive stage. Sci Rep 2022; 12:6224. [PMID: 35418703 PMCID: PMC9008029 DOI: 10.1038/s41598-022-10420-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/15/2022] [Indexed: 11/30/2022] Open
Abstract
The sensitivity of rice to low-temperature stress (LTS), especially at the reproductive stage, is a primary factor of rice yield fluctuation in cold cultivate region. Here, the changes of reactive oxygen species (ROS), osmotic adjustment substances, and antioxidants in different tissues were analyzed during rice growing under low temperatures (LT) at the reproductive stage. Results showed that LTS increases the levels of proline (Pro), soluble protein (SP), glutathione (GSH), superoxidase (SOD), and ascorbate peroxidase (APX) in LJ25 (LTS-resistant) and LJ11 (LTS-sensitive). The activities of catalase (CAT) and peroxidase (POD) were significantly increased in LJ25 but decreased in LJ11 under LTS, while an opposite trend in ROS and malondialdehyde (MDA) was observed in both varieties. Moreover, most physicochemical properties were higher in flag leaves and panicles compared with those in leaf sheaths. The expression patterns of OsCOIN, OsCATC, OsMAP1, OsPOX1, and OsAPX were the same with phenotypic changes in Pro and the enzymes encoded by them, confirming the accuracy of the physicochemical analysis. Therefore, only CAT and POD increased more in LJ25, suggesting they could be the key factors used for LT-tolerant breeding of rice in cold regions.
Collapse
Affiliation(s)
- Zhenhua Guo
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154026, China.
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China.
| | - Lijun Cai
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154007, China
| | - Chuanxue Liu
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154026, China
| | - Zhiqiang Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Shiwu Guan
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154026, China
| | - Wendong Ma
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154026, China
| | - Guojun Pan
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154026, China.
| |
Collapse
|
14
|
Cornelis S, Hazak O. Understanding the root xylem plasticity for designing resilient crops. PLANT, CELL & ENVIRONMENT 2022; 45:664-676. [PMID: 34971462 PMCID: PMC9303747 DOI: 10.1111/pce.14245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Xylem is the main route for transporting water, minerals and a myriad of signalling molecules within the plant. With its onset during early embryogenesis, the development of the xylem relies on hormone gradients, the activity of unique transcription factors, the distribution of mobile microRNAs, and receptor-ligand pathways. These regulatory mechanisms are often interconnected and together contribute to the plasticity of this water-conducting tissue. Environmental stresses, such as drought and salinity, have a great impact on xylem patterning. A better understanding of how the structural properties of the xylem are regulated in normal and stress conditions will be instrumental in developing crops of the future. In addition, vascular wilt pathogens that attack the xylem are becoming increasingly problematic. Further knowledge of xylem development in response to these pathogens will bring new solutions against these diseases. In this review, we summarize recent findings on the molecular mechanisms of xylem formation that largely come from Arabidopsis research with additional insights from tomato and monocot species. We emphasize the impact of abiotic factors and pathogens on xylem plasticity and the urgent need to uncover the underlying mechanisms. Finally, we discuss the multidisciplinary approach to model xylem capacities in crops.
Collapse
Affiliation(s)
- Salves Cornelis
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Ora Hazak
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| |
Collapse
|
15
|
Moos M, Korbelová J, Štětina T, Opekar S, Šimek P, Grgac R, Koštál V. Cryoprotective Metabolites Are Sourced from Both External Diet and Internal Macromolecular Reserves during Metabolic Reprogramming for Freeze Tolerance in Drosophilid Fly, Chymomyza costata. Metabolites 2022; 12:163. [PMID: 35208237 PMCID: PMC8877510 DOI: 10.3390/metabo12020163] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 12/23/2022] Open
Abstract
Many cold-acclimated insects accumulate high concentrations of low molecular weight cryoprotectants (CPs) in order to tolerate low subzero temperatures or internal freezing. The sources from which carbon skeletons for CP biosynthesis are driven, and the metabolic reprogramming linked to cold acclimation, are not sufficiently understood. Here we aim to resolve the metabolism of putative CPs by mapping relative changes in concentration of 56 metabolites and expression of 95 relevant genes as larvae of the drosophilid fly, Chymomyza costata transition from a freeze sensitive to a freeze tolerant phenotype during gradual cold acclimation. We found that C. costata larvae may directly assimilate amino acids proline and glutamate from diet to acquire at least half of their large proline stocks (up to 55 µg per average 2 mg larva). Metabolic conversion of internal glutamine reserves that build up in early diapause may explain the second half of proline accumulation, while the metabolic conversion of ornithine and the degradation of larval collagens and other proteins might be two additional minor sources. Next, we confirm that glycogen reserves represent the major source of glucose units for trehalose synthesis and accumulation (up to 27 µg per larva), while the diet may serve as an additional source. Finally, we suggest that interconversions of phospholipids may release accumulated glycero-phosphocholine (GPC) and -ethanolamine (GPE). Choline is a source of accumulated methylamines: glycine-betaine and sarcosine. The sum of methylamines together with GPE and GPC represents approximately 2 µg per larva. In conclusion, we found that food ingestion may be an important source of carbon skeletons for direct assimilation of, and/or metabolic conversions to, CPs in a diapausing and cold-acclimated insect. So far, the cold-acclimation- linked accumulation of CPs in insects was considered to be sourced mainly from internal macromolecular reserves.
Collapse
Affiliation(s)
- Martin Moos
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic; (M.M.); (J.K.); (T.Š.); (S.O.); (P.Š.); (R.G.)
| | - Jaroslava Korbelová
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic; (M.M.); (J.K.); (T.Š.); (S.O.); (P.Š.); (R.G.)
| | - Tomáš Štětina
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic; (M.M.); (J.K.); (T.Š.); (S.O.); (P.Š.); (R.G.)
| | - Stanislav Opekar
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic; (M.M.); (J.K.); (T.Š.); (S.O.); (P.Š.); (R.G.)
| | - Petr Šimek
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic; (M.M.); (J.K.); (T.Š.); (S.O.); (P.Š.); (R.G.)
| | - Robert Grgac
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic; (M.M.); (J.K.); (T.Š.); (S.O.); (P.Š.); (R.G.)
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Vladimír Koštál
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic; (M.M.); (J.K.); (T.Š.); (S.O.); (P.Š.); (R.G.)
| |
Collapse
|
16
|
Baker CR, Stewart JJ, Amstutz CL, Ching LG, Johnson JD, Niyogi KK, Adams WW, Demmig‐Adams B. Genotype-dependent contribution of CBF transcription factors to long-term acclimation to high light and cool temperature. PLANT, CELL & ENVIRONMENT 2022; 45:392-411. [PMID: 34799867 PMCID: PMC9299779 DOI: 10.1111/pce.14231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
When grown under cool temperature, winter annuals upregulate photosynthetic capacity as well as freezing tolerance. Here, the role of three cold-induced C-repeat-binding factor (CBF1-3) transcription factors in photosynthetic upregulation and freezing tolerance was examined in two Arabidopsis thaliana ecotypes originating from Italy (IT) or Sweden (SW), and their corresponding CBF1-3-deficient mutant lines it:cbf123 and sw:cbf123. Photosynthetic, morphological and freezing-tolerance phenotypes, as well as gene expression profiles, were characterized in plants grown from the seedling stage under different combinations of light level and temperature. Under high light and cool (HLC) growth temperature, a greater role of CBF1-3 in IT versus SW was evident from both phenotypic and transcriptomic data, especially with respect to photosynthetic upregulation and freezing tolerance of whole plants. Overall, features of SW were consistent with a different approach to HLC acclimation than seen in IT, and an ability of SW to reach the new homeostasis through the involvement of transcriptional controls other than CBF1-3. These results provide tools and direction for further mechanistic analysis of the transcriptional control of approaches to cold acclimation suitable for either persistence through brief cold spells or for maximisation of productivity in environments with continuous low temperatures.
Collapse
Affiliation(s)
- Christopher R. Baker
- Department of Plant and Microbial Biology, Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Jared J. Stewart
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderColoradoUSA
| | - Cynthia L. Amstutz
- Department of Plant and Microbial Biology, Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Lindsey G. Ching
- Department of Plant and Microbial Biology, Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Jeffrey D. Johnson
- Department of Plant and Microbial Biology, Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Krishna K. Niyogi
- Department of Plant and Microbial Biology, Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - William W. Adams
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderColoradoUSA
| | - Barbara Demmig‐Adams
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderColoradoUSA
| |
Collapse
|
17
|
Hoermiller II, Funck D, Schönewolf L, May H, Heyer AG. Cytosolic proline is required for basal freezing tolerance in Arabidopsis. PLANT, CELL & ENVIRONMENT 2022; 45:147-155. [PMID: 34605046 DOI: 10.1111/pce.14196] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
The amino acid proline accumulates in many plant species under abiotic stress conditions, and various protective functions have been proposed. During cold stress, however, proline content in Arabidopsis thaliana does not correlate with freezing tolerance. Freezing sensitivity of a starchless plastidic phosphoglucomutase mutant (pgm) indicated that localization of proline in the cytosol might stabilize the plasma membrane during freeze-thaw events. Here, we show that re-allocation of proline from cytosol to vacuole was similar in the pyrroline-5-carboxylate synthase 2-1 (p5cs2-1) mutant and the pgm mutant and caused similar reduction of basal freezing tolerance. In contrast, the starch excess 1-1 mutant (sex1-1) had even lower freezing tolerance than pgm but did not affect sub-cellular localization of proline. Freezing sensitivity of sex1-1 mutants affected primarily the photosynthetic electron transport and was enhanced in a sex1-1::p5cs2-1 double mutant. These findings indicate that several independent factors determine basal freezing tolerance. In a pgm::p5cs2-1 double mutant, freezing sensitivity and proline allocation to the vacuole were the same as in the parental lines, indicating that the lack of cytosolic proline was the common cause of reduced basal freezing tolerance in both mutants. We conclude that cytosolic proline is an important factor in freezing tolerance of non-acclimated plants.
