1
|
Analysis of In Vivo Mutation in the Hprt and Tk Genes of Mouse Lymphocytes. Methods Mol Biol 2020. [PMID: 31989565 DOI: 10.1007/978-1-0716-0223-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Determining mutant frequencies in endogenous reporter genes is a tool for identifying potentially genotoxic environmental agents, and discovering phenotypes prone to genomic instability and diseases, such as cancer. Here, we describe a high-throughput method for identifying mouse spleen lymphocytes with mutations in the endogenous X-linked hypoxanthine guanine phosphoribosyl transferase (Hprt) gene and the endogenous autosomal thymidine kinase (Tk) gene. The selective clonal expansion of mutant lymphocytes is based upon the phenotypic properties of HPRT- and TK-deficient cells. The same procedure can be utilized for quantifying Hprt mutations in most strains of mice (and, with minor changes, in other mammalian species), while mutations in the Tk gene can be determined only in transgenic mice that are heterozygous for inactivation of this gene. Expanded mutant clones can be further analyzed to classify the types of mutations in the Tk gene (small intragenic mutations vs. large chromosomal mutations) and to determine the nature of intragenic mutation at both the Hprt and Tk genes.
Collapse
|
2
|
MacGregor JT. Biomarkers of Cancer Risk and Therapeutic Benefit: New Technologies, New Opportunities, and Some Challenges. Toxicol Pathol 2016; 32 Suppl 1:99-105. [PMID: 15209409 DOI: 10.1080/01926230490425067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The biotechnology revolution offers unprecedented opportunities for identification of mechanistically-based biomarkers that report and predict cancer and other pathologies. The combination of genomic technologies with a knowledge of gene sequence and sequence conservation has made available markers that facilitate the correlation of genetic variation with biological outcomes, and “-omic” technologies allow efficient biochemical characterization of functional pathways—providing new markers of the susceptibility of individuals to cancer development, and of tumor susceptibility to specific therapies. New therapeutic agents targeted to individuals with specific genetic or biochemical characteristics already exist. The powerful -omic technologies allow efficient monitoring of gene transcripts, proteins, and intermediary metabolites, making it possible to monitor a large number of key cellular pathways simultaneously. This has enabled the identification of key biomarkers and signaling molecules associated with cell growth, cell death, and cellular metabolism. These new markers are facilitating monitoring of functional disturbance, molecular and cellular damage, and damage-response. Improved imaging technologies have made it feasible to image some of these molecular events noninvasively. To meet the challenge of evaluating and developing consensus criteria for the application of these new technologies and biomarkers, consortium approaches are being increasingly undertaken to share resources and to build a common understanding among the research, industry, and regulatory communities. These developments promise more efficient pharmaceutical product development, safer and more efficacious drugs, and provide clinical practitioners with new and better biomarkers for cancer screening, patient monitoring, and choice of therapy.
Collapse
Affiliation(s)
- James T MacGregor
- FDA National Center for Toxicological Research, Rockville, Maryland 20857, USA.
| |
Collapse
|
3
|
Hryciw G, Grygoryev D, Lasarev M, Ohlrich A, Dan C, Madhira R, Eckelmann B, Gauny S, Kronenberg A, Turker MS. Accelerated (48)Ti Ions Induce Autosomal Mutations in Mouse Kidney Epithelium at Low Dose and Fluence. Radiat Res 2015; 184:367-77. [PMID: 26397174 DOI: 10.1667/rr14130.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Exposure to high-energy charged particles (HZE ions) at low fluence could significantly affect astronaut health after prolonged missions in deep space by inducing mutations and related cancers. We tested the hypothesis that the mutagenic effects of HZE ions could be detected at low fluence in a mouse model that detects autosomal mutations in vivo. Aprt heterozygous mice were exposed to 0.2, 0.4 and 1.4 Gy of densely ionizing (48)Ti ions (1 GeV/amu, LET = 107 keV/μm). We observed a dose-dependent increase in the Aprt mutant fraction in kidney epithelium at the two lowest doses (an average of 1 or 2 particles/cell nucleus) that plateaued at the highest dose (7 particles/cell nucleus). Mutant cells were expanded to determine mutation spectra and translocations affecting chromosome 8, which encodes Aprt. A PCR-based analysis for loss of heterozygosity (LOH) events on chromosome 8 demonstrated a significant shift in the mutational spectrum from Ti ion exposure, even at low fluence, by revealing "radiation signature" mutations in mutant cells from exposed mice. Likewise, a cytogenetic assay for nonreciprocal chromosome 8 translocations showed an effect of exposure. A genome-wide LOH assay for events affecting nonselected chromosomes also showed an effect of exposure even for the lowest dose tested. Considered in their entirety, these results show that accelerated (48)Ti ions induce large mutations affecting one or more chromosomes at low dose and fluence.
Collapse
Affiliation(s)
- Gwen Hryciw
- a Oregon Institute of Occupational Health Sciences and
| | | | | | - Anna Ohlrich
- a Oregon Institute of Occupational Health Sciences and
| | - Cristian Dan
- a Oregon Institute of Occupational Health Sciences and
| | - Ravi Madhira
- a Oregon Institute of Occupational Health Sciences and
| | | | - Stacey Gauny
- c Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Amy Kronenberg
- c Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Mitchell S Turker
- a Oregon Institute of Occupational Health Sciences and.,b Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239; and
| |
Collapse
|
4
|
Analysis of in vivo mutation in the Hprt and Tk genes of mouse lymphocytes. Methods Mol Biol 2014; 1105:255-70. [PMID: 24623234 DOI: 10.1007/978-1-62703-739-6_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Assays measuring mutant frequencies in endogenous reporter genes are used for identifying potentially genotoxic environmental agents and discovering phenotypes prone to genomic instability and diseases, such as cancer. Here, we describe methods for identifying mouse spleen lymphocytes with mutations in the endogenous X-linked hypoxanthine guanine phosphoribosyl transferase (Hprt) gene and the endogenous autosomal thymidine kinase (Tk) gene. The selective clonal expansion of mutant lymphocytes is based upon the phenotypic properties of HPRT- and TK-deficient cells. The same procedure can be utilized for quantifying Hprt mutations in most strains of mice (and, with minor changes, in other mammalian species), while mutations in the Tk gene can be determined only in transgenic mice that are heterozygous for inactivation of this gene. Expanded mutant clones can be further analyzed to classify the types of mutations in the Tk gene (small intragenic mutations vs. large chromosomal mutations) and to determine the nature of intragenic mutation in both the Hprt and Tk genes.
