1
|
Yeow ZY, Sarju S, Chang FC, Xu LY, van Breugel M, Holland AJ. Mesoscale regulation of microtubule-organizing centers by the E3 ligase TRIM37. Nat Struct Mol Biol 2025:10.1038/s41594-025-01540-6. [PMID: 40415023 DOI: 10.1038/s41594-025-01540-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 03/19/2025] [Indexed: 05/27/2025]
Abstract
Centrosomes ensure accurate chromosome segregation during cell division. Although the regulation of centrosome number is well established, less is known about the suppression of noncentrosomal microtubule-organizing centers (ncMTOCs). The E3 ligase TRIM37, implicated in Mulibrey nanism and 17q23-amplified cancers, has emerged as a key regulator of both centrosomes and ncMTOCs. Yet, the mechanism by which TRIM37 achieves enzymatic activation to target these mesoscale structures had thus far remained unknown. Here we elucidate the activation process of TRIM37, unveiling a process that initiates with TRAF domain-directed substrate recognition followed by B-box domain-mediated oligomerization and culminates in RING domain dimerization. Using optogenetics, we demonstrate that the E3 activity of TRIM37 is directly coupled to the assembly state of its substrates, being activated only when centrosomal proteins cluster into higher-order assemblies resembling MTOCs. This regulatory framework provides a mechanistic basis for understanding TRIM37-driven pathologies and echoes the restriction of the human immunodeficiency virus capsid by TRIM5, thus unveiling a conserved activation blueprint among TRIM proteins to control turnover of complexes assembled at the mesoscale level.
Collapse
Affiliation(s)
- Zhong Y Yeow
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Sonia Sarju
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fang-Chi Chang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lance Y Xu
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mark van Breugel
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Tollervey F, Rios MU, Zagoriy E, Woodruff JB, Mahamid J. Molecular architectures of centrosomes in C. elegans embryos visualized by cryo-electron tomography. Dev Cell 2025; 60:885-900.e5. [PMID: 39721584 PMCID: PMC11948214 DOI: 10.1016/j.devcel.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/29/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
Centrosomes organize microtubules that are essential for mitotic divisions in animal cells. They consist of centrioles surrounded by pericentriolar material (PCM). Questions related to mechanisms of centriole assembly, PCM organization, and spindle microtubule formation remain unanswered, partly due to limited availability of molecular-resolution structural data inside cells. Here, we use cryo-electron tomography to visualize centrosomes across the cell cycle in cells isolated from C. elegans embryos. We describe a pseudo-timeline of centriole assembly and identify distinct structural features in both mother and daughter centrioles. We find that centrioles and PCM microtubules differ in protofilament number (13 versus 11), which could be explained by atypical γ-tubulin ring complexes with 11-fold symmetry identified at the minus ends of short PCM microtubule segments. We further characterize a porous and disordered network that forms the interconnected PCM. Thus, our work builds a three-dimensional structural atlas that helps explain how centrosomes assemble, grow, and achieve function.
Collapse
Affiliation(s)
- Fergus Tollervey
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Manolo U Rios
- Department of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Evgenia Zagoriy
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Jeffrey B Woodruff
- Department of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Cell Biology and Biophysics Unit, EMBL, 69117 Heidelberg, Germany.
| |
Collapse
|
3
|
Hu L, Wainman A, Andreeva A, Apizi M, Alvarez-Rodrigo I, Wong SS, Saurya S, Sheppard D, Cottee M, Johnson S, Lea SM, Raff JW, van Breugel M, Feng Z. The conserved Spd-2/CEP192 domain adopts a unique protein fold to promote centrosome scaffold assembly. SCIENCE ADVANCES 2025; 11:eadr5744. [PMID: 40106572 PMCID: PMC11922060 DOI: 10.1126/sciadv.adr5744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 02/12/2025] [Indexed: 03/22/2025]
Abstract
Centrosomes form when centrioles assemble pericentriolar material (PCM) around themselves. Spd-2/CEP192 proteins, defined by a conserved "Spd-2 domain" (SP2D) comprising two closely spaced AspM-Spd-2-Hydin (ASH) domains, play a critical role in centrosome assembly. Here, we show that the SP2D does not target Drosophila Spd-2 to centrosomes but rather promotes PCM scaffold assembly. Crystal structures of the human and honeybee SP2D reveal an unusual "extended cradle" structure mediated by a conserved interaction interface between the two ASH domains. Mutations predicted to perturb this interface, including a human mutation associated with male infertility and Mosaic Variegated Aneuploidy, disrupt PCM scaffold assembly in flies. The SP2D is monomeric in solution, but the Drosophila SP2D can form higher-order oligomers upon phosphorylation by PLK1 (Polo-like kinase 1). Crystal-packing interactions and AlphaFold predictions suggest how SP2Ds might self-assemble, and mutations associated with one such potential dimerization interface markedly perturb SP2D oligomerization in vitro and PCM scaffold assembly in vivo.
Collapse
Affiliation(s)
- Liuyi Hu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Antonina Andreeva
- Medical Research Council—Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Muladili Apizi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Ines Alvarez-Rodrigo
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
- Francis Crick Institute, London NW1 1AT, UK
| | - Siu-Shing Wong
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Saroj Saurya
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Devon Sheppard
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
- Francis Crick Institute, London NW1 1AT, UK
| | - Matthew Cottee
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
- Francis Crick Institute, London NW1 1AT, UK
| | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
- Center for Structural Biology, CC R, NCI, Frederick, MD 21702-1201, USA
| | - Susan M. Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
- Center for Structural Biology, CC R, NCI, Frederick, MD 21702-1201, USA
| | - Jordan W. Raff
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Mark van Breugel
- Medical Research Council—Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Zhe Feng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
4
|
Rios MU, Stachera WE, Familiari NE, Brito C, Surrey T, Woodruff JB. In vitro reconstitution of minimal human centrosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.20.639226. [PMID: 40027679 PMCID: PMC11870475 DOI: 10.1101/2025.02.20.639226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
CDK5RAP2/CEP215 is a key pericentriolar material (PCM) protein that recruits microtubule-nucleating factors at human centrosomes. Using an in vitro reconstitution system, we show that CDK5RAP2 is sufficient to form micron-scale scaffolds around a nanometer-scale nucleator in a PLK-1-regulated manner. CDK5RAP2 assemblies recruited and activated gamma tubulin ring complexes (γ-TuRCs) which, in the presence of α/β tubulin, generated microtubule asters. We found that F75 in CDK5RAP2 is partially needed to recruit γ-TuRC yet is indispensable for γ-TuRC activation. Furthermore, our system recapitulated key features of centrosome-amplified cancer cells. CDK5RAP2 scaffolds selectively recruited the molecular motor KifC1/HSET, which enhanced concentration of α/β tubulin, microtubule polymerization, and clustering of the assemblies. Our results highlight the specificity and selectivity of in vitro generated CDK5RAP2 scaffolds and identify a minimal set of components required for human centrosome assembly and function. This minimal centrosome model offers a powerful tool for studying centrosome biology and dysfunction in human health and disease.
Collapse
Affiliation(s)
- Manolo U. Rios
- Dept. of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Nicole E. Familiari
- Dept. of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Claudia Brito
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Thomas Surrey
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Jeffrey B. Woodruff
- Dept. of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
5
|
Banerjee DS, Banerjee S. Catalytic growth in a shared enzyme pool ensures robust control of centrosome size. eLife 2025; 12:RP92203. [PMID: 39968956 PMCID: PMC11839165 DOI: 10.7554/elife.92203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
Accurate regulation of centrosome size is essential for ensuring error-free cell division, and dysregulation of centrosome size has been linked to various pathologies, including developmental defects and cancer. While a universally accepted model for centrosome size regulation is lacking, prior theoretical and experimental works suggest a centrosome growth model involving autocatalytic assembly of the pericentriolar material. Here, we show that the autocatalytic assembly model fails to explain the attainment of equal centrosome sizes, which is crucial for error-free cell division. Incorporating latest experimental findings into the molecular mechanisms governing centrosome assembly, we introduce a new quantitative theory for centrosome growth involving catalytic assembly within a shared pool of enzymes. Our model successfully achieves robust size equality between maturing centrosome pairs, mirroring cooperative growth dynamics observed in experiments. To validate our theoretical predictions, we compare them with available experimental data and demonstrate the broad applicability of the catalytic growth model across different organisms, which exhibit distinct growth dynamics and size scaling characteristics.
