1
|
Verron B, Arnaiz O, Zangarelli C, Mathy N, Bétermier M, Bischerour J. The linker region of a development-specific DNA polymerase X ensures efficient repair of programmed DNA double-strand breaks in Parameciumtetraurelia. Nucleic Acids Res 2025; 53:gkaf286. [PMID: 40239989 PMCID: PMC11997757 DOI: 10.1093/nar/gkaf286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 03/12/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
During the sexual cycle, programmed genome rearrangement in Paramecium tetraurelia involves the non-homologous end joining (NHEJ) DNA repair pathway to eliminate specific germinal internal eliminated sequences (IESs) from the newly developing somatic nucleus. Besides the core NHEJ factors Ku70/80 and Xrcc4/Lig4, additional enzymes are required to process the 4-base 5'-protruding ends generated following DNA cleavage at IES boundaries, prior to their ligation. Here, we report that PolXa,b,c,d, four P. tetraurelia distant orthologs of the human Polλ DNA polymerase, are involved in the repair of IES excision junctions. During rearrangements, PolX-depleted cells accumulate genome-wide errors, such as unrepaired double-strand breaks, one-nucleotide deletions, and IES retention. Although all PolX paralogs can process DNA ends, two of them (PolXa&b) are induced during rearrangements and have evolved a specific linker sequence downstream of their BRCT domain, which provides them with tight nuclear anchoring properties. We show that PolXa accumulates in nuclear foci together with other NHEJ actors and the Dicer-like enzyme Dcl5, which is involved in the biogenesis of IES-specific small RNAs. We propose that these 'DNA repair foci' correspond to the sites where IES concatemers, a by-product of IES excision, are ligated together to produce the precursors of these small RNAs.
Collapse
Affiliation(s)
- Baptiste Verron
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette cedex, France
| | - Olivier Arnaiz
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette cedex, France
| | - Coralie Zangarelli
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette cedex, France
| | - Nathalie Mathy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette cedex, France
- Current affiliation: Reproduction et développement des plantes UMR5667, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France
| | - Mireille Bétermier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette cedex, France
| | - Julien Bischerour
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
2
|
Krishna Rao V, Paul S, Gulkis M, Shen Z, Nair H, Singh A, Li C, Sharma AK, Çağlayan M, Das C, Das B, Kundu CN, Narayan S, Guchhait SK. Molecular editing of NSC-666719 enabling discovery of benzodithiazinedioxide-guanidines as anticancer agents. RSC Med Chem 2024; 15:937-962. [PMID: 38516586 PMCID: PMC10953490 DOI: 10.1039/d3md00648d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/25/2024] [Indexed: 03/23/2024] Open
Abstract
DNA polymerase β (Polβ) is crucial for the base excision repair (BER) pathway of DNA damage repair and is an attractive target for suppressing tumorigenesis as well as chemotherapeutic intervention of cancer. In this study, a unique strategy of scaffold-hopping-based molecular editing of a bioactive agent NSC-666719 was investigated, which led to the development of new molecular motifs with Polβ inhibitory activity. NSC compound and its analogs (two series) were prepared, focusing on pharmacophore-based molecular diversity. Most compounds showed higher activities than the parent NSC-666719 and exhibited effects on apoptosis. The inhibitory activity of Polβ was evaluated in both in vitro reconstituted and in vivo intact cell systems. Compound 10e demonstrated significant Polβ interaction and inhibition characteristics, including direct, non-covalent, reversible, and comparable binding affinity. The investigated approach is useful, and the discovered novel analogs have a high potential for developing as anticancer therapeutics.
Collapse
Affiliation(s)
- Vajja Krishna Rao
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Sector 67, SAS Nagar Mohali Punjab 160062 India
| | - Subarno Paul
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University Campus-11, Patia Bhubaneswar-751024 Odisha India
| | - Mitchell Gulkis
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida 1200 Newell Drive Gainesville FL 32610 USA
| | - Zhihang Shen
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida 1345 Center Drive Gainesville FL 32610 USA
| | - Haritha Nair
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida 1200 Newell Drive Gainesville FL 32610 USA
| | - Amandeep Singh
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine 500 University Drive Hershey PA 17033 USA
| | - Chenglong Li
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida 1345 Center Drive Gainesville FL 32610 USA
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine 500 University Drive Hershey PA 17033 USA
| | - Melike Çağlayan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida 1200 Newell Drive Gainesville FL 32610 USA
| | - Chinmay Das
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University Campus-11, Patia Bhubaneswar-751024 Odisha India
| | - Biswajit Das
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University Campus-11, Patia Bhubaneswar-751024 Odisha India
| | - Chanakya N Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University Campus-11, Patia Bhubaneswar-751024 Odisha India
| | - Satya Narayan
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida 1200 Newell Drive Gainesville FL 32610 USA
| | - Sankar K Guchhait
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Sector 67, SAS Nagar Mohali Punjab 160062 India
| |
Collapse
|
3
|
Mangalaparthi KK, Patel K, Khan AA, Nair B, Kumar RV, Prasad TSK, Sidransky D, Chatterjee A, Pandey A, Gowda H. Molecular Characterization of Esophageal Squamous Cell Carcinoma Using Quantitative Proteomics. Cancers (Basel) 2023; 15:3302. [PMID: 37444412 DOI: 10.3390/cancers15133302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 07/15/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a heterogeneous cancer associated with a poor prognosis in advanced stages. In India, it is the sixth most common cause of cancer-related mortality. In this study, we employed high-resolution mass spectrometry-based quantitative proteomics to characterize the differential protein expression pattern associated with ESCC. We identified several differentially expressed proteins including PDPN, TOP2A, POSTN and MMP2 that were overexpressed in ESCC. In addition, we identified downregulation of esophagus tissue-enriched proteins such as SLURP1, PADI1, CSTA, small proline-rich proteins such as SPRR3, SPRR2A, SPRR1A, KRT4, and KRT13, involved in squamous cell differentiation. We identified several overexpressed proteins mapped to the 3q24-29 chromosomal region, aligning with CNV alterations in this region reported in several published studies. Among these, we identified overexpression of SOX2, TP63, IGF2BP2 and RNF13 that are encoded by genes in the 3q26 region. Functional enrichment analysis revealed proteins involved in cell cycle pathways, DNA replication, spliceosome, and DNA repair pathways. We identified the overexpression of multiple proteins that play a major role in alleviating ER stress, including SYVN1 and SEL1L. The SYVN1/SEL1L complex is an essential part of the ER quality control machinery clearing misfolded proteins from the ER. SYVN1 is an E3 ubiquitin ligase that ubiquitinates ER-resident proteins. Interestingly, there are also other non-canonical substrates of SYVN1 which are known to play a crucial role in tumor progression. Thus, SYVN1 could be a potential therapeutic target in ESCC.
Collapse
Affiliation(s)
- Kiran K Mangalaparthi
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 691001, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Krishna Patel
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 691001, India
| | - Aafaque Ahmad Khan
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
| | - Bipin Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 691001, India
| | - Rekha V Kumar
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore 560066, India
| | - Thottethodi Subrahmanya Keshav Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 691001, India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - David Sidransky
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 691001, India
- Manipal Academy of Higher Education, Manipal 576104, India
| | - Akhilesh Pandey
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
- Manipal Academy of Higher Education, Manipal 576104, India
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore 560029, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 691001, India
- Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
4
|
Davydov VV, Bukhvostov AA, Kuznetsov DA. β-Like DNA polymerases and prospects for their use as targets in chemotherapy of tumors. BIOMEDITSINSKAIA KHIMIIA 2023; 69:145-155. [PMID: 37384906 DOI: 10.18097/pbmc20236903145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
DNA polymerases β are enzymes that perform repair of damaged DNA. In the cells of malignant tumors, there is a change in the production and properties of these enzymes, which is accompanied by altered viability of tumor cells. Analysis of the publications available in Russian and international databases (Pubmed, Elsevier) on the structure and properties of DNA polymerases β and their role in cell growth and proliferation, published over the past 20 years, has shown overexpression of genes encoding β-like DNA polymerases in many types of malignant tumors cells. This explains the maintenance of their viability and proliferative activity. Targeted inhibition of β-like DNA polymerases is accompanied by antiproliferative and antitumor effects. Stable paramagnetic isotopes of magnesium (25Mg2+) or other divalent metals (43Ca2+ and 67Zn2+) with uncompensated nuclear spin isotopes, as well as short single-stranded polydeoxyribonucleotides, can be used as promising antitumor pharmacophores.
Collapse
Affiliation(s)
- V V Davydov
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - A A Bukhvostov
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - D A Kuznetsov
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
5
|
Li X, Cao G, Liu X, Tang TS, Guo C, Liu H. Polymerases and DNA Repair in Neurons: Implications in Neuronal Survival and Neurodegenerative Diseases. Front Cell Neurosci 2022; 16:852002. [PMID: 35846567 PMCID: PMC9279898 DOI: 10.3389/fncel.2022.852002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022] Open
Abstract
Most of the neurodegenerative diseases and aging are associated with reactive oxygen species (ROS) or other intracellular damaging agents that challenge the genome integrity of the neurons. As most of the mature neurons stay in G0/G1 phase, replication-uncoupled DNA repair pathways including BER, NER, SSBR, and NHEJ, are pivotal, efficient, and economic mechanisms to maintain genomic stability without reactivating cell cycle. In these progresses, polymerases are prominent, not only because they are responsible for both sensing and repairing damages, but also for their more diversified roles depending on the cell cycle phase and damage types. In this review, we summarized recent knowledge on the structural and biochemical properties of distinct polymerases, including DNA and RNA polymerases, which are known to be expressed and active in nervous system; the biological relevance of these polymerases and their interactors with neuronal degeneration would be most graphically illustrated by the neurological abnormalities observed in patients with hereditary diseases associated with defects in DNA repair; furthermore, the vicious cycle of the trinucleotide repeat (TNR) and impaired DNA repair pathway is also discussed. Unraveling the mechanisms and contextual basis of the role of the polymerases in DNA damage response and repair will promote our understanding about how long-lived postmitotic cells cope with DNA lesions, and why disrupted DNA repair contributes to disease origin, despite the diversity of mutations in genes. This knowledge may lead to new insight into the development of targeted intervention for neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoling Li
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Xiaoling Li
| | - Guanghui Cao
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, China
| | - Xiaokang Liu
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, China
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Caixia Guo
- Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- *Correspondence: Caixia Guo
| | - Hongmei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Hongmei Liu
| |
Collapse
|
6
|
Vickridge E, Faraco CCF, Nepveu A. Base excision repair accessory factors in senescence avoidance and resistance to treatments. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:703-720. [PMID: 36176767 PMCID: PMC9511810 DOI: 10.20517/cdr.2022.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 06/16/2023]
Abstract
Cancer cells, in which the RAS and PI3K pathways are activated, produce high levels of reactive oxygen species (ROS), which cause oxidative DNA damage and ultimately cellular senescence. This process has been documented in tissue culture, mouse models, and human pre-cancerous lesions. In this context, cellular senescence functions as a tumour suppressor mechanism. Some rare cancer cells, however, manage to adapt to avoid senescence and continue to proliferate. One well-documented mode of adaptation involves increased production of antioxidants often associated with inactivation of the KEAP1 tumour suppressor gene and the resulting upregulation of the NRF2 transcription factor. In this review, we detail an alternative mode of adaptation to oxidative DNA damage induced by ROS: the increased activity of the base excision repair (BER) pathway, achieved through the enhanced expression of BER enzymes and DNA repair accessory factors. These proteins, exemplified here by the CUT domain proteins CUX1, CUX2, and SATB1, stimulate the activity of BER enzymes. The ensued accelerated repair of oxidative DNA damage enables cancer cells to avoid senescence despite high ROS levels. As a by-product of this adaptation, these cancer cells exhibit increased resistance to genotoxic treatments including ionizing radiation, temozolomide, and cisplatin. Moreover, considering the intrinsic error rate associated with DNA repair and translesion synthesis, the elevated number of oxidative DNA lesions caused by high ROS leads to the accumulation of mutations in the cancer cell population, thereby contributing to tumour heterogeneity and eventually to the acquisition of resistance, a major obstacle to clinical treatment.