Collapse
|
5
|
Kronenberg A, Gauny S, Kwoh E, Connolly L, Dan C, Lasarev M, Turker MS. Comparative analysis of cell killing and autosomal mutation in mouse kidney epithelium exposed to 1 GeV/nucleon iron ions in vitro or in situ. Radiat Res 2009; 172:550-7. [PMID: 19883222 DOI: 10.1667/rr1804.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Astronauts receive exposures to high-energy heavy ions from galactic cosmic radiation. Although high-energy heavy ions are mutagenic and carcinogenic, their mutagenic potency in epithelial cells, where most human cancers develop, is poorly understood. Mutations are a critical component of human cancer, and mutations involving autosomal loci predominate. This study addresses the cytotoxic and mutagenic effects of 1 GeV/nucleon iron ions in mouse kidney epithelium. Mutant fractions were measured for an endogenous autosomal locus (Aprt) that detects all types of mutagenic events contributing to human cancer. Results for kidneys irradiated in situ are compared with results for kidney cells from the same strain exposed in vitro. The results demonstrate dose-dependent cell killing in vitro and for cells explanted 3-4 months postirradiation in situ, but in situ exposures were less likely to result in cell death than in vitro exposures. Prolonged incubation in situ (8-9 months) further attenuated cell killing at lower doses. Iron ions were mutagenic to cells in vitro and for irradiated kidneys. No sparing was seen for mutant frequency with a long incubation period in situ. In addition, the degree of mutation induction (relative increase over background) was similar for cells exposed in vitro or in situ. We speculate that the latent effects of iron-ion exposure contribute to the maintenance of an elevated mutation burden in an epithelial tissue.
Collapse
Affiliation(s)
- Amy Kronenberg
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Liang L, Deng L, Mendonca MS, Chen Y, Zheng B, Stambrook PJ, Shao C, Tischfield JA. X-rays induce distinct patterns of somatic mutation in fetal versus adult hematopoietic cells. DNA Repair (Amst) 2007; 6:1380-5. [PMID: 17553756 PMCID: PMC2063444 DOI: 10.1016/j.dnarep.2007.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 03/08/2007] [Accepted: 04/17/2007] [Indexed: 01/16/2023]
Abstract
There are a variety of mechanisms and pathways whereby cells safeguard their genomes in the face of environmental insults that damage DNA. Whether each of these pathways is equally robust at specific developmental stages in mammals and whether they are also modulated in a tissue-specific manner, however, are unclear. Here, we report that ionizing radiation (IR) produces different types of somatic mutations in fetal cells compared with adult cells of the same lineage. While 1 Gy of X-ray significantly induced intragenic point mutations in T cells of adult mice, no point mutational effect was observed when applied to fetuses. Fetal exposure to IR, on the other hand, led to a significant elevation of mitotic recombination in T cells, which was not observed in adults. Base excision repair (BER) activity was significantly lower in fetal hematopoietic cells than in adult cells, due to a low level of DNA polymerase beta, the rate-limiting enzyme in BER. In fetal hematopoietic cells, this low BER activity, together with a high rate of proliferation, causes X-ray-induced DNA lesions, such as base damage, single strand breaks and double strand breaks, to be repaired by homologous recombination, which we observe as mitotic recombination. Higher BER activity and a relatively lower rate of cell proliferation likely contribute to the significant induction of DNA point mutations in adults. Thus, the mutational response to IR is at least partly determined by the availability of specific repair pathways and other developmentally regulated phenotypes, such as mitotic index.
Collapse
Affiliation(s)
- Li Liang
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Liang L, Mendonca MS, Deng L, Nguyen SC, Shao C, Tischfield JA. Reduced apoptosis and increased deletion mutations at Aprt locus in vivo in mice exposed to repeated ionizing radiation. Cancer Res 2007; 67:1910-7. [PMID: 17332317 DOI: 10.1158/0008-5472.can-06-1476] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Exposure to ionizing radiation (IR) is a risk factor for carcinogenesis because it is a mutagen. However, a single 4-Gy whole body X-ray exposure only induced a modest increase of mutations at the Aprt reporter gene locus in mouse T cells. Intriguingly, when the same dose of IR was given in a fractionated protocol (1 Gy x 4 at weekly intervals), there was a strong induction of Aprt mutations in T cells. Many of these were mutations that arose via interstitial deletions inclusive of Aprt or by intragenic deletions. We hypothesized that the weekly fractionated X-ray exposures select for somatic cells with reduced p53 expression and/or reduced apoptosis, which, in turn, may have facilitated the accumulation of interstitial deletions, as in p53-deficient mice. We indeed found that splenocytes of mice with three previous exposures (1 Gy x 4 in total) were more resistant to X-ray-induced apoptosis than those of mice exposed to X-rays for the first time (1 Gy total). Thus, repeated X-ray radiation selects for reduced apoptosis in vivo. However, this reduced apoptosis is p53-independent, because p53 induction and the up-regulation of genes downstream of p53, such as Bax and p21, were similar between the 1-Gy and 1 Gy x 4 groups. Reduced apoptosis probably allows the generation of more mutations, particularly deletion mutations. Because both reduced apoptosis and increased somatic mutation are risk factors for carcinogenesis, they may contribute to the paradigm in which different radiation exposure schemes are varied in their efficiency in inducing lymphomagenesis.
Collapse
Affiliation(s)
- Li Liang
- Department of Genetics, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
8
|
Wang J, Chen T, Honma M, Chen L, Moore MM. 3'-azido-3'-deoxythymidine induces deletions in L5178Y mouse lymphoma cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2007; 48:248-57. [PMID: 17358034 DOI: 10.1002/em.20263] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
3'-Azido-3'-deoxythymidine (AZT), a nucleoside analogue used for the treatment of acquired immunodeficiency syndrome (AIDS), induced a significant dose-related increase in the thymidine kinase (Tk) mutant frequency (MF) in L5178Y/Tk(+/-) 3.7.2C mouse lymphoma cells. Treatment with 1 mg/ml (3,742 muM) AZT for 24 hr resulted in a MF of 407 x 10(-6) compared to a control MF of 84 x 10(-6). The MFs of the large and small colony mutants resulting from AZT exposure were 142 x 10(-6) and 265 x 10(-6), respectively. One hundred and fifty mutants from the 1 mg/ml (3,742 muM) AZT-treated culture and sixty-nine mutants from independent untreated cultures were isolated and analyzed. LOH analysis using a heteromorphic microsatellite locus located in the Tk gene was performed to determine the presence or absence of the Tk(+) allele. Eight other microsatellite markers spanning the entire mouse chromosome 11 also were examined for heterozygosity to determine the extent of LOH. In addition, Tk gene dosage analysis was conducted using Real-Time PCR in those mutants showing LOH at the Tk locus. The presence of only one Tk allele based on Real-Time PCR indicated that the mutant resulted from deletion while the presence of two alleles was consistent with a recombination event. More mutants from the AZT-treated culture showed Tk LOH than did independent mutants from the untreated cultures (91% vs. 64%) and the induced mutants also showed distinct chromosome 11 LOH patterns. The mutation spectrum of mutants from AZT-treated cells was also significantly different from that of spontaneous mutants. More deletions and fewer intragenic mutations were observed in the mutants from the AZT-treated culture than independent mutants from the untreated control. Our data indicate that AZT primarily induced LOH mutations in L5178Y mouse lymphoma cells and a large number of LOH mutations resulted from deletions.