Collapse
Affiliation(s)
- Deb Sankar Banerjee
- Department of Physics, Carnegie Mellon UniversityPittsburghUnited States
- James Franck Institute, University of ChicagoChicagoUnited States
| | - Shiladitya Banerjee
- Department of Physics, Carnegie Mellon UniversityPittsburghUnited States
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| |
Collapse
|
6
|
Liu N, Kawamura R, Qiang W, Balboula A, Marko JF, Qiao H. Isolation and manipulation of meiotic spindles from mouse oocytes reveals migration regulated by pulling force during asymmetric division. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627260. [PMID: 39677774 PMCID: PMC11643109 DOI: 10.1101/2024.12.06.627260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Spindles are essential for accurate chromosome segregation in all eukaryotic cells. This study presents a novel approach for isolating fresh mammalian spindles from mouse oocytes, establishing it as a valuable in vitro model system for a wide range of possible studies. Our method enables the investigation of the physical properties and migration force of meiotic spindles in oocytes. We found that the spindle length decreases upon isolation from the oocyte. Combining this observation with direct measurements of spindle mechanics, we examined the forces governing spindle migration during oocyte asymmetric division. Our findings suggest that the spindle migration is regulated by a pulling force and a net tensile force of approximately 680 pN is applied to the spindle in vivo during the migration process. This method, unveiling insights into spindle dynamics, holds promise as a robust model for future investigations into spindle formation and chromosome separation. We also found that the same approach could not isolate spindles from somatic cells, indicative of mammalian oocytes having a unique spindle organization amenable to isolation.
Collapse
Affiliation(s)
- Ning Liu
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Ryo Kawamura
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Wenan Qiang
- Center for Developmental Therapeutics, Northwestern University, Evanston, IL, USA
| | - Ahmed Balboula
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - John F Marko
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, USA
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
7
|
Banerjee DS, Banerjee S. Catalytic growth in a shared enzyme pool ensures robust control of centrosome size. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.06.543875. [PMID: 37333186 PMCID: PMC10274694 DOI: 10.1101/2023.06.06.543875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Accurate regulation of centrosome size is essential for ensuring error-free cell division, and dysregulation of centrosome size has been linked to various pathologies, including developmental defects and cancer. While a universally accepted model for centrosome size regulation is lacking, prior theoretical and experimental works suggest a centrosome growth model involving autocatalytic assembly of the pericentriolar material. Here we show that the autocatalytic assembly model fails to explain the attainment of equal centrosome sizes, which is crucial for error-free cell division. Incorporating latest experimental findings into the molecular mechanisms governing centrosome assembly, we introduce a new quantitative theory for centrosome growth involving catalytic assembly within a shared pool of enzymes. Our model successfully achieves robust size equality between maturing centrosome pairs, mirroring cooperative growth dynamics observed in experiments. To validate our theoretical predictions, we compare them with available experimental data and demonstrate the broad applicability of the catalytic growth model across different organisms, which exhibit distinct growth dynamics and size scaling characteristics.
Collapse
Affiliation(s)
- Deb Sankar Banerjee
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Shiladitya Banerjee
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
8
|
Yeow ZY, Sarju S, Breugel MV, Holland AJ. Mesoscale regulation of MTOCs by the E3 ligase TRIM37. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617407. [PMID: 39416078 PMCID: PMC11482927 DOI: 10.1101/2024.10.09.617407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Centrosomes ensure accurate chromosome segregation during cell division. Although the regulation of centrosome number is well-established, less is known about the suppression of non-centrosomal MTOCs (ncMTOCs). The E3 ligase TRIM37, implicated in Mulibrey nanism and 17q23-amplified cancers, has emerged as a key regulator of both centrosomes and ncMTOCs. Yet, the mechanism by which TRIM37 achieves enzymatic activation to target these mesoscale structures had remained unknown. Here, we elucidate TRIM37's activation process, beginning with TRAF domain-directed substrate recognition, progressing through B-box domain-mediated oligomerization, and culminating in RING domain dimerization. Using optogenetics, we demonstrate that TRIM37's E3 activity is directly coupled to the assembly state of its substrates, activating only when centrosomal proteins cluster into higher-order assemblies resembling MTOCs. This regulatory framework provides a mechanistic basis for understanding TRIM37-driven pathologies and, by echoing TRIM5's restriction of the HIV capsid, unveils a conserved activation blueprint among TRIM proteins for controlling mesoscale assembly turnover.
Collapse
Affiliation(s)
- Zhong Y Yeow
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sonia Sarju
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mark V Breugel
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 2AT, UK
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
9
|
Tollervey F, Rios MU, Zagoriy E, Woodruff JB, Mahamid J. Native molecular architectures of centrosomes in C. elegans embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587742. [PMID: 38617234 PMCID: PMC11014625 DOI: 10.1101/2024.04.03.587742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Centrosomes organize microtubules that are essential for mitotic divisions in animal cells. They consist of centrioles surrounded by Pericentriolar Material (PCM). Questions related to mechanisms of centriole assembly, PCM organization, and microtubule formation remain unanswered, in part due to limited availability of molecular-resolution structural analyses in situ. Here, we use cryo-electron tomography to visualize centrosomes across the cell cycle in cells isolated from C. elegans embryos. We describe a pseudo-timeline of centriole assembly and identify distinct structural features including a cartwheel in daughter centrioles, and incomplete microtubule doublets surrounded by a star-shaped density in mother centrioles. We find that centriole and PCM microtubules differ in protofilament number (13 versus 11) indicating distinct nucleation mechanisms. This difference could be explained by atypical γ-tubulin ring complexes with 11-fold symmetry identified at the minus ends of short PCM microtubules. We further characterize a porous and disordered network that forms the interconnected PCM. Thus, our work builds a three-dimensional structural atlas that helps explain how centrosomes assemble, grow, and achieve function.
Collapse
Affiliation(s)
- Fergus Tollervey
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Manolo U. Rios
- Department of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Evgenia Zagoriy
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Jeffrey B. Woodruff
- Department of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Cell Biology and Biophysics Unit, EMBL, 69117 Heidelberg, Germany
| |
Collapse
|
10
|
Conduit P. Building the centrosome: PLK-1 controls multimerization of SPD-5. J Cell Biol 2024; 223:e202403003. [PMID: 38456968 PMCID: PMC10921948 DOI: 10.1083/jcb.202403003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Centrosome maturation relies on the assembly of an underlying molecular scaffold. In this issue of JCB, Rios et al. (https://doi.org/10.1083/jcb.202306142) use cross-linking mass spectrometry to reveal how PLK-1 phosphorylation promotes intermolecular SPD-5 self-association that is essential for scaffold formation.
Collapse
Affiliation(s)
- Paul Conduit
- Institut Jacques Monod, CNRS, Université Paris Cité, Paris, France
| |
Collapse
|
11
|
Volkov VA, Akhmanova A. Phase separation on microtubules: from droplet formation to cellular function? Trends Cell Biol 2024; 34:18-30. [PMID: 37453878 DOI: 10.1016/j.tcb.2023.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Microtubules are cytoskeletal polymers that play important roles in numerous cellular processes, ranging from the control of cell shape and polarity to cell division and intracellular transport. Many of these roles rely on proteins that bind to microtubule ends and shafts, carry intrinsically disordered regions, and form complex multivalent interaction networks. A flurry of recent studies demonstrated that these properties allow diverse microtubule-binding proteins to undergo liquid-liquid phase separation (LLPS) in vitro. It is proposed that LLPS could potentially affect multiple microtubule-related processes, such as microtubule nucleation, control of microtubule dynamics and organization, and microtubule-based transport. Here, we discuss the evidence in favor and against the occurrence of LLPS and its functional significance for microtubule-based processes in cells.
Collapse
Affiliation(s)
- Vladimir A Volkov
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK.
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands.
| |
Collapse
|
12
|
Oakley BR. The ring saga: looking back at the discovery of γ-tubulin and γ-tubulin ring complexes. Mol Biol Cell 2022; 34:rt1. [PMID: 36520030 PMCID: PMC9816641 DOI: 10.1091/mbc.e22-07-0290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
For many years, two central, unanswered questions in cytoskeleton research were how microtubule assembly is nucleated and microtubule polarity established. The discoveries of γ-tubulin and γ-tubulin ring complexes were key advances that allowed these questions to be substantially answered. The discovery of γ-tubulin was the product of a genetic screen in Aspergillus nidulans for genes important for microtubule function. γ-Tubulin is a member of the tubulin superfamily of proteins, closely related to α- and β-tubulin but distinct from both. It is ubiquitous in eukaryotes, and in many organisms there are small families of γ-tubulin genes. γ-Tubulin and associated proteins form ring-like complexes that localize to microtubule-organizing centers (MTOCs) and play an important role in the nucleation of microtubule assembly from MTOCs and the establishment of microtubule polarity.