Collapse
Affiliation(s)
- Imke I Hoermiller
- Department of Plant Biotechnology, University of Stuttgart, Institute of Biomaterials & Biomolecular Systems, Stuttgart, Germany
| | - Dietmar Funck
- Department of Biology, University of Konstanz, Constance, Germany
| | - Lilli Schönewolf
- Department of Plant Biotechnology, University of Stuttgart, Institute of Biomaterials & Biomolecular Systems, Stuttgart, Germany
| | - Henrik May
- Department of Plant Biotechnology, University of Stuttgart, Institute of Biomaterials & Biomolecular Systems, Stuttgart, Germany
| | - Arnd G Heyer
- Department of Plant Biotechnology, University of Stuttgart, Institute of Biomaterials & Biomolecular Systems, Stuttgart, Germany
| |
Collapse
|
18
|
Wang HT, Bharadwaj VS, Yang JY, Curry TM, Moremen KW, Bomble YJ, Urbanowicz BR. Rational enzyme design for controlled functionalization of acetylated xylan for cell-free polymer biosynthesis. Carbohydr Polym 2021; 273:118564. [PMID: 34560975 DOI: 10.1016/j.carbpol.2021.118564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/02/2021] [Accepted: 08/13/2021] [Indexed: 11/18/2022]
Abstract
Xylan O-acetyltransferase 1 (XOAT1) is involved in O-acetylating the backbone of hemicellulose xylan. Recent structural analysis of XOAT1 showed two unequal lobes forming a cleft that is predicted to accommodate and position xylan acceptors into proximity with the catalytic triad. Here, we used docking and molecular dynamics simulations to investigate the optimal orientation of xylan in the binding cleft of XOAT1 and identify putative key residues (Gln445 and Arg444 on Minor lobe & Asn312, Met311 and Asp403 on Major lobe) involved in substrate interactions. Site-directed mutagenesis coupled with biochemical analyses revealed the major lobe of XOAT1 is important for xylan binding. Mutation of single key residues yielded XOAT1 variants with various enzymatic efficiencies that are applicable to one-pot synthesis of xylan polymers with different degrees of O-acetylation. Taken together, our results demonstrate the effectiveness of computational modeling in guiding enzyme engineering aimed at modulating xylan and redesigning plant cell walls.
Collapse
Affiliation(s)
- Hsin-Tzu Wang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Vivek S Bharadwaj
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 16253 Denver West Parkway, Golden, CO 80401, USA
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Thomas M Curry
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Yannick J Bomble
- Bioscience Center, National Renewable Energy Laboratory, 16253 Denver West Parkway, Golden, CO 80401, USA
| | - Breeanna R Urbanowicz
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA.
| |
Collapse
|
19
|
Zhao Y, Jing H, Zhao P, Chen W, Li X, Sang X, Lu J, Wang H. GhTBL34 Is Associated with Verticillium Wilt Resistance in Cotton. Int J Mol Sci 2021; 22:9115. [PMID: 34502024 PMCID: PMC8431740 DOI: 10.3390/ijms22179115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/14/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Verticillium wilt (VW) is a typical fungal disease affecting the yield and quality of cotton. The Trichome Birefringence-Like protein (TBL) is an acetyltransferase involved in the acetylation process of cell wall polysaccharides. Up to now, there are no reports on whether the TBL gene is related to disease resistance in cotton. In this study, we cloned a cotton TBL34 gene located in the confidence interval of a major VW resistance quantitative trait loci and demonstrated its relationship with VW resistance in cotton. Analyzing the sequence variations in resistant and susceptible accessions detected two elite alleles GhTBL34-2 and GhTBL34-3, mainly presented in resistant cotton lines whose disease index was significantly lower than that of susceptible lines carrying the allele GhTBL34-1. Comparing the TBL34 protein sequences showed that two amino acid differences in the TBL (PMR5N) domain changed the susceptible allele GhTBL34-1 into the resistant allele GhTBL34-2 (GhTBL34-3). Expression analysis showed that the TBL34 was obviously up-regulated by infection of Verticillium dahliae and exogenous treatment of ethylene (ET), and salicylic acid (SA) and jasmonate (JA) in cotton. VIGS experiments demonstrated that silencing of TBL34 reduced VW resistance in cotton. We deduced that the TBL34 gene mediating acetylation of cell wall polysaccharides might be involved in the regulation of resistance to VW in cotton.
Collapse
Affiliation(s)
- Yunlei Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (H.J.); (P.Z.); (W.C.); (X.S.); (J.L.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China
| | - Huijuan Jing
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (H.J.); (P.Z.); (W.C.); (X.S.); (J.L.)
| | - Pei Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (H.J.); (P.Z.); (W.C.); (X.S.); (J.L.)
| | - Wei Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (H.J.); (P.Z.); (W.C.); (X.S.); (J.L.)
| | - Xuelin Li
- Agricultural College, Henan University of Science and Technology, Luoyang 471000, China;
| | - Xiaohui Sang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (H.J.); (P.Z.); (W.C.); (X.S.); (J.L.)
| | - Jianhua Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (H.J.); (P.Z.); (W.C.); (X.S.); (J.L.)
| | - Hongmei Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (H.J.); (P.Z.); (W.C.); (X.S.); (J.L.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
20
|
Kadowaki MAS, Briganti L, Evangelista DE, Echevarría-Poza A, Tryfona T, Pellegrini VOA, Nakayama DG, Dupree P, Polikarpov I. Unlocking the structural features for the xylobiohydrolase activity of an unusual GH11 member identified in a compost-derived consortium. Biotechnol Bioeng 2021; 118:4052-4064. [PMID: 34232504 DOI: 10.1002/bit.27880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 11/08/2022]
Abstract
The heteropolysaccharide xylan is a valuable source of sustainable chemicals and materials from renewable biomass sources. A complete hydrolysis of this major hemicellulose component requires a diverse set of enzymes including endo-β-1,4-xylanases, β-xylosidases, acetylxylan esterases, α-l-arabinofuranosidases, and α-glucuronidases. Notably, the most studied xylanases from glycoside hydrolase family 11 (GH11) have exclusively been endo-β-1,4- and β-1,3-xylanases. However, a recent analysis of a metatranscriptome library from a microbial lignocellulose community revealed GH11 enzymes capable of releasing solely xylobiose from xylan. Although initial biochemical studies clearly indicated their xylobiohydrolase mode of action, the structural features that drive this new activity still remained unclear. It was also not clear whether the enzymes acted on the reducing or nonreducing end of the substrate. Here, we solved the crystal structure of MetXyn11 in the apo and xylobiose-bound forms. The structure of MetXyn11 revealed the molecular features that explain the observed pattern on xylooligosaccharides released by this nonreducing end xylobiohydrolase.
Collapse
Affiliation(s)
- Marco A S Kadowaki
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil.,PhotoBioCatalysis-Biomass transformation Lab (BTL), École Interfacultaire de Bioingénieurs (EIB), Université Libre de Bruxelles, Brussels, Belgium
| | - Lorenzo Briganti
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Danilo E Evangelista
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil.,Instituto de Criminalística de Andradina, Superintendência da Polícia Técnico Científica de São Paulo, Andradina, São Paulo, Brazil
| | | | - Theodora Tryfona
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Vanessa O A Pellegrini
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Darlan G Nakayama
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Igor Polikarpov
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| |
Collapse
|
21
|
Lekshmy VS, Vijayaraghavareddy P, Nagashree AN, Ramu VS, Ramegowda V, Makarla U, Sreeman S. Induction of Acquired Tolerance Through Gradual Progression of Drought Is the Key for Maintenance of Spikelet Fertility and Yield in Rice Under Semi-irrigated Aerobic Conditions. FRONTIERS IN PLANT SCIENCE 2021; 11:632919. [PMID: 33679820 PMCID: PMC7930615 DOI: 10.3389/fpls.2020.632919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 12/22/2020] [Indexed: 06/01/2023]
Abstract
Plants have evolved several adaptive mechanisms to cope with water-limited conditions. While most of them are through constitutive traits, certain "acquired tolerance" traits also provide significant improvement in drought adaptation. Most abiotic stresses, especially drought, show a gradual progression of stress and hence provide an opportunity to upregulate specific protective mechanisms collectively referred to as "acquired tolerance" traits. Here, we demonstrate a significant genetic variability in acquired tolerance traits among rice germplasm accessions after standardizing a novel gradual stress progress protocol. Two contrasting genotypes, BPT 5204 (drought susceptible) and AC 39000 (tolerant), were used to standardize methodology for capturing acquired tolerance traits at seedling phase. Seedlings exposed to gradual progression of stress showed higher recovery with low free radical accumulation in both the genotypes compared to rapid stress. Further, the gradual stress progression protocol was used to examine the role of acquired tolerance at flowering phase using a set of 17 diverse rice genotypes. Significant diversity in free radical production and scavenging was observed among these genotypes. Association of these parameters with yield attributes showed that genotypes that managed free radical levels in cells were able to maintain high spikelet fertility and hence yield under stress. This study, besides emphasizing the importance of acquired tolerance, explains a high throughput phenotyping approach that significantly overcomes methodological constraints in assessing genetic variability in this important drought adaptive mechanism.
