1
|
Pandiyan A, Mallikarjun J, Maheshwari H, Gowrishankar J. Pathological R-loops in bacteria from engineered expression of endogenous antisense RNAs whose synthesis is ordinarily terminated by Rho. Nucleic Acids Res 2024; 52:12438-12455. [PMID: 39373509 PMCID: PMC11551753 DOI: 10.1093/nar/gkae839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/13/2024] [Accepted: 09/12/2024] [Indexed: 10/08/2024] Open
Abstract
In many bacteria, the essential factors Rho and NusG mediate termination of synthesis of nascent transcripts (including antisense RNAs) that are not being simultaneously translated. It has been proposed that in Rho's absence toxic RNA-DNA hybrids (R-loops) may be generated from nascent untranslated transcripts, and genome-wide mapping studies in Escherichia coli have identified putative loci of R-loop formation from more than 100 endogenous antisense transcripts that are synthesized only in a Rho-deficient strain. Here we provide evidence that engineered expression in wild-type E. coli of several such individual antisense regions on a plasmid or the chromosome generates R-loops that, in an RNase H-modulated manner, serve to disrupt genome integrity. Rho inhibition was associated with increased prevalence of antisense R-loops also in Xanthomonas oryzae pv. oryzae and Caulobacter crescentus. Our results confirm the essential role of Rho in several bacterial genera for prevention of toxic R-loops from pervasive yet cryptic endogenous antisense transcripts. Engineered antisense R-looped regions may be useful for studies on both site-specific impediments to bacterial chromosomal replication and the mechanisms of their resolution.
Collapse
Affiliation(s)
- Apuratha Pandiyan
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar 140306, Punjab, India
| | - Jillella Mallikarjun
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar 140306, Punjab, India
- Centre for DNA Fingerprinting and Diagnostics, Uppal Road, Hyderabad 500039, Telengana, India
| | - Himanshi Maheshwari
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar 140306, Punjab, India
| | - Jayaraman Gowrishankar
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar 140306, Punjab, India
| |
Collapse
|
2
|
Rigou S, Schmitt A, Alempic JM, Lartigue A, Vendloczki P, Abergel C, Claverie JM, Legendre M. Pithoviruses Are Invaded by Repeats That Contribute to Their Evolution and Divergence from Cedratviruses. Mol Biol Evol 2023; 40:msad244. [PMID: 37950899 PMCID: PMC10664404 DOI: 10.1093/molbev/msad244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/13/2023] Open
Abstract
Pithoviridae are amoeba-infecting giant viruses possessing the largest viral particles known so far. Since the discovery of Pithovirus sibericum, recovered from a 30,000-yr-old permafrost sample, other pithoviruses, and related cedratviruses, were isolated from various terrestrial and aquatic samples. Here, we report the isolation and genome sequencing of 2 Pithoviridae from soil samples, in addition to 3 other recent isolates. Using the 12 available genome sequences, we conducted a thorough comparative genomic study of the Pithoviridae family to decipher the organization and evolution of their genomes. Our study reveals a nonuniform genome organization in 2 main regions: 1 concentrating core genes and another gene duplications. We also found that Pithoviridae genomes are more conservative than other families of giant viruses, with a low and stable proportion (5% to 7%) of genes originating from horizontal transfers. Genome size variation within the family is mainly due to variations in gene duplication rates (from 14% to 28%) and massive invasion by inverted repeats. While these repeated elements are absent from cedratviruses, repeat-rich regions cover as much as a quarter of the pithoviruses genomes. These regions, identified using a dedicated pipeline, are hotspots of mutations, gene capture events, and genomic rearrangements that contribute to their evolution.
Collapse
Affiliation(s)
- Sofia Rigou
- Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), IM2B, IOM, Aix–Marseille University, Centre National de la Recherche Scientifique, Marseille 13288 Cedex 9, France
| | - Alain Schmitt
- Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), IM2B, IOM, Aix–Marseille University, Centre National de la Recherche Scientifique, Marseille 13288 Cedex 9, France
| | - Jean-Marie Alempic
- Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), IM2B, IOM, Aix–Marseille University, Centre National de la Recherche Scientifique, Marseille 13288 Cedex 9, France
| | - Audrey Lartigue
- Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), IM2B, IOM, Aix–Marseille University, Centre National de la Recherche Scientifique, Marseille 13288 Cedex 9, France
| | - Peter Vendloczki
- Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), IM2B, IOM, Aix–Marseille University, Centre National de la Recherche Scientifique, Marseille 13288 Cedex 9, France
| | - Chantal Abergel
- Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), IM2B, IOM, Aix–Marseille University, Centre National de la Recherche Scientifique, Marseille 13288 Cedex 9, France
| | - Jean-Michel Claverie
- Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), IM2B, IOM, Aix–Marseille University, Centre National de la Recherche Scientifique, Marseille 13288 Cedex 9, France
| | - Matthieu Legendre
- Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), IM2B, IOM, Aix–Marseille University, Centre National de la Recherche Scientifique, Marseille 13288 Cedex 9, France
| |
Collapse
|
3
|
Gnügge R, Reginato G, Cejka P, Symington LS. Sequence and chromatin features guide DNA double-strand break resection initiation. Mol Cell 2023; 83:1237-1250.e15. [PMID: 36917982 PMCID: PMC10131398 DOI: 10.1016/j.molcel.2023.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 01/09/2023] [Accepted: 02/09/2023] [Indexed: 03/14/2023]
Abstract
DNA double-strand breaks (DSBs) are cytotoxic genome lesions that must be accurately and efficiently repaired to ensure genome integrity. In yeast, the Mre11-Rad50-Xrs2 (MRX) complex nicks 5'-terminated DSB ends to initiate nucleolytic processing of DSBs for repair by homologous recombination. How MRX-DNA interactions support 5' strand-specific nicking and how nicking is influenced by the chromatin context have remained elusive. Using a deep sequencing-based assay, we mapped MRX nicks at single-nucleotide resolution next to multiple DSBs in the yeast genome. We observed that the DNA end-binding Ku70-Ku80 complex directed DSB-proximal nicks and that repetitive MRX cleavage extended the length of resection tracts. We identified a sequence motif and a DNA meltability profile that is preferentially nicked by MRX. Furthermore, we found that nucleosomes as well as transcription impeded MRX incisions. Our findings suggest that local DNA sequence and chromatin features shape the activity of this central DSB repair complex.
Collapse
Affiliation(s)
- Robert Gnügge
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Giordano Reginato
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland; Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland
| | - Petr Cejka
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland; Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
4
|
Mre11-Rad50: the DNA end game. Biochem Soc Trans 2023; 51:527-538. [PMID: 36892213 DOI: 10.1042/bst20220754] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 03/10/2023]
Abstract
The Mre11-Rad50-(Nbs1/Xrs2) complex is an evolutionarily conserved factor for the repair of DNA double-strand breaks and other DNA termini in all kingdoms of life. It is an intricate DNA associated molecular machine that cuts, among other functions, a large variety of free and obstructed DNA termini for DNA repair by end joining or homologous recombination, yet leaves undamaged DNA intact. Recent years have brought progress in both the structural and functional analyses of Mre11-Rad50 orthologs, revealing mechanisms of DNA end recognition, endo/exonuclease activities, nuclease regulation and DNA scaffolding. Here, I review our current understanding and recent progress on the functional architecture Mre11-Rad50 and how this chromosome associated coiled-coil ABC ATPase acts as DNA topology specific endo-/exonuclease.
Collapse
|
5
|
Karanja CW, Naganna N, Abutaleb NS, Dayal N, Onyedibe KI, Aryal U, Seleem MN, Sintim HO. Isoquinoline Antimicrobial Agent: Activity against Intracellular Bacteria and Effect on Global Bacterial Proteome. Molecules 2022; 27:5085. [PMID: 36014324 PMCID: PMC9416421 DOI: 10.3390/molecules27165085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
A new class of alkynyl isoquinoline antibacterial compounds, synthesized via Sonogashira coupling, with strong bactericidal activity against a plethora of Gram-positive bacteria including methicillin- and vancomycin-resistant Staphylococcus aureus (S. aureus) strains is presented. HSN584 and HSN739, representative compounds in this class, reduce methicillin-resistant S. aureus (MRSA) load in macrophages, whilst vancomycin, a drug of choice for MRSA infections, was unable to clear intracellular MRSA. Additionally, both HSN584 and HSN739 exhibited a low propensity to develop resistance. We utilized comparative global proteomics and macromolecule biosynthesis assays to gain insight into the alkynyl isoquinoline mechanism of action. Our preliminary data show that HSN584 perturb S. aureus cell wall and nucleic acid biosynthesis. The alkynyl isoquinoline moiety is a new scaffold for the development of potent antibacterial agents against fatal multidrug-resistant Gram-positive bacteria.