Collapse
Affiliation(s)
- Berl R. Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045,*Address correspondence to: Berl R. Oakley ()
| |
Collapse
|
13
|
Willekers S, Tessadori F, van der Vaart B, Henning HH, Stucchi R, Altelaar M, Roelen BAJ, Akhmanova A, Bakkers J. The centriolar satellite protein Cfap53 facilitates formation of the zygotic microtubule organizing center in the zebrafish embryo. Development 2022; 149:dev198762. [PMID: 35980365 PMCID: PMC9481976 DOI: 10.1242/dev.198762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 07/20/2022] [Indexed: 12/02/2023]
Abstract
In embryos of most animal species, the zygotic centrosome is assembled by the centriole derived from the sperm cell and pericentriolar proteins present in the oocyte. This zygotic centrosome acts as a microtubule organizing center (MTOC) to assemble the sperm aster and mitotic spindle. As MTOC formation has been studied mainly in adult cells, very little is known about the formation of the zygotic MTOC. Here, we show that zebrafish (Danio rerio) embryos lacking either maternal or paternal Cfap53, a centriolar satellite protein, arrest during the first cell cycle. Although Cfap53 is dispensable for sperm aster function, it aids proper formation of the mitotic spindle. During cell division, Cfap53 colocalizes with γ-tubulin and with other centrosomal and centriolar satellite proteins at the MTOC. Furthermore, we find that γ-tubulin localization at the MTOC is impaired in the absence of Cfap53. Based on these results, we propose a model in which Cfap53 deposited in the oocyte and the sperm participates in the organization of the zygotic MTOC to allow mitotic spindle formation.
Collapse
Affiliation(s)
- Sven Willekers
- Hubrecht Institute-KNAW, Utrecht 3584 CT, The Netherlands
| | | | - Babet van der Vaart
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Heiko H. Henning
- Equine Sciences, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CM, The Netherlands
| | - Riccardo Stucchi
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Bernard A. J. Roelen
- Embryology, Anatomy and Physiology, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CT, The Netherlands
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW, Utrecht 3584 CT, The Netherlands
- Department of Pediatric Cardiology, Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584 EA, The Netherlands
| |
Collapse
|
14
|
Jiang X, Ho DBT, Mahe K, Mia J, Sepulveda G, Antkowiak M, Jiang L, Yamada S, Jao LE. Condensation of pericentrin proteins in human cells illuminates phase separation in centrosome assembly. J Cell Sci 2021; 134:jcs258897. [PMID: 34308971 PMCID: PMC8349556 DOI: 10.1242/jcs.258897] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/08/2021] [Indexed: 11/24/2022] Open
Abstract
At the onset of mitosis, centrosomes expand the pericentriolar material (PCM) to maximize their microtubule-organizing activity. This step, termed centrosome maturation, ensures proper spindle organization and faithful chromosome segregation. However, as the centrosome expands, how PCM proteins are recruited and held together without membrane enclosure remains elusive. We found that endogenously expressed pericentrin (PCNT), a conserved PCM scaffold protein, condenses into dynamic granules during late G2/early mitosis before incorporating into mitotic centrosomes. Furthermore, the N-terminal portion of PCNT, enriched with conserved coiled-coils (CCs) and low-complexity regions (LCRs), phase separates into dynamic condensates that selectively recruit PCM proteins and nucleate microtubules in cells. We propose that CCs and LCRs, two prevalent sequence features in the centrosomal proteome, are preserved under evolutionary pressure in part to mediate liquid-liquid phase separation, a process that bestows upon the centrosome distinct properties critical for its assembly and functions.
Collapse
Affiliation(s)
- Xueer Jiang
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Dac Bang Tam Ho
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Karan Mahe
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Jennielee Mia
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Guadalupe Sepulveda
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Mark Antkowiak
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Linhao Jiang
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Soichiro Yamada
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Li-En Jao
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| |
Collapse
|
15
|
Vasquez-Limeta A, Loncarek J. Human centrosome organization and function in interphase and mitosis. Semin Cell Dev Biol 2021; 117:30-41. [PMID: 33836946 DOI: 10.1016/j.semcdb.2021.03.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 01/15/2023]
Abstract
Centrosomes were first described by Edouard Van Beneden and named and linked to chromosome segregation by Theodor Boveri around 1870. In the 1960-1980s, electron microscopy studies have revealed the remarkable ultrastructure of a centriole -- a nine-fold symmetrical microtubular assembly that resides within a centrosome and organizes it. Less than two decades ago, proteomics and genomic screens conducted in multiple species identified hundreds of centriole and centrosome core proteins and revealed the evolutionarily conserved nature of the centriole assembly pathway. And now, super resolution microscopy approaches and improvements in cryo-tomography are bringing an unparalleled nanoscale-detailed picture of the centriole and centrosome architecture. In this chapter, we summarize the current knowledge about the architecture of human centrioles. We discuss the structured organization of centrosome components in interphase, focusing on localization/function relationship. We discuss the process of centrosome maturation and mitotic spindle pole assembly in centriolar and acentriolar cells, emphasizing recent literature.
Collapse
Affiliation(s)
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signaling, NIH/NCI, Frederick 21702, MD, USA.
| |
Collapse
|
16
|
Jaiswal S, Kasera H, Jain S, Khandelwal S, Singh P. Centrosome: A Microtubule Nucleating Cellular Machinery. J Indian Inst Sci 2021. [DOI: 10.1007/s41745-020-00213-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
17
|
Ohta M, Zhao Z, Wu D, Wang S, Harrison JL, Gómez-Cavazos JS, Desai A, Oegema KF. Polo-like kinase 1 independently controls microtubule-nucleating capacity and size of the centrosome. J Cell Biol 2021; 220:211652. [PMID: 33399854 PMCID: PMC7788462 DOI: 10.1083/jcb.202009083] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 12/18/2022] Open
Abstract
Centrosomes are composed of a centriolar core surrounded by a pericentriolar material (PCM) matrix that docks microtubule-nucleating γ-tubulin complexes. During mitotic entry, the PCM matrix increases in size and nucleating capacity in a process called centrosome maturation. Polo-like kinase 1 (PLK1) is recruited to centrosomes and phosphorylates PCM matrix proteins to drive their self-assembly, which leads to PCM expansion. Here, we show that in addition to controlling PCM expansion, PLK1 independently controls the generation of binding sites for γ-tubulin complexes on the PCM matrix. Selectively preventing the generation of PLK1-dependent γ-tubulin docking sites led to spindle defects and impaired chromosome segregation without affecting PCM expansion, highlighting the importance of phospho-regulated centrosomal γ-tubulin docking sites in spindle assembly. Inhibiting both γ-tubulin docking and PCM expansion by mutating substrate target sites recapitulated the effects of loss of centrosomal PLK1 on the ability of centrosomes to catalyze spindle assembly.
Collapse
Affiliation(s)
- Midori Ohta
- Ludwig Institute for Cancer Research, La Jolla, CA,Midori Ohta:
| | - Zhiling Zhao
- Ludwig Institute for Cancer Research, La Jolla, CA
| | - Di Wu
- Ludwig Institute for Cancer Research, La Jolla, CA
| | - Shaohe Wang
- Ludwig Institute for Cancer Research, La Jolla, CA
| | - Jennifer L. Harrison
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - J. Sebastián Gómez-Cavazos
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Arshad Desai
- Ludwig Institute for Cancer Research, La Jolla, CA,Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Karen F. Oegema
- Ludwig Institute for Cancer Research, La Jolla, CA,Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA,Correspondence to Karen Oegema:
| |
Collapse
|
18
|
Watanabe S, Meitinger F, Shiau AK, Oegema K, Desai A. Centriole-independent mitotic spindle assembly relies on the PCNT-CDK5RAP2 pericentriolar matrix. J Cell Biol 2020; 219:e202006010. [PMID: 33170211 PMCID: PMC7658699 DOI: 10.1083/jcb.202006010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/27/2020] [Accepted: 10/06/2020] [Indexed: 01/04/2023] Open
Abstract
Centrosomes, composed of centrioles that recruit a pericentriolar material (PCM) matrix assembled from PCNT and CDK5RAP2, catalyze mitotic spindle assembly. Here, we inhibit centriole formation and/or remove PCNT-CDK5RAP2 in RPE1 cells to address their relative contributions to spindle formation. While CDK5RAP2 and PCNT are normally dispensable for spindle formation, they become essential when centrioles are absent. Acentriolar spindle assembly is accompanied by the formation of foci containing PCNT and CDK5RAP2 via a microtubule and Polo-like kinase 1-dependent process. Foci formation and spindle assembly require PCNT-CDK5RAP2-dependent matrix assembly and the ability of CDK5RAP2 to recruit γ-tubulin complexes. Thus, the PCM matrix can self-organize independently of centrioles to generate microtubules for spindle assembly; conversely, an alternative centriole-anchored mechanism supports spindle assembly when the PCM matrix is absent. Extension to three cancer cell lines revealed similar results in HeLa cells, whereas DLD1 and U2OS cells could assemble spindles in the absence of centrioles and PCNT-CDK5RAP2, suggesting cell type variation in spindle assembly mechanisms.