Collapse
Affiliation(s)
- Jianyong Wang
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| | | | | | | | | |
Collapse
|
9
|
Turker MS, Lasarev M, Connolly L, Kasameyer E, Roessler D. Age-related accumulation of autosomal mutations in solid tissues of the mouse is gender and cell type specific. Aging Cell 2007; 6:73-86. [PMID: 17266677 DOI: 10.1111/j.1474-9726.2006.00264.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Most cancers in solid tissues increase with age and invariably contain causal mutations eliminating expression of one or more autosomal tumor suppressor genes. However, very little is known about the effect of age on autosomal mutations, often large in size, in cells of solid tissues. In this study, the frequency and spectrum of autosomal mutations were examined as a function of age for kidney epithelial cells and ear mesenchymal cells in B6D2F1 mice heterozygous for the selectable Aprt locus. Aprt mutant frequencies were found to increase with age in the kidneys of both male and female mice, but at all ages the mutant frequencies were approximately twice as high in the females, which in this strain have shorter lifespans than the males. An age-related increase in Aprt mutant frequencies was also observed for ear cells from female mice, but no significant increases in mutant frequencies were observed for the ear cells of male mice. A molecular analysis showed that the kidney and ear mutational spectra were distinct and that the age-related increases in mutant frequencies did not involve significant shifts in the mutational spectra. In total, the results demonstrate both gender and cell-type-specific patterns of autosomal mutational accumulation as a function of age in two solid tissues of the mouse.
Collapse
Affiliation(s)
- Mitchell S Turker
- Center for Research on Occupational and Environmental Toxicology (CROET), Oregon Health and Science University, Portland, OR 97239, USA.
| | | | | | | | | |
Collapse
|
10
|
Donahue SL, Lin Q, Cao S, Ruley HE. Carcinogens induce genome-wide loss of heterozygosity in normal stem cells without persistent chromosomal instability. Proc Natl Acad Sci U S A 2006; 103:11642-6. [PMID: 16868089 PMCID: PMC1544223 DOI: 10.1073/pnas.0510741103] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Widespread losses of heterozygosity (LOH) in human cancer have been thought to result from chromosomal instability caused by mutations affecting DNA repair/genome maintenance. However, the origin of LOH in most tumors is unknown. The present study examined the ability of carcinogenic agents to induce LOH at 53 sites throughout the genome of normal diploid mouse ES cells. Brief exposures to nontoxic levels of methylnitrosourea, diepoxybutane, mitomycin C, hydroxyurea, doxorubicin, and UV light stimulated LOH at all loci at frequencies ranging from 1-8 x 10(-3) per cell (10-123 times higher than in untreated cells). This greatly exceeds the frequencies at which these agents have been reported to induce point mutations and is comparable to the rates of LOH observed in ES cells lacking the gene responsible for Bloom syndrome, an inherited DNA repair defect that results in greatly increased risk of cancer. These results suggest that LOH contributes significantly to the carcinogenicity of a variety of mutagens and raises the possibility that genome-wide LOH observed in some human cancers may reflect prior exposure to genotoxic agents rather than a state of chromosomal instability during the carcinogenic process. Finally, as a practical matter, chemically induced LOH is expected to enhance the recovery of homozygous recessive mutants from phenotype-based genetic screens in mammalian cells.
Collapse
Affiliation(s)
- Sarah L. Donahue
- Department of Microbiology and Immunology, Room AA4210, Medical Center North, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN 37232-2363
| | - Qing Lin
- Department of Microbiology and Immunology, Room AA4210, Medical Center North, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN 37232-2363
| | - Shang Cao
- Department of Microbiology and Immunology, Room AA4210, Medical Center North, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN 37232-2363
| | - H. Earl Ruley
- Department of Microbiology and Immunology, Room AA4210, Medical Center North, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN 37232-2363
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
11
|
Fischer JM, Robbins SB, Kannamkumarath SS, Al-Zoughool M, Stringer SL, Talaska G, Caruso JA, Stambrook PJ, Stringer JR. Exposure of mice to arsenic and/or benzo[a]pyrene does not increase the frequency of Aprt-deficient cells recovered from explanted skin of Aprt heterozygous mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2006; 47:334-44. [PMID: 16649189 DOI: 10.1002/em.20212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Exposure to inorganic arsenic in drinking water is linked to cancer in humans, but the mechanism of arsenic-induced cancer is not clear. Arsenic is not a powerful point mutagen, but can cause chromosome malsegregation and mitotic recombination, two events that can cause loss of tumor suppressor alleles and thereby contribute to the evolution of cancerous cells. To determine whether arsenic increases the frequency of allele loss due to either malsegregation or mitotic recombination in vivo, Aprt(+/-) hybrid mice were exposed to sodium arsenite (10 mg/L) in their drinking water for 10 weeks. To determine whether arsenic enhances the action of a known mutagen, half of the arsenic-treated mice were exposed to benzo[a]pyrene (BaP) for 8 weeks by skin painting (500 nmoles/week). Cells were taken from painted dorsal skin and cultured in the presence of 2,6-diaminopurine (DAP), to select colonies lacking adenosine phosphoribosyl transferase (Aprt) activity. The frequency of DAP-resistant (DAP(r)) colonies varied substantially within the treatment groups, but there was no significant difference between the groups. Analysis of DNA from DAP(r) colonies suggested that mitotic recombination contributed to the loss of wild-type Aprt allele. Whether arsenic or BaP enhanced or diminished the frequency of this process could not be deduced from these data.
Collapse
Affiliation(s)
- Jared M Fischer
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Ohio, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kakinuma S, Nishimura M, Kubo A, Nagai JY, Amasaki Y, Majima HJ, Sado T, Shimada Y. Frequent retention of heterozygosity for point mutations in p53 and Ikaros in N-ethyl-N-nitrosourea-induced mouse thymic lymphomas. Mutat Res 2005; 572:132-41. [PMID: 15790496 DOI: 10.1016/j.mrfmmm.2005.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2004] [Revised: 12/29/2004] [Accepted: 01/07/2005] [Indexed: 10/25/2022]
Abstract
In agreement with Knudson's two-hit theory, recent findings indicate that the inactivation of tumor suppressor genes is not only mediated by the loss of function but also by the dominant-negative or gain-of-function activity. The former generally accompanies loss of a wild-type allele whereas in the latter a wild-type allele is retained. N-Ethyl-N-nitrosourea (ENU), which efficiently induces point mutations, reportedly leads to the development of tumors by activating ras oncogenes. Little is known about how ENU affects tumor suppressor genes and, therefore, we examined ENU-induced mutations of p53 and Ikaros in thymic lymphomas and compared these with mutations of Kras. In addition, loss of heterozygosity was examined for chromosome 11 to which both p53 and Ikaros were mapped. The frequency of point mutations in p53 and Ikaros was 30% (8/27) and 19% (5/27), respectively, comparable to that observed in Kras (33%: 9/27). In total, 14 of the 27 thymic lymphomas examined (52%) harbored mutations in at least one of these genes. One Ikaros mutation was located at the splice donor site, generating a novel splice isoform lacking zinc finger 3, Ik (F3del). Interestingly, 90% (10/11) of the tumors with point mutations retained wild-type alleles of p53 and Ikaros. Sequence analysis revealed that the most common nucleic acid substitutions were T>A (4/8) in p53, T>C (4/5) in Ikaros and G>A/T (8/9) in Kras, suggesting that the spectrum of mutations was gene dependent. These results suggest that point mutations in tumor suppressor genes without loss of the wild-type allele play an important role in ENU-induced lymphomagenesis.