Collapse
Affiliation(s)
- V. S. Lekshmy
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| | - Preethi Vijayaraghavareddy
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
- Department of Plant Sciences, Centre for Crop Systems Analysis, Wageningen University & Research, Wageningen, Netherlands
| | - A. N. Nagashree
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| | | | | | - Udayakumar Makarla
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| | - Sheshshayee Sreeman
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| |
Collapse
|
22
|
Zhang B, Gao Y, Zhang L, Zhou Y. The plant cell wall: Biosynthesis, construction, and functions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:251-272. [PMID: 33325153 DOI: 10.1111/jipb.13055] [Citation(s) in RCA: 240] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/15/2020] [Indexed: 05/19/2023]
Abstract
The plant cell wall is composed of multiple biopolymers, representing one of the most complex structural networks in nature. Hundreds of genes are involved in building such a natural masterpiece. However, the plant cell wall is the least understood cellular structure in plants. Due to great progress in plant functional genomics, many achievements have been made in uncovering cell wall biosynthesis, assembly, and architecture, as well as cell wall regulation and signaling. Such information has significantly advanced our understanding of the roles of the cell wall in many biological and physiological processes and has enhanced our utilization of cell wall materials. The use of cutting-edge technologies such as single-molecule imaging, nuclear magnetic resonance spectroscopy, and atomic force microscopy has provided much insight into the plant cell wall as an intricate nanoscale network, opening up unprecedented possibilities for cell wall research. In this review, we summarize the major advances made in understanding the cell wall in this era of functional genomics, including the latest findings on the biosynthesis, construction, and functions of the cell wall.
Collapse
Affiliation(s)
- Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yihong Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lanjun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
23
|
Gai Z, Liu L, Zhang J, Liu J, Cai L. Effects of exogenous α-oxoglutarate on proline accumulation, ammonium assimilation and photosynthesis of soybean seedling (Glycine max(L.) Merr.) exposed to cold stress. Sci Rep 2020; 10:17017. [PMID: 33046814 PMCID: PMC7550343 DOI: 10.1038/s41598-020-74094-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/18/2020] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to examine the effects of exogenous α-oxoglutarate on leaf proline accumulation, ammonium assimilation and photosynthesis of soybean when exposed to cold stress. To achieve this objective, exogenous α-oxoglutarate was sprayed to potted seedlings of Henong60 and Heinong48 at 0, 2.5, 5.0 and 7.5 mmol/L, identified as A0, A2.5, A5.0, and A7.5, respectively. Leaf samples were collected after cold stress of 24 h (S1 stage) and 48 h (S2 stage). The results indicated that exogenous α-oxoglutarate significantly enhanced leaf GS activity, NADP-GDH activity, glutamate content, proline content and photosynthesis of soybean seedling exposed to cold stress at S1 and S2 stages. The ammonium content in leaf was significantly decreased by exogenous α-oxoglutarate at both stages. 5.0 mmol/L of exogenous α-oxoglutarate is the optimum concentration in this study. Leaf proline content for Henong60 and Heinong48 at A5.0 was 37.53% and 17.96% higher than that at A0 at S1 stage, respectively. Proline content for Henong60 and Heinong48 increased by 28.82% and 12.41% at A5.0 and A0, respectively, at S2 stage. Those results suggested that exogenous α-oxoglutarate could alleviate the adverse effects of cold stress.
Collapse
Affiliation(s)
- Zhijia Gai
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Xuefu Road 368, Harbin City, 150086, Heilongjiang Province, China
- Jiamusi Branch, Heilongjiang Academy of Agricultural Sciences, Anqing Street 531, Dongfeng District, Jiamusi City, 154007, Heilongjiang Province, China
| | - Lei Liu
- College of Agronomy, Northeast Agricultural University, Changjiang Road 600, Harbin City, 150038, Heilongjiang Province, China
| | - Jingtao Zhang
- Jiamusi Branch, Heilongjiang Academy of Agricultural Sciences, Anqing Street 531, Dongfeng District, Jiamusi City, 154007, Heilongjiang Province, China.
| | - Jingqi Liu
- Jiamusi Branch, Heilongjiang Academy of Agricultural Sciences, Anqing Street 531, Dongfeng District, Jiamusi City, 154007, Heilongjiang Province, China
| | - Lijun Cai
- Jiamusi Branch, Heilongjiang Academy of Agricultural Sciences, Anqing Street 531, Dongfeng District, Jiamusi City, 154007, Heilongjiang Province, China
| |
Collapse
|
24
|
Acclimation, priming and memory in the response of Arabidopsis thaliana seedlings to cold stress. Sci Rep 2020; 10:689. [PMID: 31959824 PMCID: PMC6971231 DOI: 10.1038/s41598-019-56797-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/28/2019] [Indexed: 11/16/2022] Open
Abstract
Because stress experiences are often recurrent plants have developed strategies to remember a first so-called priming stress to eventually respond more effectively to a second triggering stress. Here, we have studied the impact of discontinuous or sustained cold stress (4 °C) on in vitro grown Arabidopsis thaliana seedlings of different age and their ability to get primed and respond differently to a later triggering stress. Cold treatment of 7-d-old seedlings induced the expression of cold response genes but did not cause a significantly enhanced freezing resistance. The competence to increase the freezing resistance in response to cold was associated with the formation of true leaves. Discontinuous exposure to cold only during the night led to a stepwise modest increase in freezing tolerance provided that the intermittent phase at ambient temperature was less than 32 h. Seedlings exposed to sustained cold treatment developed a higher freezing tolerance which was further increased in response to a triggering stress during three days after the priming treatment had ended indicating cold memory. Interestingly, in all scenarios the primed state was lost as soon as the freezing tolerance had reached the level of naïve plants indicating that an effective memory was associated with an altered physiological state. Known mutants of the cold stress response (cbfs, erf105) and heat stress memory (fgt1) did not show an altered behaviour indicating that their roles do not extend to memory of cold stress in Arabidopsis seedlings.
Collapse
|
25
|
Derba-Maceluch M, Amini F, Donev EN, Pawar PMA, Michaud L, Johansson U, Albrectsen BR, Mellerowicz EJ. Cell Wall Acetylation in Hybrid Aspen Affects Field Performance, Foliar Phenolic Composition and Resistance to Biological Stress Factors in a Construct-Dependent Fashion. FRONTIERS IN PLANT SCIENCE 2020; 11:651. [PMID: 32528503 PMCID: PMC7265884 DOI: 10.3389/fpls.2020.00651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/27/2020] [Indexed: 05/03/2023]
Abstract
The production of biofuels and "green" chemicals from the lignocellulose of fast-growing hardwood species is hampered by extensive acetylation of xylan. Different strategies have been implemented to reduce xylan acetylation, resulting in transgenic plants that show good growth in the greenhouse, improved saccharification and fermentation, but the field performance of such plants has not yet been reported. The aim of this study was to evaluate the impact of reduced acetylation on field productivity and identify the best strategies for decreasing acetylation. Growth and biological stress data were evaluated for 18 hybrid aspen lines with 10-20% reductions in the cell wall acetyl content from a five year field experiment in Southern Sweden. The reduction in acetyl content was achieved either by suppressing the process of acetylation in the Golgi by reducing expression of REDUCED WALL ACETYLATION (RWA) genes, or by post-synthetic acetyl removal by fungal acetyl xylan esterases (AXEs) from two different families, CE1 and CE5, targeting them to cell walls. Transgene expression was regulated by either a constitutive promoter (35S) or a wood-specific promoter (WP). For the majority of transgenic lines, growth was either similar to that in WT and transgenic control (WP:GUS) plants, or slightly reduced. The slight reduction was observed in the AXE-expressing lines regulated by the 35S promoter, not those with the WP promoter which limits expression to cells developing secondary walls. Expressing AXEs regulated by the 35S promoter resulted in increased foliar arthropod chewing, and altered condensed tannins and salicinoid phenolic glucosides (SPGs) profiles. Greater growth inhibition was observed in the case of CE5 than with CE1 AXE, and it was associated with increased foliar necrosis and distinct SPG profiles, suggesting that CE5 AXE could be recognized by the pathogen-associated molecular pattern system. For each of three different constructs, there was a line with dwarfism and growth abnormalities, suggesting random genetic/epigenetic changes. This high frequency of dwarfism (17%) is suggestive of a link between acetyl metabolism and chromatin function. These data represent the first evaluation of acetyl-reduced plants from the field, indicating some possible pitfalls, and identifying the best strategies, when developing highly productive acetyl-reduced feedstocks.
Collapse
Affiliation(s)
- Marta Derba-Maceluch
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Fariba Amini
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
- Biology Department, Faculty of Science, Arak University, Arak, Iran
| | - Evgeniy N. Donev
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Prashant Mohan-Anupama Pawar
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Lisa Michaud
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Ulf Johansson
- Tönnersjöheden Experimental Forest, Swedish University of Agricultural Sciences, Simlångsdalen, Sweden
| | | | - Ewa J. Mellerowicz
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
- *Correspondence: Ewa J. Mellerowicz,
| |
Collapse
|
26
|
Perea-Resa C, Catalá R, Salinas J. Identification of Arabidopsis Mutants with Altered Freezing Tolerance. Methods Mol Biol 2020; 2156:85-97. [PMID: 32607977 DOI: 10.1007/978-1-0716-0660-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Low temperature is an important determinant in the configuration of natural plant communities and defines the range of distribution and growth of important crops. Some plants, including Arabidopsis thaliana, have evolved sophisticated adaptive mechanisms to tolerate freezing temperatures. Central to this adaptation is the process of cold acclimation. By means of this process, many plants from temperate regions are able to develop or increase their freezing tolerance in response to low, nonfreezing temperatures. The identification and characterization of factors involved in freezing tolerance is crucial to understand the molecular mechanisms underlying the cold acclimation response and has a potential interest to improve crop tolerance to freezing temperatures. Many genes implicated in cold acclimation have been identified in numerous plant species by using molecular approaches followed by reverse genetic analysis. Remarkably, however, direct genetic analyses have not been conveniently exploited in their capacity for identifying genes with pivotal roles in that adaptive response. In this chapter, we describe a protocol for evaluating the freezing tolerance of both nonacclimated and cold acclimated Arabidopsis plants. This protocol allows for the accurate and simple screening of mutant collections for the identification of novel factors involved in freezing tolerance and cold acclimation.