Collapse
Affiliation(s)
- Elise Vickridge
- Goodman Cancer Institute, McGill University, 1160 Pine avenue West, Montreal, Québec H3A 1A3, Canada
- These authors contributed equally to this work
| | - Camila C. F. Faraco
- Goodman Cancer Institute, McGill University, 1160 Pine avenue West, Montreal, Québec H3A 1A3, Canada
- Departments of Biochemistry, McGill University, 1160 Pine avenue West, Montreal, Québec H3A 1A3, Canada
- These authors contributed equally to this work
| | - Alain Nepveu
- Goodman Cancer Institute, McGill University, 1160 Pine avenue West, Montreal, Québec H3A 1A3, Canada
- Departments of Biochemistry, McGill University, 1160 Pine avenue West, Montreal, Québec H3A 1A3, Canada
- Medicine, McGill University, 1160 Pine avenue West, Montreal, Québec H3A 1A3, Canada
- Oncology, McGill University, 1160 Pine avenue West, Montreal, Québec H3A 1A3, Canada
| |
Collapse
|
7
|
Abstract
Base excision repair (BER) is one of the major DNA repair pathways used to fix a myriad of cellular DNA lesions. The enzymes involved in BER, including DNA polymerase β (Polβ), have been identified and characterized, but how they act together to efficiently perform BER has not been fully understood. Through gel electrophoresis, mass spectrometry, and kinetic analysis, we discovered that the two enzymatic activities of Polβ can be interlocked, rather than functioning independently from each other, when processing DNA intermediates formed in BER. The finding prompted us to hypothesize a modified BER pathway. Through conventional and time-resolved X-ray crystallography, we solved 11 high-resolution crystal structures of cross-linked Polβ complexes and proposed a detailed chemical mechanism for Polβ’s 5′-deoxyribose-5-phosphate lyase activity. Base excision repair (BER) is a major cellular pathway for DNA damage repair. During BER, DNA polymerase β (Polβ) is hypothesized to first perform gap-filling DNA synthesis by its polymerase activity and then cleave a 5′-deoxyribose-5-phosphate (dRP) moiety via its dRP lyase activity. Through gel electrophoresis and kinetic analysis of partial BER reconstitution, we demonstrated that gap-filling DNA synthesis by the polymerase activity likely occurred after Schiff base formation but before β-elimination, the two chemical reactions catalyzed by the dRP lyase activity. The Schiff base formation and β-elimination intermediates were trapped by sodium borohydride reduction and identified by mass spectrometry and X-ray crystallography. Presteady-state kinetic analysis revealed that cross-linked Polβ (i.e., reduced Schiff base) exhibited a 17-fold higher polymerase efficiency than uncross-linked Polβ. Conventional and time-resolved X-ray crystallography of cross-linked Polβ visualized important intermediates for its dRP lyase and polymerase activities, leading to a modified chemical mechanism for the dRP lyase activity. The observed interlocking enzymatic activities of Polβ allow us to propose an altered mechanism for the BER pathway, at least under the conditions employed. Plausibly, the temporally coordinated activities at the two Polβ active sites may well be the reason why Polβ has both active sites embedded in a single polypeptide chain. This proposed pathway suggests a corrected facet of BER and DNA repair, and may enable alternative chemical strategies for therapeutic intervention, as Polβ dysfunction is a key element common to several disorders.
Collapse
|
8
|
The Role of Natural Polymorphic Variants of DNA Polymerase β in DNA Repair. Int J Mol Sci 2022; 23:ijms23042390. [PMID: 35216513 PMCID: PMC8877055 DOI: 10.3390/ijms23042390] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
DNA polymerase β (Polβ) is considered the main repair DNA polymerase involved in the base excision repair (BER) pathway, which plays an important part in the repair of damaged DNA bases usually resulting from alkylation or oxidation. In general, BER involves consecutive actions of DNA glycosylases, AP endonucleases, DNA polymerases, and DNA ligases. It is known that protein-protein interactions of Polβ with enzymes from the BER pathway increase the efficiency of damaged base repair in DNA. However natural single-nucleotide polymorphisms can lead to a substitution of functionally significant amino acid residues and therefore affect the catalytic activity of the enzyme and the accuracy of Polβ action. Up-to-date databases contain information about more than 8000 SNPs in the gene of Polβ. This review summarizes data on the in silico prediction of the effects of Polβ SNPs on DNA repair efficacy; available data on cancers associated with SNPs of Polβ; and experimentally tested variants of Polβ. Analysis of the literature indicates that amino acid substitutions could be important for the maintenance of the native structure of Polβ and contacts with DNA; others affect the catalytic activity of the enzyme or play a part in the precise and correct attachment of the required nucleotide triphosphate. Moreover, the amino acid substitutions in Polβ can disturb interactions with enzymes involved in BER, while the enzymatic activity of the polymorphic variant may not differ significantly from that of the wild-type enzyme. Therefore, investigation regarding the effect of Polβ natural variants occurring in the human population on enzymatic activity and protein-protein interactions is an urgent scientific task.
Collapse
|
9
|
Al-Kawaz A, Ali R, Toss MS, Miligy IM, Mohammed OJ, Green AR, Madhusudan S, Rakha EA. The frequency and clinical significance of DNA polymerase beta (POLβ) expression in breast ductal carcinoma in situ (DCIS). Breast Cancer Res Treat 2021; 190:39-51. [PMID: 34406589 PMCID: PMC8557137 DOI: 10.1007/s10549-021-06357-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/06/2021] [Indexed: 11/06/2022]
Abstract
Background The prediction of clinical behaviour of breast ductal carcinoma in situ (DCIS) and its progression to invasive disease remains a challenge. Alterations of DNA damage repair mechanisms are associated with invasive breast cancer (BC). This study aims to assess the role of base excision repair (BER) DNA Polymerase Beta (POLβ) in DCIS. Methods A cohort of DCIS comprising pure DCIS (n = 776) and DCIS coexisting with invasive BC (n = 239) were prepared as tissue microarrays. POLβ protein expression was assessed using immunohistochemistry and correlated with clinicopathological parameters and patient outcome. Preclinically, we investigated the impact of POLβ depletion on stem cell markers in representative DCIS cell line models. Results Reduced POLβ expression was associated with aggressive DCIS features including high nuclear grade, comedo necrosis, larger tumour size, hormonal receptor negativity, HER2 overexpression and high Ki67 index. Combined low nuclear/low cytoplasmic POLβ expression showed the strongest association with the features’ characteristics of aggressive behaviour. There was a gradual reduction in the POLβ expression from normal breast tissue, to DCIS, with the lowest expression observed in the invasive BC. Low POLβ expression was an independent predictor of recurrence in DCIS patients treated with breast conserving surgery (BCS). POLβ knockdown was associated with a significant increase in cell stemness markers including SOX2, NANOG and OCT4 levels in MCF10-DCIS cell lines. Conclusion Loss of POLβ in DCIS is associated with aggressive behaviour and it can predict recurrence. POLβ expression in DCIS provides an additional feature for patients’ risk stratification for personalised therapy. Supplementary Information The online version contains supplementary material available at 10.1007/s10549-021-06357-7.
Collapse
Affiliation(s)
- Abdulbaqi Al-Kawaz
- Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK.,Department of Pathology, College of Dentistry, Al Mustansiriya University, Baghdad, Iraq
| | - Reem Ali
- Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Michael S Toss
- Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Islam M Miligy
- Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK.,Department of Pathology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Omar J Mohammed
- Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Andrew R Green
- Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Srinivasan Madhusudan
- Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Emad A Rakha
- Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK. .,Department of Pathology, Faculty of Medicine, Menoufia University, Menoufia, Egypt. .,Department of Histopathology, Nottingham University Hospital NHS Trust, City Hospital Campus, Hucknall Road, Nottingham, NG5 1PB, UK.
| |
Collapse
|
10
|
Wang HC, Chan LP, Wu CC, Chang SJ, Moi SH, Luo CW, Pan MR. Silencing DNA Polymerase β Induces Aneuploidy as a Biomarker of Poor Prognosis in Oral Squamous Cell Cancer. Int J Mol Sci 2021; 22:ijms22052402. [PMID: 33673690 PMCID: PMC7957714 DOI: 10.3390/ijms22052402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Most patients with oral squamous cell cancer (OSCC) have a locally advanced stage at diagnosis. The treatment strategies are diverse, including surgery, radiotherapy and chemotherapy. Despite multimodality treatment, the response rate is unsatisfactory. DNA repair and genetic instability are highly associated with carcinogenesis and treatment outcomes in oral squamous cell cancer, affecting cell growth and proliferation. Therefore, focusing on DNA repair and genetic instability interactions could be a potential target for improving the outcomes of OSCC patients. DNA polymerase-β (POLB) is an important enzyme in base excision repair and contributes to gene instability, leading to tumorigenesis and cancer metastasis. The aim of our study was to confirm POLB regulates the growth of OSCC cells through modulation of cell cycle and chromosomal instability. We analyzed a tissue array from 133 OSCC patients and discovered that low POLB expression was associated with advanced tumor stage and poor overall survival. In multivariate Cox proportional hazards regression analysis, low POLB expression and advanced lymph node status were significantly associated with poor survival. By performing in vitro studies on model cell lines, we demonstrated that POLB silencing regulated cell cycles, exacerbated mitotic abnormalities and enhanced cell proliferation. After POLB depletion, OSCC cells showed chromosomal instability and aneuploidy. Thus, POLB is an important maintainer of karyotypic stability in OSCC cells.
Collapse
Affiliation(s)
- Hui-Ching Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Internal Medicine, Division of Hematology and Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Leong-Perng Chan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Otolaryngology-Head and Neck Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Otorhinolaryngology-Head and Neck Surgery, Kaohsiung Municipal Ta-Tung Hospital and Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Chun-Chieh Wu
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Shu-Jyuan Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Sin-Hua Moi
- Department of Chemical Engineering and Institute of Biotechnology and Chemical Engineering, I-Shou University, No.1, Sec. 1, Syuecheng Rd., Dashu District, Kaohsiung 84001, Taiwan;
| | - Chi-Wen Luo
- Department of Surgery, Division of Breast Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
| | - Mei-Ren Pan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-7-3121101-5092-34; Fax: +886-7-3218309
| |
Collapse
|
11
|
Ramdzan ZM, Vickridge E, Li L, Faraco CCF, Djerir B, Leduy L, Maréchal A, Nepveu A. CUT Domains Stimulate Pol β Enzymatic Activities to Accelerate Completion of Base Excision Repair. J Mol Biol 2021; 433:166806. [PMID: 33450246 DOI: 10.1016/j.jmb.2020.166806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/11/2020] [Accepted: 12/30/2020] [Indexed: 01/19/2023]
Abstract
The full-length CUX1 protein isoform was previously shown to function as an auxiliary factor in base excision repair (BER). Specifically, CUT domains within CUX1 stimulate the enzymatic activities of the OGG1 DNA glycosylase and APE1 endonuclease. Moreover, ectopic expression of CUX1 or CUT domains increased the resistance of cancer cells to treatments that cause oxidative DNA damage and mono-alkylation of bases. Stimulation of OGG1 AP/lyase and APE1 endonuclease activities, however, cannot explain how CUT domains confer resistance to these treatments since these enzymes produce DNA single-strand breaks that are highly toxic to cells. In the present study, we show that CUT domains stimulate the polymerase and deoxyribose phosphate (dRP)-lyase activities of DNA polymerase β to promote BER completion. In agreement with these results, CUX1 knockdown decreases BER completion in cell extracts and causes an increase in the number of abasic sites in genomic DNA following temozolomide treatment. We also show that CUT domains stimulate bypass of intrastrand G-crosslinks by Pol β in vitro, while the resistance of cancer cells to cisplatin treatment is reduced by CUX1 knockdown but restored by ectopic expression of CUT domains. Altogether our results establish CUX1 as an important auxiliary factor that stimulates multiple steps of base excision repair, from the recognition and removal of altered bases to the addition of new nucleotides and removal of 5'-deoxyribose phosphate required for ligation and BER completion. These findings provide a mechanistic explanation for the observed correlation between CUX1 expression and the resistance of cancer cells to genotoxic treatments.