Collapse
Affiliation(s)
- Shizuko Kakinuma
- Low Dose Radiation Effect Research Project, National Institute of Radiological Sciences, Chiba, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Bolon B. Genetically engineered animals in drug discovery and development: a maturing resource for toxicologic research. Basic Clin Pharmacol Toxicol 2005; 95:154-61. [PMID: 15504150 DOI: 10.1111/j.1742-7843.2004.pto950402.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genetically engineered mice that either over-express a foreign gene (transgenic) or in which the activity of a specific gene has been removed ("knock-out") or replaced ("knock-in") will be used increasingly to investigate molecular mechanisms of disease, to evaluate innovative therapeutic targets, and to screen novel agents for efficacy and/or toxicity. Recent innovations of relevance to toxicologic researchers include the construction of genetically engineered mice with (1) multiple engineered genes, (2) mutations that can be induced at specific sites and times throughout life, and (3) the substitution of human genes for their mouse counterparts ("humanized" mice) to allow in vivo investigation of xenobiotic toxicity. Contemporary applications of genetically engineered mice in toxicology include basic mechanistic research exploiting newly engineered mouse lines as well as applied screening for genotoxicity and carcinogenicity using commercially available animals. Many caveats must be considered when interpreting genetically engineered mice-derived toxicity data, the chief of which will be the extent to which the model's phenotype has been fully characterized, the type and incidence of background lesions for the given mouse strain and engineered gene, and the possibility of misinterpreting the presence or absence of a phenotype due to compensatory physiologic processes that mask the outcome produced by the engineering event. Toxicity data acquired using genetically engineered mice currently supplements and in time likely will supplant those gathered using the present "gold standard" bioassays, as genetically engineered mice typically develop more lesions after a shorter latency period than do age- and strain-matched, wild-type mice.
Collapse
Affiliation(s)
- Brad Bolon
- GEMpath Inc., 2540 N. 400 W., Cedar City, UT 84720-8400, U.S.A.
| |
Collapse
|
14
|
Bielas JH, Loeb LA. Mutator phenotype in cancer: timing and perspectives. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2005; 45:206-213. [PMID: 15672382 DOI: 10.1002/em.20111] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Normal human cells replicate their DNA with exceptional accuracy. During every division cycle, each daughter cell receives a full and accurate complement of genetic information. It has been estimated that approximately one error occurs during DNA replication for each 10(9) to 10(10) nucleotides polymerized. Stem cells, the cells that are progenitors of cancer, may replicate their genes even more accurately. In contrast, the malignant cells that constitute a tumor are markedly heterogeneous and exhibit multiple chromosomal abnormalities and alterations in the nucleotide sequence of DNA. To account for the disparity between the rarity of mutations in normal cells and the large numbers of mutations present in cancer, we initially hypothesized that during tumor progression, cancer cells must exhibit a mutator phenotype. In this perspective, we summarize the evidence supporting a mutator phenotype in human cancer, analyze recent measurements of mutations in human cancer, consider the timing for the expression of a mutator phenotype, and focus on the important consequences of large numbers of random mutations in human tumors.
Collapse
Affiliation(s)
- Jason H Bielas
- Joseph Gottstein Memorial Cancer Research Laboratory, Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
15
|
Cool M, Depault F, Jolicoeur P. Fine allelotyping ofErbb2-induced mammary tumors in mice reveals multiple discontinuous candidate regions of tumor-suppressor loci. Genes Chromosomes Cancer 2005; 45:191-202. [PMID: 16258954 DOI: 10.1002/gcc.20276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Loss of heterozygosity (LOH) at human chromosome bands 1p32-36 and 10q23-26 is frequent in various human tumors, including breast cancers, and is thought to reflect the loss of tumor-suppressor genes (TSGs). To map such genes, high-resolution LOH analysis was performed on 93 Erbb2-induced mammary tumors from (BALB/c x C57BL/6) F1 MMTV/Erbb2 transgenic mice. A panel of 24 microsatellite markers specific to the region of mouse chr4, homologous to human 1p31-36, and 16 markers specific to the mouse chr19 region, homologous to human 10q23-26 were used. In addition, lower-density mapping was performed on the remaining portion of mouse chr4 [homologous to human 9p13, 9p21-24, 9q21-22, 9q31-34 (12 markers)] and chr19 [homologous to 9q21, 9p24, 11q12-13 (9 markers)]. Several distinct, discrete, and discontinuous LOH regions flanked by areas of heterozygosity were identified, 22 on chr4 and 14 on chr19. Among these, 13 were mapped in the region of homology with human 1p31-36 (between D4Mit153 and D4Mit254) and 9 in the region of homology with human 10q23-26 (between D19Mit46 and D19Mit6). Although several LOH loci span a large interval, many are relatively short (1-4 Mb), and a few span an interval of <1 Mb. This allelotyping represents the highest density of LOH loci yet mapped in these chromosomal regions. The presence of numerous LOH regions in alternation with regions of heterozygosity, consistent with mitotic recombination as a mechanism for generating such a mosaic pattern, suggests the presence of several TSGs in these regions and should facilitate their identification.
Collapse
Affiliation(s)
- Marc Cool
- Laboratory of Molecular Biology, Clinical Research Institute of Montréal, 110 Pine Avenue West, Québec, H2W 1R7, Canada
| | | | | |
Collapse
|
16
|
Møllersen L, Vikse R, Andreassen A, Steffensen IL, Mikalsen A, Paulsen JE, Alexander J. Adenomatous polyposis coli truncation mutations in 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-induced intestinal tumours of multiple intestinal neoplasia mice. Mutat Res 2004; 557:29-40. [PMID: 14706516 DOI: 10.1016/j.mrgentox.2003.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The heterocyclic amine 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) induces intestinal tumours in C57BL/6J-multiple intestinal neoplasia (Min)/+ mice. The main mechanism for PhIP-induced tumour induction in Min/+ mice is loss of the wild-type adenomatous polyposis coli (Apc) allele, i.e. loss of heterozygosity (LOH). In this study, single injections of either 10, 17.5 or 25 mg/kg PhIP on days 3-6 after birth all increased the mean number of small intestinal tumours two to three-fold, from 37.7 in controls to 124.8 in the PhIP-treated Min/+ mice. In total, we analysed 292 small intestinal tumours and 253 of these had LOH. The frequency of LOH in the Apc gene was 88, 93, 83 and 84% in tumours of 0, 10, 17.5 and 25 mg/kg PhIP-treated mice, respectively. Therefore, these lower doses of PhIP did not reduce the frequency of LOH, as found in our previous study with a single injection of 50 mg/kg PhIP (Mutat. Res. 1-2 (2002) 157). In the second part of this study, we wanted to characterise Apc truncation mutations from tumour samples apparently retaining the Apc wild-type allele from this and two previous experiments with PhIP-exposed Min/+ mice. In the first half of exon 15 in Apc, we verified 25 mutations from 804 tumour samples of PhIP-treated mice. Of these were 60% G-->T transversions, and 16% G deletions, indicating that these are the predominant types of PhIP-induced truncation mutations in the Apc gene in Min/+ mice. Most of the mutations were located between codon 989 and 1156 corresponding to the first part of the beta-catenin binding region. We also identified two Apc truncation mutations from 606 spontaneously formed intestinal tumours from untreated Min/+ mice, one C-->T transition and one T insertion, which were different from those induced by PhIP.