Collapse
Affiliation(s)
- Carlos Perea-Resa
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Rafael Catalá
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Julio Salinas
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain.
| |
Collapse
|
27
|
DFR1-Mediated Inhibition of Proline Degradation Pathway Regulates Drought and Freezing Tolerance in Arabidopsis. Cell Rep 2019; 23:3960-3974. [PMID: 29949777 DOI: 10.1016/j.celrep.2018.04.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/09/2018] [Accepted: 04/01/2018] [Indexed: 11/23/2022] Open
Abstract
Proline accumulation is one of the most important adaptation mechanisms for plants to cope with environmental stresses, such as drought and freezing. However, the molecular mechanism of proline homeostasis under these stresses is largely unknown. Here, we identified a mitochondrial protein, DFR1, involved in the inhibition of proline degradation in Arabidopsis. DFR1 was strongly induced by drought and cold stresses. The dfr1 knockdown mutants showed hypersensitivity to drought and freezing stresses, whereas the DFR1 overexpression plants exhibited enhanced tolerance, which was positively correlated with proline levels. DFR1 interacts with proline degradation enzymes PDH1/2 and P5CDH and compromises their activities. Genetic analysis showed that DFR1 acts upstream of PDH1/2 and P5CDH to positively regulate proline accumulation. Our results demonstrate a regulatory mechanism by which, under drought and freezing stresses, DFR1 interacts with PDH1/2 and P5CDH to abrogate their activities to maintain proline homeostasis, thereby conferring drought and freezing tolerance.
Collapse
|
28
|
Visconti S, D'Ambrosio C, Fiorillo A, Arena S, Muzi C, Zottini M, Aducci P, Marra M, Scaloni A, Camoni L. Overexpression of 14-3-3 proteins enhances cold tolerance and increases levels of stress-responsive proteins of Arabidopsis plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110215. [PMID: 31623776 DOI: 10.1016/j.plantsci.2019.110215] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/22/2019] [Accepted: 08/06/2019] [Indexed: 05/13/2023]
Abstract
14-3-3 proteins are a family of conserved proteins present in eukaryotes as several isoforms, playing a regulatory role in many cellular and physiological processes. In plants, 14-3-3 proteins have been reported to be involved in the response to stress conditions, such as drought, salt and cold. In the present study, 14-3-3ε and 14-3-3ω isoforms, which were representative of ε and non-ε phylogenetic groups, were overexpressed in Arabidopsis thaliana plants; the effect of their overexpression was investigated on H+-ATPase activation and plant response to cold stress. Results demonstrated that H+-ATPase activity was increased in 14-3-3ω-overexpressing plants, whereas overexpression of both 14-3-3 isoforms brought about cold stress tolerance, which was evaluated through ion leakage, lipid peroxidation, osmolyte synthesis, and ROS production assays. A dedicated tandem mass tag (TMT)-based proteomic analysis demonstrated that different proteins involved in the plant response to cold or oxidative stress were over-represented in 14-3-3ε-overexpressing plants.
Collapse
Affiliation(s)
- Sabina Visconti
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Chiara D'Ambrosio
- Proteomics & Mass Spectrometry Laboratory ISPAAM, National Research Council, 80147, Naples, Italy.
| | - Anna Fiorillo
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Simona Arena
- Proteomics & Mass Spectrometry Laboratory ISPAAM, National Research Council, 80147, Naples, Italy
| | - Carlo Muzi
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Michela Zottini
- Department of Biology, University of Padova, 35131, Padova, Italy
| | - Patrizia Aducci
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Mauro Marra
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory ISPAAM, National Research Council, 80147, Naples, Italy
| | - Lorenzo Camoni
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
| |
Collapse
|
29
|
Panter PE, Kent O, Dale M, Smith SJ, Skipsey M, Thorlby G, Cummins I, Ramsay N, Begum RA, Sanhueza D, Fry SC, Knight MR, Knight H. MUR1-mediated cell-wall fucosylation is required for freezing tolerance in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2019; 224:1518-1531. [PMID: 31549420 PMCID: PMC6899859 DOI: 10.1111/nph.16209] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/28/2019] [Indexed: 05/20/2023]
Abstract
Forward genetic screens play a key role in the identification of genes contributing to plant stress tolerance. Using a screen for freezing sensitivity, we have identified a novel freezing tolerance gene, SENSITIVE-TO-FREEZING8, in Arabidopsis thaliana. We identified SFR8 using recombination-based mapping and whole-genome sequencing. As SFR8 was predicted to have an effect on cell wall composition, we used GC-MS and polyacrylamide gel electrophoresis to measure cell-wall fucose and boron (B)-dependent dimerization of the cell-wall pectic domain rhamnogalacturonan II (RGII) in planta. After treatments to promote borate-bridging of RGII, we assessed freeze-induced damage in wild-type and sfr8 plants by measuring electrolyte leakage from freeze-thawed leaf discs. We mapped the sfr8 mutation to MUR1, a gene encoding the fucose biosynthetic enzyme GDP-d-mannose-4,6-dehydratase. sfr8 cell walls exhibited low cell-wall fucose levels and reduced RGII bridging. Freezing sensitivity of sfr8 mutants was ameliorated by B supplementation, which can restore RGII dimerization. B transport mutants with reduced RGII dimerization were also freezing-sensitive. Our research identifies a role for the structure and composition of the plant primary cell wall in determining basal plant freezing tolerance and highlights the specific importance of fucosylation, most likely through its effect on the ability of RGII pectin to dimerize.
Collapse
Affiliation(s)
- Paige E. Panter
- Department of Biosciences & Durham Centre for Crop Improvement TechnologyDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Olivia Kent
- Department of Biosciences & Durham Centre for Crop Improvement TechnologyDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Maeve Dale
- Department of Biosciences & Durham Centre for Crop Improvement TechnologyDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Sarah J. Smith
- Department of Biosciences & Durham Centre for Crop Improvement TechnologyDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Mark Skipsey
- Department of Biosciences & Durham Centre for Crop Improvement TechnologyDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Glenn Thorlby
- Scion49 Sala Street, Private Bag 3020Rotorua3046New Zealand
| | - Ian Cummins
- Department of Biosciences & Durham Centre for Crop Improvement TechnologyDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Nathan Ramsay
- Department of Biosciences & Durham Centre for Crop Improvement TechnologyDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Rifat A. Begum
- Institute of Molecular Plant SciencesThe University of EdinburghDaniel Rutherford Building, The King’s Buildings, Max Born CrescentEdinburghEH9 3BFUK
| | - Dayan Sanhueza
- Institute of Molecular Plant SciencesThe University of EdinburghDaniel Rutherford Building, The King’s Buildings, Max Born CrescentEdinburghEH9 3BFUK
| | - Stephen C. Fry
- Institute of Molecular Plant SciencesThe University of EdinburghDaniel Rutherford Building, The King’s Buildings, Max Born CrescentEdinburghEH9 3BFUK
| | - Marc R. Knight
- Department of Biosciences & Durham Centre for Crop Improvement TechnologyDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Heather Knight
- Department of Biosciences & Durham Centre for Crop Improvement TechnologyDurham UniversitySouth RoadDurhamDH1 3LEUK
| |
Collapse
|
30
|
Pu Y, Liu L, Wu J, Zhao Y, Bai J, Ma L, Yue J, Jin J, Niu Z, Fang Y, Sun W. Transcriptome Profile Analysis of Winter Rapeseed ( Brassica napus L.) in Response to Freezing Stress, Reveal Potentially Connected Events to Freezing Stress. Int J Mol Sci 2019; 20:ijms20112771. [PMID: 31195741 PMCID: PMC6600501 DOI: 10.3390/ijms20112771] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 11/16/2022] Open
Abstract
Winter rapeseed is not only an important oilseed crop, but also a winter cover crop in Northern China, where its production was severely limited by freezing stress. As an overwinter crop, the production is severely limited by freezing stress. Therefore, understanding the physiological and molecular mechanism of winter rapeseed (Brassica napus L.) in freezing stress responses becomes essential for the improvement and development of freezing-tolerant varieties of Brassica napus. In this study, morphological, physiological, ultrastructure and transcriptome changes in the Brassica napus line "2016TS(G)10" (freezing-tolerance line) that was exposed to -2 °C for 0 h, 1 h, 3 h and 24 h were characterized. The results showed that freezing stress caused seedling dehydration, and chloroplast dilation and degradation. The content of malondialdehyde (MDA), proline, soluble protein and soluble sugars were increased, as well as the relative electrolyte leakage (REL) which was significantly increased at frozen 24 h. Subsequently, RNA-seq analysis revealed a total of 98,672 UniGenes that were annotated in Brassica napus and 3905 UniGenes were identified as differentially expressed genes after being exposed to freezing stress. Among these genes, 2312 (59.21%) were up-regulated and 1593 (40.79%) were down-regulated. Most of these DEGs were significantly annotated in the carbohydrates and energy metabolism, signal transduction, amino acid metabolism and translation. Most of the up-regulated DEGs were especially enriched in plant hormone signal transduction, starch and sucrose metabolism pathways. Transcription factor enrichment analysis showed that the AP2/ERF, WRKY and MYB families were also significantly changed. Furthermore, 20 DEGs were selected to validate the transcriptome profiles via quantitative real-time PCR (qRT-PCR). In conclusion, the results provide an overall view of the dynamic changes in physiology and insights into the molecular regulation mechanisms of winter Brassica napus in response to freezing treatment, expanding our understanding on the complex molecular mechanism in plant response to freezing stress.