Collapse
Affiliation(s)
- Zubaidah M Ramdzan
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Elise Vickridge
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Li Li
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Camila C F Faraco
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada; Departments of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Billel Djerir
- Department of Biology, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Lam Leduy
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Alexandre Maréchal
- Department of Biology, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada; Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Alain Nepveu
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada; Departments of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada; Medicine, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada; Oncology, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada.
| |
Collapse
|
12
|
Molecular disruption of DNA polymerase β for platinum sensitisation and synthetic lethality in epithelial ovarian cancers. Oncogene 2021; 40:2496-2508. [PMID: 33674744 PMCID: PMC8032555 DOI: 10.1038/s41388-021-01710-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 01/31/2023]
Abstract
Targeting PARP1 [Poly(ADP-Ribose) Polymerase 1] for synthetic lethality is a new strategy for BRCA germ-line mutated or platinum sensitive ovarian cancers. However, not all patients respond due to intrinsic or acquired resistance to PARP1 inhibitor. Development of alternative synthetic lethality approaches is a high priority. DNA polymerase β (Polβ), a critical player in base excision repair (BER), interacts with PARP1 during DNA repair. Here we show that polβ deficiency is a predictor of platinum sensitivity in human ovarian tumours. Polβ depletion not only increased platinum sensitivity but also reduced invasion, migration and impaired EMT (epithelial to mesenchymal transition) of ovarian cancer cells. Polβ small molecular inhibitors (Pamoic acid and NSC666719) were selectively toxic to BRCA2 deficient cells and associated with double-strand breaks (DSB) accumulation, cell cycle arrest and increased apoptosis. Interestingly, PARG [Poly(ADP-Ribose) Glycohydrolase] inhibitor (PDD00017273) [but not PARP1 inhibitor (Olaparib)] was synthetically lethal in polβ deficient cells. Selective toxicity to PDD00017273 was associated with poly (ADP-ribose) accumulation, reduced nicotinamide adenine dinucleotide (NAD+) level, DSB accumulation, cell cycle arrest and increased apoptosis. In human tumours, polβ-PARG co-expression adversely impacted survival in patients. Our data provide evidence that polβ targeting is a novel strategy and warrants further pharmaceutical development in epithelial ovarian cancers.
Collapse
|
13
|
Non-muscle invasive bladder cancer tissues have increased base excision repair capacity. Sci Rep 2020; 10:16371. [PMID: 33004944 PMCID: PMC7529820 DOI: 10.1038/s41598-020-73370-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 09/15/2020] [Indexed: 12/26/2022] Open
Abstract
The molecular mechanisms underlying the development and progression of bladder cancer (BC) are complex and have not been fully elucidated. Alterations in base excision repair (BER) capacity, one of several DNA repair mechanisms assigned to preserving genome integrity, have been reported to influence cancer susceptibility, recurrence, and progression, as well as responses to chemotherapy and radiotherapy. We report herein that non-muscle invasive BC (NMIBC) tissues exhibit increased uracil incision, abasic endonuclease and gap-filling activities, as well as total BER capacity in comparison to normal bladder tissue from the same patient (p < 0.05). No significant difference was detected in 8-oxoG incision activity between cancer and normal tissues. NMIBC tissues have elevated protein levels of uracil DNA glycosylase, 8-oxoguanine DNA glycosylase, AP endonuclease 1 and DNA polymerase β protein. Moreover, the fold increase in total BER and the individual BER enzyme activities were greater in high-grade tissues than in low-grade NMIBC tissues. These findings suggest that enhanced BER activity may play a role in the etiology of NMIBC and that BER proteins could serve as biomarkers in disease prognosis, progression or response to genotoxic therapeutics, such as Bacillus Calmette–Guérin.
Collapse
|
14
|
Daskalova SM, Eisenhauer BM, Gao M, Feng X, Ji X, Cheng Q, Fahmi N, Khdour OM, Chen S, Hecht SM. An assay for DNA polymerase β lyase inhibitors that engage the catalytic nucleophile for binding. Bioorg Med Chem 2020; 28:115642. [PMID: 32773093 DOI: 10.1016/j.bmc.2020.115642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 11/16/2022]
Abstract
DNA polymerase β (Pol β) repairs cellular DNA damage. When such damage is inflicted upon the DNA in tumor cells treated with DNA targeted antitumor agents, Pol β thus diminishes their efficacy. Accordingly, this enzyme has long been a target for antitumor therapy. Although numerous inhibitors of the lyase activity of the enzyme have been reported, none has yet proven adequate for development as a therapeutic agent. In the present study, we developed a new strategy to identify lyase inhibitors that critically engage the lyase active site primary nucleophile Lys72 as part of the binding interface. This involves a parallel evaluation of the effect of the inhibitors on the wild-type DNA polymerase β (Pol β) and Pol β modified with a lysine analogue at position 72. A model panel of five structurally diverse lyase inhibitors identified in our previous studies (only one of which has been published) with unknown modes of binding were used for testing, and one compound, cis-9,10-epoxyoctadecanoic acid, was found to have the desired characteristics. This finding was further corroborated by in silico docking, demonstrating that the predominant mode of binding of the inhibitor involves an important electrostatic interaction between the oxygen atom of the epoxy group and Nε of the main catalytic nucleophile, Lys72. The strategy, which is designed to identify compounds that engage certain structural elements of the target enzyme, could find broader application for identification of ligands with predetermined sites of binding.
Collapse
Affiliation(s)
- Sasha M Daskalova
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Brian M Eisenhauer
- Departments of Chemistry and Biology, University of Virginia, Charlottesville, VA 22904, United States
| | - Mingxuan Gao
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Xizhi Feng
- Departments of Chemistry and Biology, University of Virginia, Charlottesville, VA 22904, United States
| | - Xun Ji
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Qi Cheng
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - NourEddine Fahmi
- Departments of Chemistry and Biology, University of Virginia, Charlottesville, VA 22904, United States
| | - Omar M Khdour
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Shengxi Chen
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Sidney M Hecht
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States; Departments of Chemistry and Biology, University of Virginia, Charlottesville, VA 22904, United States
| |
Collapse
|
15
|
Guffanti F, Alvisi MF, Caiola E, Ricci F, De Maglie M, Soldati S, Ganzinelli M, Decio A, Giavazzi R, Rulli E, Damia G. Impact of ERCC1, XPF and DNA Polymerase β Expression on Platinum Response in Patient-Derived Ovarian Cancer Xenografts. Cancers (Basel) 2020; 12:cancers12092398. [PMID: 32847049 PMCID: PMC7564949 DOI: 10.3390/cancers12092398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/12/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022] Open
Abstract
Platinum resistance is an unmet medical need in ovarian carcinoma. Molecular biomarkers to predict the response to platinum-based therapy could allow patient stratification and alternative therapeutic strategies early in clinical management. Sensitivity and resistance to platinum therapy are partially determined by the tumor’s intrinsic DNA repair activities, including nucleotide excision repair (NER) and base excision repair (BER). We investigated the role of the NER proteins—ERCC1, XPF, ERCC1/XPF complex—and of the BER protein DNA polymerase β, as possible biomarkers of cisplatin (DDP) response in a platform of recently established patient-derived ovarian carcinoma xenografts (OC-PDXs). ERCC1 and DNA polymerase β protein expressions were measured by immunohistochemistry, the ERCC1/XPF foci number was detected by proximity ligation assay (PLA) and their mRNA levels by real-time PCR. We then correlated the proteins, gene expression and ERCC1/XPF complexes with OC-PDXs’ response to platinum. To the best of our knowledge, this is the first investigation of the role of the ERCC1/XPF complex, detected by PLA, in relation to the response to DDP in ovarian carcinoma. None of the proteins in the BER and NER pathways studied predicted platinum activity in this panel of OC-PDXs, nor did the ERCC1/XPF foci number. These results were partially explained by the experimental evidence that the ERCC1/XPF complex increases after DDP treatment and this possibly better associates with the cancer cells’ abilities to activate the NER pathway to repair platinum-induced damage than its basal level. Our findings highlight the need for DNA functional assays to predict the response to platinum-based therapy.
Collapse
Affiliation(s)
- Federica Guffanti
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (F.G.); (E.C.); (F.R.)
| | - Maria Francesca Alvisi
- Laboratory of Methodology for Clinical Research, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (M.F.A.); (E.R.)
| | - Elisa Caiola
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (F.G.); (E.C.); (F.R.)
| | - Francesca Ricci
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (F.G.); (E.C.); (F.R.)
| | - Marcella De Maglie
- Mouse and Animal Pathology Lab (MAPLab), Filarete Foundation, Department of Veterinary Medicine, University of Milan, 20139 Milan, Italy;
| | - Sabina Soldati
- Department of Veterinary Pathology, University of Milan, 20133 Milan, Italy;
| | - Monica Ganzinelli
- Unit of Thoracic Oncology, Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Alessandra Decio
- Laboratory of Cancer Metastasis Therapeutics, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (A.D.); (R.G.)
| | - Raffaella Giavazzi
- Laboratory of Cancer Metastasis Therapeutics, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (A.D.); (R.G.)
| | - Eliana Rulli
- Laboratory of Methodology for Clinical Research, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (M.F.A.); (E.R.)
| | - Giovanna Damia
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (F.G.); (E.C.); (F.R.)
- Correspondence: ; Tel.: +39-0239014234
| |
Collapse
|
16
|
Birtwell D, Luebeck G, Maley CC. The evolution of metapopulation dynamics and the number of stem cells in intestinal crypts and other tissue structures in multicellular bodies. Evol Appl 2020; 13:1771-1783. [PMID: 32821281 PMCID: PMC7428809 DOI: 10.1111/eva.13069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/04/2022] Open
Abstract
Carcinogenesis is a process of somatic evolution. Previous models of stem and transient amplifying cells in epithelial proliferating units like colonic crypts showed that intermediate numbers of stem cells in a crypt should optimally prevent progression to cancer. If a stem cell population is too small, it is easy for a mutator mutation to drift to fixation. If it is too large, it is easy for selection to drive cell fitness enhancing carcinogenic mutations to fixation. Here, we show that a multiscale microsimulation, that captures both within-crypt and between-crypt evolutionary dynamics, leads to a different conclusion. Epithelial tissues are metapopulations of crypts. We measured time to initiation of a neoplasm, implemented as inactivation of both alleles of a tumor suppressor gene. In our model, time to initiation is dependent on the spread of mutator clones in the crypts. The proportion of selectively beneficial and deleterious mutations in somatic cells is unknown and so was explored with a parameter. When the majority of non-neutral mutations are deleterious, the fitness of mutator clones tends to decline. When crypts are maintained by few stem cells, intercrypt competition tends to remove crypts with fixed mutators. When there are many stem cells within a crypt, there is virtually no crypt turnover, but mutator clones are suppressed by within-crypt competition. If the majority of non-neutral mutations are beneficial to the clone, then these results are reversed and intermediate-sized crypts provide the most protection against initiation. These results highlight the need to understand the dynamics of turnover and the mechanisms that control homeostasis, both at the level of stem cells within proliferative units and at the tissue level of competing proliferative units. Determining the distribution of fitness effects of somatic mutations will also be crucial to understanding the dynamics of tumor initiation and progression.