Collapse
Affiliation(s)
- Linda Møllersen
- Department of Food Toxicology, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
17
|
Wijnhoven SWP, van Steeg H. Transgenic and knockout mice for DNA repair functions in carcinogenesis and mutagenesis. Toxicology 2003; 193:171-87. [PMID: 14599776 DOI: 10.1016/s0300-483x(03)00295-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Genetically modified mouse models with defects in DNA repair pathways, especially in nucleotide excision repair (NER) and mismatch repair (MMR), are powerful tools to study processes like carcinogenesis and mutagenesis. The use of mutant mice in these studies has many advantages over using normal wild type mice with respect to costs, number of animals, predictive value towards carcinogenic compounds and the duration of study. Short-term carcinogenicity assays still require considerable number of animals and extensive pathological analyses. Therefore, alternatives demanding less animals and shorter exposure times would be desirable. In this respect, one approach could be the use of transgenic mice harbouring marker genes, that can easily detect mutagenic features of carcinogenic compounds, especially when such models are in a DNA repair deficient background. Here, we review the progress made in the development and use of DNA repair deficient mouse models as replacements for long-term cancer assays and discuss the applicability of enhanced gene mutant frequencies as early indicators of tumourigenesis. Although promising models exist, there is still a need for more universally responding and highly sensitive mouse models, since it is likely that non-genotoxic carcinogens will go undetected in a DNA repair deficient mouse. One attractive candidate mouse model, having a presumptive broad detective range, is the Xpa/p53 mutant mouse model, which will be discussed in more detail.
Collapse
Affiliation(s)
- Susan W P Wijnhoven
- National Institute of Public Health and Environment, RIVM/TOX pb12, P.O. Box 1, 3720 BA Bilthoven, The Netherlands.
| | | |
Collapse
|
18
|
Abstract
Exposure to environmental factors and genetic predisposition of an individual may lead individually or in combination to various genetic diseases including cancer. These diseases may be a consequence of genetic instability resulting in large-scale genomic rearrangements, such as DNA deletions, duplications, and translocations. This review focuses on mouse assays detecting genetic instability at endogenous loci. The frequency of DNA deletions by homologous recombination at the pink-eyed unstable (p(un)) locus is elevated in mice with mutations in ATM, Trp53, Gadd45, and WRN genes and after exposure to carcinogens. Other quantitative in vivo assays detecting loss of heterozygosity events, such as the mammalian spot assay, Dlb-1 mouse and Aprt mouse assays, are also reviewed. These in vivo test systems may predict hazardous effects of an environmental agent and/or genetic predisposition to cancer.
Collapse
Affiliation(s)
- Ramune Reliene
- Department of Pathology, David Geffen School of Medicine and School of Public Health, UCLA, 650 Charles E Young Drive South, Los Angeles, CA 90024, USA
| | | |
Collapse
|
19
|
Hendricks CA, Almeida KH, Stitt MS, Jonnalagadda VS, Rugo RE, Kerrison GF, Engelward BP. Spontaneous mitotic homologous recombination at an enhanced yellow fluorescent protein (EYFP) cDNA direct repeat in transgenic mice. Proc Natl Acad Sci U S A 2003; 100:6325-30. [PMID: 12750464 PMCID: PMC164445 DOI: 10.1073/pnas.1232231100] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A transgenic mouse has been created that provides a powerful tool for revealing genetic and environmental factors that modulate mitotic homologous recombination. The fluorescent yellow direct-repeat (FYDR) mice described here carry two different copies of expression cassettes for truncated coding sequences of the enhanced yellow fluorescent protein (EYFP), arranged in tandem. Homologous recombination between these repeated elements can restore full-length EYFP coding sequence to yield a fluorescent phenotype, and the resulting fluorescent recombinant cells are rapidly quantifiable by flow cytometry. Analysis of genomic DNA from recombined FYDR cells shows that this mouse model detects gene conversions, and based on the arrangement of the integrated recombination substrate, unequal sister-chromatid exchanges and repair of collapsed replication forks are also expected to reconstitute EYFP coding sequence. The rate of spontaneous recombination in primary fibroblasts derived from adult ear tissue is 1.3 +/- 0.1 per 106 cell divisions. Interestingly, the rate is approximately 10-fold greater in fibroblasts derived from embryonic tissue. We observe an approximately 15-fold increase in the frequency of recombinant cells in cultures of ear fibroblasts when exposed to mitomycin C, which is consistent with the ability of interstrand crosslinks to induce homologous recombination. In addition to studies of recombination in cultured primary cells, the frequency of recombinant cells present in skin was also measured by direct analysis of disaggregated cells. Thus, the FYDR mouse model can be used for studies of mitotic homologous recombination both in vitro and in vivo.
Collapse
Affiliation(s)
- Carrie A Hendricks
- Biological Engineering Division, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Dobrovolsky VN, McGarrity LJ, Morris SM, Heflich RH. Detection of mutation in transgenic CHO cells using green fluorescent protein as a reporter. Mutat Res 2002; 518:55-64. [PMID: 12063067 DOI: 10.1016/s1383-5718(02)00072-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel approach was developed for rapidly estimating the frequency of specific mutations in genetically engineered Chinese hamster ovary (CHO) cells. We designed double-transgenic CHO cell lines that contain a transgene consisting of the sequence coding for green fluorescent protein under the control of a tetracycline (Tet) responsive promoter and a second transgene coding for the constitutively expressed Tet repressor. Cultures of these CHO cells were treated with gamma-radiation, N-methyl-N-nitrosourea or methyl methanesulfonate, and the fluorescence of individual cells from both control and treated cultures was measured by flow cytometry. The treatments increased the number of highly fluorescent cells, those with presumed mutations in the Tet-repressor gene. Mutant cells from gamma-radiation-exposed cultures were isolated by fluorescence-activated cell sorting, cultured, and individual clones expanded. A PCR-based analysis indicated that the highly fluorescent expanded cells had lost the transgene coding for the Tet repressor, suggesting that the system mainly detects large genetic alterations. A similar approach may be useful for making high-throughput in vivo models for mutation detection.