Collapse
Affiliation(s)
- Yuanyuan Pu
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Lijun Liu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Junyan Wu
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yuhong Zhao
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Jing Bai
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Li Ma
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Jinli Yue
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Jiaojiao Jin
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Zaoxia Niu
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Yan Fang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Wancang Sun
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| |
Collapse
|
31
|
Ramírez V, Pauly M. Genetic dissection of cell wall defects and the strigolactone pathway in Arabidopsis. PLANT DIRECT 2019; 3:e00149. [PMID: 31245785 PMCID: PMC6589044 DOI: 10.1002/pld3.149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/15/2019] [Accepted: 06/04/2019] [Indexed: 05/09/2023]
Abstract
Defects in the biosynthesis and/or deposition of secondary plant cell wall polymers result in the collapse of xylem vessels causing a dwarfed plant stature and an altered plant architecture termed irregular xylem (irx) syndrome. For example, reduced xylan O-acetylation causes strong developmental defects and increased freezing tolerance. Recently, we demonstrated that the irx syndrome in the trichome birefringence-like 29/eskimo1 (tbl29/esk1) mutant is dependent on MORE AXILLARY GROWTH 4 (MAX4), a key enzyme in the biosynthesis of the phytohormone strigolactone (SL). In this report, we show that other xylan- and cellulose-deficient secondary wall mutants exhibit increased freezing tolerance correlated with the irx syndrome. In addition, these phenotypes are also dependent on MAX4, suggesting a more general interaction between secondary wall defects and SL biosynthesis. In contrast, MAX4 does not play a role in developmental defects triggered by primary wall deficiencies, suggesting that the interaction is restricted to vascular tissue. Through a reverse genetics approach, the requirement of different components of the SL pathway impacting the irx syndrome in tbl29 was evaluated. Our results show that the tbl29-associated irx phenotypes are dependent on the MAX3 and MAX4 enzymes, involved in the early steps of SL biosynthesis. In contrast, this signaling is independent on downstream enzymes in the biosynthesis and perception of SL such as MAX1 and MAX2.
Collapse
Affiliation(s)
- Vicente Ramírez
- Institute for Plant Cell Biology and Biotechnology and Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityDüsseldorfGermany
| | - Markus Pauly
- Institute for Plant Cell Biology and Biotechnology and Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityDüsseldorfGermany
| |
Collapse
|
32
|
Zhang L, Gao C, Mentink-Vigier F, Tang L, Zhang D, Wang S, Cao S, Xu Z, Liu X, Wang T, Zhou Y, Zhang B. Arabinosyl Deacetylase Modulates the Arabinoxylan Acetylation Profile and Secondary Wall Formation. THE PLANT CELL 2019; 31:1113-1126. [PMID: 30886126 PMCID: PMC6533017 DOI: 10.1105/tpc.18.00894] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 05/19/2023]
Abstract
Acetylation, a prevalent modification of cell-wall polymers, is a tightly controlled regulatory process that orchestrates plant growth and environmental adaptation. However, due to limited characterization of the enzymes involved, it is unclear how plants establish and dynamically regulate the acetylation pattern in response to growth requirements. In this study, we identified a rice (Oryza sativa) GDSL esterase that deacetylates the side chain of the major rice hemicellulose, arabinoxylan. Acetyl esterases involved in arabinoxylan modification were screened using enzymatic assays combined with mass spectrometry analysis. One candidate, DEACETYLASE ON ARABINOSYL SIDECHAIN OF XYLAN1 (DARX1), is specific for arabinosyl residues. Disruption of DARX1 via Tos17 insertion and CRISPR/Cas9 approaches resulted in the accumulation of acetates on the xylan arabinosyl side chains. Recombinant DARX1 abolished the excess acetyl groups on arabinoxylan-derived oligosaccharides of the darx1 mutants in vitro. Moreover, DARX1 is localized to the Golgi apparatus. Two-dimensional 13C-13C correlation spectroscopy and atomic force microscopy further revealed that the abnormal acetylation pattern observed in darx1 interrupts arabinoxylan conformation and cellulose microfibril orientation, resulting in compromised secondary wall patterning and reduced mechanical strength. This study provides insight into the mechanism controlling the acetylation pattern on arabinoxylan side chains and suggests a strategy to breed robust elite crops.
Collapse
Affiliation(s)
- Lanjun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengxu Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Lu Tang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongmei Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Shaogan Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Shaoxue Cao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zuopeng Xu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangling Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
33
|
Liu YS, Geng JC, Sha XY, Zhao YX, Hu TM, Yang PZ. Effect of Rhizobium Symbiosis on Low-Temperature Tolerance and Antioxidant Response in Alfalfa ( Medicago sativa L.). FRONTIERS IN PLANT SCIENCE 2019; 10:538. [PMID: 31114600 PMCID: PMC6503086 DOI: 10.3389/fpls.2019.00538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/08/2019] [Indexed: 05/04/2023]
Abstract
Low temperature-induced stress is a major environmental factor limiting the growth and development of plants. Alfalfa (Medicago sativa L.) is a legume well known for its tolerance of extreme environments. In this study, we sought to experimentally investigate the role of rhizobium symbiosis in alfalfa's performance under a low-temperature stress condition. To do this, alfalfa "Ladak+" plants carrying active nodules (AN), inactive nodules (IN), or no nodules (NN) were exposed to an imposed low temperature stress and their survivorship calculated. The antioxidant defense responses, the accumulation of osmotic regulation substances, the cell membrane damage, and the expression of low temperature stress-related genes were determined in both the roots and the shoots of alfalfa plants. We found that more plants with AN survived than those with IN or NN under the same low temperature-stress condition. Greater activity of oxidation protective enzymes was observed in the AN and IN groups, conferring higher tolerance to low temperature in these plants. In addition, rhizobia nodulation also enhanced alfalfa's ability to tolerate low temperature by altering the expression of regulatory and metabolism-associated genes, which resulted in the accumulation of soluble proteins and sugars in the nodulated plants. Taken together, the findings of this study indicate that rhizobium inoculation offers a practical way to promote the persistence and growth potential of alfalfa "Ladak+" in cold areas.
Collapse
Affiliation(s)
- Yu-Shi Liu
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | | | - Xu-Yang Sha
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yi-Xin Zhao
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Tian-Ming Hu
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Pei-Zhi Yang
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
34
|
Abstract
Abnormal environmental temperature affects plant growth and threatens crop production. Understanding temperature signal sensing and the balance between defense and development in plants lays the foundation for improvement of temperature resilience. Here, we summarize the current understanding of cold signal perception/transduction as well as heat stress response. Dissection of plant responses to different levels of cold stresses (chilling and freezing) illustrates their common and distinct signaling pathways. Axillary bud differentiation in response to chilling is presented as an example of the trade-off between defense and development. Vernalization is a cold-dependent development adjustment mediated by O-GlcNAcylation and phosphorylation to sense long-term cold. Recent progress on major quantitative trait loci genes for heat tolerance has been summarized. Molecular mechanisms in utilizing temperature-sensitive sterility in super hybrid breeding in China are revealed. The way to improve crop temperature resilience using integrative knowledge of omics as well as systemic and synthetic biology, especially the molecular module program, is summarized.
Collapse
Affiliation(s)
- Jingyu Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;
| | - Xin-Min Li
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100093, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;
- University of Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
35
|
Wierzbicki MP, Maloney V, Mizrachi E, Myburg AA. Xylan in the Middle: Understanding Xylan Biosynthesis and Its Metabolic Dependencies Toward Improving Wood Fiber for Industrial Processing. FRONTIERS IN PLANT SCIENCE 2019; 10:176. [PMID: 30858858 PMCID: PMC6397879 DOI: 10.3389/fpls.2019.00176] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 02/04/2019] [Indexed: 05/14/2023]
Abstract
Lignocellulosic biomass, encompassing cellulose, lignin and hemicellulose in plant secondary cell walls (SCWs), is the most abundant source of renewable materials on earth. Currently, fast-growing woody dicots such as Eucalyptus and Populus trees are major lignocellulosic (wood fiber) feedstocks for bioproducts such as pulp, paper, cellulose, textiles, bioplastics and other biomaterials. Processing wood for these products entails separating the biomass into its three main components as efficiently as possible without compromising yield. Glucuronoxylan (xylan), the main hemicellulose present in the SCWs of hardwood trees carries chemical modifications that are associated with SCW composition and ultrastructure, and affect the recalcitrance of woody biomass to industrial processing. In this review we highlight the importance of xylan properties for industrial wood fiber processing and how gaining a greater understanding of xylan biosynthesis, specifically xylan modification, could yield novel biotechnology approaches to reduce recalcitrance or introduce novel processing traits. Altering xylan modification patterns has recently become a focus of plant SCW studies due to early findings that altered modification patterns can yield beneficial biomass processing traits. Additionally, it has been noted that plants with altered xylan composition display metabolic differences linked to changes in precursor usage. We explore the possibility of using systems biology and systems genetics approaches to gain insight into the coordination of SCW formation with other interdependent biological processes. Acetyl-CoA, s-adenosylmethionine and nucleotide sugars are precursors needed for xylan modification, however, the pathways which produce metabolic pools during different stages of fiber cell wall formation still have to be identified and their co-regulation during SCW formation elucidated. The crucial dependence on precursor metabolism provides an opportunity to alter xylan modification patterns through metabolic engineering of one or more of these interdependent pathways. The complexity of xylan biosynthesis and modification is currently a stumbling point, but it may provide new avenues for woody biomass engineering that are not possible for other biopolymers.