Collapse
Affiliation(s)
- Sadanori Watanabe
- Ludwig Institute for Cancer Research, La Jolla, CA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Franz Meitinger
- Ludwig Institute for Cancer Research, La Jolla, CA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Andrew K. Shiau
- Ludwig Institute for Cancer Research, La Jolla, CA
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, CA
| | - Karen Oegema
- Ludwig Institute for Cancer Research, La Jolla, CA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Arshad Desai
- Ludwig Institute for Cancer Research, La Jolla, CA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| |
Collapse
|
19
|
Woodruff JB. The material state of centrosomes: lattice, liquid, or gel? Curr Opin Struct Biol 2020; 66:139-147. [PMID: 33248427 DOI: 10.1016/j.sbi.2020.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 12/25/2022]
Abstract
Centrosomes are micron-scale structures that nucleate microtubule arrays for chromosome segregation and mitotic spindle positioning. For these jobs, centrosomes must be dynamic enough to grow, yet stable enough to resist microtubule-mediated forces. How do centrosomes achieve such seemingly contradictory features? While much is understood about the molecular parts of centrosomes, very little is known about their functional material properties. Two prevalent hypotheses pose that the centrosome is either a liquid droplet or a solid lattice. However, many material states exist between a pure Newtonian liquid and a crystalline solid, and it is not clear where centrosomes lie along this spectrum. Furthermore, broad terms like "liquid" or "solid" do not reveal functional properties like strength, ductility, elasticity, and toughness, which are more relevant to understand how centrosomes resist forces. This review covers recent findings and new rheology techniques that reveal the material characteristics of centrosomes and how they are regulated.
Collapse
Affiliation(s)
- Jeffrey B Woodruff
- Department of Cell Biology, Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
20
|
Ahn JI, Park JE, Meng L, Zhang L, Kim TS, Kruhlak MJ, Kim BY, Lee KS. Phase separation of the Cep63•Cep152 complex underlies the formation of dynamic supramolecular self-assemblies at human centrosomes. Cell Cycle 2020; 19:3437-3457. [PMID: 33208041 DOI: 10.1080/15384101.2020.1843777] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The centrosome is a unique membraneless organelle that plays a pivotal role in the orderly progression of the cell cycle in animal cells. It has been shown that two pericentriolar scaffold proteins, Cep63 and Cep152, generate a heterotetrameric complex to self-assemble into a higher-order cylindrical architecture around a centriole. However, the mechanisms underlying how they reach their threshold concentrations in the vast intracellular space and generate a self-assembled architecture remain mysterious. Here we demonstrate that, like liquid-like assemblies, Cep63 and Cep152 cooperatively generate amorphous aggregates capable of undergoing dynamic turnover and inter-aggregate fusion in vivo and a significant level of internal rearrangemefnt within a condensate in vitro. Consistently, 1,6-hexanediol, a liquid-liquid phase separation disruptor, greatly diminished the ability of endogenous Cep63 and Cep152 to localize to centrosomes. Interestingly, a purified Cep63•Cep152 complex generated either a cylindrical structure or a vesicle-like hollow sphere in a spatially controlled manner. It also formed condensate-like solid spheres in the presence of a macromolecular crowder. At the molecular level, two hydrophobic motifs, one each from Cep63 and Cep152, were required for generating phase-separating condensates and a high molecular-weight assembly. Thus, we propose that the self-assembly of the Cep63•Cep152 complex is triggered by an intrinsic property of the complex undergoing density transition through the hydrophobic-motif-mediated phase separation. Abbreviations: PCM, pericentriolar material; LLPS, liquid-liquid phase separation; MW, molecular-weight; CLEM, correlative light and electron microscopy; WT, wild-type; CMV, cytomegalovirus; FRAP, fluorescence recovery after photobleaching; FITC, fluorescein isothiocyanate; PCR, polymerase chain reaction; 3D-SIM, three-dimensional structured illumination microscopy; DMEM, Dulbecco's Modified Eagle Medium; PEI Max, Polyethylenimine Max; PBS, phosphate-buffered saline; RT, room temperature; DAPI, 4', 6-diamidino-2-phenylindole; AOTF, acousto-optic tunable filter; LB, Luria broth; OD, optical density; IPTG, isopropyl β-D-1-thiogalactopyranoside; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis.
Collapse
Affiliation(s)
- Jong Il Ahn
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Jung-Eun Park
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Lingjun Meng
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Liang Zhang
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Tae-Sung Kim
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Michael J Kruhlak
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Bo Yeon Kim
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology , Ochang, Republic of Korea
| | - Kyung S Lee
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| |
Collapse
|
21
|
Lee KS, Park JE, Ahn JI, Zeng Y. Constructing PCM with architecturally distinct higher-order assemblies. Curr Opin Struct Biol 2020; 66:66-73. [PMID: 33176265 DOI: 10.1016/j.sbi.2020.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 02/02/2023]
Abstract
Pericentriolar material (PCM) present around a pair of centrioles functions as a platform for various cellular processes, including microtubule (MT) assembly. While PCM is known to be an electron-dense proteinaceous matrix made of long coiled-coil proteins and their client molecules, the molecular mechanism underlying PCM organization remains largely elusive. A growing body of evidence suggests that PCM is constructed in part by an interphase cylindrical self-assembly and the mitotic mesh-like architectures surrounding it. In this review, we will discuss how these higher-order structures are constructed to achieve the functional proficiency of the centrosome.
Collapse
Affiliation(s)
- Kyung S Lee
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jung-Eun Park
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jong Il Ahn
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yan Zeng
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
22
|
Devi R, Pelletier L, Prosser SL. Charting the complex composite nature of centrosomes, primary cilia and centriolar satellites. Curr Opin Struct Biol 2020; 66:32-40. [PMID: 33130249 DOI: 10.1016/j.sbi.2020.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 10/24/2022]
Abstract
The centrosome and its associated structures of the primary cilium and centriolar satellites have been established as central players in a plethora of cellular processes ranging from cell division to cellular signaling. Consequently, defects in the structure or function of these organelles are linked to a diverse range of human diseases, including cancer, microcephaly, ciliopathies, and neurodegeneration. To understand the molecular mechanisms underpinning these diseases, the biology of centrosomes, cilia, and centriolar satellites has to be elucidated. Central to solving this conundrum is the identification, localization, and functional analysis of all the proteins that reside and interact with these organelles. In this review, we discuss the technological breakthroughs that are dissecting the molecular players of these enigmatic organelles with unprecedented spatial and temporal resolution.
Collapse
Affiliation(s)
- Raksha Devi
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, Ontario, M5G 1X5, Canada
| | - Laurence Pelletier
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, Ontario, M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| | - Suzanna L Prosser
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, Ontario, M5G 1X5, Canada.
| |
Collapse
|
23
|
Lee KS, Park JE, Il Ahn J, Wei Z, Zhang L. A self-assembled cylindrical platform for Plk4-induced centriole biogenesis. Open Biol 2020; 10:200102. [PMID: 32810424 PMCID: PMC7479937 DOI: 10.1098/rsob.200102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022] Open
Abstract
The centrosome, a unique membraneless multiprotein organelle, plays a pivotal role in various cellular processes that are critical for promoting cell proliferation. Faulty assembly or organization of the centrosome results in abnormal cell division, which leads to various human disorders including cancer, microcephaly and ciliopathy. Recent studies have provided new insights into the stepwise self-assembly of two pericentriolar scaffold proteins, Cep63 and Cep152, into a near-micrometre-scale higher-order structure whose architectural properties could be crucial for proper execution of its biological function. The construction of the scaffold architecture appears to be centrally required for tight control of a Ser/Thr kinase called Plk4, a key regulator of centriole duplication, which occurs precisely once per cell cycle. In this review, we will discuss a new paradigm for understanding how pericentrosomal scaffolds are self-organized into a new functional entity and how, on the resulting structural platform, Plk4 undergoes physico-chemical conversion to trigger centriole biogenesis.