Collapse
Affiliation(s)
- Vasily N Dobrovolsky
- Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, 3900 NCTR Road, HFT-120, Jefferson, AR 72079, USA.
| | | | | | | |
Collapse
|
21
|
Andreassen A, Møllersen L, Vikse R, Steffensen IL, Mikalsen A, Paulsen JE, Alexander J. One dose of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) or 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) induces tumours in Min/+ mice by truncation mutations or LOH in the Apc gene. Mutat Res 2002; 517:157-66. [PMID: 12034317 DOI: 10.1016/s1383-5718(02)00065-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The C57BL/6J-Min/+ (multiple intestinal neoplasia) mouse has a heterozygous nonsense Apc(Min) (adenomatous polyposis coli) mutation, and numerous adenomas spontaneously develop in the intestine. Neonatal exposure of Min/+ mice to the food carcinogens 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) or 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) (one injection of 50mg/kg) increased the number of small intestinal tumours about three- and two-fold, respectively. The number of colonic tumours was only increased in males. We examined whether the wild-type Apc allele was affected in intestinal tumours induced by either PhIP or IQ. In spontaneously formed and in IQ-induced small intestinal and colonic tumours from these mice, the main mechanism for tumour induction was loss of wild-type Apc allele, i.e. loss of heterozygosity (LOH). In contrast to the IQ-induced (84% LOH) and spontaneously (88% LOH) formed tumours, only 55% of the PhIP-induced small intestinal tumours from males showed LOH. Tumours that apparently had retained the wild-type Apc allele were further analysed for the presence of truncated Apc proteins by the in vitro synthesised protein (IVSP) assay. Truncated Apc proteins, indicating truncation mutations in exon 15 of the Apc gene, were detected in two of the 12 PhIP-induced tumours in segment 2 (codons 686-1217), and two of five IQ-induced tumours, one in segment 2 and the other in segment 3 (codons 1099-1693). Three of these four mutations, all in segment 2 of the Apc gene, were confirmed by sequencing. The PhIP-induced mutations were detected at codon 1125 (C deletion) and 1130 (G-T transversion), and the IQ-induced mutation was at codon 956 (C-T transition). Importantly, no truncated proteins were detected in tumours from unexposed mice with apparently retained wild-type Apc allele. These results show that one injection of either PhIP or IQ induces intestinal tumours in the Min/+ mice by inactivation of the wild-type Apc allele either by causing LOH or truncation mutations.
Collapse
Affiliation(s)
- Ashild Andreassen
- Department of Environmental Medicine, National Institute of Public Health, P.O. Box 4404, Nydalen, N-0404 Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
22
|
Liang L, Shao C, Deng L, Mendonca MS, Stambrook PJ, Tischfield JA. Radiation-induced genetic instability in vivo depends on p53 status. Mutat Res 2002; 502:69-80. [PMID: 11996974 DOI: 10.1016/s0027-5107(02)00029-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In response to ionizing radiation and other agents that damage DNA, the p53 tumor suppressor protein activates multiple cellular processes including cell cycle checkpoints and programmed cell death. Although loss of p53 function is associated with radiation-induced genetic instability in cell lines, it is not clear if this relationship exists in vivo. To study the role of p53 in maintenance of genetic stability in normal tissues following irradiation, we have measured mutant frequencies at the adenine phosphoribosyltransferase (Aprt) and hypothanine-guanine phosphoribosyltransferase (Hprt) loci and examined mechanisms of loss of heterozygosity (LOH) in normal T cells of p53-deficient, Aprt heterozygous mice that were subjected to whole-body irradiation with a single dose of 4Gy X-rays. The radiation-induced mutant frequency at both the Aprt and Hprt loci was elevated in cells from mice with different p53 genotypes. The radiation-induced elevation of p53-/- mice was significantly greater than that of p53+/- or p53+/+ mice and was caused by several different kinds of mutational events at the both chromosomal and intragenic levels. Most significantly, interstitial deletion, which occurs rarely in unirradiated mice, became the most common mechanism leading to LOH in irradiated p53 null mice. These observations support the idea that absence or reduction of p53 expression enhances radiation-induced tumorigenesis by increasing genetic instability at various loci, such as those for tumor suppressor genes.
Collapse
Affiliation(s)
- Li Liang
- Department of Genetics, State University of New Jersey, Rutgers, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
23
|
Arentson E, Faloon P, Seo J, Moon E, Studts JM, Fremont DH, Choi K. Oncogenic potential of the DNA replication licensing protein CDT1. Oncogene 2002; 21:1150-8. [PMID: 11850834 DOI: 10.1038/sj.onc.1205175] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2001] [Revised: 11/02/2001] [Accepted: 11/07/2001] [Indexed: 11/08/2022]
Abstract
The expression of a gene, designated as Retroviral insertion site (Ris)2, was activated by retroviral DNA integration in an immortalized primitive erythroid cell line, EB-PE. Ris2 was also expressed at high levels in all human tumor cell lines analysed. Consistently, NIH3T3 fibroblasts overexpressing Ris2 formed tumors in Rag2 -/- mice when injected subcutaneously. The putative RIS2 protein shows a high sequence similarity to Xenopus CDT1, Drosophila DUP, and human CDT1, a newly identified DNA replication licensing protein, suggesting that Ris2 is a mouse homologue of CDT1. Cells overexpressing Ris2/Cdt1 exhibited a quicker entry into S phase when released from serum starvation compared to controls. Our results suggest that CDT1, an essential licensing protein for DNA replication, can function as an oncogene in mammals.
Collapse
MESH Headings
- 3T3 Cells
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Western
- Cell Cycle
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cloning, Molecular
- DNA Replication
- DNA, Viral/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Drosophila/genetics
- Flow Cytometry
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Humans
- Mice
- Molecular Sequence Data
- Mutagenesis, Insertional/genetics
- Oncogenes/genetics
- Proviruses/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Retroviridae/genetics
- Sequence Homology, Amino Acid
- Tumor Cells, Cultured
- Xenopus/genetics
- Xenopus Proteins
Collapse
Affiliation(s)
- Elizabeth Arentson
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Dobrovolsky VN, Shaddock JG, Heflich RH. Mutagenicity of gamma-radiation, mitomycin C, and etoposide in the Hprt and Tk genes of Tk(+/-) mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2002; 39:342-347. [PMID: 12112386 DOI: 10.1002/em.10074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The recently developed Tk(+/-) mouse detects in vivo somatic cell mutation in the endogenous, autosomal Tk gene. To evaluate the sensitivity of this model, we have treated Tk(+/-) mice with three agents that induce DNA damage by different mechanisms, and determined spleen lymphocyte mutant frequencies (MFs) in the autosomal Tk gene and in the X-linked Hprt gene. gamma-Radiation, which produces single- and double-strand breaks by nonspecific oxidative stress, efficiently increased Hprt MF, but not Tk MF. Mitomycin C, which produces bulky DNA monoadducts and crosslinks, was mutagenic in both the Hprt and Tk genes, but the response was greater in the Tk gene. An inhibitor of the ligase function of DNA topoisomerase II, etoposide, did not increase Hprt MF, and induced a small, but nonsignificant increase in Tk MF. Combined with previous data, the results indicate that the two genes are differentially sensitive to many agents, and that the Tk gene is more sensitive than the Hprt gene to some, but not all types of DNA damage.