Collapse
Affiliation(s)
- Caroline W. Karanja
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - Nimishetti Naganna
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - Nader S. Abutaleb
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, 625 Harrison Street, West Lafayette, IN 47907, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 1410 Prices Fork Rd, Blacksburg, VA 24061, USA
| | - Neetu Dayal
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - Kenneth I. Onyedibe
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, West Lafayette, IN 47907, USA
| | - Uma Aryal
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, 625 Harrison Street, West Lafayette, IN 47907, USA
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Mohamed N. Seleem
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, 625 Harrison Street, West Lafayette, IN 47907, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 1410 Prices Fork Rd, Blacksburg, VA 24061, USA
| | - Herman O. Sintim
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, West Lafayette, IN 47907, USA
- Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
| |
Collapse
|
6
|
Goswami S, Gowrishankar J. Role for DNA double strand end-resection activity of RecBCD in control of aberrant chromosomal replication initiation in Escherichia coli. Nucleic Acids Res 2022; 50:8643-8657. [PMID: 35929028 PMCID: PMC9410895 DOI: 10.1093/nar/gkac670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/13/2022] [Accepted: 08/03/2022] [Indexed: 11/12/2022] Open
Abstract
Replication of the circular bacterial chromosome is initiated from a locus oriC with the aid of an essential protein DnaA. One approach to identify factors acting to prevent aberrant oriC-independent replication initiation in Escherichia coli has been that to obtain mutants which survive loss of DnaA. Here, we show that a ΔrecD mutation, associated with attenuation of RecBCD’s DNA double strand end-resection activity, provokes abnormal replication and rescues ΔdnaA lethality in two situations: (i) in absence of 5′-3′ single-strand DNA exonuclease RecJ, or (ii) when multiple two-ended DNA double strand breaks (DSBs) are generated either by I-SceI endonucleolytic cleavages or by radiomimetic agents phleomycin or bleomycin. One-ended DSBs in the ΔrecD mutant did not rescue ΔdnaA lethality. With two-ended DSBs in the ΔrecD strain, ΔdnaA viability was retained even after linearization of the chromosome. Data from genome-wide DNA copy number determinations in ΔdnaA-rescued cells lead us to propose a model that nuclease-mediated DNA resection activity of RecBCD is critical for prevention of a σ-mode of rolling-circle over-replication when convergent replication forks merge and fuse, as may be expected to occur during normal replication at the chromosomal terminus region or during repair of two-ended DSBs following ‘ends-in’ replication.
Collapse
Affiliation(s)
- Sayantan Goswami
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal 576104, India.,Indian Institute of Science Education and Research Mohali, SAS Nagar 140306, India
| | - Jayaraman Gowrishankar
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India.,Indian Institute of Science Education and Research Mohali, SAS Nagar 140306, India
| |
Collapse
|
7
|
Cho JY, Kim J, Kim JW, Lee D, Kim DG, Kim YS, Lee JH, Nam BH, Kim YO, Kong HJ. Characterization of TRIM16, a member of the fish-specific finTRIM family, in olive flounder Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2022; 127:666-671. [PMID: 35803510 DOI: 10.1016/j.fsi.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Tripartite motif-containing (TRIM) proteins are conserved throughout the metazoan kingdom, and the TRIM subset finTRIM is highly diversified in fish. We isolated TRIM16 cDNA, a member of the finTRIM family, from the olive flounder Paralichthys olivaceus (PoTRIM16). PoTRIM16 contained a 1,725-bp coding sequence encoding a 574-amino acid polypeptide, which in turn contained a really interesting new gene (RING) finger domain, B-box-type zinc finger (B-BOX), nuclease SbcCD subunit C (SbcC), structural maintenance of chromosome (SMC prok B), and stonustoxin (SNTX) subunit alpha (SPRY-PRY-SNTX). Multiple alignment of related sequences revealed that PoTRIM16 showed 86.63-97.40% identity with fish orthologues, and a phylogenetic tree was constructed of vertebrates. PoTRIM16 mRNA was detected in all tissues examined; levels were highest in the eye and ovary. PoTRIM16 mRNA expression was investigated during early development. Under VHSV infection, PoTRIM16 mRNA was downregulated in the liver of P. olivaceus. This is the first study to characterize fish-specific finTRIM in P. olivaceus, which may play a role in the immune response against virus infection.
Collapse
Affiliation(s)
- Ja Young Cho
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Julan Kim
- Fish Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, 53334, Republic of Korea
| | - Ju-Won Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Dain Lee
- Fish Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, 53334, Republic of Korea
| | - Dong-Gyun Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Young-Sam Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Jeong Ho Lee
- Fish Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, 53334, Republic of Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Young-Ok Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Hee Jeong Kong
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea.
| |
Collapse
|
8
|
Homologs of Phycobilisome Abundance Regulator PsoR Are Widespread across Cyanobacteria. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
During chromatic acclimation (CA), cyanobacteria undergo shifts in their physiology and metabolism in response to changes in their light environment. Various forms of CA, which involves the tuning of light-harvesting accessory complexes known as phycobilisomes (PBS) in response to distinct wavelengths of light, have been recognized. Recently, a negative regulator of PBS abundance, PsoR, about which little was known, was identified. We used sequence analyses and bioinformatics to predict the role of PsoR in cyanobacteria and PBS regulation and to examine its presence in a diverse range of cyanobacteria. PsoR has sequence similarities to the β-CASP family of proteins involved in DNA and RNA processing. PsoR is a putative nuclease widespread across Cyanobacteria, of which over 700 homologs have been observed. Promoter analysis suggested that psoR is co-transcribed with upstream gene tcpA. Multiple transcription factors involved in global gene regulation and stress responses were predicted to bind to the psoR-tcpA promoter. The predicted protein–protein interactions with PsoR homologs included proteins involved in DNA and RNA metabolism, as well as a phycocyanin-associated protein predicted to interact with PsoR from Fremyella diplosiphon (FdPsoR). The widespread presence of PsoR homologs in Cyanobacteria and their ties to DNA- and RNA-metabolizing proteins indicated a potentially unique role for PsoR in CA and PBS abundance regulation.
Collapse
|
9
|
Speers AM, Reguera G. Competitive advantage of oxygen-tolerant bioanodes of Geobacter sulfurreducens in bioelectrochemical systems. Biofilm 2021; 3:100052. [PMID: 34222855 PMCID: PMC8242959 DOI: 10.1016/j.bioflm.2021.100052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 10/31/2022] Open
Abstract
Oxidative stress greatly limits current harvesting from anode biofilms in bioelectrochemical systems yet insufficient knowledge of the antioxidant responses of electricigens prevents optimization. Using Geobacter sulfurreducens PCA as a model electricigen, we demonstrated enhanced oxygen tolerance and reduced electron losses as the biofilms grew in height on the anode. To investigate the molecular basis of biofilm tolerance, we developed a genetic screening and isolated 11 oxygen-tolerant (oxt) strains from a library of transposon-insertion mutants. The aggregative properties of the oxt mutants promoted biofilm formation and oxygen tolerance. Yet, unlike the wild type, none of the mutants diverted respiratory electrons to oxygen. Most of the oxt mutations inactivated pathways for the detoxification of reactive oxygen species that could have triggered compensatory chronic responses to oxidative stress and inhibit aerobic respiration. One of the mutants (oxt10) also had a growth advantage with Fe(III) oxides and during the colonization of the anode electrode. The enhanced antioxidant response in this mutant reduced the system's start-up and promoted current harvesting from bioanodes even in the presence of oxygen. These results highlight a hitherto unknown role of oxidative stress responses in the stability and performance of current-harvesting biofilms of G. sulfurreducens and identify biological and engineering approaches to grow electroactive biofilms with the resilience needed for practical applications.
Collapse
Affiliation(s)
- Allison M Speers
- Department of Microbiology and Molecular Genetics, Michigan State University, USA
| | - Gemma Reguera
- Department of Microbiology and Molecular Genetics, Michigan State University, USA
| |
Collapse
|
10
|
Lee J, Jo I, Ahn J, Hong S, Jeong S, Kwon A, Ha NC. Crystal structure of the nuclease and capping domain of SbcD from Staphylococcus aureus. J Microbiol 2021; 59:584-589. [PMID: 33877576 DOI: 10.1007/s12275-021-1012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 10/21/2022]
Abstract
The SbcCD complex is an essential component of the DNA double-strand break (DSB) repair system in bacteria. The bacterial SbcCD complex recognizes and cleaves the DNA ends in DSBs by ATP-dependent endo- and exonuclease activities as an early step of the DNA repair process. SbcD consists of nuclease, capping, and helix-loop-helix domains. Here, we present the crystal structure of a SbcD fragment from Staphylococcus aureus, which contained nuclease and capping domains, at a resolution of 2.9 Å. This structure shows a dimeric assembly similar to that of the corresponding domains of SbcD from Escherichia coli. The S. aureus SbcD fragment exhibited endonuclease activities on supercoiled DNA and exonuclease activity on linear and nicked DNA. This study contributes to the understanding of the molecular basis for how bacteria can resist sterilizing treatment, causing DNA damage.
Collapse
Affiliation(s)
- Jinwook Lee
- Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Department of Agricultural Biotechnology, CALS, Seoul National University, Seoul, 08826, Republic of Korea
| | - Inseong Jo
- Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Department of Agricultural Biotechnology, CALS, Seoul National University, Seoul, 08826, Republic of Korea
- Current address: KoBioLabs, Inc., Seoul, 08826, Republic of Korea
| | - Jinsook Ahn
- Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Department of Agricultural Biotechnology, CALS, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seokho Hong
- Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Department of Agricultural Biotechnology, CALS, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soyeon Jeong
- Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Department of Agricultural Biotechnology, CALS, Seoul National University, Seoul, 08826, Republic of Korea
| | - Aeran Kwon
- Department of Beauty Care, College of Medical Science, Daegu Haany University, Gyeongsan, 38610, Republic of Korea
| | - Nam-Chul Ha
- Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Department of Agricultural Biotechnology, CALS, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
11
|
Ait Saada A, Costa AB, Sheng Z, Guo W, Haber JE, Lobachev K. Structural parameters of palindromic repeats determine the specificity of nuclease attack of secondary structures. Nucleic Acids Res 2021; 49:3932-3947. [PMID: 33772579 PMCID: PMC8053094 DOI: 10.1093/nar/gkab168] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 12/15/2022] Open
Abstract
Palindromic sequences are a potent source of chromosomal instability in many organisms and are implicated in the pathogenesis of human diseases. In this study, we investigate which nucleases are responsible for cleavage of the hairpin and cruciform structures and generation of double-strand breaks at inverted repeats in Saccharomyces cerevisiae. We demonstrate that the involvement of structure-specific nucleases in palindrome fragility depends on the distance between inverted repeats and their transcriptional status. The attack by the Mre11 complex is constrained to hairpins with loops <9 nucleotides. This restriction is alleviated upon RPA depletion, indicating that RPA controls the stability and/or formation of secondary structures otherwise responsible for replication fork stalling and DSB formation. Mus81-Mms4 cleavage of cruciforms occurs at divergently but not convergently transcribed or nontranscribed repeats. Our study also reveals the third pathway for fragility at perfect and quasi-palindromes, which involves cruciform resolution during the G2 phase of the cell cycle.