Collapse
Affiliation(s)
- David Birtwell
- Norris Comprehensive Cancer CenterUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Georg Luebeck
- Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Carlo C. Maley
- Arizona Cancer Evolution CenterBiodesign Institute and School of Life SciencesArizona State UniversityTempeAZUSA
| |
Collapse
|
17
|
Structural insights into the promutagenic bypass of the major cisplatin-induced DNA lesion. Biochem J 2020; 477:937-951. [PMID: 32039434 DOI: 10.1042/bcj20190906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 01/06/2023]
Abstract
The cisplatin-1,2-d(GpG) (Pt-GG) intrastrand cross-link is the predominant DNA lesion generated by cisplatin. Cisplatin has been shown to predominantly induce G to T mutations and Pt-GG permits significant misincorporation of dATP by human DNA polymerase β (polβ). In agreement, polβ overexpression, which is frequently observed in cancer cells, is linked to cisplatin resistance and a mutator phenotype. However, the structural basis for the misincorporation of dATP opposite Pt-GG is unknown. Here, we report the first structures of a DNA polymerase inaccurately bypassing Pt-GG. We solved two structures of polβ misincorporating dATP opposite the 5'-dG of Pt-GG in the presence of Mg2+ or Mn2+. The Mg2+-bound structure exhibits a sub-optimal conformation for catalysis, while the Mn2+-bound structure is in a catalytically more favorable semi-closed conformation. In both structures, dATP does not form a coplanar base pairing with Pt-GG. In the polβ active site, the syn-dATP opposite Pt-GG appears to be stabilized by protein templating and pi stacking interactions, which resembles the polβ-mediated dATP incorporation opposite an abasic site. Overall, our results suggest that the templating Pt-GG in the polβ active site behaves like an abasic site, promoting the insertion of dATP in a non-instructional manner.
Collapse
|
18
|
Fang Q, Andrews J, Sharma N, Wilk A, Clark J, Slyskova J, Koczor CA, Lans H, Prakash A, Sobol RW. Stability and sub-cellular localization of DNA polymerase β is regulated by interactions with NQO1 and XRCC1 in response to oxidative stress. Nucleic Acids Res 2020; 47:6269-6286. [PMID: 31287140 PMCID: PMC6614843 DOI: 10.1093/nar/gkz293] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 03/24/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022] Open
Abstract
Protein–protein interactions regulate many essential enzymatic processes in the cell. Somatic mutations outside of an enzyme active site can therefore impact cellular function by disruption of critical protein–protein interactions. In our investigation of the cellular impact of the T304I cancer mutation of DNA Polymerase β (Polβ), we find that mutation of this surface threonine residue impacts critical Polβ protein–protein interactions. We show that proteasome-mediated degradation of Polβ is regulated by both ubiquitin-dependent and ubiquitin-independent processes via unique protein–protein interactions. The ubiquitin-independent proteasome pathway regulates the stability of Polβ in the cytosol via interaction between Polβ and NAD(P)H quinone dehydrogenase 1 (NQO1) in an NADH-dependent manner. Conversely, the interaction of Polβ with the scaffold protein X-ray repair cross complementing 1 (XRCC1) plays a role in the localization of Polβ to the nuclear compartment and regulates the stability of Polβ via a ubiquitin-dependent pathway. Further, we find that oxidative stress promotes the dissociation of the Polβ/NQO1 complex, enhancing the interaction of Polβ with XRCC1. Our results reveal that somatic mutations such as T304I in Polβ impact critical protein–protein interactions, altering the stability and sub-cellular localization of Polβ and providing mechanistic insight into how key protein–protein interactions regulate cellular responses to stress.
Collapse
Affiliation(s)
- Qingming Fang
- University of South Alabama Mitchell Cancer Institute, 1660 Springhill Avenue, Mobile, AL 36604, USA
| | - Joel Andrews
- University of South Alabama Mitchell Cancer Institute, 1660 Springhill Avenue, Mobile, AL 36604, USA
| | - Nidhi Sharma
- University of South Alabama Mitchell Cancer Institute, 1660 Springhill Avenue, Mobile, AL 36604, USA
| | - Anna Wilk
- University of South Alabama Mitchell Cancer Institute, 1660 Springhill Avenue, Mobile, AL 36604, USA
| | - Jennifer Clark
- University of South Alabama Mitchell Cancer Institute, 1660 Springhill Avenue, Mobile, AL 36604, USA
| | - Jana Slyskova
- Department of Molecular Genetics, Erasmus MC, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Christopher A Koczor
- University of South Alabama Mitchell Cancer Institute, 1660 Springhill Avenue, Mobile, AL 36604, USA
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus MC, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands.,Oncode Institute, Erasmus MC, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Aishwarya Prakash
- University of South Alabama Mitchell Cancer Institute, 1660 Springhill Avenue, Mobile, AL 36604, USA
| | - Robert W Sobol
- University of South Alabama Mitchell Cancer Institute, 1660 Springhill Avenue, Mobile, AL 36604, USA
| |
Collapse
|
19
|
Mutation in DNA Polymerase Beta Causes Spontaneous Chromosomal Instability and Inflammation-Associated Carcinogenesis in Mice. Cancers (Basel) 2019; 11:cancers11081160. [PMID: 31412651 PMCID: PMC6721533 DOI: 10.3390/cancers11081160] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/01/2019] [Accepted: 08/08/2019] [Indexed: 12/15/2022] Open
Abstract
DNA polymerase beta (Pol β) is a key enzyme in the base excision repair (BER) pathway. Pol β is mutated in approximately 40% of human tumors in small-scale studies. The 5´-deoxyribose-5-phosphate (dRP) lyase domain of Pol β is responsible for DNA end tailoring to remove the 5’ phosphate group. We previously reported that the dRP lyase activity of Pol β is critical to maintain DNA replication fork stability and prevent cellular transformation. In this study, we tested the hypothesis that the human gastric cancer associated variant of Pol β (L22P) has the ability to promote spontaneous chromosomal instability and carcinogenesis in mice. We constructed a Pol β L22P conditional knock-in mouse model and found that L22P enhances hyperproliferation and DNA double strand breaks (DSBs) in stomach cells. Moreover, mouse embryonic fibroblasts (MEFs) derived from L22P mice frequently induce abnormal numbers of chromosomes and centrosome amplification, leading to chromosome segregation errors. Importantly, L22P mice exhibit chronic inflammation accompanied by stomach tumors. These data demonstrate that the human cancer-associated variant of Pol β can contribute to chromosomal instability and cancer development.
Collapse
|
20
|
Wang M, Li E, Lin L, Kumar AK, Pan F, He L, Zhang J, Hu Z, Guo Z. Enhanced Activity of Variant DNA Polymerase β (D160G) Contributes to Cisplatin Therapy by Impeding the Efficiency of NER. Mol Cancer Res 2019; 17:2077-2088. [PMID: 31350308 DOI: 10.1158/1541-7786.mcr-19-0482] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/23/2019] [Accepted: 07/24/2019] [Indexed: 11/16/2022]
Abstract
Cisplatin, commonly used in a variety of cancer treatments, induces apoptosis in cancer cells by causing lethal DNA damage. Several DNA repair pathways participate in regulation of cisplatin treatment, leading to cisplatin sensitivity or resistance in cancer cells. DNA polymerase β (pol β), a key protein involved in base excision repair, confers a response to cisplatin therapy that is dependent on polymerase activity. Pol β D160G mutation with enhanced polymerase activity, previously identified in clear cell renal cell carcinoma, enhances the sensitivity of human cancer cells and mouse xenografts to cisplatin by limiting the efficiency of nucleotide excision repair (NER). Notably, the D160G mutation impedes the recruitment of XPA to cisplatin-induced sites of DNA damage, leading to unrepaired damage and further inducing cell death. Molecular architecture analysis indicated that the D160G mutation alters protein-DNA interactions and the surface electrostatic properties of the DNA-binding regions, resulting in greater DNA affinity and polymerase activity compared with wild-type pol β. Collectively, these results indicate that enhancing pol β activity impedes the efficiency of NER and provide a promising adjuvant therapeutic strategy for cisplatin chemotherapy. IMPLICATIONS: Our studies demonstrate that polβ D160G mutation with enhanced polymerase activity impedes NER efficiency during the repair of cisplatin-induced DNA damage, leading to increased cisplatin sensitivity in cancer cells.
Collapse
Affiliation(s)
- Meina Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Enjie Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lin Lin
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Alagamuthu Karthick Kumar
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jing Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
21
|
Koag MC, Jung H, Lee S. Mutagenic Replication of the Major Oxidative Adenine Lesion 7,8-Dihydro-8-oxoadenine by Human DNA Polymerases. J Am Chem Soc 2019; 141:4584-4596. [PMID: 30817143 DOI: 10.1021/jacs.8b08551] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Reactive oxygen species attack DNA to produce 7,8-dihyro-8-oxoguanine (oxoG) and 7,8-dihydro-8-oxoadenine (oxoA) as major lesions. The structural basis for the mutagenicity of oxoG, which induces G to T mutations, is well understood. However, the structural basis for the mutagenic potential of oxoA, which induces A to C mutations, remains poorly understood. To gain insight into oxoA-induced mutagenesis, we conducted kinetic studies of human DNA polymerases β and η replicating across oxoA and structural studies of polβ incorporating dTTP/dGTP opposite oxoA. While polη readily bypassed oxoA, it incorporated dGTP opposite oxoA with a catalytic specificity comparable to that of correct insertion, underscoring the promutagenic nature of the major oxidative adenine lesion. Polη and polβ incorporated dGTP opposite oxoA ∼170-fold and ∼100-fold more efficiently than that opposite dA, respectively, indicating that the 8-oxo moiety greatly facilitated error-prone replication. Crystal structures of polβ showed that, when paired with an incoming dTTP, the templating oxoA adopted an anti conformation and formed Watson-Crick base pair. When paired with dGTP, oxoA adopted a syn conformation and formed a Hoogsteen base pair with Watson-Crick-like geometry, highlighting the dual-coding potential of oxoA. The templating oxoA was stabilized by Lys280-mediated stacking and hydrogen bonds. Overall, these results provide insight into the mutagenic potential and dual-coding nature of the major oxidative adenine lesion.
Collapse
Affiliation(s)
- Myong-Chul Koag
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Hunmin Jung
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Seongmin Lee
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
22
|
Karmakar S, Maji M, Mukherjee A. Modulation of the reactivity of nitrogen mustards by metal complexation: approaches to modify their therapeutic properties. Dalton Trans 2019; 48:1144-1160. [DOI: 10.1039/c8dt04503h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Metal complexation of nitrogen mustards shows promise with an ability to control the mustards’ reactivity, perform selective hypoxia activation, overcome resistance, and control GSH deactivation.
Collapse
Affiliation(s)
- Subhendu Karmakar
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur-741246
- India
| | - Moumita Maji
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur-741246
- India
| | - Arindam Mukherjee
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur-741246
- India
| |
Collapse
|
23
|
Visnes T, Grube M, Hanna BMF, Benitez-Buelga C, Cázares-Körner A, Helleday T. Targeting BER enzymes in cancer therapy. DNA Repair (Amst) 2018; 71:118-126. [PMID: 30228084 DOI: 10.1016/j.dnarep.2018.08.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Base excision repair (BER) repairs mutagenic or genotoxic DNA base lesions, thought to be important for both the etiology and treatment of cancer. Cancer phenotypic stress induces oxidative lesions, and deamination products are responsible for one of the most prevalent mutational signatures in cancer. Chemotherapeutic agents induce genotoxic DNA base damage that are substrates for BER, while synthetic lethal approaches targeting BER-related factors are making their way into the clinic. Thus, there are three strategies by which BER is envisioned to be relevant in cancer chemotherapy: (i) to maintain cellular growth in the presence of endogenous DNA damage in stressed cancer cells, (ii) to maintain viability after exogenous DNA damage is introduced by therapeutic intervention, or (iii) to confer synthetic lethality in cancer cells that have lost one or more additional DNA repair pathways. Here, we discuss the potential treatment strategies, and briefly summarize the progress that has been made in developing inhibitors to core BER-proteins and related factors.