Collapse
Affiliation(s)
- Vasily N Dobrovolsky
- Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079, USA
| | | | | |
Collapse
|
25
|
Wijnhoven SW, Kool HJ, Mullenders LH, Slater R, van Zeeland AA, Vrieling H. DMBA-induced toxic and mutagenic responses vary dramatically between NER-deficient Xpa, Xpc and Csb mice. Carcinogenesis 2001; 22:1099-106. [PMID: 11408355 DOI: 10.1093/carcin/22.7.1099] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Heterogeneity in cancer susceptibility exists between patients with an inherited defect in nucleotide excision repair (NER). While xeroderma pigmentosum (XP) patients have elevated skin cancer rates, Cockayne syndrome (CS) patients do not appear to have increased cancer susceptibility. To investigate whether differences in mutagenesis are the basis for the variability in cancer proneness, we studied mutagenesis at the X-chromosomal Hprt gene and the autosomal Aprt gene in splenic T-lymphocytes after 7,12-dimethyl-1,2-benz[a]anthracene (DMBA) exposure in total NER-deficient Xpa mice, global genome repair (GGR)-deficient Xpc mice and transcription coupled repair (TCR)-deficient Csb mice. Surprisingly, while all intraperitoneally-treated Xpc(-/-) mice survived a dose of 40 mg/kg DMBA, a substantial fraction of the treated Xpa(-/-) and Csb(-/-) mice died a few days after treatment with a 20-fold lower dose. Functional TCR of DMBA adducts in Xpc(-/-) mice thus appears to alleviate DMBA toxicity. However, the mutagenic response in Xpc(-/-) mice was +/- 2-fold enhanced at both the Hprt and the Aprt gene compared to heterozygous controls, indicating that GGR at least partially removes DMBA adducts from the genome overall. DMBA-induced SCE frequencies in mouse dermal fibroblasts were significantly enhanced in Xpa- and Csb-, but not in Xpc-deficient background compared to the frequency in normal fibroblasts. These results indicate that both damage-induced cytotoxicity as well as intra-chromosomal recombinational events were not correlated to differences in cancer susceptibility in human NER syndrome patients.
Collapse
Affiliation(s)
- S W Wijnhoven
- Department of Radiation Genetics and Chemical Mutagenesis-MGC, Leiden University Medical Center, The Netherlands
| | | | | | | | | | | |
Collapse
|
26
|
Turner SD, Wijnhoven SW, Tinwell H, Lashford LS, Rafferty JA, Ashby J, Vrieling H, Fairbairn LJ. Assays to predict the genotoxicity of the chromosomal mutagen etoposide -- focussing on the best assay. Mutat Res 2001; 493:139-47. [PMID: 11516723 DOI: 10.1016/s1383-5718(01)00170-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The topoisomerase II inhibitor etoposide is used routinely to treat a variety of cancers in patients of all ages. As a result of its extensive use in the clinic and its association with secondary malignancies it has become a compound of great interest with regard to its genotoxic activity in vivo. This paper describes a series of assays that were employed to determine the in vivo genotoxicity of etoposide in a murine model system. The alkaline comet assay detected DNA damage in the bone marrow mononuclear compartment over the dose range of 10--100mg/kg and was associated with a large and dose dependent rise in the proportion of cells with severely damaged DNA. In contrast, the bone marrow micronucleus assay was found to be sensitive to genotoxic damage between the doses of 0.1--1mg/kg without any corresponding increases in cytotoxicity. An increase in the mutant frequency was undetectable at the Hprt locus at administered doses of 1 and 10mg/kg of etoposide, however, an increase in the mutant frequency was seen at the Aprt locus at these doses. We conclude that the BMMN assay is a good short-term predictor of the clastogenicity of etoposide at doses that do not result in cytotoxic activity, giving an indication of potential mutagenic effects. Moreover, the detection of mutants at the Aprt locus gives an indication of the potential of etoposide to cause chromosomal mutations that may lead to secondary malignancy.
Collapse
Affiliation(s)
- S D Turner
- Gene Therapy Group, Christie Hospital (NHS) Trust, Wilmslow Road, Manchester M20 4BX, UK.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
van Zeeland AA, Mullenders LH, Vrieling H. Gene and sequence specificity of DNA damage induction and repair: consequences for mutagenesis. Mutat Res 2001; 485:15-21. [PMID: 11341990 DOI: 10.1016/s0921-8777(00)00072-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The field of DNA repair has been expanded enormously in the last 20 years. In this paper, work on gene and sequence specificity of DNA damage induction and repair is summarized in the light of the large and broad contribution of Phil Hanawalt to this field of research. Furthermore, the consequences of DNA damage and repair for mutation induction is discussed, and the contribution of Paul Lohman to the development of assays employing transgenic mice for the detection of gene mutations is highlighted.
Collapse
Affiliation(s)
- A A van Zeeland
- Department of Radiation Genetics and Chemical Mutagenesis - MGC, Leiden University Medical Center, Sylvius Laboratories, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands.
| | | | | |
Collapse
|
28
|
Wijnhoven SW, Kool HJ, van Teijlingen CM, van Zeeland AA, Vrieling H. Loss of heterozygosity in somatic cells of the mouse. An important step in cancer initiation? Mutat Res 2001; 473:23-36. [PMID: 11166024 DOI: 10.1016/s0027-5107(00)00163-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Loss of heterozygosity (LOH) of tumour suppressor genes is a crucial step in the development of sporadic and hereditary cancer. Recently, we and others have developed mouse models in which the frequency and nature of LOH events at an autosomal locus can be elucidated in genetically stable normal somatic cells. In this paper, an overview is presented of recent studies in LOH-detecting mouse models. Molecular mechanisms that lead to LOH and the effects of genetic and environmental variables are discussed. The general finding that LOH of a marker gene occurs frequently in somatic cells of the mouse without deleterious effects on cell viability, suggests that also tumour suppressor genes are lost in similar frequencies. LOH of tumour suppressor genes may thus be an initiating event in cancer development.
Collapse
Affiliation(s)
- S W Wijnhoven
- Department of Radiation Genetics and Chemical Mutagenesis-MGC, Leiden University Medical Center, P.O. Box 9503, 2333 AL, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
29
|
Abstract
The evolution of testing strategies and methods for identification of mutagenic agents is discussed, beginning with the concern over potential health and population effects of chemical mutagens in the late 1940s that led to the development of regulatory guidelines for mutagenicity testing in the 1970s and 1980s. Efforts to achieve international harmonization of mutagenicity testing guidelines are summarized, and current issues and needs in the field are discussed, including the need for quantitative methods of mutagenic risk assessment, dose-response thresholds, indirect mechanisms of mutagenicity, and the predictivity of mutagenicity assays for carcinogenicity in vivo. Speculation is offered about the future of mutagenicity testing, including possible near-term changes in standard test batteries and the longer-term roles of expression profiling of damage-response genes, in vivo mutagenicity testing methods, and models that better account for differences in metabolism between humans and laboratory model systems.