Collapse
Affiliation(s)
- Anissia Ait Saada
- School of Biological Sciences and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GE 30332, USA
| | - Alex B Costa
- School of Biological Sciences and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GE 30332, USA
| | - Ziwei Sheng
- School of Biological Sciences and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GE 30332, USA
| | - Wenying Guo
- School of Biological Sciences and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GE 30332, USA
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Waltham, MA 02454-9110, USA
| | - Kirill S Lobachev
- School of Biological Sciences and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GE 30332, USA
| |
Collapse
|
12
|
Ghosh S, Ejaz A, Repeta L, Shuman S. Pseudomonas putida MPE, a manganese-dependent endonuclease of the binuclear metallophosphoesterase superfamily, incises single-strand DNA in two orientations to yield a mixture of 3'-PO4 and 3'-OH termini. Nucleic Acids Res 2021; 49:1023-1032. [PMID: 33367848 PMCID: PMC7826289 DOI: 10.1093/nar/gkaa1214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 11/14/2022] Open
Abstract
Pseudomonas putida MPE exemplifies a novel clade of manganese-dependent single-strand DNA endonuclease within the binuclear metallophosphoesterase superfamily. MPE is encoded within a widely conserved DNA repair operon. Via structure-guided mutagenesis, we identify His113 and His81 as essential for DNA nuclease activity, albeit inessential for hydrolysis of bis-p-nitrophenylphosphate. We propose that His113 contacts the scissile phosphodiester and serves as a general acid catalyst to expel the OH leaving group of the product strand. We find that MPE cleaves the 3′ and 5′ single-strands of tailed duplex DNAs and that MPE can sense and incise duplexes at sites of short mismatch bulges and opposite a nick. We show that MPE is an ambidextrous phosphodiesterase capable of hydrolyzing the ssDNA backbone in either orientation to generate a mixture of 3′-OH and 3′-PO4 cleavage products. The directionality of phosphodiester hydrolysis is dictated by the orientation of the water nucleophile vis-à-vis the OH leaving group, which must be near apical for the reaction to proceed. We propose that the MPE active site and metal-bound water nucleophile are invariant and the enzyme can bind the ssDNA productively in opposite orientations.
Collapse
Affiliation(s)
- Shreya Ghosh
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anam Ejaz
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lucas Repeta
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
13
|
Yang Y, Wang T, Yu Q, Liu H, Xun L, Xia Y. The pathway of recombining short homologous ends in Escherichia coli revealed by the genetic study. Mol Microbiol 2021; 115:1309-1322. [PMID: 33372330 DOI: 10.1111/mmi.14677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 11/30/2022]
Abstract
The recombination of short homologous ends in Escherichia coli has been known for 30 years, and it is often used for both site-directed mutagenesis and in vivo cloning. For cloning, a plasmid and target DNA fragments were converted into linear DNA fragments with short homologous ends, which are joined via recombination inside E. coli after transformation. Here this mechanism of joining homologous ends in E. coli was determined by a linearized plasmid with short homologous ends. Two 3'-5' exonucleases ExoIII and ExoX with nonprocessive activity digested linear dsDNA to generate 5' single-strand overhangs, which annealed with each other. The polymerase activity of DNA polymerase I (Pol I) was exclusively employed to fill in the gaps. The strand displacement activity and the 5'-3' exonuclease activity of Pol I were also required, likely to generate 5' phosphate termini for subsequent ligation. Ligase A (LigA) joined the nicks to finish the process. The model involving 5' single-stranded overhangs is different from established recombination pathways that all generate 3' single-stranded overhangs. This recombination is likely common in bacteria since the involved enzymes are ubiquitous.
Collapse
Affiliation(s)
- Yuqing Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China.,Institute of Marine Science and Technology, Shandong University, Qingdao, People's Republic of China
| | - Tianqi Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Qiaoli Yu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China.,School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| |
Collapse
|
14
|
Ye Z, Moreb EA, Li S, Lebeau J, Menacho-Melgar R, Munson M, Lynch MD. Escherichia coli Cas1/2 Endonuclease Complex Modifies Self-Targeting CRISPR/Cascade Spacers Reducing Silencing Guide Stability. ACS Synth Biol 2021; 10:29-37. [PMID: 33331764 DOI: 10.1021/acssynbio.0c00398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CRISPR-based interference has become common in various applications from genetic circuits to dynamic metabolic control. In E. coli, the native CRISPR Cascade system can be utilized for silencing by deletion of the cas3 nuclease along with expression of guide RNA arrays, where multiple genes can be silenced from a single transcript. We notice the loss of spacer sequences from guide arrays utilized for dynamic silencing. We report that unstable guide arrays are due to expression of the Cas1/2 endonuclease complex. We propose a model wherein basal Cas1/2 endonuclease activity results in the loss of spacers from guide arrays. Subsequently, mutant guide arrays can be amplified through selection. Replacing a constitutive promoter driving Cascade complex expression with a tightly controlled inducible promoter improves guide array stability, while minimizing leaky gene silencing. Additionally, these results demonstrate the potential of Cas1/2 mediated guide deletion as a mechanism to avoid CRISPR based autoimmunity.
Collapse
Affiliation(s)
- Zhixia Ye
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- DMC Biotechnologies, Inc., Durham, North Carolina 27701, United States
| | - Eirik A Moreb
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Shuai Li
- DMC Biotechnologies, Inc., Durham, North Carolina 27701, United States
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Juliana Lebeau
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Romel Menacho-Melgar
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Matthew Munson
- DMC Biotechnologies, Inc., Durham, North Carolina 27701, United States
| | - Michael D Lynch
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
15
|
Alternative DNA Structures In Vivo: Molecular Evidence and Remaining Questions. Microbiol Mol Biol Rev 2020; 85:85/1/e00110-20. [PMID: 33361270 DOI: 10.1128/mmbr.00110-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Duplex DNA naturally folds into a right-handed double helix in physiological conditions. Some sequences of unusual base composition may nevertheless form alternative structures, as was shown for many repeated sequences in vitro However, evidence for the formation of noncanonical structures in living cells is difficult to gather. It mainly relies on genetic assays demonstrating their function in vivo or through genetic instability reflecting particular properties of such structures. Efforts were made to reveal their existence directly in a living cell, mainly by generating antibodies specific to secondary structures or using chemical ligands selected for their affinity to these structures. Among secondary structure-forming DNAs are G-quadruplexes, human fragile sites containing minisatellites, AT-rich regions, inverted repeats able to form cruciform structures, hairpin-forming CAG/CTG triplet repeats, and triple helices formed by homopurine-homopyrimidine GAA/TTC trinucleotide repeats. Many of these alternative structures are involved in human pathologies, such as neurological or developmental disorders, as in the case of trinucleotide repeats, or cancers triggered by translocations linked to fragile sites. This review will discuss and highlight evidence supporting the formation of alternative DNA structures in vivo and will emphasize the role of the mismatch repair machinery in binding mispaired DNA duplexes, triggering genetic instability.
Collapse
|
16
|
Zabolotnaya E, Mela I, Henderson RM, Robinson NP. Turning the Mre11/Rad50 DNA repair complex on its head: lessons from SMC protein hinges, dynamic coiled-coil movements and DNA loop-extrusion? Biochem Soc Trans 2020; 48:2359-2376. [PMID: 33300987 PMCID: PMC7752040 DOI: 10.1042/bst20170168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
The bacterial SbcC/SbcD DNA repair proteins were identified over a quarter of a century ago. Following the subsequent identification of the homologous Mre11/Rad50 complex in the eukaryotes and archaea, it has become clear that this conserved chromosomal processing machinery is central to DNA repair pathways and the maintenance of genomic stability in all forms of life. A number of experimental studies have explored this intriguing genome surveillance machinery, yielding significant insights and providing conceptual advances towards our understanding of how this complex operates to mediate DNA repair. However, the inherent complexity and dynamic nature of this chromosome-manipulating machinery continue to obfuscate experimental interrogations, and details regarding the precise mechanisms that underpin the critical repair events remain unanswered. This review will summarize our current understanding of the dramatic structural changes that occur in Mre11/Rad50 complex to mediate chromosomal tethering and accomplish the associated DNA processing events. In addition, undetermined mechanistic aspects of the DNA enzymatic pathways driven by this vital yet enigmatic chromosomal surveillance and repair apparatus will be discussed. In particular, novel and putative models of DNA damage recognition will be considered and comparisons will be made between the modes of action of the Rad50 protein and other related ATPases of the overarching SMC superfamily.
Collapse
Affiliation(s)
| | - Ioanna Mela
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, U.K
| | | | - Nicholas P. Robinson
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, U.K
| |
Collapse
|
17
|
Svetec Miklenić M, Gatalica N, Matanović A, Žunar B, Štafa A, Lisnić B, Svetec IK. Size-dependent antirecombinogenic effect of short spacers on palindrome recombinogenicity. DNA Repair (Amst) 2020; 90:102848. [PMID: 32388488 DOI: 10.1016/j.dnarep.2020.102848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 03/21/2020] [Accepted: 03/28/2020] [Indexed: 01/01/2023]
Abstract
Palindromic sequences in DNA can instigate genetic recombination and genome instability, which can result in devastating conditions such as the Emmanuel syndrome. Palindrome recombinogenicity increases with its size and sequence similarity between palindrome arms, while quasipalindromes with long spacers are less recombinogenic. However, the minimal spacer length, which could reduce or abolish palindrome recombinogenicity in the eukaryotic genome, was never determined. Therefore, we constructed a series of palindromes containing spacers of lengths ranging from 0 (perfect palindrome) to 10 bp and tested their recombinogenicity in yeast Saccharomyces cerevisiae. We found that a 7 bp spacer significantly reduces 126 bp palindrome recombinogenicity, while a 10 bp spacer completely stabilizes palindromes up to 150 bp long. Additionally, we showed that palindrome stimulated recombination rate is not dependent on Mus81 and Yen1 endonucleases. We also compared the recombinogenicity of a perfect 126 bp palindrome and a corresponding quasipalindrome consisting of the same palindrome arms with a stabilising 10 bp spacer in sgs1Δ and rad27Δ backgrounds, since both Sgs1 helicase and Rad27 endonuclease are implicated in preventing hairpin formation at palindromic sequences during replication.