Collapse
Affiliation(s)
| | | | | | - Alexander A. Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
36
|
Robison JD, Yamasaki Y, Randall SK. The Ethylene Signaling Pathway Negatively Impacts CBF/DREB-Regulated Cold Response in Soybean ( Glycine max). FRONTIERS IN PLANT SCIENCE 2019; 10:121. [PMID: 30853961 PMCID: PMC6396728 DOI: 10.3389/fpls.2019.00121] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/24/2019] [Indexed: 05/18/2023]
Abstract
During cold stress, soybean CBF/DREB1 transcript levels increase rapidly; however, expected downstream targets appear unresponsive. Here, we asked whether the ethylene signaling pathway, which is enhanced in the cold can negatively regulate the soybean CBF/DREB1 cold responsive pathway; thus contributing to the relatively poor cold tolerance of soybean. Inhibition of the ethylene signaling pathway resulted in a significant increase in GmDREB1A;1 and GmDREB1A;2 transcripts, while stimulation led to decreased GmDREB1A;1 and GmDREB1B;1 transcripts. A cold responsive reporter construct (AtRD29Aprom::GFP/GUS), as well as predicted downstream targets of soybean CBF/DREB1 [Glyma.12g015100 (ADH), Glyma.14g212200 (ubiquitin ligase), Glyma.05g186700 (AP2), and Glyma.19g014600 (CYP)] were impacted by the modulation of the ethylene signaling pathway. Photosynthetic parameters were affected by ethylene pathway stimulation, but only at control temperatures. Freezing tolerance (as measured by electrolyte leakage), free proline, and MDA; in both acclimated and non-acclimated plants were increased by silver nitrate but not by other ethylene pathway inhibitors. This work provides evidence that the ethylene signaling pathway, possibly through the action of EIN3, transcriptionally inhibits the CBF/DREB1 pathway in soybean.
Collapse
Affiliation(s)
| | | | - Stephen K. Randall
- Department of Biology, Indiana University–Purdue University Indianapolis, Indianapolis, IN, United States
| |
Collapse
|
37
|
Li P, Yang H, Wang L, Liu H, Huo H, Zhang C, Liu A, Zhu A, Hu J, Lin Y, Liu L. Physiological and Transcriptome Analyses Reveal Short-Term Responses and Formation of Memory Under Drought Stress in Rice. Front Genet 2019; 10:55. [PMID: 30800142 PMCID: PMC6375884 DOI: 10.3389/fgene.2019.00055] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/23/2019] [Indexed: 12/30/2022] Open
Abstract
In some plants, exposure to stress can induce a memory response, which appears to play an important role in adaptation to recurrent stress environments. However, whether rice exhibits drought stress memory and the molecular mechanisms that might underlie this process have remained unclear. Here, we ensured that rice drought memory was established after cycles of mild drought and re-watering treatment, and studied gene expression by whole-transcriptome strand-specific RNA sequencing (ssRNA-seq). We detected 6,885 transcripts and 238 lncRNAs involved in the drought memory response, grouped into 16 distinct patterns. Notably, the identified genes of dosage memory generally did not respond to the initial drought treatment. Our results demonstrate that stress memory can be developed in rice under appropriate water deficient stress, and lncRNA, DNA methylation and endogenous phytohormones (especially abscisic acid) participate in rice short-term drought memory, possibly acting as memory factors to activate drought-related memory transcripts in pathways such as photosynthesis and proline biosynthesis, to respond to the subsequent stresses.
Collapse
Affiliation(s)
- Ping Li
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hong Yang
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lu Wang
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming, China
| | - Haoju Liu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
- Department of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Heqiang Huo
- Mid-Florida Research and Education Center, Department of Environmental Horticulture, University of Florida, Gainesville, FL, United States
| | - Chengjun Zhang
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming, China
| | - Aizhong Liu
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming, China
| | - Andan Zhu
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming, China
| | - Jinyong Hu
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Li Liu
- Key Laboratory for Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming, China
| |
Collapse
|
38
|
Chai F, Liu W, Xiang Y, Meng X, Sun X, Cheng C, Liu G, Duan L, Xin H, Li S. Comparative metabolic profiling of Vitis amurensis and Vitis vinifera during cold acclimation. HORTICULTURE RESEARCH 2019; 6:8. [PMID: 30603094 PMCID: PMC6312538 DOI: 10.1038/s41438-018-0083-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 07/19/2018] [Accepted: 08/01/2018] [Indexed: 05/20/2023]
Abstract
Vitis amurensis is a wild Vitis plant that can withstand extreme cold temperatures. However, the accumulation of metabolites during cold acclimation (CA) in V. amurensis remains largely unknown. In this study, plantlets of V. amurensis and V. vinifera cv. Muscat of Hamburg were treated at 4 °C for 24 and 72 h, and changes of metabolites in leaves were detected by gas chromatography coupled with time-of-flight mass spectrometry. Most of the identified metabolites, including carbohydrates, amino acids, and organic acids, accumulated in the two types of grape after CA. Galactinol, raffinose, fructose, mannose, glycine, and ascorbate were continuously induced by cold in V. amurensis, but not in Muscat of Hamburg. Twelve metabolites, including isoleucine, valine, proline, 2-oxoglutarate, and putrescine, increased in V. amurensis during CA. More galactinol, ascorbate, 2-oxoglutarate, and putrescine, accumulated in V. amurensis, but not in Muscat of Hamburg, during CA, which may be responsible for the excellent cold tolerance in V. amurensis. The expression levels of the genes encoding β-amylase (BAMY), galactinol synthase (GolS), and raffinose synthase (RafS) were evaluated by quantitative reverse transcription-PCR. The expression BAMY (VIT_02s0012 g00170) and RafS (VIT_05s0077 g00840) were primarily responsible for the accumulation of maltose and raffinose, respectively. The accumulation of galactinol was attributed to different members of GolS in the two grapes. In conclusion, these results show the inherent differences in metabolites between V. amurensis and V. vinifera under CA.
Collapse
Affiliation(s)
- Fengmei Chai
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Wenwen Liu
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Yue Xiang
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Xianbin Meng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, P.R. China
| | - Xiaoming Sun
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, P.R. China
| | - Cheng Cheng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Guotian Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi P.R. China
| | - Lixin Duan
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Haiping Xin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
39
|
Liu W, Cheng C, Chen F, Ni S, Lin Y, Lai Z. High-throughput sequencing of small RNAs revealed the diversified cold-responsive pathways during cold stress in the wild banana (Musa itinerans). BMC PLANT BIOLOGY 2018; 18:308. [PMID: 30486778 PMCID: PMC6263057 DOI: 10.1186/s12870-018-1483-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 10/15/2018] [Indexed: 05/16/2023]
Abstract
BACKGROUND Cold stress is one of the most severe abiotic stresses affecting the banana production. Although some miRNAs have been identified, little is known about the role of miRNAs in response to cold stress in banana, and up to date, there is no report about the role of miRNAs in the response to cold stress in the plants of the cultivated or wild bananas. RESULT Here, a cold-resistant line wild banana (Musa itinerans) from China was used to profile the cold-responsive miRNAs by RNA-seq during cold stress. Totally, 265 known mature miRNAs and 41 novel miRNAs were obtained. Cluster analysis of differentially expressed (DE) miRNAs indicated that some miRNAs were specific for chilling or 0 °C treated responses, and most of them were reported to be cold-responsive; however, some were seldom reported to be cold-responsive in response to cold stress, e.g., miR395, miR408, miR172, suggesting that they maybe play key roles in response to cold stress. The GO and KEGG pathway enrichment analysis of DE miRNAs targets indicated that there existed diversified cold-responsive pathways, and miR172 was found likely to play a central coordinating role in response to cold stress, especially in the regulation of CK2 and the circadian rhythm. Finally, qPCR assays indicated the related targets were negatively regulated by the tested DE miRNAs during cold stress in the wild banana. CONCLUSIONS In this study, the profiling of miRNAs by RNA-seq in response to cold stress in the plants of the wild banana (Musa itinerans) was reported for the first time. The results showed that there existed diversified cold-responsive pathways, which provided insight into the roles of miRNAs during cold stress, and would be helpful for alleviating cold stress and cold-resistant breeding in bananas.
Collapse
Affiliation(s)
- Weihua Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Chongqing Normal University, Daxuecheng Middle Rd, Chongqing, Shapingba Qu China
| | - Chunzhen Cheng
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Fanglan Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Shanshan Ni
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
40
|
Qian W, Xiao B, Wang L, Hao X, Yue C, Cao H, Wang Y, Li N, Yu Y, Zeng J, Yang Y, Wang X. CsINV5, a tea vacuolar invertase gene enhances cold tolerance in transgenic Arabidopsis. BMC PLANT BIOLOGY 2018; 18:228. [PMID: 30309330 PMCID: PMC6182829 DOI: 10.1186/s12870-018-1456-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/01/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Vacuolar invertases (VINs) have been reported to regulate plant growth and development and respond to abiotic stresses such as drought and cold. With our best knowledge, the functions of VIN genes little have been reported in tea plant (Camellia sinensis L.). Therefore, it is necessary to develop research in this field. RESULTS Here, we identified a VIN gene, CsINV5, which was induced by cold acclimation and sugar treatments in the tea plant. Histochemical assays results showed that the 1154 bp 5'-flanking sequence of CsINV5 drove β-glucuronidase (GUS) gene expression in roots, stems, leaves, flowers and siliques of transgenic Arabidopsis during different developmental stages. Moreover, promoter deletion analysis results revealed that an LTRE-related motif (CCGAAA) and a WBOXHVISO1 motif (TGACT) within the promoter region of CsINV5 were the core cis-elements in response to low temperature and sugar signaling, respectively. In addition, overexpression of CsINV5 in Arabidopsis promoted taproot and lateral root elongation through glucose-mediated effects on auxin signaling. Based on physiological and RNA-seq analysis, we found that overexpression of CsINV5 improved cold tolerance in transgenic Arabidopsis mainly by increasing the contents of glucose and fructose, the corresponding ratio of hexose to sucrose, and the transcription of osmotic-stress-related genes (P5CS1, P5CS2, AtLEA3, COR413-PM1 and COR15B) to adjust its osmotic potential. CONCLUSIONS Comprehensive experimental results suggest that overexpression of CsINV5 may enhance the cold tolerance of plant through the modification of cellular sugar compounds contents and osmotic regulation related pathways.