Collapse
Affiliation(s)
- Kyung S. Lee
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
24
|
Ito KK, Watanabe K, Kitagawa D. The Emerging Role of ncRNAs and RNA-Binding Proteins in Mitotic Apparatus Formation. Noncoding RNA 2020; 6:E13. [PMID: 32245090 PMCID: PMC7151635 DOI: 10.3390/ncrna6010013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 12/14/2022] Open
Abstract
Mounting experimental evidence shows that non-coding RNAs (ncRNAs) serve a wide variety of biological functions. Recent studies suggest that a part of ncRNAs are critically important for supporting the structure of subcellular architectures. Here, we summarize the current literature demonstrating the role of ncRNAs and RNA-binding proteins in regulating the assembly of mitotic apparatus, especially focusing on centrosomes, kinetochores, and mitotic spindles.
Collapse
Affiliation(s)
| | | | - Daiju Kitagawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan; (K.K.I.); (K.W.)
| |
Collapse
|
25
|
Alvarez-Rodrigo I, Steinacker TL, Saurya S, Conduit PT, Baumbach J, Novak ZA, Aydogan MG, Wainman A, Raff JW. Evidence that a positive feedback loop drives centrosome maturation in fly embryos. eLife 2019; 8:e50130. [PMID: 31498081 PMCID: PMC6733597 DOI: 10.7554/elife.50130] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/21/2019] [Indexed: 01/26/2023] Open
Abstract
Centrosomes are formed when mother centrioles recruit pericentriolar material (PCM) around themselves. The PCM expands dramatically as cells prepare to enter mitosis (a process termed centrosome maturation), but it is unclear how this expansion is achieved. In flies, Spd-2 and Cnn are thought to form a scaffold around the mother centriole that recruits other components of the mitotic PCM, and the Polo-dependent phosphorylation of Cnn at the centrosome is crucial for scaffold assembly. Here, we show that, like Cnn, Spd-2 is specifically phosphorylated at centrosomes. This phosphorylation appears to create multiple phosphorylated S-S/T(p) motifs that allow Spd-2 to recruit Polo to the expanding scaffold. If the ability of Spd-2 to recruit Polo is impaired, the scaffold is initially assembled around the mother centriole, but it cannot expand outwards, and centrosome maturation fails. Our findings suggest that interactions between Spd-2, Polo and Cnn form a positive feedback loop that drives the dramatic expansion of the mitotic PCM in fly embryos.
Collapse
Affiliation(s)
- Ines Alvarez-Rodrigo
- The Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| | - Thomas L Steinacker
- The Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| | - Saroj Saurya
- The Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| | - Paul T Conduit
- The Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| | - Janina Baumbach
- The Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| | - Zsofia A Novak
- The Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| | - Mustafa G Aydogan
- The Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| | - Alan Wainman
- The Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| | - Jordan W Raff
- The Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
26
|
Cabral G, Laos T, Dumont J, Dammermann A. Differential Requirements for Centrioles in Mitotic Centrosome Growth and Maintenance. Dev Cell 2019; 50:355-366.e6. [PMID: 31303441 DOI: 10.1016/j.devcel.2019.06.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/29/2019] [Accepted: 06/10/2019] [Indexed: 10/26/2022]
Abstract
Centrosomes, the predominant sites of microtubule nucleation and anchorage, coordinate spindle assembly and cell division in animal cells. At the onset of mitosis, centrioles accumulate microtubule-organizing pericentriolar material (PCM) in a process termed centrosome maturation. To what extent centrosome maturation depends on the continued activity of mitotic regulators or the presence of centrioles has hitherto been unclear. Using the C. elegans early embryo, we show that PCM expansion requires the Polo-like kinase PLK-1 and CEP192 (SPD-2 in C. elegans), but not its upstream regulator Aurora A (AIR-1), while maintenance of the PCM polymer depends exclusively on PLK-1. SPD-2 and PLK-1 are highly concentrated at centrioles. Unexpectedly, laser microsurgery reveals that while centrioles are required for PCM recruitment and centrosome structural integrity they are dispensable for PCM maintenance. We propose a model whereby centrioles promote centrosome maturation by recruiting PLK-1, but subsequent maintenance occurs via PLK-1 acting directly within the PCM.
Collapse
Affiliation(s)
- Gabriela Cabral
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Triin Laos
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Julien Dumont
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Alexander Dammermann
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, A-1030 Vienna, Austria.
| |
Collapse
|
27
|
Raff JW. Phase Separation and the Centrosome: A Fait Accompli? Trends Cell Biol 2019; 29:612-622. [PMID: 31076235 DOI: 10.1016/j.tcb.2019.04.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 12/28/2022]
Abstract
There is currently intense interest in the idea that many membraneless organelles might assemble through phase separation of their constituent molecules into biomolecular 'condensates' that have liquid-like properties. This idea is intuitively appealing, especially for complex organelles such as centrosomes, where a liquid-like structure would allow the many constituent molecules to diffuse and interact with one another efficiently. I discuss here recent studies that either support the concept of a liquid-like centrosome or suggest that centrosomes are assembled upon a more solid, stable scaffold. I suggest that it may be difficult to distinguish between these possibilities. I argue that the concept of biomolecular condensates is an important advance in cell biology, with potentially wide-ranging implications, but it seems premature to conclude that centrosomes, and perhaps other membraneless organelles, are necessarily best described as liquid-like phase-separated condensates.
Collapse
Affiliation(s)
- Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
28
|
Assembly of Mitotic Structures through Phase Separation. J Mol Biol 2018; 430:4762-4772. [DOI: 10.1016/j.jmb.2018.04.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/21/2018] [Accepted: 04/30/2018] [Indexed: 01/01/2023]
|
29
|
Woodruff JB, Hyman AA, Boke E. Organization and Function of Non-dynamic Biomolecular Condensates. Trends Biochem Sci 2017; 43:81-94. [PMID: 29258725 DOI: 10.1016/j.tibs.2017.11.005] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/19/2017] [Accepted: 11/20/2017] [Indexed: 11/29/2022]
Abstract
Cells compartmentalize biochemical reactions using organelles. Organelles can be either membrane-bound compartments or supramolecular assemblies of protein and ribonucleic acid known as 'biomolecular condensates'. Biomolecular condensates, such as nucleoli and germ granules, have been described as liquid like, as they have the ability to fuse, flow, and undergo fission. Recent experiments have revealed that some liquid-like condensates can mature over time to form stable gels. In other cases, biomolecular condensates solidify into amyloid-like fibers. Here we discuss the assembly, organization, and physiological roles of these more stable condensates in cells, focusing on Balbiani bodies, centrosomes, nuclear pores, and amyloid bodies. We discuss how the material properties of these condensates can be explained by the principles of liquid-liquid phase separation and maturation.
Collapse
Affiliation(s)
- Jeffrey B Woodruff
- Department of Cell Biology, Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Elvan Boke
- Centre for Genomic Regulation (CRG), Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
30
|
Woodruff JB, Ferreira Gomes B, Widlund PO, Mahamid J, Honigmann A, Hyman AA. The Centrosome Is a Selective Condensate that Nucleates Microtubules by Concentrating Tubulin. Cell 2017; 169:1066-1077.e10. [PMID: 28575670 DOI: 10.1016/j.cell.2017.05.028] [Citation(s) in RCA: 470] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/06/2017] [Accepted: 05/15/2017] [Indexed: 01/08/2023]
Abstract
Centrosomes are non-membrane-bound compartments that nucleate microtubule arrays. They consist of nanometer-scale centrioles surrounded by a micron-scale, dynamic assembly of protein called the pericentriolar material (PCM). To study how PCM forms a spherical compartment that nucleates microtubules, we reconstituted PCM-dependent microtubule nucleation in vitro using recombinant C. elegans proteins. We found that macromolecular crowding drives assembly of the key PCM scaffold protein SPD-5 into spherical condensates that morphologically and dynamically resemble in vivo PCM. These SPD-5 condensates recruited the microtubule polymerase ZYG-9 (XMAP215 homolog) and the microtubule-stabilizing protein TPXL-1 (TPX2 homolog). Together, these three proteins concentrated tubulin ∼4-fold over background, which was sufficient to reconstitute nucleation of microtubule asters in vitro. Our results suggest that in vivo PCM is a selective phase that organizes microtubule arrays through localized concentration of tubulin by microtubule effector proteins.
Collapse
Affiliation(s)
- Jeffrey B Woodruff
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| | - Beatriz Ferreira Gomes
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Per O Widlund
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9 c, 40530 Gothenburg, Sweden
| | - Julia Mahamid
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Alf Honigmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| |
Collapse
|
31
|
Abstract
As a microtubule-organizing center, the centrosome undergoes a dramatic increase in size - via expansion of the pericentriolar material - during mitosis. Recent work reveals shared assembly properties of a protein scaffold that facilitates and supports this expansion, a process critical to spindle assembly.