Collapse
Affiliation(s)
- J T MacGregor
- FDA Center for Drug Evaluation and Research, 5600 Fishers Lane, Rockville, MD 20857, USA.
| | | | | |
Collapse
|
30
|
Wijnhoven SW, Kool HJ, Mullenders LH, van Zeeland AA, Friedberg EC, van der Horst GT, van Steeg H, Vrieling H. Age-dependent spontaneous mutagenesis in Xpc mice defective in nucleotide excision repair. Oncogene 2000; 19:5034-7. [PMID: 11042691 DOI: 10.1038/sj.onc.1203844] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA damages caused by cellular metabolites and environmental agents induce mutations, that may predispose to cancer. Nucleotide excision repair (NER) is a major cellular defence mechanism acting on a variety of DNA lesions. Here, we show that spontaneous mutant frequencies at the Hprt gene increased 30-fold in T-lymphocytes of 1 year old Xpc-/- mice, possessing only functional transcription-coupled repair (TCR). Hprt mutant frequencies in Xpa-/- and Csb-/- mice that both have a defect in this NER subpathway, remained low during ageing. In contrast to current models, the elevated mutation rate in Xpc-/- mice does not lead to an increased tumour incidence or premature ageing. Oncogene (2000) 19, 5034 - 5037
Collapse
Affiliation(s)
- S W Wijnhoven
- Department of Radiation Genetics and Chemical Mutagenesis-MGC, Leiden University Medical Center, 2333 AL Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Dobrovolsky VN, Shaddock JG, Heflich RH. 7,12-dimethylbenz[a]anthracene-induced mutation in the Tk gene of Tk(+/-) mice: automated scoring of lymphocyte clones using a fluorescent viability indicator. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2000; 36:283-291. [PMID: 11152561 DOI: 10.1002/1098-2280(2000)36:4<283::aid-em4>3.0.co;2-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
7,12-Dimethylbenz[a]anthracene (DMBA) is a rodent carcinogen and a potent in vivo mutagen for the X-linked hypoxanthine guanine phosphoribosyl transferase (hprt) gene of rats and for the lacI transgene of Big Blue mice and rats. Although DMBA is also a powerful clastogen, molecular analysis of these DMBA-induced hprt and lacI mutations indicates that most are single base-pair (bp) substitutions and 1- to 3-bp frameshifts. In the present study, we evaluated the types of mutations induced by DMBA in the autosomal thymidine kinase (Tk) gene of Tk(+/-) mice. Male and female 5- to 6-week-old animals were injected i.p. with DMBA at a dose of 30 mg/kg. Five weeks after the treatment, hprt and Tk mutant frequencies were determined using a limiting dilution clonal assay in 96-well plates. We established conditions for the automated identification of wells containing expanded lymphocyte clones using the fluorescent indicator alamarBlue. This procedure allowed the unbiased identification of viable clones and calculation of mutant frequencies. In male mice, DMBA treatment increased the frequency of hprt mutants from 1.8 +/- 1.1 to 34 +/- 9 x 10(-6), and Tk mutants from 33 +/- 12 to 78 +/- 26 x 10(-6); treated female mice had a significant but lower increase in hprt mutant frequency than did males. Molecular analysis of DMBA-induced Tk mutants revealed that at least 75% had the entire wild-type Tk allele missing. The results indicate that the predominant types of DMBA-induced mutation detected by the autosomal Tk gene are different from those detected by the X-linked hprt gene. The Tk gene mainly detects loss of heterozygosity mutation, whereas the majority of mutations previously found in the hprt gene were point mutations.
Collapse
Affiliation(s)
- V N Dobrovolsky
- Division of Genetic and Reproductive Toxicology, HFT-120, National Center for Toxicological Research, Jefferson, Arkansas 72079, USA.
| | | | | |
Collapse
|
32
|
Abstract
Mammalian genomes are in constant jeopardy of invasion by prokaryotic DNA sequences because of their extensive exposure to bacteria; however, mammalian genomes appear to be protected from horizontal transmission of bacterial DNA. Transgenic mice provide a convenient model system for investigating the capacity of mammalian genomes in vivo to retain, silence, and/or reject foreign DNAs. We have previously reported that bacterial genes encoding the Lac repressor (lacI) are subject to sequence-dependent methylation and silencing in the transgenic mouse. In this paper, we report that bacterially derived lacI transgenes, but not their mammalian counterparts, can also be eliminated from the somatic cell DNA of affected animals. This somatic instability is heritable, strain-dependent, and conferred in cis. Our data are consistent with a model of genome surveillance in the mouse which can lead to loss of foreign DNA and which may be analogous to restriction-modification systems that maintain the integrity of the bacterial genome.
Collapse
Affiliation(s)
- H Scrable
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | | |
Collapse
|
33
|
Manning K, Al-Dhalimy M, Finegold M, Grompe M. In vivo suppressor mutations correct a murine model of hereditary tyrosinemia type I. Proc Natl Acad Sci U S A 1999; 96:11928-33. [PMID: 10518553 PMCID: PMC18389 DOI: 10.1073/pnas.96.21.11928] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hereditary tyrosinemia type I and alkaptonuria are disorders of tyrosine catabolism caused by deficiency of fumarylacetoacetate hydrolase (FAH) and homogentisic acid dioxygenase (HGD), respectively. Tyrosinemia is a severe childhood disease that affects the liver and kidneys, but alkaptonuria is a more benign adult disorder in comparison. Because HGD is upstream of FAH in the tyrosine pathway, mice doubly mutant in both enzymes were found to be protected from the liver and renal damage of tyrosinemia as hypothesized. Mice mutant at the tyrosinemic locus but heterozygous for alkaptonuria spontaneously developed clonal nodules of functionally normal hepatocytes that were able to rescue the livers of some mice with this genotype. This phenotypic rescue was a result of an inactivating mutation of the wild-type homogentisic acid dioxygenase gene, thus presenting an example of an in vivo suppressor mutation in a mammalian model.
Collapse
Affiliation(s)
- K Manning
- Department of Molecular and Medical Genetics, Oregon Health Sciences University, Portland, OR 97201, USA.
| | | | | | | |
Collapse
|
34
|
Shcherbakova PV, Kunkel TA. Mutator phenotypes conferred by MLH1 overexpression and by heterozygosity for mlh1 mutations. Mol Cell Biol 1999; 19:3177-83. [PMID: 10082584 PMCID: PMC84111 DOI: 10.1128/mcb.19.4.3177] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Loss of DNA mismatch repair due to mutation or diminished expression of the MLH1 gene is associated with genome instability and cancer. In this study, we used a yeast model system to examine three circumstances relevant to modulation of MLH1 function. First, overexpression of wild-type MLH1 was found to cause a strong elevation of mutation rates at three different loci, similar to the mutator effect of MLH1 gene inactivation. Second, haploid yeast strains with any of six mlh1 missense mutations that mimic germ line mutations found in human cancer patients displayed a strong mutator phenotype consistent with loss of mismatch repair function. Five of these mutations affect amino acids that are homologous to residues suggested by recent crystal structure and biochemical analysis of Escherichia coli MutL to participate in ATP binding and hydrolysis. Finally, using a highly sensitive reporter gene, we detected a mutator phenotype of diploid yeast strains that are heterozygous for mlh1 mutations. Evidence suggesting that this mutator effect results not from reduced mismatch repair in the MLH1/mlh1 cells but rather from loss of the wild-type MLH1 allele in a fraction of cells is presented. Exposure to bleomycin or to UV irradiation strongly enhanced mutagenesis in the heterozygous strain but had little effect on the mutation rate in the wild-type strain. This damage-induced hypermutability may be relevant to cancer in humans with germ line mutations in only one MLH1 allele.
Collapse
Affiliation(s)
- P V Shcherbakova
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|