Collapse
Affiliation(s)
- Wenjun Qian
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong China
| | - Bin Xiao
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi China
| | - Lu Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Xinyuan Hao
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Chuan Yue
- Department of Tea Science, College of Horticulture, Fujian A & F University, Fuzhou, China
| | - Hongli Cao
- Department of Tea Science, College of Horticulture, Fujian A & F University, Fuzhou, China
| | - Yuchun Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Nana Li
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Youben Yu
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi China
| | - Jianming Zeng
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Yajun Yang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Xinchao Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| |
Collapse
|
41
|
Annunziata MG, Apelt F, Carillo P, Krause U, Feil R, Koehl K, Lunn JE, Stitt M. Response of Arabidopsis primary metabolism and circadian clock to low night temperature in a natural light environment. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4881-4895. [PMID: 30053131 PMCID: PMC6137998 DOI: 10.1093/jxb/ery276] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/09/2018] [Indexed: 05/18/2023]
Abstract
Plants are exposed to varying irradiance and temperature within a day and from day to day. We previously investigated metabolism in a temperature-controlled greenhouse at the spring equinox on both a cloudy and a sunny day [daily light integral (DLI) of 7 mol m-2 d-1 and 12 mol m-2 d-1]. Diel metabolite profiles were largely captured in sinusoidal simulations at similar DLIs in controlled-environment chambers, except that amino acids were lower in natural light regimes. We now extend the DLI12 study by investigating metabolism in a natural light regime with variable temperature including cool nights. Starch was not completely turned over, anthocyanins and proline accumulated, and protein content rose. Instead of decreasing, amino acid content rose. Connectivity in central metabolism, which decreased in variable light, was not further weakened by variable temperature. We propose that diel metabolism operates better when light and temperature are co-varying. We also compared transcript abundance of 10 circadian clock genes in this temperature-variable regime with the temperature-controlled natural and sinusoidal light regimes. Despite temperature compensation, peak timing and abundance for dawn- and day-phased genes and GIGANTEA were slightly modified in the variable temperature treatment. This may delay dawn clock activity until the temperature rises enough to support rapid metabolism and photosynthesis.
Collapse
Affiliation(s)
| | - Federico Apelt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Petronia Carillo
- University of Campania ‘Luigi Vanvitelli’, Via Vivaldi, Caserta, Italy
| | - Ursula Krause
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Karin Koehl
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| |
Collapse
|
42
|
Liu J, Shi Y, Yang S. Insights into the regulation of C-repeat binding factors in plant cold signaling. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:780-795. [PMID: 29667328 DOI: 10.1111/jipb.12657] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 04/16/2018] [Indexed: 05/02/2023]
Abstract
Cold temperatures, a major abiotic stress, threaten the growth and development of plants, worldwide. To cope with this adverse environmental cue, plants from temperate climates have evolved an array of sophisticated mechanisms to acclimate to cold periods, increasing their ability to tolerate freezing stress. Over the last decade, significant progress has been made in determining the molecular mechanisms underpinning cold acclimation, including following the identification of several pivotal components, including candidates for cold sensors, protein kinases, and transcription factors. With these developments, we have a better understanding of the CBF-dependent cold-signaling pathway. In this review, we summarize recent progress made in elucidating the cold-signaling pathways, especially the C-repeat binding factor-dependent pathway, and describe the regulatory function of the crucial components of plant cold signaling. We also discuss the unsolved questions that should be the focus of future work.
Collapse
Affiliation(s)
- Jingyan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Crops Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
43
|
Wang C, He R, Lu J, Zhang Y. Selection and regeneration of Vitis vinifera Chardonnay hydroxyproline-resistant calli. PROTOPLASMA 2018; 255:1413-1422. [PMID: 29569157 DOI: 10.1007/s00709-018-1240-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
Proline (Pro) accumulation protects plant cell under abiotic stress. Hydroxyproline (Hyp) as selection agent is a toxic analog of proline and promotes Pro overaccumulation. In this study, Chardonnay calli were firstly irradiated with different dosages of 60Co and then cultured on a Hyp-added medium. Finally, some stable hydroxyproline-resistant (HR) calli were obtained. When calli were cultured on 4 mM Hyp medium for 7 days, intracellular Pro content of the HR calli was five times higher than that detected in the normal calli. The regeneration of HR calli into plantlets was much slower than that of normal ones. When cultured on woody plant medium (WPM) containing 10 mM NaCl for 14 days, HR plantlets still grew well with lower Pro than withered normal plantlets. qRT-PCR results of Pro biosynthesis-related genes in HR plantlets showed that three genes VvP5CS, VvOAT, and VvP5CDH were conducive for Pro accumulation. These results confirmed that HR plantlets acquired salt tolerance ability. We prospect that this procedure to obtain salt-tolerant plants may be valuable to breed programs and improve grapevine genotypes with increased tolerance to salt and other abiotic stresses.
Collapse
Affiliation(s)
- Chaoxia Wang
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Rongrong He
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Jiang Lu
- Center for Viticulture and Enology, School of Agriculture Biology, Shanghai Jiao Tong University, Shanghai, 200024, People's Republic of China
| | - Yali Zhang
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
44
|
Pauly M, Ramírez V. New Insights Into Wall Polysaccharide O-Acetylation. FRONTIERS IN PLANT SCIENCE 2018; 9:1210. [PMID: 30186297 PMCID: PMC6110886 DOI: 10.3389/fpls.2018.01210] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/27/2018] [Indexed: 05/19/2023]
Abstract
The extracellular matrix of plants, algae, bacteria, fungi, and some archaea consist of a semipermeable composite containing polysaccharides. Many of these polysaccharides are O-acetylated imparting important physiochemical properties to the polymers. The position and degree of O-acetylation is genetically determined and varies between organisms, cell types, and developmental stages. Despite the importance of wall polysaccharide O-acetylation, only recently progress has been made to elucidate the molecular mechanism of O-acetylation. In plants, three protein families are involved in the transfer of the acetyl substituents to the various polysaccharides. In other organisms, this mechanism seems to be conserved, although the number of required components varies. In this review, we provide an update on the latest advances on plant polysaccharide O-acetylation and related information from other wall polysaccharide O-acetylating organisms such as bacteria and fungi. The biotechnological impact of understanding wall polysaccharide O-acetylation ranges from the design of novel drugs against human pathogenic bacteria to the development of improved lignocellulosic feedstocks for biofuel production.
Collapse
Affiliation(s)
| | - Vicente Ramírez
- Institute for Plant Cell Biology and Biotechnology – Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
45
|
Arisz SA, Heo JY, Koevoets IT, Zhao T, van Egmond P, Meyer AJ, Zeng W, Niu X, Wang B, Mitchell-Olds T, Schranz ME, Testerink C. DIACYLGLYCEROL ACYLTRANSFERASE1 Contributes to Freezing Tolerance. PLANT PHYSIOLOGY 2018; 177:1410-1424. [PMID: 29907701 PMCID: PMC6084661 DOI: 10.1104/pp.18.00503] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 06/06/2018] [Indexed: 05/18/2023]
Abstract
Freezing limits plant growth and crop productivity, and plant species in temperate zones have the capacity to develop freezing tolerance through complex modulation of gene expression affecting various aspects of metabolism and physiology. While many components of freezing tolerance have been identified in model species under controlled laboratory conditions, little is known about the mechanisms that impart freezing tolerance in natural populations of wild species. Here, we performed a quantitative trait locus (QTL) study of acclimated freezing tolerance in seedlings of Boechera stricta, a highly adapted relative of Arabidopsis (Arabidopsis thaliana) native to the Rocky Mountains. A single QTL was identified that contained the gene encoding ACYL-COENZYME A:DIACYLGLYCEROL ACYLTRANSFERASE1 (BstDGAT1), whose expression is highly cold responsive. The primary metabolic enzyme DGAT1 catalyzes the final step in assembly of triacylglycerol (TAG) by acyl transfer from acyl-CoA to diacylglycerol. Freezing tolerant plants showed higher DGAT1 expression during cold acclimation than more sensitive plants, and this resulted in increased accumulation of TAG in response to subsequent freezing. Levels of oligogalactolipids that are produced by SFR2 (SENSITIVE TO FREEZING2), an indispensable element of freezing tolerance in Arabidopsis, were also higher in freezing-tolerant plants. Furthermore, overexpression of AtDGAT1 led to increased freezing tolerance. We propose that DGAT1 confers freezing tolerance in plants by supporting SFR2-mediated remodeling of chloroplast membranes.