Collapse
Affiliation(s)
- Suzanna L Prosser
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, M5G 1X5, Canada
| | - Laurence Pelletier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
32
|
Abstract
Centrosomes are important regulators of microtubule organization in animal cells. Within the centrosome, microtubule nucleation and anchorage are mediated by proteins in the pericentriolar material (PCM) that accumulates around centrioles. The spatial organization of the PCM and the contribution of centrioles to its recruitment remain poorly understood. Previous work in the Drosophila embryo showed that the key PCM component Cnn specifically incorporates near centrioles, suggesting that centrioles play an ongoing role in PCM assembly [1]. It is currently unclear whether this model holds true in other organisms. Here, we examine PCM dynamics in the Caenorhabditis elegans embryo. We find that recruitment of the scaffold component SPD-5 occurs throughout the PCM. Incorporation of additional PCM subunits is therefore not limited to specific nucleation sites near centrioles, which has profound implications for the organization of the PCM lattice and the role of centrioles in centrosome assembly.
Collapse
|
33
|
Abstract
It has become clear that the role of centrosomes extends well beyond that of important microtubule organizers. There is increasing evidence that they also function as coordination centres in eukaryotic cells, at which specific cytoplasmic proteins interact at high concentrations and important cell decisions are made. Accordingly, hundreds of proteins are concentrated at centrosomes, including cell cycle regulators, checkpoint proteins and signalling molecules. Nevertheless, several observations have raised the question of whether centrosomes are essential for many cell processes. Recent findings have shed light on the functions of centrosomes in animal cells and on the molecular mechanisms of centrosome assembly, in particular during mitosis. These advances should ultimately allow the in vitro reconstitution of functional centrosomes from their component proteins to unlock the secrets of these enigmatic organelles.
Collapse
|
34
|
Firat-Karalar EN, Stearns T. Probing mammalian centrosome structure using BioID proximity-dependent biotinylation. Methods Cell Biol 2015; 129:153-170. [PMID: 26175438 DOI: 10.1016/bs.mcb.2015.03.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Understanding the structure and function of the centrosome will require identification of its constituent components and a detailed characterization of the interactions among these components. Here, we describe the application of proximity-dependent biotin identification (BioID) to identify spatial and temporal relationships among centrosome proteins. The BioID method relies on protein fusions to a promiscuous mutant of the Escherichia coli biotin ligase BirA, which biotinylates proteins that are in a ∼10 nm labeling radius of the enzyme. The biotinylated proteins are captured by affinity and are identified by mass spectrometry. Proteins identified in this way are referred to as "proximity interactors." Application of BioID to a set of centrosome proteins demonstrated the utility of this approach in overcoming inherent limitations in probing centrosome structure. These studies also demonstrated the potential of BioID for building large-scale proximity interaction maps among centrosome proteins. In this chapter, we describe the work flow for identification of proximity interactions of centrosome proteins, including materials and methods for the generation and characterization of a BirA*-fusion protein expression plasmid, expression of BirA*-fusion proteins in cells, and purification and identification of proximity partners by mass spectrometry.
Collapse
Affiliation(s)
| | - Tim Stearns
- Department of Biology and Department of Genetics, Stanford University, Stanford, CA, USA
| |
Collapse
|
35
|
Woodruff JB, Wueseke O, Hyman AA. Pericentriolar material structure and dynamics. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0459. [PMID: 25047613 PMCID: PMC4113103 DOI: 10.1098/rstb.2013.0459] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A centrosome consists of two barrel-shaped centrioles embedded in a matrix of proteins known as the pericentriolar material (PCM). The PCM serves as a platform for protein complexes that regulate organelle trafficking, protein degradation and spindle assembly. Perhaps most important for cell division, the PCM concentrates tubulin and serves as the primary organizing centre for microtubules in metazoan somatic cells. Thus, similar to other well-described organelles, such as the nucleus and mitochondria, the cell has compartmentalized a multitude of vital biochemical reactions in the PCM. However, unlike these other organelles, the PCM is not membrane bound, but rather a dynamic collection of protein complexes and nucleic acids that constitute the organelle's interior and determine its boundary. How is the complex biochemical machinery necessary for the myriad centrosome functions concentrated and maintained in the PCM? Recent advances in proteomics and RNAi screening have unveiled most of the key PCM components and hinted at their molecular interactions (
table 1). Now we must understand how the interactions between these molecules contribute to the mesoscale organization and the assembly of the centrosome. Among outstanding questions are the intrinsic mechanisms that determine PCM shape and size, and how it functions as a biochemical reaction hub.
Collapse
Affiliation(s)
- Jeffrey B Woodruff
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Oliver Wueseke
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| |
Collapse
|
36
|
Conduit PT, Richens JH, Wainman A, Holder J, Vicente CC, Pratt MB, Dix CI, Novak ZA, Dobbie IM, Schermelleh L, Raff JW. A molecular mechanism of mitotic centrosome assembly in Drosophila. eLife 2014; 3:e03399. [PMID: 25149451 PMCID: PMC4175739 DOI: 10.7554/elife.03399] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/21/2014] [Indexed: 12/14/2022] Open
Abstract
Centrosomes comprise a pair of centrioles surrounded by pericentriolar material (PCM). The PCM expands dramatically as cells enter mitosis, but it is unclear how this occurs. In this study, we show that the centriole protein Asl initiates the recruitment of DSpd-2 and Cnn to mother centrioles; both proteins then assemble into co-dependent scaffold-like structures that spread outwards from the mother centriole and recruit most, if not all, other PCM components. In the absence of either DSpd-2 or Cnn, mitotic PCM assembly is diminished; in the absence of both proteins, it appears to be abolished. We show that DSpd-2 helps incorporate Cnn into the PCM and that Cnn then helps maintain DSpd-2 within the PCM, creating a positive feedback loop that promotes robust PCM expansion around the mother centriole during mitosis. These observations suggest a surprisingly simple mechanism of mitotic PCM assembly in flies.
Collapse
Affiliation(s)
- Paul T Conduit
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Jennifer H Richens
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - James Holder
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Catarina C Vicente
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Metta B Pratt
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Carly I Dix
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Zsofia A Novak
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Ian M Dobbie
- Oxford Micron advanced imaging unit, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Lothar Schermelleh
- Oxford Micron advanced imaging unit, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
37
|
Conduit PT, Feng Z, Richens JH, Baumbach J, Wainman A, Bakshi SD, Dobbelaere J, Johnson S, Lea SM, Raff JW. The centrosome-specific phosphorylation of Cnn by Polo/Plk1 drives Cnn scaffold assembly and centrosome maturation. Dev Cell 2014; 28:659-69. [PMID: 24656740 PMCID: PMC3988887 DOI: 10.1016/j.devcel.2014.02.013] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 01/27/2014] [Accepted: 02/16/2014] [Indexed: 02/02/2023]
Abstract
Centrosomes are important cell organizers. They consist of a pair of centrioles surrounded by pericentriolar material (PCM) that expands dramatically during mitosis-a process termed centrosome maturation. How centrosomes mature remains mysterious. Here, we identify a domain in Drosophila Cnn that appears to be phosphorylated by Polo/Plk1 specifically at centrosomes during mitosis. The phosphorylation promotes the assembly of a Cnn scaffold around the centrioles that is in constant flux, with Cnn molecules recruited continuously around the centrioles as the scaffold spreads slowly outward. Mutations that block Cnn phosphorylation strongly inhibit scaffold assembly and centrosome maturation, whereas phosphomimicking mutations allow Cnn to multimerize in vitro and to spontaneously form cytoplasmic scaffolds in vivo that organize microtubules independently of centrosomes. We conclude that Polo/Plk1 initiates the phosphorylation-dependent assembly of a Cnn scaffold around centrioles that is essential for efficient centrosome maturation in flies.
Collapse
Affiliation(s)
- Paul T Conduit
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Zhe Feng
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Jennifer H Richens
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Janina Baumbach
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Suruchi D Bakshi
- Centre for Mathematical Biology, Mathematical Institute, 24-29 St Giles, Oxford OX1 3LB, UK
| | | | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
38
|
Jia Y, Fong KW, Choi YK, See SS, Qi RZ. Dynamic recruitment of CDK5RAP2 to centrosomes requires its association with dynein. PLoS One 2013; 8:e68523. [PMID: 23874654 PMCID: PMC3714271 DOI: 10.1371/journal.pone.0068523] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 05/30/2013] [Indexed: 12/05/2022] Open
Abstract
CDK5RAP2 is a centrosomal protein known to be involved in the regulation of the γ-tubulin ring complex and thus the organization of microtubule arrays. However, the mechanism by which CDK5RAP2 is itself recruited to centrosomes is poorly understood. We report here that CDK5RAP2 displays highly dynamic attachment to centrosomes in a microtubule-dependent manner. CDK5RAP2 associates with the retrograde transporter dynein-dynactin and contains a sequence motif that binds to dynein light chain 8. Significantly, disruption of cellular dynein-dynactin function reduces the centrosomal level of CDK5RAP2. These results reveal a key role of the dynein-dynactin complex in the dynamic recruitment of CDK5RAP2 to centrosomes.