Collapse
Affiliation(s)
- Torkild Visnes
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden; Department of Biotechnology and Nanomedicine, SINTEF Industry, N-7034 Trondheim, Norway
| | - Maurice Grube
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Bishoy Magdy Fekry Hanna
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Carlos Benitez-Buelga
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Armando Cázares-Körner
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden; Sheffield Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK.
| |
Collapse
|
24
|
Programming of Cell Resistance to Genotoxic and Oxidative Stress. Biomedicines 2018; 6:biomedicines6010005. [PMID: 29301323 PMCID: PMC5874662 DOI: 10.3390/biomedicines6010005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 12/23/2017] [Accepted: 12/31/2017] [Indexed: 12/23/2022] Open
Abstract
Different organisms, cell types, and even similar cell lines can dramatically differ in resistance to genotoxic stress. This testifies to the wide opportunities for genetic and epigenetic regulation of stress resistance. These opportunities could be used to increase the effectiveness of cancer therapy, develop new varieties of plants and animals, and search for new pharmacological targets to enhance human radioresistance, which can be used for manned deep space expeditions. Based on the comparison of transcriptomic studies in cancer cells, in this review, we propose that there is a high diversity of genetic mechanisms of development of genotoxic stress resistance. This review focused on possibilities and limitations of the regulation of the resistance of normal cells and whole organisms to genotoxic and oxidative stress by the overexpressing of stress-response genes. Moreover, the existing experimental data on the effect of such overexpression on the resistance of cells and organisms to various genotoxic agents has been analyzed and systematized. We suggest that the recent advances in the development of multiplex and highly customizable gene overexpression technology that utilizes the mutant Cas9 protein and the abundance of available data on gene functions and their signal networks open new opportunities for research in this field.
Collapse
|
25
|
Kirby TW, Gassman NR, Smith CE, Zhao ML, Horton JK, Wilson SH, London RE. DNA polymerase β contains a functional nuclear localization signal at its N-terminus. Nucleic Acids Res 2017; 45:1958-1970. [PMID: 27956495 PMCID: PMC5389473 DOI: 10.1093/nar/gkw1257] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/02/2016] [Indexed: 12/23/2022] Open
Abstract
DNA polymerase β (pol β) requires nuclear localization to fulfil its DNA repair function. Although its small size has been interpreted to imply the absence of a need for active nuclear import, sequence and structural analysis suggests that a monopartite nuclear localization signal (NLS) may reside in the N-terminal lyase domain. Binding of this domain to Importin α1 (Impα1) was confirmed by gel filtration and NMR studies. Affinity was quantified by fluorescence polarization analysis of a fluorescein-tagged peptide corresponding to pol β residues 2–13. These studies indicate high affinity binding, characterized by a low micromolar Kd, that is selective for the murine Importin α1 (mImpα1) minor site, with the Kd strengthening to ∼140 nM for the full lyase domain (residues 2–87). A further reduction in Kd obtains in binding studies with human Importin α5 (hImpα5), which in some cases has been demonstrated to bind small domains connected to the NLS. The role of this NLS was confirmed by fluorescent imaging of wild-type and NLS-mutated pol β(R4S,K5S) in mouse embryonic fibroblasts lacking endogenous pol β. Together these data demonstrate that pol β contains a specific NLS sequence in the N-terminal lyase domain that promotes transport of the protein independent of its interaction partners. Active nuclear uptake allows development of a nuclear/cytosolic concentration gradient against a background of passive diffusion.
Collapse
Affiliation(s)
- Thomas W Kirby
- National Institute of Environmental Health Sciences, Genome Integrity and Structural Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Natalie R Gassman
- National Institute of Environmental Health Sciences, Genome Integrity and Structural Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Cassandra E Smith
- National Institute of Environmental Health Sciences, Genome Integrity and Structural Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Ming-Lang Zhao
- National Institute of Environmental Health Sciences, Genome Integrity and Structural Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Julie K Horton
- National Institute of Environmental Health Sciences, Genome Integrity and Structural Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Samuel H Wilson
- National Institute of Environmental Health Sciences, Genome Integrity and Structural Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Robert E London
- National Institute of Environmental Health Sciences, Genome Integrity and Structural Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
26
|
Nemec AA, Abriola L, Merkel JS, de Stanchina E, DeVeaux M, Zelterman D, Glazer PM, Sweasy JB. DNA Polymerase Beta Germline Variant Confers Cellular Response to Cisplatin Therapy. Mol Cancer Res 2017; 15:269-280. [PMID: 28074003 DOI: 10.1158/1541-7786.mcr-16-0227-t] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 12/31/2022]
Abstract
Resistance to cancer chemotherapies leads to deadly consequences, yet current research focuses only on the roles of somatically acquired mutations in this resistance. The mutational status of the germline is also likely to play a role in the way cells respond to chemotherapy. The carrier status for the POLB rs3136797 germline mutation encoding P242R DNA polymerase beta (Pol β) is associated with poor prognosis for lung cancer, specifically in response to treatment with cisplatin. Here, it is revealed that the P242R mutation is sufficient to promote resistance to cisplatin in human cells and in mouse xenografts. Mechanistically, P242R Pol β acts as a translesion polymerase and prefers to insert the correct nucleotide opposite cisplatin intrastrand cross-links, leading to the activation of the nucleotide excision repair (NER) pathway, removal of crosslinks, and resistance to cisplatin. In contrast, wild-type (WT) Pol β preferentially inserts the incorrect nucleotide initiating mismatch repair and cell death. Importantly, in a mouse xenograft model, tumors derived from lung cancer cells expressing WT Pol β displayed a slower rate of growth when treated with cisplatin, whereas tumors expressing P242R Pol β had no response to cisplatin. Pol β is critical for mediating crosstalk in response to cisplatin. The current data strongly suggest that the status of Pol β influences cellular responses to crosslinking agents and that Pol β is a promising biomarker to predict responses to specific chemotherapies. Finally, these results highlight that the genetic status of the germline is a critical factor in the response to cancer treatment.Implications: Pol β has prognostic biomarker potential in the treatment of cancer with cisplatin and perhaps other intrastrand crosslinking agents. Mol Cancer Res; 15(3); 269-80. ©2017 AACR.
Collapse
Affiliation(s)
- Antonia A Nemec
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut. .,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Laura Abriola
- Center for Molecular Discovery, Yale University, West Haven, Connecticut
| | - Jane S Merkel
- Center for Molecular Discovery, Yale University, West Haven, Connecticut
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michelle DeVeaux
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut
| | - Daniel Zelterman
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut.,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Joann B Sweasy
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut. .,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
27
|
Loilome W, Kadsanit S, Muisook K, Yongvanit P, Namwat N, Techasen A, Puapairoj A, Khuntikeo N, Phonjit P. Imbalanced adaptive responses associated with microsatellite instability in cholangiocarcinoma. Oncol Lett 2016; 13:639-646. [PMID: 28356940 PMCID: PMC5351183 DOI: 10.3892/ol.2016.5477] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/25/2016] [Indexed: 11/10/2022] Open
Abstract
The adaptive response of the genome protection mechanism occurs in cells when exposed to genotoxic stress due to the overproduction of free radicals via inflammation and infection. In such circumstances, cells attempt to maintain health via several genome protection mechanisms. However, evidence is increasing that this adaptive response may have deleterious effect; a reduction of antioxidant enzymes and/or imbalance in the DNA repair system generates microsatellite instability (MSI), which has procarcinogenic implications. Therefore, the present study hypothesized that MSI caused by imbalanced responses of antioxidant enzymes and/or DNA repair enzymes as a result of oxidative/nitrative stress arising from the inflammatory response is involved in liver fluke-associated cholangiocarcinogenesis. The present study investigated this hypothesis by identifying the expression patterns of antioxidant enzymes, including superoxide dismutase 2 (SOD2) and catalase (CAT), and DNA repair enzymes, including alkyladenine DNA glycosylase (AAG), apurinic endonuclease (APE) and DNA polymerase β (DNA pol β). In addition, the activities of the antioxidant enzymes, SOD2 and CAT, were examined in human cholangiocarcinoma (CCA) tissues using immunohistochemical staining. MSI was also analyzed in human CCA tissues. The resulting data demonstrated that the expression levels of the SOD2 and CAT enzymes decreased. The activities of SOD2 and CAT decreased significantly in the CCA tissues, compared with the hepatic tissue of cadaveric donors. In the DNA repairing enzymes, it was found that the expression levels of AAG and DNA pol β enzymes increased, whereas the expression of APE decreased. In addition, it was found that MSI-high was present in 69% of patients, whereas MSI-low was present in 31% of patients, with no patients classified as having microsatellite stability. In the patients, a MSI-high was correlated with poor prognosis, indicated by a shorter survival rate. These results indicated that the reduction of antioxidant enzymes and adaptive imbalance of base excision repair enzymes in human CCA caused MSI, and may be associated with the progression of cancer.
Collapse
Affiliation(s)
- Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sasithorn Kadsanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kanha Muisook
- Department of Forensics Science, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Puangrat Yongvanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nisana Namwat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Anchalee Techasen
- Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Medical Technology, Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Anucha Puapairoj
- Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Narong Khuntikeo
- Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pichai Phonjit
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
28
|
Mentegari E, Kissova M, Bavagnoli L, Maga G, Crespan E. DNA Polymerases λ and β: The Double-Edged Swords of DNA Repair. Genes (Basel) 2016; 7:genes7090057. [PMID: 27589807 PMCID: PMC5042388 DOI: 10.3390/genes7090057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/30/2016] [Accepted: 08/24/2016] [Indexed: 12/28/2022] Open
Abstract
DNA is constantly exposed to both endogenous and exogenous damages. More than 10,000 DNA modifications are induced every day in each cell's genome. Maintenance of the integrity of the genome is accomplished by several DNA repair systems. The core enzymes for these pathways are the DNA polymerases. Out of 17 DNA polymerases present in a mammalian cell, at least 13 are specifically devoted to DNA repair and are often acting in different pathways. DNA polymerases β and λ are involved in base excision repair of modified DNA bases and translesion synthesis past DNA lesions. Polymerase λ also participates in non-homologous end joining of DNA double-strand breaks. However, recent data have revealed that, depending on their relative levels, the cell cycle phase, the ratio between deoxy- and ribo-nucleotide pools and the interaction with particular auxiliary proteins, the repair reactions carried out by these enzymes can be an important source of genetic instability, owing to repair mistakes. This review summarizes the most recent results on the ambivalent properties of these enzymes in limiting or promoting genetic instability in mammalian cells, as well as their potential use as targets for anticancer chemotherapy.
Collapse
Affiliation(s)
- Elisa Mentegari
- Institute of Molecular Genetics, IGM-CNR, via Abbiategrasso 207, 27100 Pavia, Italy.
| | - Miroslava Kissova
- Institute of Molecular Genetics, IGM-CNR, via Abbiategrasso 207, 27100 Pavia, Italy.
| | - Laura Bavagnoli
- Institute of Molecular Genetics, IGM-CNR, via Abbiategrasso 207, 27100 Pavia, Italy.
| | - Giovanni Maga
- Institute of Molecular Genetics, IGM-CNR, via Abbiategrasso 207, 27100 Pavia, Italy.
| | - Emmanuele Crespan
- Institute of Molecular Genetics, IGM-CNR, via Abbiategrasso 207, 27100 Pavia, Italy.
| |
Collapse
|
29
|
Ray D, Kidane D. Gut Microbiota Imbalance and Base Excision Repair Dynamics in Colon Cancer. J Cancer 2016; 7:1421-30. [PMID: 27471558 PMCID: PMC4964126 DOI: 10.7150/jca.15480] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/18/2016] [Indexed: 12/15/2022] Open
Abstract
Gut microbiota are required for host nutrition, energy balance, and regulating immune homeostasis, however, in some cases, this mutually beneficial relationship becomes twisted (dysbiosis), and the gut flora can incite pathological disorders including colon cancer. Microbial dysbiosis promotes the release of bacterial genotoxins, metabolites, and causes chronic inflammation, which promote oxidative DNA damage. Oxidized DNA base lesions are removed by base excision repair (BER), however, the role of this altered function of BER, as well as microbiota-mediated genomic instability and colon cancer development, is still poorly understood. In this review article, we will discuss how dysbiotic microbiota induce DNA damage, its impact on base excision repair capacity, the potential link of host BER gene polymorphism, and the risk of dysbiotic microbiota mediated genomic instability and colon cancer.