Collapse
Affiliation(s)
- Marina Svetec Miklenić
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Nikolina Gatalica
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Angela Matanović
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Bojan Žunar
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Anamarija Štafa
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Berislav Lisnić
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Ivan Krešimir Svetec
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| |
Collapse
|
18
|
Sinha AK, Possoz C, Leach DRF. The Roles of Bacterial DNA Double-Strand Break Repair Proteins in Chromosomal DNA Replication. FEMS Microbiol Rev 2020; 44:351-368. [PMID: 32286623 PMCID: PMC7326373 DOI: 10.1093/femsre/fuaa009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/09/2020] [Indexed: 02/06/2023] Open
Abstract
It is well established that DNA double-strand break (DSB) repair is required to underpin chromosomal DNA replication. Because DNA replication forks are prone to breakage, faithful DSB repair and correct replication fork restart are critically important. Cells, where the proteins required for DSB repair are absent or altered, display characteristic disturbances to genome replication. In this review, we analyze how bacterial DNA replication is perturbed in DSB repair mutant strains and explore the consequences of these perturbations for bacterial chromosome segregation and cell viability. Importantly, we look at how DNA replication and DSB repair processes are implicated in the striking recent observations of DNA amplification and DNA loss in the chromosome terminus of various mutant Escherichia coli strains. We also address the mutant conditions required for the remarkable ability to copy the entire E. coli genome, and to maintain cell viability, even in the absence of replication initiation from oriC, the unique origin of DNA replication in wild type cells. Furthermore, we discuss the models that have been proposed to explain these phenomena and assess how these models fit with the observed data, provide new insights and enhance our understanding of chromosomal replication and termination in bacteria.
Collapse
Affiliation(s)
- Anurag Kumar Sinha
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, 2200, Denmark
| | - Christophe Possoz
- Evolution and maintenance of circular chromosomes, Genome biology department, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 1 avenue de la Terrasse Building 26, 91198 Gif-sur-Yvette, France
| | - David R F Leach
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, EH9 3FF, United Kingdom
| |
Collapse
|
19
|
Li B, Yan J, Zhang Y, Li W, Zeng C, Zhao W, Hou X, Zhang C, Dong Y. CRISPR-Cas12a Possesses Unconventional DNase Activity that Can Be Inactivated by Synthetic Oligonucleotides. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1043-1052. [PMID: 32045875 PMCID: PMC7015830 DOI: 10.1016/j.omtn.2019.12.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 12/26/2022]
Abstract
CRISPR-Cas12a (CRISPR-Cpf1) was reported to have multiple types of cleavage activities. Without the assistance of CRISPR RNA (crRNA), we investigated DNase activity and substrate specificity of Cas12a orthologs in the presence of diverse divalent metal ions. Cas12a from different species are capable of degrading single-stranded DNA (ssDNA) and/or double-stranded DNA (dsDNA), depending on the metal ions used. In spite of sharing high sequence similarity and functional domains among diverse Cas12a orthologs, only Acidaminococcus sp. Cas12a (AsCas12a) showed a predominant preference for cleaving ssDNA, but no detectable activity toward dsDNA substrate in the presence of magnesium (II) ions. In addition, we found that both AsCas12a and Francisella novicida Cas12a (FnCas12a) caused substantial dsDNA cleavage in the presence of manganese (II) ion. More importantly, the DNase activities can be inhibited by synthetic DNA oligonucleotides with phosphorothioate linkage modifications. Overall, ssDNase activity of the Cas12a orthologs uncovered a distinct approach for DNA cleavage compared with crRNA-guided dsDNA breaks, and provided insights into potential biological and therapeutic applications.
Collapse
Affiliation(s)
- Bin Li
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; Department of Infectious Disease, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, China
| | - Jingyue Yan
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Youxi Zhang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Wenqing Li
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Chunxi Zeng
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Weiyu Zhao
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Xucheng Hou
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Chengxiang Zhang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Yizhou Dong
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; The Center for Clinical and Translational Science, The Ohio State University, Columbus, OH 43210, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
20
|
Tatebe H, Lim CT, Konno H, Shiozaki K, Shinohara A, Uchihashi T, Furukohri A. Rad50 zinc hook functions as a constitutive dimerization module interchangeable with SMC hinge. Nat Commun 2020; 11:370. [PMID: 31953386 PMCID: PMC6969161 DOI: 10.1038/s41467-019-14025-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 12/10/2019] [Indexed: 01/11/2023] Open
Abstract
The human Mre11/Rad50 complex is one of the key factors in genome maintenance pathways. Previous nanoscale imaging by atomic force microscopy (AFM) showed that the ring-like structure of the human Mre11/Rad50 complex transiently opens at the zinc hook of Rad50. However, imaging of the human Mre11/Rad50 complex by high-speed AFM shows that the Rad50 coiled-coil arms are consistently bridged by the dimerized hooks while the Mre11/Rad50 ring opens by disconnecting the head domains; resembling other SMC proteins such as cohesin or condensin. These architectural features are conserved in the yeast and bacterial Mre11/Rad50 complexes. Yeast strains harboring the chimeric Mre11/Rad50 complex containing the SMC hinge of bacterial condensin MukB instead of the RAD50 hook properly functions in DNA repair. We propose that the basic role of the Rad50 hook is similar to that of the SMC hinge, which serves as rather stable dimerization interface.
Collapse
Affiliation(s)
- Hisashi Tatebe
- Nara Institute of Science and Technology, Graduate School of Biological Sciences, Ikoma, Nara, 630-0192, Japan
| | - Chew Theng Lim
- Nara Institute of Science and Technology, Graduate School of Biological Sciences, Ikoma, Nara, 630-0192, Japan
| | - Hiroki Konno
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Kazuhiro Shiozaki
- Nara Institute of Science and Technology, Graduate School of Biological Sciences, Ikoma, Nara, 630-0192, Japan
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, 95616, USA
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Takayuki Uchihashi
- Department of Physics, Nagoya University, Nagoya, 464-8602, Japan.
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan.
| | - Asako Furukohri
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
21
|
Coe KA, Lee W, Stone MC, Komazin-Meredith G, Meredith TC, Grad YH, Walker S. Multi-strain Tn-Seq reveals common daptomycin resistance determinants in Staphylococcus aureus. PLoS Pathog 2019; 15:e1007862. [PMID: 31738809 PMCID: PMC6934316 DOI: 10.1371/journal.ppat.1007862] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 12/27/2019] [Accepted: 09/24/2019] [Indexed: 01/30/2023] Open
Abstract
Antibiotic-resistant Staphylococcus aureus remains a leading cause of antibiotic resistance-associated mortality in the United States. Given the reality of multi-drug resistant infections, it is imperative that we establish and maintain a pipeline of new compounds to replace or supplement our current antibiotics. A first step towards this goal is to prioritize targets by identifying the genes most consistently required for survival across the S. aureus phylogeny. Here we report the first direct comparison of multiple strains of S. aureus via transposon sequencing. We show that mutant fitness varies by strain in key pathways, underscoring the importance of using more than one strain to differentiate between core and strain-dependent essential genes. We treated the libraries with daptomycin to assess whether the strain-dependent differences impact pathways important for survival. Despite baseline differences in gene importance, several pathways, including the lipoteichoic acid pathway, consistently promote survival under daptomycin exposure, suggesting core vulnerabilities that can be exploited to resensitize daptomycin-nonsusceptible isolates. We also demonstrate the merit of using transposons with outward-facing promoters capable of overexpressing nearby genes for identifying clinically-relevant gain-of-function resistance mechanisms. Together, the daptomycin vulnerabilities and resistance mechanisms support a mode of action with wide-ranging effects on the cell envelope and cell division. This work adds to a growing body of literature demonstrating the nuanced insights gained by comparing Tn-Seq results across multiple bacterial strains. Antibiotic-resistant Staphylococcus aureus kills thousands of people every year in the United States alone. To stay ahead of the looming threat of multidrug-resistant infections, we must continue to develop new antibiotics and find ways to make our current repertoire of antibiotics more effective, including by finding pairs of compounds that perform best when administered together. In the age of next-generation sequencing, we can now use transposon sequencing to find potential targets for new antibiotics on a genome-wide scale, identified as either essential genes or genes that positively influence survival in the presence of an antibiotic. In this work, we created a compendium of genes that are essential across a range of S. aureus strains, as well as those that are important for growth in the presence of the antibiotic daptomycin. The results will be a resource for researchers working to develop the next generation of antibiotic therapies.