Collapse
Affiliation(s)
- Yue Jia
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ka-Wing Fong
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yuk-Kwan Choi
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Siu-San See
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Robert Z. Qi
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- * E-mail:
| |
Collapse
|
39
|
LGALS3BP regulates centriole biogenesis and centrosome hypertrophy in cancer cells. Nat Commun 2013; 4:1531. [PMID: 23443559 DOI: 10.1038/ncomms2517] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 01/17/2013] [Indexed: 12/18/2022] Open
Abstract
Centrosome morphology and number are frequently deregulated in cancer cells. Here, to identify factors that are functionally relevant for centrosome abnormalities in cancer cells, we established a protein-interaction network around 23 centrosomal and cell-cycle regulatory proteins, selecting the interacting proteins that are deregulated in cancer for further studies. One of these components, LGALS3BP, is a centriole- and basal body-associated protein with a dual role, triggering centrosome hypertrophy when overexpressed and causing accumulation of centriolar substructures when downregulated. The cancer cell line SK-BR-3 that overexpresses LGALS3BP exhibits hypertrophic centrosomes, whereas in seminoma tissues with low expression of LGALS3BP, supernumerary centriole-like structures are present. Centrosome hypertrophy is reversed by depleting LGALS3BP in cells endogenously overexpressing this protein, supporting a direct role in centrosome aberration. We propose that LGALS3BP suppresses assembly of centriolar substructures, and when depleted, causes accumulation of centriolar complexes comprising CPAP, acetylated tubulin and centrin.
Collapse
|
40
|
Spoerke ED, Boal AK, Bachand GD, Bunker BC. Templated nanocrystal assembly on biodynamic artificial microtubule asters. ACS NANO 2013; 7:2012-2019. [PMID: 23363365 DOI: 10.1021/nn303998k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Microtubules (MTs) and the MT-associated proteins (MAPs) are critical cooperative agents involved in complex nanoassembly processes in biological systems. These biological materials and processes serve as important inspiration in developing new strategies for the assembly of synthetic nanomaterials in emerging techologies. Here, we explore a dynamic biofabrication process, modeled after the form and function of natural aster-like MT assemblies such as centrosomes. Specifically, we exploit the cooperative assembly of MTs and MAPs to form artificial microtubule asters and demonstrate that (1) these three-dimensional biomimetic microtubule asters can be controllably, reversibly assembled and (2) they serve as unique, dynamic biotemplates for the organization of secondary nanomaterials. We describe the MAP-mediated assembly and growth of functionalized MTs onto synthetic particles, the dynamic character of the assembled asters, and the application of these structures as templates for three-dimensional nanocrystal organization across multiple length scales. This biomediated nanomaterials assembly strategy illuminates a promising new pathway toward next-generation nanocomposite development.
Collapse
Affiliation(s)
- Erik D Spoerke
- Electronic, Optical, and Nano Materials, Sandia National Laboratories, Albuquerque, New Mexico, United States.
| | | | | | | |
Collapse
|
41
|
Abstract
The pericentriolar material (PCM), the microtubule-organizing component of the centrosome, contains a multitude of proteins and is commonly described as an amorphous cloud surrounding the centrioles. However, the days of the PCM as an unstructured matrix are numbered. Using super-resolution microscopy, several reports have now revealed remarkable domain organization within the PCM.
Collapse
|
42
|
Centrosomes in the zebrafish (Danio rerio): a review including the related basal body. Cilia 2012; 1:9. [PMID: 23351173 PMCID: PMC3555702 DOI: 10.1186/2046-2530-1-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/07/2012] [Indexed: 12/15/2022] Open
Abstract
Ever since Edouard Van Beneden and Theodor Boveri first formally described the centrosome in the late 1800s, it has captivated cell biologists. The name clearly indicated its central importance to cell functioning, even to these early investigators. We now know of its role as a major microtubule-organizing center (MTOC) and of its dynamic roles in cell division, vesicle trafficking and for its relative, the basal body, ciliogenesis. While centrosomes are found in most animal cells, notably it is absent in most oocytes and higher plant cells. Nevertheless, it appears that critical components of the centrosome act as MTOCs in these cells as well. The zebrafish has emerged as an exciting and promising new model organism, primarily due to the pioneering efforts of George Streisinger to use zebrafish in genetic studies and due to Christiane Nusslein-Volhard, Wolfgang Driever and their teams of collaborators, who applied forward genetics to elicit a large number of mutant lines. The transparency and rapid external development of the embryo allow for experiments not easily done in other vertebrates. The ease of producing transgenic lines, often with the use of fluorescent reporters, and gene knockdowns with antisense morpholinos further contributes to the appeal of the model as an experimental system. The added advantage of high-throughput screening of small-molecule libraries, as well as the ease of mass rearing together with low cost, makes the zebrafish a true frontrunner as a model vertebrate organism. The zebrafish has a body plan shared by all vertebrates, including humans. This conservation of body plan provides added significance to the existing lines of zebrafish as human disease models and adds an impetus to the ongoing efforts to develop new models. In this review, the current state of knowledge about the centrosome in the zebrafish model is explored. Also, studies on the related basal body in zebrafish and their relationship to ciliogenesis are reviewed.
Collapse
|
43
|
Dammermann A, Cipak L, Gregan J. Microtubule organization: a pericentriolar material-like structure in yeast meiosis. Curr Biol 2012; 22:R229-31. [PMID: 22497938 DOI: 10.1016/j.cub.2012.02.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During meiotic prophase in fission yeast, the nucleus undergoes dramatic oscillatory movements. A newly identified structure, the radial microtubule organizing center (rMTOC), mediates these movements and shares some of the features of the pericentriolar material in higher eukaryotes.
Collapse
|
44
|
Zhao Y, Yan J, Song L, Feng Y, Liang A, Yang B. The interaction between lanthanide (III) and N-terminal domain of Euplotes octocarinatus centrin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 87:163-170. [PMID: 22154266 DOI: 10.1016/j.saa.2011.11.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 11/13/2011] [Indexed: 05/31/2023]
Abstract
Centrin, a member of calcium-binding proteins, is an essential component for microtubule-organizing center (MTOC). Lanthanide (Ln) ions can increase amounts, enhance stability and orderliness of microtubules which is an important component of cytoskeleton. To investigate the structural basis of the effect of Ln ions on orderliness of microtubules, we focused on the interactions between the isolated N-terminal domain of Euplotes centrin (N-EoCen) and Ln by some combined biophysical and biochemical methods. Our results suggest that Ln ions may bind to the canonical calcium binding sites on N-EoCen. Taking advantage of ligand competition, we first determined the metal-binding affinities of Nd(3+), Eu(3+), Gd(3+) and Tm(3+) with N-EoCen. Major changes of N-EoCen in secondary and tertiary structure are noted while Ln ions bind with N-EoCen through CD spectra and 2-p-toluidinylnaphthalene-6-sulfonate (TNS) fluorescence. N-EoCen exists in the form of monomer and dimer in the presence of Ln ions. These results can provide some insights into the structural basis of how Ln ions achieve biological effect in cell through the centrin protein.
Collapse
Affiliation(s)
- Yaqin Zhao
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | | | | | | | | | | |
Collapse
|
45
|
Gopalakrishnan J, Mennella V, Blachon S, Zhai B, Smith AH, Megraw TL, Nicastro D, Gygi SP, Agard DA, Avidor-Reiss T. Sas-4 provides a scaffold for cytoplasmic complexes and tethers them in a centrosome. Nat Commun 2011; 2:359. [PMID: 21694707 DOI: 10.1038/ncomms1367] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 05/24/2011] [Indexed: 12/28/2022] Open
Abstract
Centrosomes are conserved organelles that are essential for accurate cell division and cilium formation. A centrosome consists of a pair of centrioles surrounded by a protein network of pericentriolar material (PCM) that is essential for the centrosome's function. In this study, we show that Sas-4 provides a scaffold for cytoplasmic complexes (named S-CAP), which include CNN, Asl and D-PLP, proteins that are all found in the centrosomes at the vicinity of the centriole. When Sas-4 is absent, nascent procentrioles are unstable and lack PCM, and functional centrosomes are not generated. When Sas-4 is mutated, so that it cannot form S-CAP complexes, centrosomes are present but with dramatically reduced levels of PCM. Finally, purified S-CAP complexes or recombinant Sas-4 can bind centrosomes stripped of PCM, whereas recombinant CNN or Asl cannot. In summary, PCM assembly begins in the cytosol where Sas-4 provides a scaffold for pre-assembled cytoplasmic complexes before tethering of the complexes in a centrosome.