Collapse
Affiliation(s)
- Debolina Ray
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States
| | - Dawit Kidane
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States
| |
Collapse
|
30
|
Taty-Taty GC, Chailleux C, Quaranta M, So A, Guirouilh-Barbat J, Lopez BS, Bertrand P, Trouche D, Canitrot Y. Control of alternative end joining by the chromatin remodeler p400 ATPase. Nucleic Acids Res 2015; 44:1657-68. [PMID: 26578561 PMCID: PMC4770216 DOI: 10.1093/nar/gkv1202] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/26/2015] [Indexed: 12/11/2022] Open
Abstract
Repair of DNA double-strand breaks occurs in a chromatin context that needs to be modified and remodeled to allow suitable access to the different DNA repair machineries. Of particular importance for the maintenance of genetic stability is the tight control of error-prone pathways, such as the alternative End Joining pathway. Here, we show that the chromatin remodeler p400 ATPase is a brake to the use of alternative End Joining. Using specific intracellular reporter susbstrates we observed that p400 depletion increases the frequency of alternative End Joining events, and generates large deletions following repair of double-strand breaks. This increase of alternative End Joining events is largely dependent on CtIP-mediated resection, indicating that it is probably related to the role of p400 in late steps of homologous recombination. Moreover, p400 depletion leads to the recruitment of poly(ADP) ribose polymerase (PARP) and DNA ligase 3 at DNA double-strand breaks, driving to selective killing by PARP inhibitors. All together these results show that p400 acts as a brake to prevent alternative End Joining-dependent genetic instability and underline its potential value as a clinical marker.
Collapse
Affiliation(s)
- Gemael-Cedrick Taty-Taty
- Université de Toulouse, UPS, LBCMCP, F-31062 Toulouse, France CNRS UMR5088, LBCMCP, F-31062 Toulouse, France
| | - Catherine Chailleux
- Université de Toulouse, UPS, LBCMCP, F-31062 Toulouse, France CNRS UMR5088, LBCMCP, F-31062 Toulouse, France
| | - Muriel Quaranta
- Université de Toulouse, UPS, LBCMCP, F-31062 Toulouse, France CNRS UMR5088, LBCMCP, F-31062 Toulouse, France
| | - Ayeong So
- Université Paris Sud, CNRS UMR8200, IGR, Villejuif, France
| | | | | | - Pascale Bertrand
- CEA DSV, UMR 967 CEA-INSERM-Université Paris Diderot-Université Paris Sud, Fontenay aux roses, France
| | - Didier Trouche
- Université de Toulouse, UPS, LBCMCP, F-31062 Toulouse, France CNRS UMR5088, LBCMCP, F-31062 Toulouse, France
| | - Yvan Canitrot
- Université de Toulouse, UPS, LBCMCP, F-31062 Toulouse, France CNRS UMR5088, LBCMCP, F-31062 Toulouse, France
| |
Collapse
|
31
|
DNA polymerases β and λ and their roles in cell. DNA Repair (Amst) 2015; 29:112-26. [DOI: 10.1016/j.dnarep.2015.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 10/24/2022]
|
32
|
Vaisman A, Woodgate R. Redundancy in ribonucleotide excision repair: Competition, compensation, and cooperation. DNA Repair (Amst) 2015; 29:74-82. [PMID: 25753809 DOI: 10.1016/j.dnarep.2015.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 02/07/2015] [Accepted: 02/09/2015] [Indexed: 10/24/2022]
Abstract
The survival of all living organisms is determined by their ability to reproduce, which in turn depends on accurate duplication of chromosomal DNA. In order to ensure the integrity of genome duplication, DNA polymerases are equipped with stringent mechanisms by which they select and insert correctly paired nucleotides with a deoxyribose sugar ring. However, this process is never 100% accurate. To fix occasional mistakes, cells have evolved highly sophisticated and often redundant mechanisms. A good example is mismatch repair (MMR), which corrects the majority of mispaired bases and which has been extensively studied for many years. On the contrary, pathways leading to the replacement of nucleotides with an incorrect sugar that is embedded in chromosomal DNA have only recently attracted significant attention. This review describes progress made during the last few years in understanding such pathways in both prokaryotes and eukaryotes. Genetic studies in Escherichia coli and Saccharomyces cerevisiae demonstrated that MMR has the capacity to replace errant ribonucleotides, but only when the base is mispaired. In contrast, the major evolutionarily conserved ribonucleotide repair pathway initiated by the ribonuclease activity of type 2 Rnase H has broad specificity. In yeast, this pathway also requires the concerted action of Fen1 and pol δ, while in bacteria it can be successfully completed by DNA polymerase I. Besides these main players, all organisms contain alternative enzymes able to accomplish the same tasks, although with differing efficiency and fidelity. Studies in bacteria have very recently demonstrated that isolated rNMPs can be removed from genomic DNA by error-free nucleotide excision repair (NER), while studies in yeast suggest the involvement of topoisomerase 1 in alternative mutagenic ribonucleotide processing. This review summarizes the most recent progress in understanding the ribonucleotide repair mechanisms in prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Alexandra Vaisman
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA.
| |
Collapse
|
33
|
Oxidatively induced DNA damage and its repair in cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:212-45. [PMID: 25795122 DOI: 10.1016/j.mrrev.2014.11.002] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 12/28/2022]
Abstract
Oxidatively induced DNA damage is caused in living organisms by endogenous and exogenous reactive species. DNA lesions resulting from this type of damage are mutagenic and cytotoxic and, if not repaired, can cause genetic instability that may lead to disease processes including carcinogenesis. Living organisms possess DNA repair mechanisms that include a variety of pathways to repair multiple DNA lesions. Mutations and polymorphisms also occur in DNA repair genes adversely affecting DNA repair systems. Cancer tissues overexpress DNA repair proteins and thus develop greater DNA repair capacity than normal tissues. Increased DNA repair in tumors that removes DNA lesions before they become toxic is a major mechanism for development of resistance to therapy, affecting patient survival. Accumulated evidence suggests that DNA repair capacity may be a predictive biomarker for patient response to therapy. Thus, knowledge of DNA protein expressions in normal and cancerous tissues may help predict and guide development of treatments and yield the best therapeutic response. DNA repair proteins constitute targets for inhibitors to overcome the resistance of tumors to therapy. Inhibitors of DNA repair for combination therapy or as single agents for monotherapy may help selectively kill tumors, potentially leading to personalized therapy. Numerous inhibitors have been developed and are being tested in clinical trials. The efficacy of some inhibitors in therapy has been demonstrated in patients. Further development of inhibitors of DNA repair proteins is globally underway to help eradicate cancer.
Collapse
|
34
|
Potential application of curcumin and its analogues in the treatment strategy of patients with primary epithelial ovarian cancer. Int J Mol Sci 2014; 15:21703-22. [PMID: 25429431 PMCID: PMC4284673 DOI: 10.3390/ijms151221703] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/19/2014] [Accepted: 11/19/2014] [Indexed: 12/25/2022] Open
Abstract
Recent findings on the molecular basis of ovarian cancer development and progression create new opportunities to develop anticancer medications that would affect specific metabolic pathways and decrease side systemic toxicity of conventional treatment. Among new possibilities for cancer chemoprevention, much attention is paid to curcumin—A broad-spectrum anticancer polyphenolic derivative extracted from the rhizome of Curcuma longa L. According to ClinicalTrials.gov at present there are no running pilot studies, which could assess possible therapeutic benefits from curcumin supplementation to patients with primary epithelial ovarian cancer. Therefore, the goal of this review was to evaluate potential preclinical properties of curcumin and its new analogues on the basis of in vivo and in vitro ovarian cancer studies. Curcumin and its different formulations have been shown to display multifunctional mechanisms of anticancer activity, not only in platinum-resistant primary epithelial ovarian cancer, but also in multidrug resistant cancer cells/xenografts models. Curcumin administered together with platinum-taxane chemotherapeutics have been reported to demonstrate synergistic effects, sensitize resistant cells to drugs, and decrease their biologically effective doses. An accumulating body of evidence suggests that curcumin, due to its long-term safety and an excellent profile of side effects should be considered as a beneficial support in ovarian cancer treatment strategies, especially in patients with platinum-resistant primary epithelial recurrent ovarian cancer or multidrug resistant disease. Although the prospect of curcumin and its formulations as anticancer agents in ovarian cancer treatment strategy appears to be challenging, and at the same time promising, there is a further need to evaluate its effectiveness in clinical studies.
Collapse
|
35
|
Xu L, Vaidyanathan VG, Cho BP. Real-time surface plasmon resonance study of biomolecular interactions between polymerase and bulky mutagenic DNA lesions. Chem Res Toxicol 2014; 27:1796-807. [PMID: 25195494 PMCID: PMC4203393 DOI: 10.1021/tx500252z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Surface plasmon resonance (SPR) was
used to measure polymerase-binding
interactions of the bulky mutagenic DNA lesions N-(2′-deoxyguanosin-8-yl)-4′-fluoro-4-aminobiphenyl
(FABP) or N-(2′-deoxyguanosin-8-yl)-7-fluoro-2-acetylaminofluorene
(FAAF) in the context of two unique 5′-flanking bases (CG*A and TG*A). The enzymes used
were exo-nuclease-deficient Klenow fragment (Kf-exo–) or polymerase β (pol β). Specific binary and ternary
DNA binding affinities of the enzymes were characterized at subnanomolar
concentrations. The SPR results showed that Kf-exo– binds strongly to a double strand/single strand template/primer
junction, whereas pol β binds preferentially to double-stranded
DNA having a one-nucleotide gap. Both enzymes exhibited tight binding
to native DNA, with high nucleotide selectivity, where the KD values for each base pair increased in the
order dCTP ≪ dTTP ∼ dATP ≪ dGTP. In contrast
to that for pol β, Kf-exo– binds tightly to
lesion-modified templates; however, both polymerases exhibited minimal
nucleotide selectivity toward adducted DNA. Primer steady-state kinetics
and 19F NMR results support the SPR data. The relative
insertion efficiency fins of dCTP opposite
FABP was significantly higher in the TG*A sequence
compared to that in CG*A. Although Kf-exo– was not sensitive to the presence of a DNA lesion,
FAAF-induced conformational heterogeneity perturbed the active site
of pol β, weakening the enzyme’s ability to bind to FAAF
adducts compared to FABP adducts. The present study demonstrates the
effectiveness of SPR for elucidating how lesion-induced conformational
heterogeneity affects the binding capability of polymerases and ultimately
the nucleotide insertion efficiency.
Collapse
Affiliation(s)
- Lifang Xu
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island , Kingston, Rhode Island 02881, United States
| | | | | |
Collapse
|
36
|
Koag MC, Lai L, Lee S. Structural basis for the inefficient nucleotide incorporation opposite cisplatin-DNA lesion by human DNA polymerase β. J Biol Chem 2014; 289:31341-8. [PMID: 25237188 DOI: 10.1074/jbc.m114.605451] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Human DNA polymerase β (polβ) has been suggested to play a role in cisplatin resistance, especially in polβ-overexpressing cancer cells. Polβ has been shown to accurately albeit slowly bypass the cisplatin-1,2-d(GpG) (Pt-GG) intramolecular cross-link in vitro. Currently, the structural basis for the inefficient Pt-GG bypass mechanism of polβ is unknown. To gain structural insights into the mechanism, we determined two ternary structures of polβ incorporating dCTP opposite the templating Pt-GG lesion in the presence of the active site Mg(2+) or Mn(2+). The Mg(2+)-bound structure shows that the bulky Pt-GG adduct is accommodated in the polβ active site without any steric hindrance. In addition, both guanines of the Pt-GG lesion form Watson-Crick base pairing with the primer terminus dC and the incoming dCTP, providing the structural basis for the accurate bypass of the Pt-GG adduct by polβ. The Mn(2+)-bound structure shows that polβ adopts a catalytically suboptimal semiclosed conformation during the insertion of dCTP opposite the templating Pt-GG, explaining the inefficient replication across the Pt-GG lesion by polβ. Overall, our studies provide the first structural insights into the mechanism of the potential polβ-mediated cisplatin resistance.