Collapse
Affiliation(s)
- Steven A Arisz
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090GE Amsterdam, The Netherlands
| | - Jae-Yun Heo
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Iko T Koevoets
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090GE Amsterdam, The Netherlands
- Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Tao Zhao
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Pieter van Egmond
- Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090GE Amsterdam, The Netherlands
| | - A Jessica Meyer
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090GE Amsterdam, The Netherlands
| | | | | | - Baosheng Wang
- Department of Biology, Duke University, Durham, North Carolina 27708
| | | | - M Eric Schranz
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Christa Testerink
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090GE Amsterdam, The Netherlands
- Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
46
|
Costa-Broseta Á, Perea-Resa C, Castillo MC, Ruíz MF, Salinas J, León J. Nitric Oxide Controls Constitutive Freezing Tolerance in Arabidopsis by Attenuating the Levels of Osmoprotectants, Stress-Related Hormones and Anthocyanins. Sci Rep 2018; 8:9268. [PMID: 29915353 PMCID: PMC6006431 DOI: 10.1038/s41598-018-27668-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/08/2018] [Indexed: 11/09/2022] Open
Abstract
Plant tolerance to freezing temperatures is governed by endogenous constitutive components and environmental inducing factors. Nitric oxide (NO) is one of the endogenous components that participate in freezing tolerance regulation. A combined metabolomic and transcriptomic characterization of NO-deficient nia1,2noa1-2 mutant plants suggests that NO acts attenuating the production and accumulation of osmoprotective and regulatory metabolites, such as sugars and polyamines, stress-related hormones, such as ABA and jasmonates, and antioxidants, such as anthocyanins and flavonoids. Accordingly, NO-deficient plants are constitutively more freezing tolerant than wild type plants.
Collapse
Affiliation(s)
- Álvaro Costa-Broseta
- Instituto de Biología Molecular y Celular de Plantas, (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), 46022, Valencia, Spain
| | - Carlos Perea-Resa
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02214, USA
| | - Mari-Cruz Castillo
- Instituto de Biología Molecular y Celular de Plantas, (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), 46022, Valencia, Spain
| | - M Fernanda Ruíz
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - Julio Salinas
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - José León
- Instituto de Biología Molecular y Celular de Plantas, (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), 46022, Valencia, Spain.
| |
Collapse
|
47
|
Ramírez V, Xiong G, Mashiguchi K, Yamaguchi S, Pauly M. Growth- and stress-related defects associated with wall hypoacetylation are strigolactone-dependent. PLANT DIRECT 2018; 2:e00062. [PMID: 31245725 PMCID: PMC6508513 DOI: 10.1002/pld3.62] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/18/2018] [Accepted: 05/15/2018] [Indexed: 05/24/2023]
Abstract
Mutants affected in the Arabidopsis TBL29/ESK1 xylan O-acetyltransferase display a strong reduction in total wall O-acetylation accompanied by a dwarfed plant stature, collapsed xylem morphology, and enhanced freezing tolerance. A newly identified tbl29/esk1 suppressor mutation reduces the expression of the MAX4 gene, affecting the biosynthesis of methyl carlactonoate (MeCLA), an active strigolactone (SL). Genetic and biochemical evidence suggests that blocking the biosynthesis of this SL is sufficient to recover all developmental and stress-related defects associated with the TBL29/ESK1 loss of function without affecting its direct effect-reduced wall O-acetylation. Altered levels of the MAX4 SL biosynthetic gene, reduced branch number, and higher levels of MeCLA, were also found in tbl29/esk1 plants consistent with a constitutive activation of the SL pathway. These results suggest that the reduction in O-acetyl substituents in xylan is not directly responsible for the observed tbl29/esk1 phenotypes. Alternatively, plants may perceive defects in the structure of wall polymers and/or wall architecture activating the SL hormonal pathway as a compensatory mechanism.
Collapse
Affiliation(s)
- Vicente Ramírez
- Department of Plant & Microbial BiologyEnergy Biosciences InstituteUniversity of CaliforniaBerkeleyCalifornia
- Institute for Plant Cell Biology and Biotechnology and Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityDüsseldorfGermany
| | - Guangyan Xiong
- Department of Plant & Microbial BiologyEnergy Biosciences InstituteUniversity of CaliforniaBerkeleyCalifornia
- Department of Anatomical Sciences and NeurobiologySchool of MedicineUniversity of LouisvileLouisvilleKentucky
| | - Kiyoshi Mashiguchi
- Department of Biomolecular SciencesGraduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Shinjiro Yamaguchi
- Department of Biomolecular SciencesGraduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Markus Pauly
- Department of Plant & Microbial BiologyEnergy Biosciences InstituteUniversity of CaliforniaBerkeleyCalifornia
- Institute for Plant Cell Biology and Biotechnology and Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityDüsseldorfGermany
| |
Collapse
|
48
|
Chen J, Chen X, Zhang Q, Zhang Y, Ou X, An L, Feng H, Zhao Z. A cold-induced pectin methyl-esterase inhibitor gene contributes negatively to freezing tolerance but positively to salt tolerance in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2018; 222:67-78. [PMID: 29407551 DOI: 10.1016/j.jplph.2018.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 05/24/2023]
Abstract
Plant pectin methyl-esterase (PME) and PME inhibitor (PMEI) belong to large gene families whose members are proposed to be widely involved in growth, development, and stress responses; however, the biological functions of most PMEs and PMEIs have not been characterized. In this study, we studied the roles of CbPMEI1, a cold-induced pectin methyl-esterase inhibitor (PMEI) gene from Chorispora bungeana, under freezing and salt stress. The putative CbPMEI1 peptide shares highest similarity (83%) with AT5G62360 (PMEI13) of Arabidopsis. Overexpression of either CbPMEI1 or PMEI13 in Arabidopsis decreased tissue PME activity and enhanced the degree of methoxylation of cell wall pectins, indicating that both genes encode functional PMEIs. CbPMEI1 and PMEI13 were induced by cold but repressed by salt stress and abscisic acid, suggesting distinct roles of the genes in freezing and salt stress tolerance. Interestingly, transgenic Arabidopsis plants overexpressing CbPMEI1 or PMEI13 showed decreased freezing tolerance, as indicated by survival and electrolyte leakage assays. On the other hand, the salt tolerance of transgenic plants was increased, showing higher rates of germination, root growth, and survival under salinity conditions as compared with non-transgenic wild-type plants. Although the transgenic plants were freezing-sensitive, they showed longer roots than wild-type plants under cold conditions, suggesting a role of PMEs in balancing the trade-off between freezing tolerance and growth. Thus, our study indicates that CbPMEI1 and PMEI13 are involved in root growth regulation under cold and salt stresses, and suggests that PMEIs may be potential targets for genetic engineering aimed to improve fitness of plants under stress conditions.
Collapse
Affiliation(s)
- Jian Chen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xuehui Chen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qingfeng Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yidan Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiangli Ou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lizhe An
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Huyuan Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Zhiguang Zhao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
49
|
Gao Y, Liu H, Wang Y, Li F, Xiang Y. Genome-wide identification of PHD-finger genes and expression pattern analysis under various treatments in moso bamboo (Phyllostachys edulis). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:378-391. [PMID: 29304483 DOI: 10.1016/j.plaphy.2017.12.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 05/23/2023]
Abstract
Plant homeodomain (PHD)-finger proteins are a class of important zinc-finger transcription factors responsible for regulating transcription and the chromatin state and responsive to various stresses. The family genes have been reported in many plants, but there is little information about PHD-finger genes in moso bamboo. In this study, 60 PHD-finger genes (PePHD1-60) were identified in moso bamboo and classified into 11 subfamilies (A-K) based on phylogenetic analysis. Gene structure and conserved motif analysis showed that these genes contained different numbers of introns but had similar motif organizations within each subfamily. Multiple sequence alignment revealed that the PHD-finger proteins possessed conserved structural domain sequences. In addition, the family underwent purifying selection during evolution and experienced a large-scale duplication event around 7.69-15.4 million years ago. Most importantly, the expression profiles of young leaves (YL), mature leaves (L), roots (R), stems (S), shoots (Sh) and rhizomes (Rh) displayed that they might involve in the formation of these tissues. Based on promoter analysis of 16 putative stress-related genes, quantitative real-time PCR assays were performed using moso bamboo leaves and showed that these genes were differentially regulated under abscisic acid (ABA), drought, low temperature and NaCl treatments. Therefore, the results reveal that PePHD genes play crucial roles in organ formation and response to multiple environmental stress conditions of moso bamboo, which will make for further function analysis of PHD-finger genes in plants.
Collapse
Affiliation(s)
- Yameng Gao
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| | - Huanlong Liu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China.
| | - Yujiao Wang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| | - Fei Li
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
50
|
Faria-Blanc N, Mortimer JC, Dupree P. A Transcriptomic Analysis of Xylan Mutants Does Not Support the Existence of a Secondary Cell Wall Integrity System in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:384. [PMID: 29636762 PMCID: PMC5881139 DOI: 10.3389/fpls.2018.00384] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/08/2018] [Indexed: 05/21/2023]
Abstract
Yeast have long been known to possess a cell wall integrity (CWI) system, and recently an analogous system has been described for the primary walls of plants (PCWI) that leads to changes in plant growth and cell wall composition. A similar system has been proposed to exist for secondary cell walls (SCWI). However, there is little data to support this. Here, we analyzed the stem transcriptome of a set of cell wall biosynthetic mutants in order to investigate whether cell wall damage, in this case caused by aberrant xylan synthesis, activates a signaling cascade or changes in cell wall synthesis gene expression. Our data revealed remarkably few changes to the transcriptome. We hypothesize that this is because cells undergoing secondary cell wall thickening have entered a committed programme leading to cell death, and therefore a SCWI system would have limited impact. The absence of transcriptomic responses to secondary cell wall alterations may facilitate engineering of the secondary cell wall of plants.
Collapse
Affiliation(s)
- Nuno Faria-Blanc
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jenny C. Mortimer
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Biosciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Joint BioEnergy Institute, Emeryville, CA, United States
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Paul Dupree
| |
Collapse
|