Collapse
|
46
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 3: developmental changes in spermatid flagellum and cytoplasmic droplet and interaction of sperm with the zona pellucida and egg plasma membrane. Microsc Res Tech 2010; 73:320-63. [PMID: 19941287 DOI: 10.1002/jemt.20784] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spermiogenesis constitutes the steps involved in the metamorphosis of spermatids into spermatozoa. It involves modification of several organelles in addition to the formation of several structures including the flagellum and cytoplasmic droplet. The flagellum is composed of a neck region and middle, principal, and end pieces. The axoneme composed of nine outer microtubular doublets circularly arranged to form a cylinder around a central pair of microtubules is present throughout the flagellum. The middle and principal pieces each contain specific components such as the mitochondrial sheath and fibrous sheath, respectively, while outer dense fibers are common to both. A plethora of proteins are constituents of each of these structures, with each playing key roles in functions related to the fertility of spermatozoa. At the end of spermiogenesis, a portion of spermatid cytoplasm remains associated with the released spermatozoa, referred to as the cytoplasmic droplet. The latter has as its main feature Golgi saccules, which appear to modify the plasma membrane of spermatozoa as they move down the epididymal duct and hence may be partly involved in male gamete maturation. The end product of spermatogenesis is highly streamlined and motile spermatozoa having a condensed nucleus equipped with an acrosome. Spermatozoa move through the female reproductive tract and eventually penetrate the zona pellucida and bind to the egg plasma membrane. Many proteins have been implicated in the process of fertilization as well as a plethora of proteins involved in the development of spermatids and sperm, and these are high lighted in this review.
Collapse
Affiliation(s)
- Louis Hermo
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada H3A 2B2.
| | | | | | | |
Collapse
|
47
|
Xiong Y, Oakley BR. In vivo analysis of the functions of gamma-tubulin-complex proteins. J Cell Sci 2009; 122:4218-27. [PMID: 19861490 DOI: 10.1242/jcs.059196] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To enhance our understanding of the function(s) of gamma-tubulin-complex proteins (GCPs), we identified and analyzed the functions of the Aspergillus nidulans homologs of GCP2-GCP6 (here designated GCPB-GCBF). The gamma-tubulin small complex (gamma-TuSC) components, gamma-tubulin, GCPB and GCPC, are essential for viability and mitotic spindle formation, whereas GCPD-GCPF are not essential for viability, spindle formation or sexual reproduction. GCPD-GCPF function in reducing the frequency of chromosome mis-segregation and in the assembly of large gamma-tubulin complexes. Deletion of any of the gamma-TuSC components eliminates the localization of all GCPs to the spindle pole body (SPB), whereas deletion of GCPD-GCPF does not affect localization of gamma-TuSC components. Thus, GCPD-GCPF do not tether the gamma-TuSC to the SPB, but, rather, the gamma-TuSC tethers them to the SPB. GCPD-GCPF exhibit a hierarchy of localization to the SPB. Deletion of GCPF eliminates GCPD-GCPE localization to the SPB, and deletion of GCPD eliminates GCPE (but not GCPF) localization. All GCPs localize normally in a GCPE deletion. We propose a model for the structure of the gamma-tubulin complex and its attachment to polar microtubule organizing centers.
Collapse
Affiliation(s)
- Yi Xiong
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
48
|
Lukasiewicz KB, Lingle WL. Aurora A, centrosome structure, and the centrosome cycle. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2009; 50:602-619. [PMID: 19774610 DOI: 10.1002/em.20533] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The centrosome, also known as the microtubule organizing center of the cell, is a membrane-less organelle composed of a pair of barrel-shaped centrioles surrounded by electron-dense pericentriolar material. The centrosome progresses through the centrosome cycle in step with the cell cycle such that centrosomes are duplicated in time to serve as the spindle poles during mitosis and that each resultant daughter cell contains a single centrosome. Regulation of the centrosome cycle with relation to the cell cycle is an essential process to maintain the ratio of one centrosome per new daughter cell. Numerous mitosis-specific kinases have been implicated in this regulation, and phosphorlyation plays an important role in coordinating the centrosome and cell cycles. Centrosome amplification can occur when the cycles are uncoupled, and this amplification is associated with cancer and with an increase in the levels of chromosomal instability. The aurora kinases A, B, and C are serine/threonine kinases that are active during mitosis. Aurora A is associated with centrosomes, being localized at the centrosome just prior to the onset of mitosis and for the duration of mitosis. Overexpression of aurora A leads to centrosome amplification and cellular transformation. The activity of aurora A is regulated by phosphorlyation and proteasomal degradation.
Collapse
Affiliation(s)
- Kara B Lukasiewicz
- Section on Cell Cycle Regulation, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
49
|
Bellett G, Carter JM, Keynton J, Goldspink D, James C, Moss DK, Mogensen MM. Microtubule plus-end and minus-end capture at adherens junctions is involved in the assembly of apico-basal arrays in polarised epithelial cells. CELL MOTILITY AND THE CYTOSKELETON 2009; 66:893-908. [PMID: 19479825 DOI: 10.1002/cm.20393] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Apico-basal polarisation of epithelial cells involves a dramatic reorganisation of the microtubule cytoskeleton. The classic radial array of microtubules focused on a centrally located centrosome typical of many animal cells is lost or greatly reduced and a non-centrosomal apico-basal array develops. The molecules and mechanisms responsible for the assembly and positioning of these non-centrosomal microtubules have not been fully elucidated. Using a Nocodazole induced regrowth assay in invitro culture (MDCK) and in situ epithelial (cochlear Kolliker's) cell models we establish that the apico-basal array originates from the centrosome and that the non-centrosomal microtubule minus-end anchoring sites do not contribute significantly to their nucleation. Confocal and electron microscopy revealed that an extended radial array assembles with microtubule plus-ends targeting cadheren sites at adherens junctions and EB1 and CLIP-170 co-localising with beta-catenin and dynein clusters at the junction sites. The extended radial array is likely to be a vital intermediate step in the assembly process with cortical anchored dynein providing the mechanical force required for microtubule release, translocation and capture. Ultrastructural analyses of the apico-basal arrays in fully polarised MDCK and Kolliker's cells revealed microtubule minus-end association with the most apical adherens junction (Zonula adherens). We propose that a release and capture model involving both microtubule plus- and minus-end capture at adherens junctions is responsible for the generation of non-centrosomal apico-basal arrays in most centrosome containing polarised epithelial cells.
Collapse
Affiliation(s)
- Gemma Bellett
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
50
|
Dammermann A, Pemble H, Mitchell BJ, McLeod I, Yates JR, Kintner C, Desai AB, Oegema K. The hydrolethalus syndrome protein HYLS-1 links core centriole structure to cilia formation. Genes Dev 2009; 23:2046-59. [PMID: 19656802 DOI: 10.1101/gad.1810409] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Centrioles are subcellular organelles composed of a ninefold symmetric microtubule array that perform two important functions: (1) They build centrosomes that organize the microtubule cytoskeleton, and (2) they template cilia, microtubule-based projections with sensory and motile functions. We identified HYLS-1, a widely conserved protein, based on its direct interaction with the core centriolar protein SAS-4. HYLS-1 localization to centrioles requires SAS-4 and, like SAS-4, HYLS-1 is stably incorporated into the outer centriole wall. Unlike SAS-4, HYLS-1 is dispensable for centriole assembly and centrosome function in cell division. Instead, HYLS-1 plays an essential role in cilia formation that is conserved between Caenorhabditis elegans and vertebrates. A single amino acid change in human HYLS1 leads to a perinatal lethal disorder termed hydrolethalus syndrome, and we show that this mutation impairs HYLS-1 function in ciliogenesis. HYLS-1 is required for the apical targeting/anchoring of centrioles at the plasma membrane but not for the intraflagellar transport-dependent extension of the ciliary axoneme. These findings classify hydrolethalus syndrome as a severe human ciliopathy and shed light on the dual functionality of centrioles, defining the first stably incorporated centriolar protein that is not required for centriole assembly but instead confers on centrioles the capacity to initiate ciliogenesis.
Collapse
Affiliation(s)
- Alexander Dammermann
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA.
| | | | | | | | | | | | | | | |
Collapse
|