Collapse
Affiliation(s)
- Kathryn A. Coe
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Wonsik Lee
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Madeleine C. Stone
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gloria Komazin-Meredith
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania, United States of America
| | - Timothy C. Meredith
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania, United States of America
- * E-mail: (TCM); (YHG); (SW)
| | - Yonatan H. Grad
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (TCM); (YHG); (SW)
| | - Suzanne Walker
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail: (TCM); (YHG); (SW)
| |
Collapse
|
22
|
McLean K, Lee D, Holmes EA, Penewit K, Waalkes A, Ren M, Lee SA, Gasper J, Manoil C, Salipante SJ. Genomic Analysis Identifies Novel Pseudomonas aeruginosa Resistance Genes under Selection during Inhaled Aztreonam Therapy In Vivo. Antimicrob Agents Chemother 2019; 63:e00866-19. [PMID: 31285231 PMCID: PMC6709462 DOI: 10.1128/aac.00866-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022] Open
Abstract
Inhaled aztreonam is increasingly used for chronic Pseudomonas aeruginosa suppression in patients with cystic fibrosis (CF), but the potential for that organism to evolve aztreonam resistance remains incompletely explored. Here, we performed genomic analysis of clonally related pre- and posttreatment CF clinical isolate pairs to identify genes that are under positive selection during aztreonam therapy in vivo We identified 16 frequently mutated genes associated with aztreonam resistance, the most prevalent being ftsI and ampC, and 13 of which increased aztreonam resistance when introduced as single gene transposon mutants. Several previously implicated aztreonam resistance genes were found to be under positive selection in clinical isolates even in the absence of inhaled aztreonam exposure, indicating that other selective pressures in the cystic fibrosis airway can promote aztreonam resistance. Given its potential to confer plasmid-mediated resistance, we further characterized mutant ampC alleles and performed artificial evolution of ampC for maximal activity against aztreonam. We found that naturally occurring ampC mutants conferred variably increased resistance to aztreonam (2- to 64-fold) and other β-lactam agents but that its maximal evolutionary capacity for hydrolyzing aztreonam was considerably higher (512- to 1,024-fold increases) and was achieved while maintaining or increasing resistance to other drugs. These studies implicate novel chromosomal aztreonam resistance determinants while highlighting that different mutations are favored during selection in vivo and in vitro, show that ampC has a high maximal potential to hydrolyze aztreonam, and provide an approach to disambiguate mutations promoting specific resistance phenotypes from those more generally increasing bacterial fitness in vivo.
Collapse
Affiliation(s)
- Kathryn McLean
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Duankun Lee
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Elizabeth A Holmes
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kelsi Penewit
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Adam Waalkes
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Mingxin Ren
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Samuel A Lee
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Joseph Gasper
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Colin Manoil
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Stephen J Salipante
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
23
|
Sharma R, Pielstick BA, Bell KA, Nieman TB, Stubbs OA, Yeates EL, Baltrus DA, Grose JH. A Novel, Highly Related Jumbo Family of Bacteriophages That Were Isolated Against Erwinia. Front Microbiol 2019; 10:1533. [PMID: 31428059 PMCID: PMC6690015 DOI: 10.3389/fmicb.2019.01533] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/19/2019] [Indexed: 01/17/2023] Open
Abstract
Erwinia amylovora is a plant pathogen from the Erwiniaceae family and a causative agent of the devastating agricultural disease fire blight. Here we characterize eight lytic bacteriophages of E. amylovora that we isolated from the Wasatch front (Utah, United States) that are highly similar to vB_EamM_Ea35-70 which was isolated in Ontario, Canada. With the genome size ranging from 271 to 275 kb, this is a novel jumbo family of bacteriophages. These jumbo bacteriophages were further characterized through genomic and proteomic comparison, mass spectrometry, host range and burst size. Their proteomes are highly unstudied, with over 200 putative proteins with no known homologs. The production of 27 of these putative proteins was confirmed by mass spectrometry analysis. These bacteriophages appear to be most similar to bacteriophages that infect Pseudomonas and Ralstonia rather than Enterobacteriales bacteria by protein similarity, however, we were only able to detect infection of Erwinia and the closely related strains of Pantoea.
Collapse
Affiliation(s)
- Ruchira Sharma
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Brittany A. Pielstick
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Kimberly A. Bell
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Tanner B. Nieman
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Olivia A. Stubbs
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Edward L. Yeates
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - David A. Baltrus
- School of Plant Sciences, The University of Arizona, Tucson, AZ, United States
| | - Julianne H. Grose
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| |
Collapse
|
24
|
Nbn-Mre11 interaction is required for tumor suppression and genomic integrity. Proc Natl Acad Sci U S A 2019; 116:15178-15183. [PMID: 31285322 DOI: 10.1073/pnas.1905305116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We derived a mouse model in which a mutant form of Nbn/Nbs1mid8 (hereafter Nbnmid8) exhibits severely impaired binding to the Mre11-Rad50 core of the Mre11 complex. The Nbn mid8 allele was expressed exclusively in hematopoietic lineages (in Nbn -/mid8vav mice). Unlike Nbn flox/floxvav mice with Nbn deficiency in the bone marrow, Nbn -/mid8vav mice were viable. Nbn -/mid8vav mice hematopoiesis was profoundly defective, exhibiting reduced cellularity of thymus and bone marrow, and stage-specific blockage of B cell development. Within 6 mo, Nbn -/mid8 mice developed highly penetrant T cell leukemias. Nbn -/mid8vav leukemias recapitulated mutational features of human T cell acute lymphoblastic leukemia (T-ALL), containing mutations in NOTCH1, TP53, BCL6, BCOR, and IKZF1, suggesting that Nbn mid8 mice may provide a venue to examine the relationship between the Mre11 complex and oncogene activation in the hematopoietic compartment. Genomic analysis of Nbn -/mid8vav malignancies showed focal amplification of 9qA2, causing overexpression of MRE11 and CHK1 We propose that overexpression of MRE11 compensates for the metastable Mre11-Nbnmid8 interaction, and that selective pressure for overexpression reflects the essential role of Nbn in promoting assembly and activity of the Mre11 complex.
Collapse
|
25
|
Ejaz A, Goldgur Y, Shuman S. Activity and structure of Pseudomonas putida MPE, a manganese-dependent single-strand DNA endonuclease encoded in a nucleic acid repair gene cluster. J Biol Chem 2019; 294:7931-7941. [PMID: 30894417 DOI: 10.1074/jbc.ra119.008049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/20/2019] [Indexed: 02/04/2023] Open
Abstract
A recently identified and widely prevalent prokaryal gene cluster encodes a suite of enzymes with imputed roles in nucleic acid repair. The enzymes are as follows: MPE, a DNA endonuclease; Lhr-Core, a 3'-5' DNA helicase; LIG, an ATP-dependent DNA ligase; and Exo, a metallo-β-lactamase-family nuclease. Bacterial and archaeal MPE proteins belong to the binuclear metallophosphoesterase superfamily that includes the well-studied DNA repair nucleases Mre11 and SbcD. Here, we report that the Pseudomonas putida MPE protein is a manganese-dependent DNA endonuclease that incises either linear single strands or the single-strand loops of stem-loop DNA structures. MPE has feeble activity on duplex DNA. A crystal structure of MPE at 2.2 Å resolution revealed that the active site includes two octahedrally coordinated manganese ions. Seven signature amino acids of the binuclear metallophosphoesterase superfamily serve as the enzymic metal ligands in MPE: Asp33, His35, Asp78, Asn112, His124, His146, and His158 A swath of positive surface potential on either side of the active site pocket suggests a binding site for the single-strand DNA substrate. The structure of MPE differs from Mre11 and SbcD in several key respects: (i) MPE is a monomer, whereas Mre11 and SbcD are homodimers; (ii) MPE lacks the capping domain present in Mre11 and SbcD; and (iii) the topology of the β sandwich that comprises the core of the metallophosphoesterase fold differs in MPE vis-à-vis Mre11 and SbcD. We surmise that MPE exemplifies a novel clade of DNA endonuclease within the binuclear metallophosphoesterase superfamily.
Collapse
Affiliation(s)
| | - Yehuda Goldgur
- Structural Biology Programs, Sloan Kettering Institute, New York, New York 10065
| | | |
Collapse
|
26
|
Saathoff JH, Käshammer L, Lammens K, Byrne RT, Hopfner KP. The bacterial Mre11-Rad50 homolog SbcCD cleaves opposing strands of DNA by two chemically distinct nuclease reactions. Nucleic Acids Res 2018; 46:11303-11314. [PMID: 30277537 PMCID: PMC6265447 DOI: 10.1093/nar/gky878] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/14/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022] Open
Abstract
The Mre11-Rad50 complex is a DNA double-strand break sensor that cleaves blocked DNA ends and hairpins by an ATP-dependent endo/exonuclease activity for subsequent repair. For that, Mre11-Rad50 complexes, including the Escherichia coli homolog SbcCD, can endonucleolytically cleave one or both strands near a protein block and process free DNA ends via a 3'-5' exonuclease, but a unified basis for these distinct activities is lacking. Here we analyzed DNA binding, ATPase and nuclease reactions on different DNA substrates. SbcCD clips terminal bases of both strands of the DNA end in the presence of ATPγS. It introduces a DNA double-strand break around 20-25 bp from a blocked end after multiple rounds of ATP hydrolysis in a reaction that correlates with local DNA meltability. Interestingly, we find that nuclease reactions on opposing strands are chemically distinct, leaving a 5' phosphate on one strand, but a 3' phosphate on the other strand. Collectively, our results identify an unexpected chemical variability of the nuclease, indicating that the complex is oriented at a free DNA end and facing a block with opposite polarity. This suggests a unified model for ATP-dependent endo- and exonuclease reactions at internal DNA near a block and at free DNA ends.