Collapse
Affiliation(s)
- Myong-Chul Koag
- From the Division of Medicinal Chemistry, College of Pharmacy, The University of Texas, Austin, Texas 78712
| | - Lara Lai
- From the Division of Medicinal Chemistry, College of Pharmacy, The University of Texas, Austin, Texas 78712
| | - Seongmin Lee
- From the Division of Medicinal Chemistry, College of Pharmacy, The University of Texas, Austin, Texas 78712
| |
Collapse
|
37
|
Nickson CM, Parsons JL. Monitoring regulation of DNA repair activities of cultured cells in-gel using the comet assay. Front Genet 2014; 5:232. [PMID: 25076968 PMCID: PMC4100063 DOI: 10.3389/fgene.2014.00232] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/30/2014] [Indexed: 01/10/2023] Open
Abstract
Base excision repair (BER) is the predominant cellular mechanism by which human cells repair DNA base damage, sites of base loss, and DNA single strand breaks of various complexity, that are generated in their thousands in every human cell per day as a consequence of cellular metabolism and exogenous agents, including ionizing radiation. Over the last three decades the comet assay has been employed in scientific research to examine the cellular response to these types of DNA damage in cultured cells, therefore revealing the efficiency and capacity of BER. We have recently pioneered new research demonstrating an important role for post-translational modifications (particularly ubiquitylation) in the regulation of cellular levels of BER proteins, and that subtle changes (∼20-50%) in protein levels following siRNA knockdown of E3 ubiquitin ligases or deubiquitylation enzymes can manifest in significant changes in DNA repair capacity monitored using the comet assay. For example, we have shown that the E3 ubiquitin ligase Mule, the tumor suppressor protein ARF, and the deubiquitylation enzyme USP47 modulate DNA repair by controlling cellular levels of DNA polymerase β, and also that polynucleotide kinase phosphatase levels are controlled by ATM-dependant phosphorylation and Cul4A-DDB1-STRAP-dependent ubiquitylation. In these studies we employed a modification of the comet assay whereby cultured cells, following DNA damage treatment, are embedded in agarose and allowed to repair in-gel prior to lysis and electrophoresis. Whilst this method does have its limitations, it avoids the extensive cell culture-based processing associated with the traditional approach using attached cells and also allows for the examination of much more precise DNA repair kinetics. In this review we will describe, using this modified comet assay, our accumulating evidence that ubiquitylation-dependant regulation of BER proteins has important consequences for overall cellular DNA repair capacity.
Collapse
Affiliation(s)
- Catherine M Nickson
- Department of Molecular and Clinical Cancer Medicine, North West Cancer Research Centre, University of Liverpool Liverpool, UK
| | - Jason L Parsons
- Department of Molecular and Clinical Cancer Medicine, North West Cancer Research Centre, University of Liverpool Liverpool, UK
| |
Collapse
|
38
|
Abdel-Fatah TMA, Russell R, Agarwal D, Moseley P, Abayomi MA, Perry C, Albarakati N, Ball G, Chan S, Caldas C, Ellis IO, Madhusudan S. DNA polymerase β deficiency is linked to aggressive breast cancer: a comprehensive analysis of gene copy number, mRNA and protein expression in multiple cohorts. Mol Oncol 2014; 8:520-32. [PMID: 24462520 PMCID: PMC5528629 DOI: 10.1016/j.molonc.2014.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 12/23/2013] [Accepted: 01/02/2014] [Indexed: 12/21/2022] Open
Abstract
Short arm of chromosome 8 is a hot spot for chromosomal breaks, losses and amplifications in breast cancer. Although such genetic changes may have phenotypic consequences, the identity of candidate gene(s) remains to be clearly defined. Pol β gene is localized to chromosome 8p12-p11 and encodes a key DNA base excision repair protein. Pol β may be a tumour suppressor and involved in breast cancer pathogenesis. We conducted the first and the largest study to comprehensively evaluate pol β in breast cancer. We investigated pol β gene copy number changes in two cohorts (n = 128 &n = 1952), pol β mRNA expression in two cohorts (n = 249 &n = 1952) and pol β protein expression in two cohorts (n = 1406 &n = 252). Artificial neural network analysis for pol β interacting genes was performed in 249 tumours. For mechanistic insights, pol β gene copy number changes, mRNA and protein levels were investigated together in 128 tumours and validated in 1952 tumours. Low pol β mRNA expression as well as low pol β protein expression was associated high grade, lymph node positivity, pleomorphism, triple negative, basal-like phenotypes and poor survival (ps < 0.001). In oestrogen receptor (ER) positive sub-group that received tamoxifen, low pol β protein remains associated with aggressive phenotype and poor survival (ps < 0.001). Artificial neural network analysis revealed ER as a top pol β interacting gene. Mechanistically, there was strong positive correlation between pol β gene copy number changes and pol β mRNA expression (p < 0.0000001) and between pol β mRNA and pol β protein expression (p < 0.0000001). This is the first study to provide evidence that pol β deficiency is linked to aggressive breast cancer and may have prognostic and predictive significance in patients.
Collapse
Affiliation(s)
| | - Roslin Russell
- Department of Oncology, University of Cambridge, Hills Road, Cambridge CB2 2XZ, UK; Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Devika Agarwal
- School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, UK
| | - Paul Moseley
- Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK
| | | | - Christina Perry
- Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Nada Albarakati
- Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Graham Ball
- School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, UK
| | - Stephen Chan
- Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Carlos Caldas
- Department of Oncology, University of Cambridge, Hills Road, Cambridge CB2 2XZ, UK; Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Ian O Ellis
- Division of Pathology, School of Molecular Medical Sciences, University of Nottingham, Nottingham University Hospitals, Nottingham NG51PB, UK
| | - Srinivasan Madhusudan
- Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK; Division of Oncology, School of Medicine, University of Nottingham, Nottingham NG51PB, UK.
| |
Collapse
|
39
|
Abstract
DNA damage response genes play vital roles in the maintenance of a healthy genome. Defects in cell cycle checkpoint and DNA repair genes, especially mutation or aberrant downregulation, are associated with a wide spectrum of human disease, including a predisposition to the development of neurodegenerative conditions and cancer. On the other hand, upregulation of DNA damage response and repair genes can also cause cancer, as well as increase resistance of cancer cells to DNA damaging therapy. In recent years, it has become evident that many of the genes involved in DNA damage repair have additional roles in tumorigenesis, most prominently by acting as transcriptional (co-)factors. Although defects in these genes are causally connected to tumor initiation, their role in tumor progression is more controversial and it seems to depend on tumor type. In some tumors like melanoma, cell cycle checkpoint/DNA repair gene upregulation is associated with tumor metastasis, whereas in a number of other cancers the opposite has been observed. Several genes that participate in the DNA damage response, such as RAD9, PARP1, BRCA1, ATM and TP53 have been associated with metastasis by a number of in vitro biochemical and cellular assays, by examining human tumor specimens by immunohistochemistry or by DNA genome-wide gene expression profiling. Many of these genes act as transcriptional effectors to regulate other genes implicated in the pathogenesis of cancer. Furthermore, they are aberrantly expressed in numerous human tumors and are causally related to tumorigenesis. However, whether the DNA damage repair function of these genes is required to promote metastasis or another activity is responsible (e.g., transcription control) has not been determined. Importantly, despite some compelling in vitro evidence, investigations are still needed to demonstrate the role of cell cycle checkpoint and DNA repair genes in regulating metastatic phenotypes in vivo.
Collapse
Affiliation(s)
- Constantinos G. Broustas
- Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Howard B. Lieberman
- Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032
| |
Collapse
|
40
|
Antoniali G, Lirussi L, Poletto M, Tell G. Emerging roles of the nucleolus in regulating the DNA damage response: the noncanonical DNA repair enzyme APE1/Ref-1 as a paradigmatical example. Antioxid Redox Signal 2014; 20:621-39. [PMID: 23879289 PMCID: PMC3901381 DOI: 10.1089/ars.2013.5491] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 07/22/2013] [Indexed: 12/25/2022]
Abstract
SIGNIFICANCE An emerging concept in DNA repair mechanisms is the evidence that some key enzymes, besides their role in the maintenance of genome stability, display also unexpected noncanonical functions associated with RNA metabolism in specific subcellular districts (e.g., nucleoli). During the evolution of these key enzymes, the acquisition of unfolded domains significantly amplified the possibility to interact with different partners and substrates, possibly explaining their phylogenetic gain of functions. RECENT ADVANCES After nucleolar stress or DNA damage, many DNA repair proteins can freely relocalize from nucleoli to the nucleoplasm. This process may represent a surveillance mechanism to monitor the synthesis and correct assembly of ribosomal units affecting cell cycle progression or inducing p53-mediated apoptosis or senescence. CRITICAL ISSUES A paradigm for this kind of regulation is represented by some enzymes of the DNA base excision repair (BER) pathway, such as apurinic/apyrimidinic endonuclease 1 (APE1). In this review, the role of the nucleolus and the noncanonical functions of the APE1 protein are discussed in light of their possible implications in human pathologies. FUTURE DIRECTIONS A productive cross-talk between DNA repair enzymes and proteins involved in RNA metabolism seems reasonable as the nucleolus is emerging as a dynamic functional hub that coordinates cell growth arrest and DNA repair mechanisms. These findings will drive further analyses on other BER proteins and might imply that nucleic acid processing enzymes are more versatile than originally thought having evolved DNA-targeted functions after a previous life in the early RNA world.
Collapse
Affiliation(s)
- Giulia Antoniali
- Department of Medical and Biological Sciences, University of Udine , Udine, Italy
| | | | | | | |
Collapse
|
41
|
Highlights of Pentacyclic Triterpenoids in the Cancer Settings. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2014. [DOI: 10.1016/b978-0-444-63294-4.00002-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
DNA polymerase β mutations and survival of patients with esophageal squamous cell carcinoma in Linzhou City, China. Tumour Biol 2013; 35:553-9. [DOI: 10.1007/s13277-013-1077-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 08/05/2013] [Indexed: 11/25/2022] Open
|
43
|
Vaidyanathan VG, Liang F, Beard WA, Shock DD, Wilson SH, Cho BP. Insights into the conformation of aminofluorene-deoxyguanine adduct in a DNA polymerase active site. J Biol Chem 2013; 288:23573-85. [PMID: 23798703 DOI: 10.1074/jbc.m113.476150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The active site conformation of the mutagenic fluoroaminofluorene-deoxyguanine adduct (dG-FAF, N-(2'-deoxyguanosin-8-yl)-7-fluoro-2-aminofluorene) has been investigated in the presence of Klenow fragment of Escherichia coli DNA polymerase I (Kfexo(-)) and DNA polymerase β (pol β) using (19)F NMR, insertion assay, and surface plasmon resonance. In a single nucleotide gap, the dG-FAF adduct adopts both a major-groove- oriented and base-displaced stacked conformation, and this heterogeneity is retained upon binding pol β. The addition of a non-hydrolysable 2'-deoxycytosine-5'-[(α,β)-methyleno]triphosphate (dCMPcPP) nucleotide analog to the binary complex results in an increase of the major groove conformation of the adduct at the expense of the stacked conformation. Similar results were obtained with the addition of an incorrect dAMPcPP analog but with formation of the minor groove binding conformer. In contrast, dG-FAF adduct at the replication fork for the Kfexo(-) complex adopts a mix of the major and minor groove conformers with minimal effect upon the addition of non-hydrolysable nucleotides. For pol β, the insertion of dCTP was preferred opposite the dG-FAF adduct in a single nucleotide gap assay consistent with (19)F NMR data. Surface plasmon resonance binding kinetics revealed that pol β binds tightly with DNA in the presence of correct dCTP, but the adduct weakens binding with no nucleotide specificity. These results provide molecular insights into the DNA binding characteristics of FAF in the active site of DNA polymerases and the role of DNA structure and sequence on its coding potential.