Collapse
Affiliation(s)
- Jan-Hinnerk Saathoff
- Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor Lynen Straße 25, 81377 Munich, Germany
- Gene Center, Ludwig-Maximilians-Universität München, Feodor Lynen Straße 25, 81377 Munich, Germany
| | - Lisa Käshammer
- Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor Lynen Straße 25, 81377 Munich, Germany
- Gene Center, Ludwig-Maximilians-Universität München, Feodor Lynen Straße 25, 81377 Munich, Germany
| | - Katja Lammens
- Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor Lynen Straße 25, 81377 Munich, Germany
- Gene Center, Ludwig-Maximilians-Universität München, Feodor Lynen Straße 25, 81377 Munich, Germany
| | - Robert Thomas Byrne
- Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor Lynen Straße 25, 81377 Munich, Germany
- Gene Center, Ludwig-Maximilians-Universität München, Feodor Lynen Straße 25, 81377 Munich, Germany
| | - Karl-Peter Hopfner
- Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor Lynen Straße 25, 81377 Munich, Germany
- Gene Center, Ludwig-Maximilians-Universität München, Feodor Lynen Straße 25, 81377 Munich, Germany
- Center for Integrated Protein Science, Munich, Germany
| |
Collapse
|
27
|
Dimude JU, Midgley-Smith SL, Rudolph CJ. Replication-transcription conflicts trigger extensive DNA degradation in Escherichia coli cells lacking RecBCD. DNA Repair (Amst) 2018; 70:37-48. [PMID: 30145455 DOI: 10.1016/j.dnarep.2018.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 11/17/2022]
Abstract
Bacterial chromosome duplication is initiated at a single origin (oriC). Two forks are assembled and proceed in opposite directions with high speed and processivity until they fuse and terminate in a specialised area opposite to oriC. Proceeding forks are often blocked by tightly-bound protein-DNA complexes, topological strain or various DNA lesions. In Escherichia coli the RecBCD protein complex is a key player in the processing of double-stranded DNA (dsDNA) ends. It has important roles in the repair of dsDNA breaks and the restart of forks stalled at sites of replication-transcription conflicts. In addition, ΔrecB cells show substantial amounts of DNA degradation in the termination area. In this study we show that head-on encounters of replication and transcription at a highly-transcribed rrn operon expose fork structures to degradation by nucleases such as SbcCD. SbcCD is also mostly responsible for the degradation in the termination area of ΔrecB cells. However, additional processes exacerbate degradation specifically in this location. Replication profiles from ΔrecB cells in which the chromosome is linearized at two different locations highlight that the location of replication termination can have some impact on the degradation observed. Our data improve our understanding of the role of RecBCD at sites of replication-transcription conflicts as well as the final stages of chromosome duplication. However, they also highlight that current models are insufficient and cannot explain all the molecular details in cells lacking RecBCD.
Collapse
Affiliation(s)
- Juachi U Dimude
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Sarah L Midgley-Smith
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Christian J Rudolph
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK.
| |
Collapse
|
28
|
Paull TT. 20 Years of Mre11 Biology: No End in Sight. Mol Cell 2018; 71:419-427. [PMID: 30057197 DOI: 10.1016/j.molcel.2018.06.033] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/18/2018] [Accepted: 06/21/2018] [Indexed: 01/01/2023]
Abstract
The Mre11 nuclease has been the subject of intensive investigation for the past 20 years because of the central role that Mre11/Rad50 complexes play in genome maintenance. The last two decades of work on this complex has led to a much deeper understanding of the structure, biochemical activities, and regulation of Mre11/Rad50 complexes from archaea, bacteria, and eukaryotic cells. This review will discuss some of the important findings over recent years that have illuminated roles for the Mre11 nuclease in these different contexts as well as the insights from structural biology that have helped us to understand its mechanisms of action.
Collapse
Affiliation(s)
- Tanya T Paull
- Howard Hughes Medical Institute; Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
29
|
Lovett ST. Between sisters: Watching replication-associated recombinational DNA repair. J Cell Biol 2018; 217:2225-2227. [PMID: 29895696 PMCID: PMC6028551 DOI: 10.1083/jcb.201805091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Amarh et al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201803020) visualize for the first time the repair of double-strand breaks during DNA replication. As viewed by live-cell fluorescent imaging of Escherichia coli, repair of replication-dependent breaks is extraordinarily rapid and localized within the cell.
Collapse
Affiliation(s)
- Susan T Lovett
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA
| |
Collapse
|
30
|
STK31 as novel biomarker of metastatic potential and tumorigenicity of colorectal cancer. Oncotarget 2018; 8:24354-24361. [PMID: 28412729 PMCID: PMC5421852 DOI: 10.18632/oncotarget.15396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 02/01/2017] [Indexed: 11/25/2022] Open
Abstract
Purpose Colorectal cancer (CRC) is the fifth most common cause of cancer deaths in China and fourth worldwide. Metastatic dissemination of primary tumors is considered main cause for CRC related mortality. The serine–threonine kinase 31 (STK31) gene is a novel cancer testis (CT) antigen. It was found significantly highly expressed in gastrointestinal cancers. In our study we aimed to analyze the correlation between STK31 expression patterns and metastasization, tumor stage and grade in CRC patients. RESULTS Relative STK31 expression level was significantly higher in patients with lymph node metastasis. STK31 expression levels in primary tumorous tissues of metastatic patients were significantly higher than in ANCTs and in lymph nodes samples, both at the RNA level and the protein level. Materials and Methods Surgical specimens of cancerous tissues, paired with adjacent noncancerous tissues, and lymph nodes from 44 CRC cases with different clinicopathological features were collected. Expression of STK31 was detected and measured by immunohistochemistry and quantitative real-time polymerase chain reaction (QRT-PCR). Conclusions Our data suggest that STK31 might be a potential biomarker in detecting, monitoring and predicting the metastatic risk of colorectal cancer.
Collapse
|
31
|
Pandey S, Kirti A, Kumar A, Rajaram H. The SbcC and SbcD homologs of the cyanobacterium Anabaena sp. strain PCC7120 (Alr3988 and All4463) contribute independently to DNA repair. Funct Integr Genomics 2018. [DOI: 10.1007/s10142-018-0599-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
32
|
SbcC-SbcD and ExoI process convergent forks to complete chromosome replication. Proc Natl Acad Sci U S A 2017; 115:349-354. [PMID: 29208713 DOI: 10.1073/pnas.1715960114] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SbcC-SbcD are the bacterial orthologs of Mre11-Rad50, a nuclease complex essential for genome stability, normal development, and viability in mammals. In vitro, these enzymes degrade long DNA palindromic structures. When inactivated along with ExoI in Escherichia coli, or Sae2 in eukaryotes, palindromic amplifications arise and propagate in cells. However, long DNA palindromes are not normally found in bacterial or human genomes, leaving the cellular substrates and function of these enzymes unknown. Here, we show that during the completion of DNA replication, convergent replication forks form a palindrome-like structural intermediate that requires nucleolytic processing by SbcC-SbcD and ExoI before chromosome replication can be completed. Inactivation of these nucleases prevents completion from occurring, and under these conditions, cells maintain viability by shunting the reaction through an aberrant recombinational pathway that leads to amplifications and instability in this region. The results identify replication completion as an event critical to maintain genome integrity and cell viability, demonstrate SbcC-SbcD-ExoI acts before RecBCD and is required to initiate the completion reaction, and reveal how defects in completion result in genomic instability.
Collapse
|
33
|
Abstract
Replication forks frequently are challenged by lesions on the DNA template, replication-impeding DNA secondary structures, tightly bound proteins or nucleotide pool imbalance. Studies in bacteria have suggested that under these circumstances the fork may leave behind single-strand DNA gaps that are subsequently filled by homologous recombination, translesion DNA synthesis or template-switching repair synthesis. This review focuses on the template-switching pathways and how the mechanisms of these processes have been deduced from biochemical and genetic studies. I discuss how template-switching can contribute significantly to genetic instability, including mutational hotspots and frequent genetic rearrangements, and how template-switching may be elicited by replication fork damage.
Collapse
Affiliation(s)
- Susan T Lovett
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, 2454-9110, USA.
| |
Collapse
|
34
|
Deshpande RA, Lee JH, Paull TT. Rad50 ATPase activity is regulated by DNA ends and requires coordination of both active sites. Nucleic Acids Res 2017; 45:5255-5268. [PMID: 28369545 PMCID: PMC5435944 DOI: 10.1093/nar/gkx173] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 01/03/2023] Open
Abstract
The Mre11-Rad50-Nbs1(Xrs2) (MRN/X) complex is critical for the repair and signaling of DNA double strand breaks. The catalytic core of MRN/X comprised of the Mre11 nuclease and Rad50 adenosine triphosphatase (ATPase) active sites dimerizes through association between the Rad50 ATPase catalytic domains and undergoes extensive conformational changes upon ATP binding. This ATP-bound 'closed' state promotes binding to DNA, tethering DNA ends and ATM activation, but prevents nucleolytic processing of DNA ends, while ATP hydrolysis is essential for Mre11 endonuclease activity at blocked DNA ends. Here we investigate the regulation of ATP hydrolysis as well as the interdependence of the two functional active sites. We find that double-stranded DNA stimulates ATP hydrolysis by hMRN over ∼20-fold in an end-dependent manner. Using catalytic site mutants to create Rad50 dimers with only one functional ATPase site, we find that both ATPase sites are required for the stimulation by DNA. MRN-mediated endonucleolytic cleavage of DNA at sites of protein adducts requires ATP hydrolysis at both sites, as does the stimulation of ATM kinase activity. These observations suggest that symmetrical engagement of the Rad50 catalytic head domains with ATP bound at both sites is important for MRN functions in eukaryotic cells.
Collapse
Affiliation(s)
- Rajashree A. Deshpande
- Howard Hughes Medical Institute, Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Ji-Hoon Lee
- Howard Hughes Medical Institute, Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Tanya T. Paull
- Howard Hughes Medical Institute, Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
35
|
Patel S. Drivers of bacterial genomes plasticity and roles they play in pathogen virulence, persistence and drug resistance. INFECTION GENETICS AND EVOLUTION 2016; 45:151-164. [DOI: 10.1016/j.meegid.2016.08.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/26/2016] [Accepted: 08/27/2016] [Indexed: 12/11/2022]
|
36
|
Abstract
The repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is initiated by nucleolytic degradation of the 5'-terminated strands in a process termed end resection. End resection generates 3'-single-stranded DNA tails, substrates for Rad51 to catalyze homologous pairing and DNA strand exchange, and for activation of the DNA damage checkpoint. The commonly accepted view is that end resection occurs by a two-step mechanism. In the first step, Sae2/CtIP activates the Mre11-Rad50-Xrs2/Nbs1 (MRX/N) complex to endonucleolytically cleave the 5'-terminated DNA strands close to break ends, and in the second step Exo1 and/or Dna2 nucleases extend the resected tracts to produce long 3'-ssDNA-tailed intermediates. Initiation of resection commits a cell to repair a DSB by HR because long ssDNA overhangs are poor substrates for non-homologous end joining (NHEJ). Thus, the initiation of end resection has emerged as a critical control point for repair pathway choice. Here, I review recent studies on the mechanism of end resection and how this process is regulated to ensure the most appropriate repair outcome.