Collapse
Affiliation(s)
- Vaidyanathan G Vaidyanathan
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | | | | | | | | | | |
Collapse
|
44
|
Li M, Zang W, Wang Y, Li Y, Ma Y, Wang N, Tang Y, Liu L, Dong Z, Zhao G. DNA polymerase β promoter mutations and transcriptional activity in esophageal squamous cell carcinoma. Tumour Biol 2013; 34:3259-63. [PMID: 23749489 DOI: 10.1007/s13277-013-0898-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 05/27/2013] [Indexed: 11/29/2022] Open
Abstract
The present study analyzed the correlation of DNA polymerase β (DNA polβ) promoter mutations and activity in esophageal squamous cell carcinoma (ESCC). The DNA polβ promoter was amplified from 108 ESCC samples and adjacent paracancerous samples by PCR and cloned into the pGL3-enhancer luciferase vector. The recombined vectors were transfected into esophageal carcinoma cells (EC9706, Eca109, and KYSE30), and luciferase activity was detected using dual luciferase reporter gene technology. Eleven polβ promoter mutations were identified and submitted to GenBank. The mutation rate of the DNA polβ promoter was higher in ESCC tissues (36/108, 33.3 %) than in the paired paracancerous tissues (21/108, 19.4 %) (P = 0.021). The C → A mutation at locus -37 was the hotspot mutation in cancerous tissues, and its frequency was higher in ESCC tissues (26/108) than in paracancerous tissues (7/108) (P = 0.00). The highest relative luciferase activity (RLA) was observed in the DNA polβ promoter, with a C → A mutation at -37. Significant differences in RLA were observed between mutant DNA polβ promoters (except for C detected at -19, T → C at -194, C → A at -37, and T → C at 30) and the wild-type DNA polβ promoter (P = 0.000), and RLA was significantly higher in ESCC tissues than in paracancerous tissues (P = 0.003). Our findings suggest that the upregulation of transcriptional activity induced by mutations in the DNA polβ promoter in ESCC tissues may be one of the molecular mechanisms mediating abnormal overexpression of DNA polβ in ESCC.
Collapse
Affiliation(s)
- Min Li
- College of Basic Medical Sciences, Zhengzhou University, No. 100, Kexue Road, Zhengzhou, 450001, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Parsons JL, Nicolay NH, Sharma RA. Biological and therapeutic relevance of nonreplicative DNA polymerases to cancer. Antioxid Redox Signal 2013; 18:851-73. [PMID: 22794079 PMCID: PMC3557440 DOI: 10.1089/ars.2011.4203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Apart from surgical approaches, the treatment of cancer remains largely underpinned by radiotherapy and pharmacological agents that cause damage to cellular DNA, which ultimately causes cancer cell death. DNA polymerases, which are involved in the repair of cellular DNA damage, are therefore potential targets for inhibitors for improving the efficacy of cancer therapy. They can be divided, according to their main function, into two groups, namely replicative and nonreplicative enzymes. At least 15 different DNA polymerases, including their homologs, have been discovered to date, which vary considerably in processivity and fidelity. Many of the nonreplicative (specialized) DNA polymerases replicate DNA in an error-prone fashion, and they have been shown to participate in multiple DNA damage repair and tolerance pathways, which are often aberrant in cancer cells. Alterations in DNA repair pathways involving DNA polymerases have been linked with cancer survival and with treatment response to radiotherapy or to classes of cytotoxic drugs routinely used for cancer treatment, particularly cisplatin, oxaliplatin, etoposide, and bleomycin. Indeed, there are extensive preclinical data to suggest that DNA polymerase inhibition may prove to be a useful approach for increasing the effectiveness of therapies in patients with cancer. Furthermore, specialized DNA polymerases warrant examination of their potential use as clinical biomarkers to select for particular cancer therapies, to individualize treatment for patients.
Collapse
Affiliation(s)
- Jason L Parsons
- Cancer Research UK-Medical Research Council, Oncology Department, Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
46
|
Khanra K, Bhattacharya C, Bhattacharyya N. Association of a newly identified variant of DNA polymerase beta (polβΔ63-123, 208-304) with the risk factor of ovarian carcinoma in India. Asian Pac J Cancer Prev 2013; 13:1999-2002. [PMID: 22901161 DOI: 10.7314/apjcp.2012.13.5.1999] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA polymerase is a single-copy gene that is considered to be part of the DNA repair machinery in mammalian cells. The encoded enzyme is a key to the base excision repair (BER) pathway. It is evident that pol beta has mutations in various cancer samples, but little is known about ovarian cancer. AIM Identification of any variant form of polβ cDNA in ovarian carcinoma and determination of association between the polymorphism and ovarian cancer risk in Indian patients. We used 152 samples to isolate and perform RT-PCR and sequencing. RESULTS A variant of polymerase beta (deletion of exon 4-6 and 11-13, comprising of amino acid 63-123, and 208-304) is detected in heterozygous condition. The product size of this variant is 532 bp while wild type pol beta is 1 kb. Our study of association between the variant and the endometrioid type shows that it is a statistically significant factor for ovarian cancer [OR=31.9 (4.12-246.25) with p<0.001]. The association between variant and stage IV patients further indicated risk (χ2 value of 29.7, and OR value 6.77 with 95% CI values 3.3-13.86). The correlation study also confirms the association data (Pearson correlation values for variant/stage IV and variant/endometrioid of 0.44 and 0.39). CONCLUSION Individuals from this part of India with this type of variant may be at risk of stage IV, endometrioid type ovarian carcinoma.
Collapse
Affiliation(s)
- Kalyani Khanra
- Department of Biotechnology, Haldia Institute of Technology, West Bengal, India
| | | | | |
Collapse
|
47
|
Chary P, Beard WA, Wilson SH, Lloyd RS. DNA polymerase β gap-filling translesion DNA synthesis. Chem Res Toxicol 2012; 25:2744-54. [PMID: 23121263 PMCID: PMC3523550 DOI: 10.1021/tx300368f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Although the primary function of DNA polymerase (pol)
β is
associated with gap-filling DNA synthesis as part of the DNA base
excision repair pathway, translesion synthesis activity has also been
described. To further understand the potential role of pol β-catalyzed
translesion DNA synthesis (TLS) and the structure–function
relationships of specific residues in pol β, wild-type and selected
mutants of pol β were used in TLS assays with DNA substrates
containing bulky polycyclic aromatic hydrocarbon-adducted oligonucleotides.
Stereospecific (+) and (−)-anti-trans-(C10S and C10R)
benzo[a]pyrene-7,8- dihydrodiol-9-10-epoxide (BPDE)
adducts were covalently attached to both the N6-adenine and N2-guanine in the major and minor grooves, respectively. For all substrates
tested, the presence of the BPDE adducts greatly decreased the efficiency
of nucleotide incorporation opposite the lesion, and the stereochemistry
of the adducts also further modulated the efficiency of the insertion
step, such that lesions which were oriented in the 3′ direction
relative to the approaching polymerase were considerably more blocking
than those oriented in the 5′ direction. In the absence of
a downstream DNA strand, the extension step beyond the adduct was
extremely inefficient, relative to a dinucleotide gap-filling reaction,
such that in the presence of the downstream DNA, dinucleotide incorporation
was strongly favored. In general, analyses of the TLS activities of
four pol β mutants revealed similar overall properties, but
wild-type pol β exhibited more than 50-fold greater extension
and bypass of the C10S-dA adducts as compared
to a low fidelity mutant R283K expected to interact with the templating
base. Replication bypass investigations were further extended to include
analyses of HIV-1 reverse transcriptase, and these studies revealed
patterns of inhibition very similar to that observed for pol β.
Collapse
Affiliation(s)
- Parvathi Chary
- Center for Research on Occupational and Environmental Toxicology (CROET), Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239-3098, United States
| | | | | | | |
Collapse
|
48
|
DNA polymerase beta promoter mutations affect gene transcription, translation and the sensitivity of esophageal cancer cells to cisplatin treatment. Mol Biol Rep 2012; 40:1333-9. [PMID: 23117284 DOI: 10.1007/s11033-012-2177-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/08/2012] [Indexed: 01/30/2023]
Abstract
The ability of a promoter to initiate transcription is important for the control of gene expression. Mutations in the DNA polymerase beta (po1β) promoter may affect the transcription of this gene; however, the relationship between these mutations and the upregulation of the expression of po1β remains unclear. Therefore, in the present study, three po1β promoter mutants (M1, -37 C→A; M2, -114 G→A, -37 C→A; M3, -194 T→C) were generated to examine the effect of promoter mutations on polβ gene expression and sensitivity to cisplatin. We found that the M1 and M2 mutant polβ promoter constructs showed higher RLA than the wild-type polβ promoter (P < 0.01), whereas the activity of the M3 polβ promoter did not differ significantly from that of the wild-type polβ promoter (P > 0.05). The expression levels of polβ mRNA and protein were significantly higher (P < 0.01) and the sensitivity to cisplatin was significantly lower (P < 0.05) in Eca9706(-/-)-M1 and Eca9706(-/-)-M2 cells than in Eca9706(-/-)-W. The expression levels of polβ mRNA and protein and the sensitivity to cisplatin were not significantly different between Eca9706(-/-)-M3 and Eca9706(-/-)-W cells (P > 0.05).These results revealed that specific mutations of the polymerase beta gene promoter significantly enhanced the gene's transcriptional activity. These mutations correspondingly increased the gene's mRNA and protein product, at the same time reduced the esophageal cancer cells' sensitivity to cisplatin.
Collapse
|
49
|
Small-molecule inhibitors of DNA damage-repair pathways: an approach to overcome tumor resistance to alkylating anticancer drugs. Future Med Chem 2012; 4:1093-111. [PMID: 22709253 DOI: 10.4155/fmc.12.58] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A major challenge in the future development of cancer therapeutics is the identification of biological targets and pathways, and the subsequent design of molecules to combat the drug-resistant cells hiding in virtually all cancers. This therapeutic approach is justified based upon the limited advances in cancer cures over the past 30 years, despite the development of many novel chemotherapies and earlier detection, which often fail due to drug resistance. Among the various targets to overcome tumor resistance are the DNA repair systems that can reverse the cytotoxicity of many clinically used DNA-damaging agents. Some progress has already been made but much remains to be done. We explore some components of the DNA-repair process, which are involved in repair of alkylation damage of DNA, as targets for the development of novel and effective molecules designed to improve the efficacy of existing anticancer drugs.
Collapse
|
50
|
Fleck SC, Burkhardt B, Pfeiffer E, Metzler M. Alternaria toxins: Altertoxin II is a much stronger mutagen and DNA strand breaking mycotoxin than alternariol and its methyl ether in cultured mammalian cells. Toxicol Lett 2012; 214:27-32. [PMID: 22902351 DOI: 10.1016/j.toxlet.2012.08.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 08/01/2012] [Accepted: 08/03/2012] [Indexed: 12/16/2022]
Abstract
Altertoxin II (ATX II) is one of the several mycotoxins produced by Alternaria fungi. It has a perylene quinone structure and is highly mutagenic in Ames Salmonella typhimurium, but its mutagenicity in mammalian cells has not been studied before. Here we report that ATX II is a potent mutagen in cultured Chinese hamster V79 cells, inducing a concentration-dependent increase of mutations at the hypoxanthine guanine phosphoribosyltransferase gene locus at concentrations similar to that of the established mutagen 4-quinoline-N-oxide. Thus, ATX II is at least 50-times more potent as a mutagen than the common Alternaria toxins alternariol (AOH) and alternariol methyl ether (AME). In contrast to AOH and AME, ATX II does not affect the cell cycle of V79 cells. ATX II also causes DNA strand breaks in V79 cells, with a potency again exceeding that of AOH and AME. The high mutagenic and DNA strand breaking activity of ATX II raises the question of whether this Alternaria toxin poses a risk for public health, and warrants studies on the occurrence of ATX II and other perylene quinone-type mycotoxins in food and feed.
Collapse
Affiliation(s)
- Stefanie C Fleck
- Institute of Applied Biosciences, Chair of Food Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | | | | | |
Collapse
|