Collapse
Affiliation(s)
- Lorraine S Symington
- a Department of Microbiology & Immunology , Columbia University Medical Center , New York , USA
| |
Collapse
|
37
|
Lai PJ, Lim CT, Le HP, Katayama T, Leach DRF, Furukohri A, Maki H. Long inverted repeat transiently stalls DNA replication by forming hairpin structures on both leading and lagging strands. Genes Cells 2016; 21:136-45. [PMID: 26738888 DOI: 10.1111/gtc.12326] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 11/18/2015] [Indexed: 11/27/2022]
Abstract
Long inverted repeats (LIRs), often found in eukaryotic genomes, are unstable in Escherichia coli where they are recognized by the SbcCD (the bacterial Mre11/Rad50 homologue), an endonuclease/exonuclease capable of cleaving hairpin DNA. It has long been postulated that LIRs form hairpin structures exclusively on the lagging-strand template during DNA replication, and SbcCD cleaves these hairpin-containing lagging strands to generate DNA double-strand breaks. Using a reconstituted oriC plasmid DNA replication system, we have examined how a replication fork behaves when it meets a LIR on DNA. We have shown that leading-strand synthesis stalls transiently within the upstream half of the LIR. Pausing of lagging-strand synthesis at the LIR was not clearly observed, but the pattern of priming sites for Okazaki fragment synthesis was altered within the downstream half of the LIR. We have found that the LIR on a replicating plasmid was cleaved by SbcCD with almost equal frequency on both the leading- and lagging-strand templates. These data strongly suggest that the LIR is readily converted to a cruciform DNA, before the arrival of the fork, creating SbcCD-sensitive hairpin structures on both leading and lagging strands. We propose a model for the replication-dependent extrusion of LIRs to form cruciform structures that transiently impede replication fork movement.
Collapse
Affiliation(s)
- Pey Jiun Lai
- Division of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Chew Theng Lim
- Division of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Hang Phuong Le
- Division of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Tsutomu Katayama
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - David R F Leach
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Kings Buildings, Edinburgh, EH9 3JR, UK
| | - Asako Furukohri
- Division of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Hisaji Maki
- Division of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
38
|
Kowalczykowski SC. An Overview of the Molecular Mechanisms of Recombinational DNA Repair. Cold Spring Harb Perspect Biol 2015; 7:a016410. [PMID: 26525148 PMCID: PMC4632670 DOI: 10.1101/cshperspect.a016410] [Citation(s) in RCA: 331] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recombinational DNA repair is a universal aspect of DNA metabolism and is essential for genomic integrity. It is a template-directed process that uses a second chromosomal copy (sister, daughter, or homolog) to ensure proper repair of broken chromosomes. The key steps of recombination are conserved from phage through human, and an overview of those steps is provided in this review. The first step is resection by helicases and nucleases to produce single-stranded DNA (ssDNA) that defines the homologous locus. The ssDNA is a scaffold for assembly of the RecA/RAD51 filament, which promotes the homology search. On finding homology, the nucleoprotein filament catalyzes exchange of DNA strands to form a joint molecule. Recombination is controlled by regulating the fate of both RecA/RAD51 filaments and DNA pairing intermediates. Finally, intermediates that mature into Holliday structures are disjoined by either nucleolytic resolution or topological dissolution.
Collapse
Affiliation(s)
- Stephen C Kowalczykowski
- Department of Microbiology & Molecular Genetics and Department of Molecular and Cellular Biology, University of California, Davis, Davis, California 95616
| |
Collapse
|
39
|
Abstract
DNA exonucleases, enzymes that hydrolyze phosphodiester bonds in DNA from a free end, play important cellular roles in DNA repair, genetic recombination and mutation avoidance in all organisms. This article reviews the structure, biochemistry, and biological functions of the 17 exonucleases currently identified in the bacterium Escherichia coli. These include the exonucleases associated with DNA polymerases I (polA), II (polB), and III (dnaQ/mutD); Exonucleases I (xonA/sbcB), III (xthA), IV, VII (xseAB), IX (xni/xgdG), and X (exoX); the RecBCD, RecJ, and RecE exonucleases; SbcCD endo/exonucleases; the DNA exonuclease activities of RNase T (rnt) and Endonuclease IV (nfo); and TatD. These enzymes are diverse in terms of substrate specificity and biochemical properties and have specialized biological roles. Most of these enzymes fall into structural families with characteristic sequence motifs, and members of many of these families can be found in all domains of life.
Collapse
|
40
|
Lim CT, Lai PJ, Leach DRF, Maki H, Furukohri A. A novel mode of nuclease action is revealed by the bacterial Mre11/Rad50 complex. Nucleic Acids Res 2015; 43:9804-16. [PMID: 26319016 PMCID: PMC4787754 DOI: 10.1093/nar/gkv855] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 08/12/2015] [Indexed: 11/14/2022] Open
Abstract
The Mre11/Rad50 complex is a central player in various genome maintenance pathways. Here, we report a novel mode of nuclease action found for the Escherichia coli Mre11/Rad50 complex, SbcC2/D2 complex (SbcCD). SbcCD cuts off the top of a cruciform DNA by making incisions on both strands and continues cleaving the dsDNA stem at ∼10-bp intervals. Using linear-shaped DNA substrates, we observed that SbcCD cleaved dsDNA using this activity when the substrate was 110 bp long, but that on shorter substrates the cutting pattern was changed to that predicted for the activity of a 3′-5′ exonuclease. Our results suggest that SbcCD processes hairpin and linear dsDNA ends with this novel DNA end-dependent binary endonuclease activity in response to substrate length rather than using previously reported activities. We propose a model for this mode of nuclease action, which provides new insight into SbcCD activity at a dsDNA end.
Collapse
Affiliation(s)
- Chew Theng Lim
- Division of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Pey Jiun Lai
- Division of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - David R F Leach
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Kings Buildings, Edinburgh EH9 3JR, UK
| | - Hisaji Maki
- Division of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Asako Furukohri
- Division of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
41
|
Functions that Protect Escherichia coli from Tightly Bound DNA-Protein Complexes Created by Mutant EcoRII Methyltransferase. PLoS One 2015; 10:e0128092. [PMID: 25993347 PMCID: PMC4437897 DOI: 10.1371/journal.pone.0128092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/23/2015] [Indexed: 11/19/2022] Open
Abstract
Expression of mutant EcoRII methyltransferase protein (M.EcoRII-C186A) in Escherichia coli leads to tightly bound DNA-protein complexes (TBCs), located sporadically on the chromosome rather than in tandem arrays. The mechanisms behind the lethality induced by such sporadic TBCs are not well studied, nor is it clear whether very tight binding but non-covalent complexes are processed in the same way as covalent DNA-protein crosslinks (DPCs). Using 2D gel electrophoresis, we found that TBCs induced by M.EcoRII-C186A block replication forks in vivo. Specific bubble molecules were detected as spots on the 2D gel, only when M.EcoRII-C186A was induced, and a mutation that eliminates a specific EcoRII methylation site led to disappearance of the corresponding spot. We also performed a candidate gene screen for mutants that are hypersensitive to TBCs induced by M.EcoRII-C186A. We found several gene products necessary for protection against these TBCs that are known to also protect against DPCs induced with wild-type M.EcoRII (after 5-azacytidine incorporation): RecA, RecBC, RecG, RuvABC, UvrD, FtsK, XerCD and SsrA (tmRNA). In contrast, the RecFOR pathway and Rep helicase are needed for protection against TBCs but not DPCs induced by M.EcoRII. We propose that stalled fork processing by RecFOR and RecA promotes release of tightly bound (but non-covalent) blocking proteins, perhaps by licensing Rep helicase-driven dissociation of the blocking M.EcoRII-C186A. Our studies also argued against the involvement of several proteins that might be expected to protect against TBCs. We took the opportunity to directly compare the sensitivity of all tested mutants to two quinolone antibiotics, which target bacterial type II topoisomerases and induce a unique form of DPC. We uncovered rep, ftsK and xerCD as novel quinolone hypersensitive mutants, and also obtained evidence against the involvement of a number of functions that might be expected to protect against quinolones.
Collapse
|
42
|
Rey MEC, Harmse J, Taylor SH, Arbuthnot P, Weinberg MS. Construction of mismatched inverted repeat (IR) silencing vectors for maximizing IR stability and effective gene silencing in plants. Methods Mol Biol 2015; 1287:295-304. [PMID: 25740374 DOI: 10.1007/978-1-4939-2453-0_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Inverted repeat (IR) RNA silencing vectors containing homologous fragments of target endogenous plant genes, or pathogen genes, are the most widely used vectors to either study the function of genes involved in biotic stress or silence pathogens to induce plant resistance, respectively. RNA silencing has been exploited to produce transgenic plants with resistance to viral pathogens via posttranscriptional gene silencing (PTGS). In some cases, this technology is difficult to apply due to the instability of IR constructs during cloning and plant transformation. We have therefore developed a robust method for the production of long IR vector constructs by introducing base pair mismatches in the form of cytosine to thymine mutations on the sense arm by exposure to sodium bisulfite prior to assembly of the IR.
Collapse
Affiliation(s)
- M E Chrissie Rey
- School of Molecular and Cell Biology, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein 2000, Johannesburg, South Africa,
| | | | | | | | | |
Collapse
|
43
|
Krasich R, Wu SY, Kuo HK, Kreuzer KN. Functions that protect Escherichia coli from DNA-protein crosslinks. DNA Repair (Amst) 2015; 28:48-59. [PMID: 25731940 DOI: 10.1016/j.dnarep.2015.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 01/27/2015] [Accepted: 01/30/2015] [Indexed: 10/24/2022]
Abstract
Pathways for tolerating and repairing DNA-protein crosslinks (DPCs) are poorly defined. We used transposon mutagenesis and candidate gene approaches to identify DPC-hypersensitive Escherichia coli mutants. DPCs were induced by azacytidine (aza-C) treatment in cells overexpressing cytosine methyltransferase; hypersensitivity was verified to depend on methyltransferase expression. We isolated hypersensitive mutants that were uncovered in previous studies (recA, recBC, recG, and uvrD), hypersensitive mutants that apparently activate phage Mu Gam expression, and novel hypersensitive mutants in genes involved in DNA metabolism, cell division, and tRNA modification (dinG, ftsK, xerD, dnaJ, hflC, miaA, mnmE, mnmG, and ssrA). Inactivation of SbcCD, which can cleave DNA at protein-DNA complexes, did not cause hypersensitivity. We previously showed that tmRNA pathway defects cause aza-C hypersensitivity, implying that DPCs block coupled transcription/translation complexes. Here, we show that mutants in tRNA modification functions miaA, mnmE and mnmG cause defects in aza-C-induced tmRNA tagging, explaining their hypersensitivity. In order for tmRNA to access a stalled ribosome, the mRNA must be cleaved or released from RNA polymerase. Mutational inactivation of functions involved in mRNA processing and RNA polymerase elongation/release (RNase II, RNaseD, RNase PH, RNase LS, Rep, HepA, GreA, GreB) did not cause aza-C hypersensitivity; the mechanism of tmRNA access remains unclear.
Collapse
Affiliation(s)
- Rachel Krasich
- Department of Biochemistry, Duke University Medical Center, Durham NC 27710, United States
| | - Sunny Yang Wu
- Department of Biochemistry, Duke University Medical Center, Durham NC 27710, United States
| | - H Kenny Kuo
- Department of Biochemistry, Duke University Medical Center, Durham NC 27710, United States
| | - Kenneth N Kreuzer
- Department of Biochemistry, Duke University Medical Center, Durham NC 27710, United States.
| |
Collapse
|
44
|
Fission yeast Drp1 is an essential protein required for recovery from DNA damage and chromosome segregation. DNA Repair (Amst) 2014; 24:98-106. [DOI: 10.1016/j.dnarep.2014.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/08/2014] [Accepted: 09/16/2014] [Indexed: 11/24/2022]
|
45
|
Hopfner KP. ATP puts the brake on DNA double-strand break repair: a new study shows that ATP switches the Mre11-Rad50-Nbs1 repair factor between signaling and processing of DNA ends. Bioessays 2014; 36:1170-8. [PMID: 25213441 DOI: 10.1002/bies.201400102] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
DNA double-strand breaks (DSBs) are one of the most deleterious forms of DNA damage and can result in cell inviability or chromosomal aberrations. The Mre11-Rad50-Nbs1 (MRN) ATPase-nuclease complex is a central player in the cellular response to DSBs and is implicated in the sensing and nucleolytic processing of DSBs, as well as in DSB signaling by activating the cell cycle checkpoint kinase ATM. ATP binding to Rad50 switches MRN from an open state with exposed Mre11 nuclease sites to a closed state with partially buried nuclease sites. The functional meaning of this switch remained unclear. A new study shows that ATP binding to Rad50 promotes DSB recognition, tethering, and ATM activation, while ATP hydrolysis opens the nuclease active sites to promote processing of DSBs. MRN thus emerges as functional switch that may coordinate the temporal transition from signaling to processing of DSBs.
Collapse
Affiliation(s)
- Karl-Peter Hopfner
- Department of Biochemistry, Gene Center, Ludwig-Maximilians-University, Munich, Germany; Center for Integrated Protein Science Munich, Gene Center, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
46
|
Paull TT, Deshpande RA. The Mre11/Rad50/Nbs1 complex: recent insights into catalytic activities and ATP-driven conformational changes. Exp Cell Res 2014; 329:139-47. [PMID: 25016281 PMCID: PMC4252570 DOI: 10.1016/j.yexcr.2014.07.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 07/01/2014] [Indexed: 10/25/2022]
Abstract
This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Collapse
Affiliation(s)
- Tanya T Paull
- The Howard Hughes Medical Institute, The Department of Molecular Biosciences, The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Rajashree A Deshpande
- The Howard Hughes Medical Institute, The Department of Molecular Biosciences, The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
47
|
Goris T, Schubert T, Gadkari J, Wubet T, Tarkka M, Buscot F, Adrian L, Diekert G. Insights into organohalide respiration and the versatile catabolism ofSulfurospirillum multivoransgained from comparative genomics and physiological studies. Environ Microbiol 2014; 16:3562-80. [DOI: 10.1111/1462-2920.12589] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 07/31/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Tobias Goris
- Department of Applied and Ecological Microbiology; Institute of Microbiology; Friedrich Schiller University; Jena 07743 Germany
| | - Torsten Schubert
- Department of Applied and Ecological Microbiology; Institute of Microbiology; Friedrich Schiller University; Jena 07743 Germany
| | - Jennifer Gadkari
- Department of Applied and Ecological Microbiology; Institute of Microbiology; Friedrich Schiller University; Jena 07743 Germany
| | - Tesfaye Wubet
- Department of Soil Ecology; Helmholtz Centre for Environmental Research - UFZ; Halle 06120 Germany
| | - Mika Tarkka
- Department of Soil Ecology; Helmholtz Centre for Environmental Research - UFZ; Halle 06120 Germany
| | - Francois Buscot
- Department of Soil Ecology; Helmholtz Centre for Environmental Research - UFZ; Halle 06120 Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle - Jena - Leipzig; Leipzig 04103 Germany
| | - Lorenz Adrian
- Department Isotope Biogeochemistry; Helmholtz Centre for Environmental Research - UFZ; Leipzig 04318 Germany
| | - Gabriele Diekert
- Department of Applied and Ecological Microbiology; Institute of Microbiology; Friedrich Schiller University; Jena 07743 Germany
| |
Collapse
|
48
|
Structural studies of DNA end detection and resection in homologous recombination. Cold Spring Harb Perspect Biol 2014; 6:a017962. [PMID: 25081516 DOI: 10.1101/cshperspect.a017962] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
DNA double-strand breaks are repaired by two major pathways, homologous recombination or nonhomologous end joining. The commitment to one or the other pathway proceeds via different steps of resection of the DNA ends, which is controlled and executed by a set of DNA double-strand break sensors, endo- and exonucleases, helicases, and DNA damage response factors. The molecular choreography of the underlying protein machinery is beginning to emerge. In this review, we discuss the early steps of genetic recombination and double-strand break sensing with an emphasis on structural and molecular studies.
Collapse
|
49
|
Carrasco C, Dillingham MS, Moreno-Herrero F. Single molecule approaches to monitor the recognition and resection of double-stranded DNA breaks during homologous recombination. DNA Repair (Amst) 2014; 20:119-129. [PMID: 24569169 DOI: 10.1016/j.dnarep.2014.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 01/31/2014] [Accepted: 02/01/2014] [Indexed: 11/30/2022]
Abstract
The fate of a cell depends on its ability to repair the many double-stranded DNA breaks (DSBs) that occur during normal metabolism. Improper DSB repair may result in genomic instability, cancer, or other genetic diseases. The repair of a DSB can be initiated by the recognition and resection of a duplex DNA end to form a 3'-terminated single-stranded DNA overhang. This task is carried out by different single-strand exonucleases, endonucleases, and helicases that work in a coordinated manner. This manuscript reviews the different single-molecule approaches that have been employed to characterize the structural features of these molecular machines, as well as the intermediates and products formed during the process of DSB repair. Imaging techniques have unveiled the structural organization of complexes involved in the tethering and recognition of DSBs. In addition to that static picture, single molecule studies on the dynamics of helicase-nuclease complexes responsible for the processive resection of DSBs have provided detailed mechanistic insights into their function.
Collapse
Affiliation(s)
- Carolina Carrasco
- Centro Nacional de Biotecnología, CSIC, Campus UAM, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Mark S Dillingham
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Fernando Moreno-Herrero
- Centro Nacional de Biotecnología, CSIC, Campus UAM, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
50
|
Liu S, Tian LF, Liu YP, An XM, Tang Q, Yan XX, Liang DC. Structural basis for DNA recognition and nuclease processing by the Mre11 homologue SbcD in double-strand breaks repair. ACTA ACUST UNITED AC 2014; 70:299-309. [PMID: 24531464 DOI: 10.1107/s139900471302693x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 09/30/2013] [Indexed: 01/11/2023]
Abstract
The Mre11 complex comprising meiotic recombination 11 (Mre11), Rad50 and Nijmegen breakage syndrome 1 (Nbs1) plays multiple important roles in the sensing, processing and repair of DNA double-strand breaks (DSBs). Here, crystal structures of the Escherichia coli Mre11 homologue SbcD and its Mn2+ complex are reported. Dimerization of SbcD depends on a four-helix bundle consisting of helices α2, α3, α2' and α3' of the two monomers, and the irregular and bent conformation of helices α3 and α3' in the SbcD dimer results in a dimeric arrangement that differs from those of previously reported Mre11 dimers. This finding indicates a distinct selectivity in DNA substrate recognition. The biochemical data combined with the crystal structures revealed that the SbcD monomer exhibits single-stranded DNA (ssDNA) endonuclease activity and double-stranded DNA (dsDNA) exonuclease activity on the addition of a high concentration of Mn2+. For the first time, atomic force microscopy analysis has been used to demonstrate that the SbcD monomer also possesses Mn2+-dependent dsDNA endonuclease activity. Loop β7-α6 of SbcD is likely to be a molecular switch and plays an important role in the regulation of substrate binding, catalytic reaction and state transitions. Based on structural and mutational analyses, a novel ssDNA-binding model of SbcD is proposed, providing insight into the catalytic mechanism of DSBs repair by the Mre11 complex.
Collapse
Affiliation(s)
- Shun Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Li-fei Tian
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Yan-ping Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Xiao-min An
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Qun Tang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Xiao-xue Yan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Dong-cai Liang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| |
Collapse
|